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METHOD AND SYSTEM FOR GENERATING
ATTENUATION MAP FROM SPECT
EMISSION DATA

This 1nvention was made with an American Heart Asso-
ciation award 18PRE33990138 and government support

under HIL123949 awarded by National Institutes of Health.
The government has certain rights 1n the mvention.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The vention relates to estimating attenuation coetli-
cients and attenuation maps (ATTMAP) from single photon
emission computed tomography emissions and, where nec-
essary, providing for attenuation correction for SPECT
imaging.

2. Description of the Related Art

Single photon emission computed tomography (SPECT)
1S a non-invasive 1maging procedure that can provide
radiotracer distribution images of the patient body by detect-
ing gamma-ray photons. SPECT plays an important role 1n
the clinical diagnosis of cardiovascular, oncological, and
neurological disease. In order to perform qualitative, quan-
titative, or semi-quantitative analysis for SPECT, accurate
attenuation correction 1s essential.

Studies showed that attenuation correction can reduce
ambiguity 1n diagnosis. Scans being interpreted as “normal”
increased from 45% to 72% after the addition of attenuation
correction, and confidence (total scans that are unequivocal)
went from 57% to 80% after the addition of attenuation
correction [van D1jk J, Mouden M, Ottervanger J, van Dalen
I, Knollema S, Slump C, et al. Value of attenuation correc-
tion 1n stress-only myocardial perfusion imaging using CZT-
SPECT. Journal of Nuclear Cardiology. 2017; 24:395-401].
Attenuation correction can also increase diagnostic positive
predictive values (PPV). Use of computer tomography (CT)
for attenuation correction led to significant increases 1n “true
positive” results and significant decreases 1n “false positive”™

results as confirmed by invasive coronary angiography
(ICA), significantly increasing PPV from 0.28 to 0.76

[Patchett N D, Pawar S, Sverdlov A, Miller E J. Does
Improved Technology in SPECT Myocardial Perfusion
Imaging Reduce Downstream Costs? An Observational
Study. International Journal of Radiology and Imaging Tech-
nology. 2017; 3. do1:10.23937/2572-3235.1510023]. More-
over, more accurate diagnosis with attenuation corrected
SPECT (SPECT/CT) leads to significant reduction in pre-
ventable diagnostic services of about $1,500 per patient/year
by reducing unnecessary downstream invasive angiography
procedures.

Many recent hybrid SPECT systems are equipped with a
C'T scanner that can be used to measure photon attenuation.
However, these systems are substantially more expensive
than SPECT-only systems and often require larger imaging
rooms and additional room lead shielding. Currently, stand-
alone SPECT systems still occupy the majority (around
80%) of the SPECT market share and these systems are
susceptible to attenuation artifacts. Moreover, the use of CT
scans also increases radiation doses to patients and signifi-
cant artifacts could appear due to mismatches between the
SPECT and CT scans as a result of respiratory motion,
cardiac motion, and patient motion.
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With the foregoing in mind, eflorts have been made on
estimating the attenuation map only using the SPECT emis-
sion data. Existing techniques for estimating the attenuation
map from SPECT emission data can be classified into two
categories. The first category includes segmentation-based
methods that use either the photopeak or the scatter data to
reconstruct the attenuation images [Pan, T.-S., King, M. A.,
Luo, D.-S., Dahlberg, S. T., et al.: Estimation of attenuation
maps from scatter and photopeak window single photon-
emission computed tomographic images of technetium 99m-
labeled sestamibi, Journal of Nuclear Cardiology 4, 42-51
(1997); Zaidi, H., Hasegawa, B.: Determination of the
attenuation map 1n emission tomography, Journal of Nuclear
Medicine 44, 291-315 (2003)]. A coarse attenuation map can
be obtamned by segmenting different regions in SPECT
images and assigning pre-defined attenuation coethlicients.
However, these methods are based on the 1naccurate
assumption that tissues have uniform attenuation coetl-
cients. They also rely on segmentation by humans which 1s
operator-dependent, time-consuming, and challenging 1n
clinical workilow. The second category of methods 1s
model-based methods that estimate the attenuation coetli-
cients directly from the emission data [Jha, A. K., Zhu, Y.,
Clarkson, E., Kupinski, M. A., et al.: Fisher information
analysis of list-mode SPECT emission data for joint esti-
mation of activity and attenuation distribution, arXiv pre-
print arX1v:1807.01767 (2018); Cade, S. C., Amdge, S.,
Evans, M. J., Hutton, B. F.: Use of measured scatter data for
the attenuation correction of single photon emission tomog-
raphy without transmission CT scanning, Medical physics
40, 082506 (2013)]. However, these models either neglect
scattered photons or only consider photons that have been

scattered once [Jha, A. K., Zhu, Y., Clarkson, E., Kupinski,
M. A., et al.: Fisher information analysis of list-mode
SPECT emission data for joint estimation of activity and
attenuation distribution, arXiv preprint arXiv:1807.01767
(2018)] which are not very accurate. These methods also
suller from high computation time and were only applied on
2D SPECT systems.

In recent years, deep learning-based approaches have
been proposed to estimate images ol one modality from
another [Nie, D., Trullo, R., Lian, J., Wang, L., et al.:
Medical image synthesis with deep convolutional adver-
sarial networks, IEEE Transactions on Biomedical Engi-
neering 65, 2720-2730 (2018); Hwang, D., Kang, S. K.,
Kim, K. Y., Seo, S., et al.: Generation of PET attenuation
map lor whole-body time-of-flight 18F-FDG PET/MRI
using a deep neural network trained with simultaneously
reconstructed activity and attenuation maps, Journal of
Nuclear Medicine jnumed, 118.219493 (2019); Han, X.:
MR-based synthetic CT generation using a deep convolu-
tional neural network method, Medical physics 44, 1408-
1419 (2017)]. Particularly, 1nitial success was obtained for
the task of generating attenuation maps for nuclear images.
In “MR-based synthetic C1 generation using a deep convo-
lutional neural network method,” convolutional neural net-
works were used to convert magnetic resonance imaging
(MRI) images to attenuation CT 1mages for PET/MRI sys-

tems. In “Generation of PET attenuation map for whole-
body time-oi-tlight 18F-FDG PET/MRI using a deep neural
network trained with simultaneously reconstructed activity
and attenuation maps,” Hwang et al. proposed to predict the
C'T-attenuation maps from PET data alone. Nonetheless, no
attempt was reported on attenuation map synthesis for

SPECT.

SUMMARY

According to a first aspect there may be provided a system
for estimating attenuation coeflicients and/or attenuation
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maps (AT'TMAP) from only single photon emission com-
puted tomography (SPECT) emission data using deep neural

networks. The system includes a machine learning system
based upon artificial neural networks for estimating attenu-
ation maps for SPECT emission data.

In some embodiments the machine learning system
includes a generator network estimating attenuation maps
for SPECT emission data and a discriminator network
enforcing output of the generator network to be consistent
with a ground truth attenuation map.

In some embodiments the generator network 1s trained.
In some embodiments the generator network 1s trained
with Generative Adversarial Network (GAN) tralnmg

In some embodiments the generator network 1s trained
with an Adam optimizer.

In some embodiments the
trained.

In some embodiments the discriminator network 1s trained
with an Adam optimizer.

In some embodiments the generator network 1s a deep
convolutional neural network.

In some embodiments the discriminator network 1s a deep
convolutional neural network.

In some embodiments the ground truth attenuation map 1s
generated based upon empirical evidence.

In some embodiments the SPECT emission data includes
images reconstructed from photopeak window and/or scatter
window.

