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Algorithm 1 D-Distributed Randomizer.
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S0

COblain private data comprising a privaie value
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| sample a first random value from & first sampling
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sample a second random value from a second sampiing
distripution
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Sampie a third random value from a third sampling
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PRIVATE COUNTING FROM ANONYMOUS
MESSAGES: NEAR-OPTIMAL ACCURACY
WITH VANISHING COMMUNICATION
OVERHEAD

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims filing benefit of U.S.
Provisional Patent Application Ser. No. 63/008,332 having a
filing date of Apr. 10, 2020, which 1s incorporated herein by
reference in 1ts entirety.

FIELD

The present disclosure relates generally to distributed
aggregation. More particularly, the present disclosure relates
to scalable and differentially private distributed aggregation,
for example, 1n the shuffled model.

BACKGROUND

Motivated by the need for scalable, distributed privacy-
preserving machine learning, there has been an intense
interest, both 1n academia and industry, on designing algo-
rithms with low communication overhead and high accuracy
while protecting potentially sensitive, user-specific informa-
tion.

While many notions of privacy have been proposed,
differential privacy (DP) has become by far the most popular
and well-studied candidate. Diflerential privacy (DP) 1s a
formal notion for quantilying the privacy loss of algorithms.
Formally, two mput datasets X=(x,, . . . , x ) and X'=
(x',, ..., X )are said to be neighboring 1f and only 11 they
differ on at most a single user’s mput, 1.e., x,=x', for all but
one i€[n]. Let g, 3R _ . Arandomized algorithm A taking
as 1nput a dataset 1s said to be (g, 0)-diflerentially private
((e, 0)-DP) 11 for any two neighboring datasets X and X', and
for any subset S of outputs of A it holds that Pr[A
(X)ES]=e"-Pr[A (X")ES]+0.

Algorithms 1n the central model of DP achieve high
accuracy but make the strongest trust assumptions whereas
those 1n the local DP model make the weakest trust assump-
tions but mcur substantial accuracy loss. Most research has
focused on the central model of DP where a curator, who
sees the raw user data, 1s required to release a private data
structure. While many accurate DP algorithms have been
discovered in this framework, the requirement that the
curator observes the raw data constitutes a significant
obstacle to deployment 1n many industrial settings where the
users do not necessarily trust the central authority.

To circumvent this limitation, several works have studied
the local model of DP, which enforces the more stringent
constraint that each message sent from a user device to the
server 1s private. While requiring near-mimmal trust
assumptions, the local model turns out to inherently sufler
from large estimation errors. For numerous basic tasks,
including binary summation and histograms, errors are at
least on the order of Vi, where n is the number of users.

The shuflled DP model has recently emerged as a feasible
middle ground between the central and local models, pro-
viding stronger trust assumptions than the former while
promising higher accuracies than the latter. This setting only
requires the multiset of anonymized messages that are
transmitted by the diflerent users to be private. Equivalently,
this corresponds to the setup where a trusted shufller ran-
domly permutes all mmcoming messages from the users
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2

before passing them to the analyzer. Formally, a protocol
over n mputs in the shuflle DP model consists of three

procedures. A local randomizer takes an input x, and outputs
a multiset ol messages. The shulller takes the multisets
output by the local randomizer applied to each of x,, . . .,
X, , and produces a random permutation of the messages as
output. Finally, the analyzer takes the output of the shuifller
and computes the output of the protocol. Privacy in the
shuflle model 1s enforced on the output of the shufller when
a single mput 1s changed.

SUMMARY

Aspects and advantages of embodiments of the present
disclosure will be set forth in part in the following descrip-
tion, or can be learned from the description, or can be
learned through practice of the embodiments.

One example aspect of the present disclosure 1s directed
to a computer-implemented method to enable privacy-pre-
serving aggregation of data. The method includes obtaining,
by one or more computing devices, private data comprising
a private value. The method includes sampling, by the one
or more computing devices, a first random value from a first
sampling distribution, wherein the first sampling distribution
1s a base distribution of a first infinitely divisible distribu-
tion. The method includes sampling, by the one or more
computing devices, a second random value from a second
sampling distribution, wherein the second sampling distri-
bution 1s a base distribution of a second infinitely divisible
distribution. The method includes sampling, by the one or
more computing devices, a third random value from a third
sampling distribution, wherein the third sampling distribu-
tion 1s a base distribution of a third infinitely divisible
distribution. The method includes generating, by the one or
more computing devices, a multiset of messages based at
least 1n part on the private value, the first random value, the
second random value, and the third random value, wherein
the multiset of messages comprises a first number of 1ncre-
ment messages equal to a sum of the private value, the first
random value, and the third random value, and wherein the
multiset of messages comprises a second number of decre-
ment messages equal to a sum of the second random value
and the third random value. The method includes providing,
by the one or more computing devices, the multiset of
messages for aggregation with a plurality of additional
multisets of messages respectively generated for a plurality
of additional private values.