In some embodiments the 1mages reconstructed from the
photopeak window and the scatter window are concatenated
as a multi-channel 1image and fed into a generator network.

In another aspect there may be provided a method for
generating attenuation maps and performing associated
attenuation correction from SPECT emission data. The
method incudes generating an attenuation map from a NAC
(non-attenuation corrected) SPECT 1mage dataset (photo-
peak window or both photopeak combined with scatter
windows) through deep learning, estimating attenuated pro-
jection data via forward projecting the NAC SPECT image
without incorporating the attenuation map, and reconstruct-
ing an AC (attenuation corrected) SPECT image from the
estimated attenuated projection data using iterative recon-
struction with attenuation correction by incorporating the
attenuation map generated by deep learning.

Additional advantages of the embodiments will be set
torth in part in the description which follows, and 1n part will
be understood from the description, or may be learned by
practice of the invention. The advantages will be realized
and attained by means of the elements and combinations
particularly pointed out in the appended claims.

discriminator network 1s

BRIEF DESCRIPTION OF THE

DRAWINGS

FIG. 1 1s a schematic of the present method and system for
estimating attenuation coethicients and attenuation maps
(AT TMAP) from only single photon emission computed
tomography (SPECT) emission data.

FIG. 2 shows results for two patients, wherein the upper
left images show the primary/scatter window SPECT recon-
structions, the synthetic attenuation maps, and CT (computer
tomography)-based attenuation maps in the axial, coronal
and sagittal views; the upper right images show SPECT
reconstructed 1images corrected using Cl-based attenuation
maps, with synthetic attenuation maps generated by the
Generative Adversarial Network (GAN) method using both
primary and scatter windows data (AC-SPECT w. GAN-PS)

and without attenuation correction i both short axis (SA)
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and vertical long axis (VLA) views; and the bottom 1mages
show the polar map comparisons.

FIG. 3 shows visual comparison of GAN and U-net using,
different iputs: both primary and scatter windows (PS),
primary window alone (P), and scatter window alone (S)

FIG. 4 shows correlation between the attenuation coefli-
cient of synthetic attenuation map (u-Synthetic) and CT-
based attenuation map (u-CT) for all the voxels 1n the 25
testing human subjects using various combinations of deep
learning models (GAN vs. U-net) and input data (Primary+
Scatter vs. Primary only). Dashed lines are the identity lines.

FIG. 5 shows correlation between attenuation-corrected
SPECT reconstructed images using synthetic attenuation
map (A-Synthetic) and CT-based attenuation map (A-CT) for
all the voxels 1n the 25 testing human subjects using various
combinations of deep learning models (GAN vs. U-net) and
input data (Primary+Scatter vs. Primary only). Dashed lines
are the 1dentity lines.

FIG. 6 shows scatter plots of region of interest (ROI)
mean voxel values measured on left ventricle myocardium
(MYO) and blood pool (BLP) between the attenuation-
corrected SPECT reconstructed images using synthetic
attenuation map (A mean-Synthetic) and CT-based attenua-
tion map (A mean-CT) for all the voxels 1n the 25 testing
human subjects using various combinations of deep learning
models (GAN vs. U-net) and input data (Primary+Scatter vs.
Primary only).

FIG. 7 shows Bland Altman plots of ROI mean voxel
values measured on leit ventricle myocardium (MYO) and
blood pool (BLP) between the attenuation-corrected SPECT
reconstructed 1mages using synthetic attenuation map and
C'T-based attenuation map for all the voxels 1n the 25 testing
human subjects using various combinations of deep learning
models (GAN vs. U-net) and input data (Primary+Scatter vs.
Primary only).

FIG. 8 1s a schematic of the fully convolutional network
(FCN) structure used for comparison purposes with dis-
closed embodiments.

FIG. 9 shows the worktlow of the oflline scanner attenu-
ation correction for NAC SPECT.

FIG. 10 1s a schematic of a rotation-based projector for
use in accordance with an embodiment of the present
invention.

FIG. 11 shows sample slices of two patients for NAC
SPECT 1mage, offline AC SPECT image, and scanner AC
SPECT image.

FIG. 12 shows bull’s-eye polar maps of two patients
derived from NAC SPECT image, offline AC SPECT image,

and scanner AC SPECT 1mage.

DESCRIPTION OF TH

EMBODIMENTS

(Ll

The detailed embodiments of the present invention are
disclosed herein. It should be understood, however, that the
disclosed embodiments are merely exemplary of the inven-
tion, which may be embodied 1n various forms. Therefore,
the details disclosed herein are not to be interpreted as
limiting, but merely as a basis for teaching one skilled 1n the
art how to make and/or use the invention.

Referring now to the various drawings, disclosed are a
method and system for estimating attenuation coeflicients
and attenuation maps (AT'TMAP) from only single photon
emission computed tomography (SPECT) emission data
using deep neural networks and performing attenuation
correction, without requiring additional computed tomogra-
phy (CT) or other transmission images. As those skilled in
the art will appreciate, the terms attenuation coeflicient and
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attenuation map are related terms and are often used inter-
changeably since attenuation coeflicients are basically the
values used in creating the attenuation maps. In accordance
with one embodiment of the present invention, both 1images
reconstructed from photopeak windows and scatter windows
are fed into deep neural networks to generate synthetic
attenuation map 1mages. In addition, 1images from a single
energy window, either photopeak window or scatter win-
dow, can also be fed mnto deep neural networks to generate
synthetic attenuation coeflicient images.

As those skilled mn the art will certainly appreciate,
SPECT 1s a non-invasive imaging procedure that provides
radiotracer distribution 1images of a patient’s body by detect-
ing gamma photons. SPECT plays an important role in the
climical diagnosis of cardiovascular, oncological and neuro-

logical disease. In order to perform qualitative, quantitative,
or semi-quantitative analysis for SPECT, accurate attenua-
tion correction 1s essential.

As those skilled 1n the art will further appreciate, and as
discussed above, hybrid SPECT/CT systems equipped with
transmission CT scanners can provide direct measurement
ol photon attenuation but are substantially more expensive
than conventional SPECT systems and often require larger
imaging rooms, additional shielding, and relatively compli-
cated acquisition protocols. Many current SPECT-only sys-
tems do not support transmission or CT scanning and
therefore are susceptible to attenuation artifacts. Where
available, the use of transmission CT scanning also increases
radiation doses to the patient and significant artifacts could
occur due to mismatches between the SPECT and transmis-
sion C'T scans as a result of patient motion. Due to all these
reasons, the present method and system have been devel-
oped for estimating attenuation coeflicients that are then
used 1n creating an attenuation map (ATTMAP) directly
from SPECT emission data using deep neural networks. The
attenuation map may then be used in 1image reconstruction of
the SPECT emission data to produce accurate images of the
patient’s body.

The present method and system for estimating attenuation
coellicients from only SPECT emission data uses a deep
learning-based model for estimating attenuation maps
directly from SPECT emission data. Briefly, 3D (three-
dimensional) models are developed using a generator net-
work 10, which in accordance with the present invention 1s
a deep convolutional neural network (CNN) with Generative
Adversarial Network (GAN) traiming, to estimate attenua-
tion maps for SPECT directly and solely from the SPECT
emission data 12a, 125. As demonstrated below, qualitative
and quantitative analysis demonstrates that the present
method and system 1s capable of generating accurate attenu-
ation maps. Evaluations on real human data showed that the
present method produces attenuation maps that are consis-
tent with CT-based attenuation maps, and provides accurate
attenuation correction for SPECT images. The attenuation
maps produced 1n accordance with the present invention are
then used to correct raw SPECT data or SPECT images
reconstructed without attenuation correction to produce
highly accurate body images based solely upon SPECT
emission data.

In practice, once the deep convolutional neural network

(CNN) 1s fully tramned using GAN techniques, the deep
convolutional neural network (CNN) 1s used 1n conjunction

with SPECT imaging to produce attenuation maps that are

applied in conjunction with generated emissions data to
produce accurate body images. As those skilled in the art

appreciate, GAN techniques refer to machine learning sys-
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tems wherein two neural networks compete with each i a
manner generating new data with the same statistics as the
training set.

Referring to FIG. 1, a system 100 1n accordance with the
present invention 1s disclosed that employs a machine learn-
ing system based upon artificial neural networks to estimate
attenuation maps for SPECT emission data, wherein the
machine learning system includes a generator network 10
and a discriminator network 16. The artificial neural network
1s 1n the form of a deep convolutional neural network (CNN)
and traiming of the deep CNN 1is described. In accordance
with the present method and system, 1mages reconstructed
from photopeak window (126 keV-155 keV) 12a (that 1s, the
primary window) and scatter window (114 keV-126 keV)
1256 are concatenated as a multi-channel 1image and fed into
a generator network 10, 1n particular, a deep neural network,
to generate synthetic attenuation map) 1mages. Specifically,

a primary SPECT patch 124' and a scatter SPECT patch 125’

are fed into the generator network 10 so as to maintain
consistency with the voxel of the ground-truth attenuation
map (AT'TMAP) image patch 18' of the ground truth attenu-
ation map (AI'TMAP) image 18. While 126 keV-135 keV 1s
used for photopeak window and 114 keV-126 keV 1s used
for scatter window 1n the present work, other energy window
number ranges could also produce satisfactory results. The
generator network 10 with a GAN training strategy gener-
ates attenuation map images 14 from SPECT emission
images, that 1s, the photopeak window (126 keV-155 keV)
12a and scatter window (114 keV-126 keV) 126 of the
SPECT mmage. The GAN uses an additional discriminator
network 16 to enforce the output of the generator network 10
to be consistent with the ground truth attenuation maps 18
(that 1s, attenuation maps generated based upon empirical
evidence) as much as possible. An 1image gradient diflerence
term 1s also added to the loss function to retain the sharpness
of the generated attenuation maps.

While GAN 1s used as the overall training strategy and 3D
U-net 1s used as the convolutional neural network of the
generator network 10 in accordance with the disclosed
invention, other network structures could also work. While
both photopeak photons and scatter photons are disclosed
herein as being used 1n accordance with the present mven-
tion, 1t 1s contemplated the concepts underlying the present
invention may be applied using only photopeak photons or
scatter photons in the production of attenuation maps for
SPECT.

More particularly, and considering a specific embodiment
of the present mvention, SPECT patch images 12a', 125
reconstructed from photopeak window (126 keV-155 keV)
12a and scatter window (114 keV-126 keV) 125 are con-
catenated as a multi-channel image and fed into the genera-
tor network 10, which, 1n accordance with a preferred
embodiment, 1s 3D U-net deep convolutional neural network
(CNN). As those skilled 1n the art will appreciate, 3D U-net
deep convolutional neural networks (CNN) are well known
deep neural networks.

The generator network 10 generates synthetic attenuation
map (AT TMAP) mmage patches 14' mtended to fool the
discriminator that has been provided with a ground truth
attenuation map image patch 18'. In accordance with this
embodiment, the discriminator network 16 1s a 3D convo-
lutional neural network (CNN). As those skilled in the art
will appreciate, 3D CNNs are well known deep neural
networks used for image processing wherein every image
input 1s treated as a matrix of voxel values which represents
the brightness (amount of radiotracer concentration for
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SPECT) at a given voxel in the image such that CNNs
extract information from voxels and the neighbors for vari-
ous 1maging tasks.

As discussed above, once the generator network 10 1s
tully trained 1t may be used without the discriminator
network 16 to create attenuation map images 14.

Embodiment

I. Exemplary

A specific implementation 1s described below. The imple-
mentation described below 1s a compilation of the mnitial
results present 1 U.S. Provisional Application Ser. No.
62/836,167, entitled “METHOD AND SYSTEM FOR
GENERATING ATTENUATION MAP FROM SPECT
EMISSION DATA,” filed Apr. 19, 2019, to which priority 1s
claimed and which 1s incorporated herein by reference, and
work performed after the filing of the 167 provisional
application.

A conditional generative adversarial network (cGAN)
framework 1s employed [Isola, P., Zhu, 1.-Y., Zhou, T., Efros,
A. A.: Image-to-image translation with conditional adver-
sarial networks. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 1125-1134,
(2017), which 1s mcorporated herein by reference]. Refer-
ring to FI1G. 1, two networks were simultaneously trained in
the cGAN framework: a discriminator network D (desig-
nated as “16” in FIG. 1) that attempts to correctly discrimi-
nate between synthetic and real CT-based attenuation maps
(that 1s, ground truth attenuation maps as discussed above),
and a generator network G (designated as “10” 1n FIG. 1)
that attempts to produce synthetic attenuation maps that waill
confuse the discriminator network D. To achieve this behav-
101, the generator loss L and the discriminator loss L, are

defined as:

Lo(X, Y) = Lip(G(X), Y) + A Lapr(G(X), Y) + A2 Lapy (X) (1)

(2)

LD(X:- Y) —~ ((D( Y) rea!)z + (D(G(X)) synrhfnc)z)

where Y 1s the target CT-based attenuation maps, and G(X)
1s the generated attenuation map from the source SPECT
image X by the generator network G. L, , 1s the L2 loss term.
L.,; 15 the 1mage gradient diflerence loss to address the

inherent blurring caused by the L2 loss function, and 1is
defined as:

Lepi(A, B) = [VAL = IV BAIP +IVA, | = VB, |I* + IV ALl = [V B|I* (3)

where V 1s the 1image gradient operator. [Nie, D., Trullo, R.,
Lian, J., Wang, L., et al.: Medical image synthesis with deep
convolutional adversarial networks, IEFE Transactions on
Biomedical Engineering 65, 2720-2730 (2018), which 1s
incorporated herein by reference]. The adversanal loss terms
are defined as the least square errors instead of binary cross
entropy (BCE) since the least square GAN (LSGAN) was
shown to be more stable when training than a regular GAN
with BCE [Mao, X., L1, Q., Xie, H., Lau, R. Y., et al.: Least
squares generative adversarial networks, In: Proceedings of
the IEEE International Conference on Computer Vision, pp.
2°794-2802, (2017), which 1s incorporated herein by refer-
ence|. T,.,~1 and T, ...~0 are labels for the real and
synthetic images, respectively. The adversarial loss term for
the generator 1s defined as:
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1 (4)
LHDV (X) — A (D(G(X)) rfmf)

In Eq. (1), A; and A, are the weights for the L, and L,

terms, respectively.
A. Network Architectures

A modified 3D version of the fully-convolutional U-net
architecture 1s used as the generator network G (designated
as “10” 1n FIG. 1) 1n accordance with the disclosed embodi-
ment [Ronneberger, O., Fischer, P., Brox, T.: U-net: Con-
volutional networks for biomedical image segmentation, In:
International Conference on Medical image computing and
computer-assisted 1intervention, pp. 234-241, Springer,
(2015), which 1s incorporated herein by reference]. U-net
structure was selected for the purposes of the present 1mage
generation task, because both the mput and the output are 1n
the same 1mage domain, and they share a lot of structure
similarities, as can be seen 1in FIG. 1 and FIG. 2. There 1s
also a great deal of low-level information shared between
the input and output, and the U-net structure 1s desirable for
its ability to shuttle this information directly across the net.
A comparison between the U-net used and a fully convolu-
tional network (FCN) can be found in Online Resource 1,
where Applicant demonstrated the superior performance of
U-net [Shi, L., Onofrey, J. A., Liu, H. et al. Deep learning-
based attenuation map generation for myocardial perfusion
SPECT. Eur J Nucl Med Mol Imaging (2020). https://
do1.0org/10.10077/500259-020-04746-6, which 1s 1ncorpo-
rated herein by reference, wherein the online resource can be
found at the bottom ‘Electronic supplementary material” at
https://link.springer.comv/article/10.1007/s00259-020-
04746-6 and 1s substantially reproduced below with refer-
ence to the discussion regarding FIG. 8 and Table 4].

The modified U-net architecture 1s used as the generator
network G 1n accordance with the disclosed embodiment 1s
four levels deep, which 1s one level fewer than the original
U-net. The disclosed embodiment uses one level fewer than
the standard U-net because of the much smaller image patch
s1ize of 16x16x16 (because of the limited resolution and
relatively large voxel size in SPECT) used 1n accordance
with the disclosed embodiment instead of the commonly
used 32x32x32 or even larger image patch sizes. This was
a necessary design decision due to the dimensions of the
image patches used for training on limited GPU resources.
As those skilled in the art will appreciate, the number of
levels 1n the U-net may vary depending upon other factors.
Symmetric padding was applied prior to each convolution
operation to account for reduced image (or feature map)
s1zes due to applying the convolution filters. This allows the
network’s output layer to have the same size as the input
layer [Milletari, F., Navab, N., Ahmadi, S.-A.: V-net: Fully
convolutional neural networks for volumetric medical image
segmentation, In: 2016 Fourth International Conference on
3D Vision (3DV), pp. 565-571, IEEE, (2016), which 1s
incorporated herein by reference]. Batch normalization (BN)
was applied after each convolutional layer and before the
RelLU (rectified linear unit). Dropout with a rate of 0.15 was
applied to the bottleneck layer of the U-net in the training
phase to prevent overditting, but 1s removed during testing.

The discriminator network D (of the discriminator net-
work 16) 1s a typical CNN architecture that includes three
stages of convolution, BN, RelLU, and max pooling, fol-
lowed by three fully connected layers. The filter size is
3x3x3, the number of the filters 1s 32, 64, 128 for the

convolutional layers, and the number of the output nodes 1n
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the fully connected layers 1s 512, 128, and 1. The overall
illustration of the proposed method and the networks used
are shown 1n FIG. 1.
B. Multi-Channel SPECT Inputs

As mentioned above, both photopeak photons and scatter
photons contain information that helps estimate the attenu-
ation distribution [Pan, T.-S., King, M. A., Luo, D.-S.,
Dahlberg, S. T., et al.: Estimation of attenuation maps from
scatter and photopeak window single photon-emission com-
puted tomographic 1images of technetium 99m-labeled ses-
tamibi, Journal of Nuclear Cardiology 4, 42-51 (1997),
which 1s incorporated herein by reference]. The photopeak
window 1mages 12a are expected to provide more mforma-
tion on the inner organs including lung, heart, and liver,
whereas the scatter window 1mages 126 are expected to
provide more accurate patient body boundaries. In accor-
dance with the present mvention, and as discussed above,
SPECT patch images 124', 1256' reconstructed from photo-
peak window (126 keV-155 keV) and scatter window (114
keV-126 keV) are concatenated as a multi-channel 1mage
and fed into the deep neural networks of the generator
network 10 to generate synthetic attenuation maps.
C. Image Preprocessing

The patient bed was manually cropped from the label
C'T-attenuation maps since the bed mnformation 1s not avail-
able 1n the SPECT 1mages. For fair comparison, the bed was
later put back into the predicted attenuation maps before
applying attenuation correction. In clinical applications, the
bed position 1s always known, and the bed attenuation can
be recovered using a pre-scanned and stored template.

Image normalization 1s a key pre-processing step for deep
learning algorithms [Onoirey, J. A., Casetti-Dinescu, D. 1.,
Lauritzen, A. D., Sarkar, S., et al.: Generalizable Multi-site
Training and Testmg of Deep Neural Networks Using Image
Normalization, In: Biomedical Imaging (ISBI), 2019 IEEE
16th International Symposium on, pp. 348-351 (2019),
which 1s incorporated herein by reference]. Unlike trans-
mission CT 1mmages i which image intensity in terms of
Hounsfield Unit (HU) represents the tissue attenuation and
are consistent among patients, the SPECT image intensity
represents the tracer activity and thus varies among patients
due to multiple factors, including different tracer injection
dose, time delay from injection to 1imaging, isotope decay,
patient weight, etc. Image normalization 1s critical when
applying deep learning algorithms on nuclear images. Two
common normalization methods include maximum-normal-
ization (which normalizes the i1mage intensities by the
maximum 1intensity to have values within the range [0,1])
and Gaussian-normalization (which shifts and scales the
image intensity to have zero mean and variance). However,
the two common methods are either sensitive to noise-
induced variances or rely on the assumption of the intensi-
ties being Gaussian, which 1s not always true. In accordance
with a preferred embodiment, a mean-normalization
approach 1s used that normalizes each channel of the SPECT
images by the mean intensity of the entire 2-channel SPECT
image volume, which serves as an indicator of the average
activity. As will be discussed later, this approach provided
more stable results.
D. Network Training Parameters

In this disclosed embodiment, the network traiming
parameters were selected based on pilot dataset testing. In
training, 3D 1mage patches 12q', 125", 18' with a size of
16x16x16 voxels were used since both SPECT images 12a,
126 and ground-truth attenuation maps 18 have the same
voxel size of 6.8x6.8x6.8 mm>. The generator network 10

and discriminator network 16 were trained with the Adam
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optimizer, which 1s an adaptive learning rate optimization
algorithm designed for training deep neural networks [Die-
derik P. Kingma and Jimmy Le1 Ba. Adam: A method for
stochastic optimization. 2014. arXiv:1412.6980v9, which 1s
incorporated herein by reference]. An 1mitial learning rate of
10~ was used for training the generator network 10 and
5x10~* was used for training the discriminator network 16.
Both learning rates were decayed by a factor of 0.99 after
cach epoch. The generator network 10 was trained using
A, =1 and A,=20. The generator network 10 and discrimina-
tor network 16 were trained for 400 epochs. In each epoch,
12,800 patches were randomly sampled {from the training
data and the batch size was set to 16. In the testing phase, the
entire 3D 1mage was fed into the trained the generator
network 10 and discriminator network 16 to avoid stitching
artifacts. The framework was implemented using Tensor-
Flow [Abadi M, Barham P, Chen J, Chen 7, Davis A, Dean
I, et al. Tensortlow: A system for large-scale machine
learning. 127 Symposium on Operating Systems Design and
Implementation ({OSDI} 16); 2016. p. 265-83, which is
incorporated herein by reference]. The training phase takes
about 10 hours on an NVIDIA GTX 1080 Ti1 GPU. In the
testing phase, 1t takes less than 1 second to generate an
attenuation map from SPECT data. It should be appreciated
that for testing, the whole 1mage was used (not 32x32x32
patches) as such functionality 1s allowed by the U-net
architecture.
E. Initial Evaluation

Initially, 40 subjects were 1included in the training set, and
25 subjects were used for evaluation. To evaluate the pro-
posed mean-normalization approach, the cGAN was trained
with data pre-processed with mean-normalization, Gauss-
1an-normalization, and maximum-normalization. The pre-
dicted attenuation maps were then compared with the CT-
attenuation maps in terms of normalized mean absolute error

(NMAE) and mean squared error (MSE), where NMAE 1s
defined as: NMAE=(Z__ IP(X,y,z)-Q(X, y, 2)|)/(N-(MAX -
MIN;)), where P and Q represent the predicted and the
reference CT-based attenuation maps, MAX, and MN, are
the maximum and minimum intensities of the reference
image, respectively, and N 1s the total number of voxels.

The results of cGAN were compared using both primary
and scatter mputs (GAN-PS), using primary inputs alone
(GAN-P), and using scatter inputs alone (GAN-S). The
comparisons using different mnputs were also repeated with
U-net without the adversarial traiming strategy (UNET-PS,
UNET-P and UNET-S). NMAE and MSE were used to
evaluate the predicted attenuation images. The predicted
attenuation maps were further applied for attenuation cor-
rection on the SPECT images, and the attenuation corrected
SPECT (AC-SPECT) using the predicted attenuation maps
(AC,) were evaluated against the AC-SPECT 1mages cor-
rected with CT-attenuation maps (AC ) using NMAE and
regional ROI percentage bias, where the ROIs were manu-
ally drawn on the myocardium (Bias,,,,) and blood pool
(Bias,,,) for each testing subject. The ROI bias was calcu-
lated as 100%X(2;cr0/AC, (1)-2,c0AC (1)) 2,cr0ACor
(1). Paired t-test was also performed to determine if the ROI
biases are significantly different from zeros.
F. Complete Evaluation

Thereatter, 65 consecutive clinical subjects (including the
40 subjects from the 1nitial evaluation) with both normal and
abnormal patients were scanned at Yale New Haven Hos-
pital with “~"Tc-tetrofosmin for myocardial perfusion
SPECT studies. One day stress-only low-dose protocol, with
the mean administered dose of 15 mCi, was used. The
clinical characteristics of the patients enrolled 1n the study,
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including gender, age, height, weight and body mass index
(BMI), are given 1n Table 1. Both SPECT and attenuation
CT mmages were acquired on a GE NM/CT 8350 SPECT/CT
scanner. The SPECT data were acquired using 60 angles
covering a 180-degree orbit. Both the photopeak window
(126.5 keV-154.5 keV) and scatter window (114 keV-126
keV) SPECT projection data were acquired and recon-
structed using ordered-subset maximization expectation
algorithm (OSEM), 5 iterations and 6 subsets [Hudson H M,
Larkin R S. Accelerated image reconstruction using ordered
subsets ol projection data. IEEE transactions on medical
imaging. 1994; 13:601-9, which 1s incorporated herein by
reference]. The attenuation CT data were acquired right after
the SPECT scans with 120 kVp and 20 mAs and then
converted to attenuation maps corresponding to 140 keV
with a voxel size of 6.8x6.8x6.8 mm"~ using the scanner
software. The attenuation maps were in the unit of cm™". The
C'T-based attenuation maps were manually registered with
the SPECT images using the scanner software 11 there was
any mismatch. The size of the SPECT reconstruction images
1s 64x64x64, though the attenuation maps typically have a
shorter scanning range 1n the axial direction (25-35 slices) to
reduce unnecessary radiation, therefore the SPECT 1mages
were cropped in the longitudinal direction to match the

attenuation maps accordingly for each patient.

TABLE 1
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cGAN model (GAN-PS) 1n accordance with the present
invention. Emploving the methodology of the present inven-
tion, consistent synthetic attenuation maps were generated
with the ground-truth C'T-based attenuation maps. The upper
right images (202a, 202b6) in FIG. 2 for each subject show
that the SPECT reconstructed images corrected using the
C'T-based attenuation map and the synthetic attenuation map
(GAN-PS) are nearly 1dentical, whereas obvious attenuation
artifacts can be observed in the non-attenuation corrected
images, as pointed by the arrows. The 17-segment polar
maps 204a, 204H for each subject 1n FIG. 2 (generated using
Carimas software package) of the SPECT 1mages corrected
by both synthetic and CT-based attenuation maps are also
consistent. In contrast, the polar maps without attenuation

correction clearly show diflerent patterns.
F.3. Impact of Multi-Channel Inputs and GAN

Referring to FIG. 3, 1t can be observed that for both GAN
and U-net methods, using both the primary and scatter
channels as inputs produced results closer to the ground
truth CT attenuation map. Inaccurate body boundary recov-
ery and artifacts (dark arrows) were observed in GAN-P and
UNET-P’s results, and incorrect imner organ shape was
observed (white arrows) in the results from GAN-S and
UNET-S. This was expected since the primary window
alone cannot provide suflicient body boundary information,

The gender, age, height, weight, and BMI distribution of the enrolled patients.

Age (vear) Height (cm) Weight (kg) BMI
Training Data Range 31-95 147-185 41.7-104.5 13.9-33.5
(19 M, 21 I) Mean = Std.  66.1 £ 13.0 166.7 £10.3 72.6 £+ 144 26.1 £44
Testing Data Range 39-88 148-193 48.4-115.8  19.3-34.6
(15 M, 10 F) Mean = Std. 65,5 £ 134 171.6 £12.0 740 £ 155 250+ 3.5

M stands for male and F stands for female.

Results
F.1. Impact of Image Normalization

Table 2 shows the mean, standard deviation (STD) and
interquartile range (IQR) of the NMAE and MSE between
the predicted attenuation maps using GAN-PS and the
CT-based attenuation maps for the three normalization
methods. Though the mean NMAE and MSE are similar for
the three methods, the mean normalization (Mean-Norm)
obtained substantially lower STD and IQR compared with
the other two methods, suggesting that mean normalization
1s more robust in this nuclear imaging application. Thus,
only mean normalization was used in the following studies.

TABLE 2

The mean, STD and IQR of the NMAE and MSE between predicted
attenuation maps using GAN-PS and the CT-attenuation
maps for the three normalization methods.

Mean-Norm (Gaussian-Norm Max-Norm

Metric % NMALE MSE % NMAE MSE % NMAE MSE
Mean 3.60 189 3.56 215 3.78 229
STD 0.83 R7.2 1.60 229 1.62 254
IQR 0.95 06.2 1.21 97.2 0.98 95.4

F.2. Effectiveness

FI1G. 2 shows two sample studies. In each study, the upper
left 1images (200a, 2005) are the primary window and the
scatter window SPECT 1mages used as inputs as well as the
synthetic attenuation map (ATTMAP) generated by the
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whereas the scatter window alone can only provide weak
inner organ boundary information, as can be seen 1n FIG. 2.
Interestingly, when using only the primary window as input,
(GAN obtained much better result than U-net, where severe
artifacts were observed near the body boundary area 1n the
UNET-P result. This suggests that GAN training i1s able to
obtain more stable results when limited information 1is
available.

The numerical results in Table 3 are consistent with the
visual inspection. Due to the substantial artifacts around the
body boundary, UNET-P produced the worst results regard-
ing attenuation map estimation and attenuation correction,
among all the methods. In comparison, the GAN counterpart
(GAN-P) produced more stable results. The GAN-PS, GAN-
S, UNET-PS, and UNET-S methods surprisingly obtained
similar NMAE and MSE on the generated attenuation maps
(p) and attenuation corrected SPECT images (A). FIG. 4
shows the correlation between the synthetic attenuation
maps (p-Synthetic) using GAN-PS, GAN-P, UNET-PS, and
UNET-P methods, and the CT-based attenuation maps
(p-CT) for all the voxels 1n the 25 testing subjects. Similarly,
FIG. 5 shows the corresponding correlation between the

attenuation-corrected SPECT 1images for all the voxels 1n the
25 testing subjects. From FIG. 4 and FIG. 5 1t can be
observed that when both primary and scatter windows were
used, both GAN-PS and UNET-PS obtained accurate results.
However, when only primary windows are used, GAN-P
clearly outperformed UNET-P and obtained very similar

results as GAN-PS and UNET-PS.
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Nonetheless, the heart 1s the organ of interest in this
evaluation, and the local ROI evaluation on myocardium

(myo) and blood pool (blp) showed that the GAN-PS and
UNET-PS achieved the lowest ROI bias among all the
methods, which are found to be not significantly diflerent
(p-value>0.05) from the results with CT-based attenuation
maps (Table 3) based on two-tailed Student’s t-test. Note
that for both GAN and U-net, the standard deviations of bias
are much lower when both primary and scatter windows
were used as input, compared with the results based only on
primary window input. FIG. 6 and FIG. 7 show the scatter
plots and Bland-Altman plots of the ROI mean value mea-
surements between A-Synthetic (GAN-PS, GAN-P, UNET-
PS and UNET-P) and A-CT. Similar to Applicant’s previous

observations, GAN-P performed slightly worse than GAN-
PS and UNET-PS, but much better than UNET-P.

TABLE 3

10

15

14

Averages and STDs of the NMAE and PSNR of the predicted attenuation maps (NMAE-u, MSE-
1), the NMAE of the AC-SPECT (NMAE-A) and the regional percentage bias of the AC-SPECT on
myocardium and blood pool (Bias,,,, and Bias,,,) by different methods.

Metric (GAN-PS GAN-P GAN-S UNET-PS UNET-P UNET-S

% NMAE-p  3.60 £ 0.8 3512 +£1.03 3.62+x0%86 3.60x0R8 243176 3.65 +0.82

MSE-u1 189 + 89 270 £ 123 192 + 94 185 = 92 2594 + 207 190 = 89

% NMAE-A 026 £0.15 030 £0.17 027 £0.16 026 £0.15 092048 0.27 £0.16

% Bias,,,,, 348 £ 2.05 5.5 £3.39 436 £ 254 381 £2.13 379 x£984 3.67 £ 2.45

% Bias,, 243 £ 142 434 £3.04 269« 2.06 249 152 315908 246 +1.86
30

F. 4. Impact of BMI and Gender

25 testing subjects were further divided the into lean
(BMI<=25) and overweight (BMI>25) groups, as well as
male and female groups. This resulted 1n 15 male subjects
and 10 female subjects, and 12 lean subjects (7/15 male,

5/10 female) and 13 overweight subjects (8/15 male, 5/10
temale). Unpaired t-test (with equal variance) on the mea-
sured biases on the AC-corrected SPECT mmages did not
show sigmificant differences between lean and overweight

subjects (p=0.824 on LV myocardium ROI and p=0.408 on

LV blood-pool ROI). The mean biases for both myocardium
and blood pool are very small for either lean (<1.5%) or
overweight (<1%) subjects. None of them was significant
from zeros according to paired t-test. Between male and
female subjects, unpaired t-test also did not show significant
differences (p=0.132 on LV myocardium ROI and p=0.075
on LV blood-pool ROI), although the female group showed
higher mean bias (<2.6%) than the male group (<0.3%). The
biases for the female group are also found to be significantly
different from zeros (p=0.036 on LV myocardium ROI and
p=0.044 on LV blood-pool ROI), whereas the biases for the
male group are not significant from zeros.
G. Alternate Evaluation

In accordance with another example, a training set of 40
human subjects with both cardiac SPECT with """ Tc-tetro-
fosmin and attenuation CT scans, and a testing set of 8
subjects not involved 1n the network training were employed
using the Generative Adversarial Network (GAN) training
strategy described above. The SPECT and CT images were
acquired from a GE NM/CT 830 SPECT/CT scanner.

The network structures and parameters were as follows:

Generator: U-net 3D

Discriminator: CNN 3D

Patch size: 16x16x16 (6.797 mmx6.797 mmx6.797 mm)

Epoch size: 12800

Batch size: 16

Number of epochs: 400
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Adversarial loss: Adversarial_Least_Squares
Main loss: 1.2

Gradient loss weight: 1.0
The synthetic attenuation maps generated by the generator
network 10 were compared with the true attenuation maps

by the discriminator network 16 regarding both global
Normalized Mean Absolute Error (NMAE=MAE(syn-

thetic)/[max(true)—-min(true)]) and localized region of inter-
est (ROI) absolute percentage error (I(ro1_mean(synthetic)—

roi_mean(true))/roi_mean(true)l) in left ventricle (LV)
myocardium (121.8+30.0 cm”) and LV blood pool (40.7+7.5
cm”) ROIs. The localized absolute percentage error was also
calculated for attenuation corrected SPECT reconstruction
images with both true and synthetic attenuation maps.
G.1. Comparison of U-Net with FCN

Additional experiments were performed to compare the
U-net structure of the present invention with a fully convo-
lutional network (FCN) as the generator network when using
GAN 1n a manner similar to the FCN structure used by Nie
et al. [N1e D, Trullo R, Lian J, Wang L, Petitjean C, Ruan S,
et al. Medical image synthesis with deep convolutional
adversarial networks. IEEE Transactions on Biomedical
Engineering. 2018; 65:2720-30, which 1s incorporated
herein by reference]. An FCN network with 9 layers con-
taining convolution, batch normalization (BN), and RelLU
operations was developed. The numbers of filters are 32, 32,
32, 64, 64, 64, 32, 32, and 1, respectively, for the individual
layers. The kemnel sizes are 3x3x3 for the first 8 layers and
1x1x1 for the last layer. The same kernel size settings as 1n
Nie et al. were not used because they were using 32x32x32
iput and 16x16x16 output image patches and thus needing
several big kernels to keep the network from getting too
deep, whereas 1n accordance with the present invention both
the input and output 1mage patch sizes are 16x16x16, so the
kernel size of 3 was used for all the layers except for the last
one 1n order to have a fair comparison with previous studies.
This FCN network was used as the generator while keeping
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the other parameters the same and compared with using
U-net as the generator. An 1llustration of the FCN network
structure that was used 1n accordance with a disclosed
embodiment 1s shown in FIG. 8. Briefly, the FCN network
structure includes multiple blocks composed of a convolu-
tional layer (Cony), batch normalization layer (BN), and
ReLLU layer (RelLU), a convolutional block, and a block
accounting for image gradient difference loss to address the
inherent blurring caused by the L, loss function. The com-
parison results are shown Table 4. As can be seen, U-net
achieved superior results than FCN on every metric that we
compared.

TABLE 4

Averages and STDs of the NMAE and MSE of the predicted
attenuation maps (NMAE-u, MSE-u), the NMAE (NMAE-A)
of the reconstructed SPECT images with attenuation
correction (AC-SPECT), and the regional percentage
bias of the AC-SPECT on myocardium and blood pool (Bias,,,
and Blas,,) by using U-net and FCN as the generators
of GAN (both primary window and scatter window are used).

L

Metric GAN-PS-U-net GAN-PS-FCN
% NMAE-L 3.60 + 0.85 422 +0.94
MSE-u(x10™%) 1.89 + 0.89 2.30 = 1.05
% NMAE-A 0.26 = 0.15 0.31 =0.19
% Bias,,,, 1.33 + 3.807 1.54 +3.59
(p =9.9 x 1079) (p=4.7 x 1079
% Bias,y, 1.07 + 2.587 1.51 =2.76
(p=53x 1079 (p=1.3x 1079

p-values of the paired t-test results were also given for regional percentage bias.

tindicates that the results with synthetic attenuation maps showed no significant differ-
ences from the results with C'T-based attenuation maps.
Bold font indicates the optimal performers for each error/bias metric.

As a result of this a Generative Adversarial Network
(GAN) training strategy, the method of the present invention
successiully generated accurate synthetic attenuation maps
close to the true attenuation map, both qualitatively and
quantitatively. The single photon emission computed tomog-
raphy (SPECT) reconstructed images corrected using the
true attenuation map and synthetic attenuation map are
almost 1dentical, whereas obvious attenuation artifacts can
be observed 1n the non-attenuation corrected images. The
global Normalized Mean Absolute Error (NMAE) of the
synthetic attenuation maps across the testing subjects were
3.4%=1.1%, whereas the localized percentage error was
0.5%=0.4% 1n LV myocardium and 0.5%+0.2% 1n LV blood
pool. The localized absolute percentage error calculated for
attenuation corrected SPECT reconstruction images was
3.2%=x1.5% m LV myocardium and 2.5%=1.3% in LV blood

pool.

II. Oftfline Embodiment

The system described above for generating accurate
attenuation maps from emission data typically requires that
the systems described herein be incorporated into iterative
image reconstruction software of SPECT vendors. In order
to facilitate the wide use of the deep learning generated
attenuation map described above without the need for incor-
poration of the systems described above into 1terative image
reconstruction software of SPECT vendors and so as to
allow for use of the systems described above 1n a manner
independent of SPECT vendor software, the following
“offline” approach to perform attenuation correction based
on NAC (non-attenuation corrected) SPECT i1mages for
parallel-hole SPECT scanners can be used.
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The attenuation map (ATT MAP) used for attenuation
correction can be either generated from NAC SPECT 1mage
dataset (photopeak window or both photopeak combined
with scatter windows) using the deep learning method
described above or acquired from transmission CT scanner.
Where the attenuation map 1s acquired from transmission
C'T scanner, additional conversion from CT 1mage to attenu-
ation map and the registration between the SPECT image
and attenuation map 1s required.

A. Associated Offline-Scanner Attenuation Correction

To utilize such deep learning-based approach described
above for SPECT attenuation correction, the synthetic
attenuation maps generated by deep learning approaches
described 1n this invention typically need to be incorporated
into iterative 1mage reconstruction soitware of SPECT ven-
dors. To facilitate the wide use of the deep learning gener-
ated attenuation map approach described in this mvention
independent of vendor software, Applicant describes an
invention of an offline approach to perform attenuation
correction based on NAC SPECT images without the need
ol accessing to vendor soitware. As shown in FIG. 9, the
NAC SPECT image dataset 902 (photopeak window or both
photopeak combined with scatter windows) 1s first used to
generate the attenuation map 904 using the deep learning
method described above (that 1s, for example, the well-
trained network (10 1n FIG. 1 described above) was used to
estimate the attenuation map and there 1s therefore no need
for a ground truth 1image). The NAC SPECT image dataset
can be two 1mages both from primary window and scatter
window, or an 1mage ifrom one window. Attenuated projec-
tion data 906 1s estimated at the same projection angle with
those used 1n the scanning protocol via forward projecting
the NAC SPECT 1image in the primary window without the
attenuation map. Here, since the SPECT scanner typically
used the scanning protocol to acquire the projection with a
180° orbit, right anterior oblique (RAQO) to left posterior
oblique (LPO) for cardiac studies, 1t was possible to also
estimate the projection across 180° from RAO to LPO. Such
forward projection can be performed on a virtual geometry
and 1s not limited to the above described 180° acquisition,
but can also include 360° acquisition or other acquisitions,
both without and with body contour information. Then the
AC SPECT i1mage 908 1s reconstructed from the estimated
attenuated projection data 906 using iterative reconstruction
(e.g. OSEM) with attenuation correction using the attenua-
tion map 904 generated by the deep learning approach
described above. The iterative number and subset configu-
ration 1s typically the same with that used in reconstructing
the NAC image, such as 5 iterations and 6 subsets 1n this
evaluation, but can also vary to optimize the convergence
|[Hudson H M, Larkin R S. Accelerated image reconstruction
using ordered subsets of projection data. Medical Imaging,
IEEE Transactions on Medical Imaging, 1994, 13(4): 601-
609), which 1s incorporated herein by reference].

In accordance with one embodiment, the same system
matrix 1s used in the forward projection and 1mage recon-
struction, which 1s calculated using the 1mage rotation-based
projector 1000 as shown 1n FIG. 10. For each rotation angle,
the 1mage grids 1002 are rotated first to make sure the
rotated grids are parallel to the collimator holes 1004. Then
the forward projection toward the detector 1006 and back
projection into 1mage space are calculated based on the
image grids 1002 using established calculation techniques
[see, for example, the section 4.1 *“‘rotation projector” in
Zeng, G. L., and G. T. Gullberg. “Frequency domain imple-
mentation of the three-dimensional geometric point
response correction in SPECT imaging.” IEEE transactions
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on Nuclear Science 39.5 (1992): 1444-14353, which 1s incor-
porated herein by reference]. Although the rotation-based

torward-projector/back-projector 1s used in this implemen-
tation and evaluation, other forward-projector/back-projec-
tor methods, such as ray-tracing methods, can all be applied.

While one embodiment 1s disclosed above to implement
attenuation correction given an attenuation map, 1t 1s appre-
ciated other techniques may be immplemented within the
spirit of the present invention.

Using the previously described technique, Applicant dem-
onstrated this approach mitially using two human datasets
(one female and one male, age: 56 and 71 years old, weight:
88.0 and 86.2 kg, BMI:27.8 and 27.2 kg/m*) who underwent
the MPI stress studies on GE NM/CT 850 SPECT/CT
scanner at Yale New Haven hospital. Routine step and shoot
L. mode protocol was used to acquire the emission projection
data at 60 angles over 180 degrees. On the scanner, the
photopeak window (126.5 keV-154.5 keV) projection data
were used to reconstruct the NAC SPECT image with
ordered-subset maximization expectation algorithm
(OSEM, 5 iterations and 6 subsets). The size of the SPECT
reconstruction images 1s 64x64x64. Additionally, the attenu-
ation CT data were acquired right after the SPECT scans
with 120 kVp and 20 mAs and then converted to attenuation
maps corresponding to 140 keV with a voxel size of 6.8x
6.8x6.8 mm” using the scanner software. The attenuation
maps were in the unit of cm™'. The CT-based attenuation
maps and the SPECT images were manually registered using,
the scanner software.

To evaluate our proposed approach, the Attenuation Cor-
rected (AC) SPECT image reconstruction from the scanner
using the CT attenuation map was obtained and used as the
ground truth. The bull’s-eye polar map was compared
between the two kinds of AC SPECT 1mages. The normal-
ized mean square error (NMSE) for the left ventricular
myocardium between our proposed oflline AC SPECT using,
deep learning generated attenuation and the scanner AC
SPECT images using CT-based attenuation map were com-

pared.
B. Results

As shown 1n FIGS. 11 and 12, the offline AC SPECT
images were highly consistent with the scanner AC images.
Accordingly, the preceding approach can perform oflline
attenuation correction based on NAC SPECT images and
deep learming generated attenuation map and obtain AC
SPECT images consistent with the conventional AC SPECT
image using CT attenuation maps. The approach can be
applied 1n most of SPECT 1mages and there 1s no need to
obtain the original emission projection data and the system
matrix for the scanner, and no need to access to and integrate
with vendor or third party reconstruction software.

I1I. Conclusion

Through the use of the disclosed embodiments, deep
neural networks are used to estimate attenuation coetlicients
and attenuation corrected images from only the SPECT
emission data. Both photopeak and scatter photons are used
to help estimate attenuation maps. Using only photopeak
photons or only scatter photons can also provide reasonable
attenuation map generation using proper neural networks,
though using both photopeak and scatter photons provided
the most satisfactory results. The disclosed method 1s fast
and can produce realistic attenuation maps with high accu-
racy. It 1s also applicable to both specific and non-specific
tracers. With the inventive approach, hospitals might not
need to purchase hybrid SPECT/CT systems with the addi-
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tional cost of CT (~1M cost) and lead shielding for the
scanning room (another ~1M cost). They will only need to
purchase SPECT-only systems. And existing SPECT-only
scanners will be able to provide attenuation corrected
SPECT images using the inventive approach.

Evaluation on real patient studies shows that use of the
disclosed embodiments can produce attenuation maps that
are consistent with C'T-based attenuation maps, and are able
to provide accurate attenuation correction. This develop-
ment could have a direct benefit to studies acquired on
SPECT-only scanners used 1n clinical practice by providing
attenuation correction even without transmission CT data
that are only available for hybrid SPECT/CT scanners.

It has been shown that for both the GAN and U-net model,
the use of both primary and scatter windows as inputs
provided more accurate and robust results compared with
using only one energy window input, though GAN 1s
preferred with shightly lower bias. If only the primary
window data are used as input, the GAN model was still able
to provide reliable attenuation maps, while the U-net model
led to much larger bias. In the routine clinical practice, the
scatter window data are not always acquired. In this case
with only primary window data available, 1t 1s still feasible
to generate accurate attenuation maps using the GAN model,
but not with U-net. On the other hand, for systems with
listmode rebinning flexibility, multiple down scatter win-
dows can be generated. Incorporating such multiple scatter
windows in combination with primary window data might
provide additional benefit and requires further investigation.

In the evaluation example, all the training and testing
datasets are myocardial perfusion SPECT studies
using ~~ "' Tc-tetrofosmin. For other tracers, such as " Tc-
sestamibi, additional training might be needed to adapt to
different tracers, though we expect the tetrofosmin-trained
network might still be effective for sestamibi studies due to
the similarity of tracer distribution. Although the examples
provided with this disclosure focused on the development
and evaluation of myocardial perfusion SPECT tracers, the
same approach can also be applied to SPECT tracers and
studies for other organs in the body and brain, though
additional training datasets might be needed to generate
appropriate networks for various combinations of organs
and tracers. Such additional training studies might also be
needed for the SPECT emission images reconstructed with
vartous different methods and parameters, acquired with
various 1njection doses and acquisition times, and different
scanners, particularly those using new solid-state detectors.

It has also been found that patient BMI does not affect the
performance of the proposed method. However, the meth-
odology of the disclosed embodiments produces slightly
higher bias on female subjects compared with male subjects,
although the biases on female subjects are still very small
(less than 2.6%). This might be caused by the anatomical
difference between female and male.

A potential limitation involves the field-of-view (FOV) of
SPECT scanners. Since the attenuation maps are generated
from the reconstructed SPECT emission images, if the
SPECT 1mages are truncated for larger patients with limited
SPECT FOV, the truncated region could not be easily
recovered. As a result, the generated attenuation maps might
also be truncated, which could subsequently aflect the
accuracy ol attenuation correction. This limited FOV 1ssue
1s particularly challenging for some dedicated cardiac
SPECT scanners with limited FOV around the heart without
the capability of reconstructing the emission images for the
entire body [Wu J, Liu C. Recent advances 1n cardiac
SPECT instrumentation and imaging methods. Physics 1n




US 12,073,492 B2

19

Medicine & Biology. 2019; 64:06TR1]. For such systems,
an alternate strategy could use deep learming methods to
directly convert SPECT images without attenuation correc-
tion to 1mages with attenuation correction, as such methods
of direct conversion do not require the information of the
entire body, though they might require a substantially larger
amount of training datasets.

As described above, generating accurate attenuation maps
from emission data 1s feasible for SPECT imaging.

While the preferred embodiments have been shown and
described, 1t will be understood that there 1s no intent to limait
the mvention by such disclosure, but rather, 1s intended to
cover all modifications and alternate constructions falling
within the spirit and scope of the mvention.

The 1nvention claimed 1s:

1. A system for estimating attenuation coeflicients or
attenuation maps (AT’ TMAP) from only single photon emis-
sion computed tomography (SPECT) emission data using
artificial neural networks, comprising:

a machine learning system based upon deep artificial
neural networks for estimating attenuation maps for
SPECT emission data consisting essentially of images
reconstructed from a photopeak window and/or one or
more scatter windows, without requiring additional
computed tomography (CT) or other transmission
images, the machine learning system both generates
attenuation map images from the SPECT emission
data, wherein 1mages reconstructed from the photopeak
window and/or the scatter window are concatenated/
used as a multi-channel/single-channel 1mage, and
enforces output attenuation map i1mages to be consis-
tent with a ground truth attenuation map generated
based upon empirical evidence.

2. The system according to claim 1, wherein the machine
learning system includes a generator network and a discrimi-
nator network, the generator network generates attenuation
map 1mages from the SPECT emission data, wherein images
reconstructed from the photopeak window and/or the scatter
window are concatenated/used as a multi-channel/single-
channel 1image and fed into the generator network, and the
discriminator enforces output attenuation map 1mages of the
generator network to be consistent with the ground truth
attenuation map generated based upon empirical evidence.
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3. The system according to claim 2, wherein the generator
network 1s trained.
4. The system according to claim 3, wherein the generator
network 1s tramned with Generative Adversarnial Network
training.
5. The system according to claim 3, wherein the generator
network 1s trained with an Adam optimizer.
6. The system according to claim 2, wherein the discrimi-
nator network 1s trained.
7. The system according to claim 6, wherein the discrimi-
nator network 1s trained with an Adam optimizer.
8. The system according to claim 2, wherein the generator
network 1s a deep convolutional neural network.
9. The system according to claim 8, wherein the discrimi-
nator network 1s a deep convolutional neural network.
10. The system according to claim 2, wherein the dis-
criminator network 1s a deep convolutional neural network.
11. A method for generating attenuation maps and per-
forming associated attenuation correction from SPECT
emission data consisting essentially of images reconstructed
from a photopeak window and/or one or more scatter
windows, without requiring additional computed tomogra-
phy (CT) or other transmission images, comprising:
generating an attenuation map from a NAC SPECT image
dataset, comprising images reconstructed from the pho-
topeak window and/or the scatter window, through
deep learning, wherein generating 1s performed using a
machine learning system that both generates attenua-
tion map i1mages from the SPECT emission data and
enforces output attenuation map 1mages;
estimating attenuated projection data via forward project-
ing the NAC SPECT image without the attenuation
map to create estimated attenuated projection data; and

reconstructing an AC SPECT 1mage from the estimated
attenuated projection data using iterative reconstruction
with attenuation correction by incorporating the attenu-
ation map generated by deep learning.

12. The method according to claim 11, where the machine
learning system 1s based upon artificial neural networks.

13. The method according to claim 12, wherein the
artificial neural network includes a generator network.

14. The method according to claim 13, wherein the
generator network 1s a deep convolutional neural network.
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