Another example aspect of the present disclosure 1is
directed to a computer-implemented method for performing
aggregation of private values. The method includes receiv-
ing a plurality of messages generated by a plurality of client
devices, wherein the plurality of messages comprise a total
number of increment messages and a total number of
decrement messages, wherein a respective device-speciiic
number of the increment messages generated by each client
device 1s equal to a sum of a respective first random value
sampled by the client device from a respective first sampling
distribution, a respective third sampling value sampled by
the client device from a respective third sampling distribu-
tion, and a respective private value known by the client
device, wherein a respective device-specific number of the
increment messages generated by each client device 1s equal
to a sum of a respective second random value sampled from
a respective second sampling distribution and the respective
third random value, and wherein, for each client device, each
of the respective first, second, and third sampling distribu-
tions 1s a respective base distribution of a first infinitely
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divisible distribution, a second infinitely divisible distribu-
tion, and a third infimitely divisible distribution. The method
includes determining an expected sampling value for a
combination of the first infinitely divisible distribution and
the second infinitely divisible distribution. The method
includes subtracting the expected sampling value and the
total number of decrement messages from the total number
ol increment messages to produce an aggregate value.

Another example aspect of the present disclosure 1s
directed to a computer-implemented method to enable pri-
vacy-preserving aggregation of data. The method includes
obtaining, by one or more computing devices, private data
comprising a private value. The method includes sampling,
by the one or more computing devices, a random value from
a sampling distribution, wherein the sampling distribution
comprises a base distribution of an infinitely divisible dis-
tribution. The method includes generating, by the one or
more computing devices, a multiset of messages based at
least 1 part on the private value and the random wvalue,
wherein the multiset of messages comprises a number of
increment messages equal to a sum of the private value and
the random value. The method includes providing, by the
one or more computing devices, the multiset of messages for
aggregation with a plurality of additional multisets of mes-
sages respectively generated for a plurality of additional
private values.

Another example aspect of the present disclosure 1s
directed to a computer-implemented method for performing
aggregation of private values. The method includes receiv-
ing a plurality of messages generated by a plurality of client
devices, wherein the plurality of messages comprise a total
number of increment messages, wherein a respective device-
specific number of the increment messages generated by
cach client device 1s equal to a sum of a respective random
value sampled by the client device from a respective sam-
pling distribution and a respective private value known by
the client device, and wherein, for each client device, the
respective sampling distribution 1s a respective base distri-
bution of an infinitely divisible distribution. The method
includes determining an expected sampling value for the
infinitely divisible distribution. The method includes sub-
tracting the expected sampling value from the total number
ol increment messages to produce an aggregate value.

Another example aspect of the present disclosure 1s
directed to a computer-implemented method to enable pri-
vacy-preserving aggregation of data. The method includes
obtaining, by one or more computing devices, private data
comprising a private value. The method includes sampling,
by the one or more computing devices, a first random value
and a second random value from a first sampling distribu-
tion, wherein the first sampling distribution 1s a base distri-
bution of a first infinitely divisible distribution. The method
includes sampling, by the one or more computing devices, a
third random value from a second sampling distribution,
wherein the second sampling distribution 1s a base distribu-
tion of a second infinitely divisible distribution. The method
includes generating, by the one or more computing devices,
a multiset of messages based at least 1n part on the private
value, the first random value, the second random value, and
the third random value, wherein the multiset ol messages
comprises a {irst number of increment messages equal to the
first random value, wherein the multiset of messages com-
prises a second number of decrement messages equal to the
second random value, and wherein the multiset of messages
comprises a third number of zero sum noise messages. The
method includes providing, by the one or more computing,
devices, the multiset of messages for aggregation with a
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plurality of additional multisets of messages respectively
generated for a plurality of additional private values. In
some 1mplementations, the first sampling distribution sub-
tracted from itself comprises a Discrete Laplace distribution.
In some 1mplementations, the second sampling distribution
comprises a negative binomial distribution. In some 1mple-
mentations, the first number of increment messages and the
second number of decrement messages have a sum equal to
Discrete Laplacian noise. In some implementations, the
private value comprises an integer value in a range from zero
to a maximum user value. In some implementations, the zero
sum noise messages are selected from a multiset such that
values of the multiset are bounded by the maximum user
value and such that the sum of all values 1n the multiset 1s
equal to zero.

Other aspects of the present disclosure are directed to
various systems, apparatuses, non-transitory computer-read-
able media, user interfaces, and electronic devices.

These and other features, aspects, and advantages of
various embodiments of the present disclosure will become
better understood with reference to the following description
and appended claims. The accompanying drawings, which
are incorporated 1n and constitute a part of this specification,
illustrate example embodiments of the present disclosure
and, together with the description, serve to explain the
related principles.

BRIEF DESCRIPTION OF THE DRAWINGS

Detailed discussion of embodiments directed to one of
ordinary skill in the art 1s set forth 1n the specification, which
makes reference to the appended figures, 1n which:

FIG. 1 depicts a block diagram of an example computing,
system according to example embodiments of the present
disclosure.

FIG. 2 depicts a block diagram of an example encoding
and analysis process for secure multi-party aggregation
according to example embodiments of the present disclo-
sure.

FIGS. 3A and 3B depict example implementations of
distributed randomizer and analyzer algorithms according to
example embodiments of the present disclosure.

FIGS. 4A and 4B depict example implementations of
correlated distributed randomizer and analyzer algorithms
according to example embodiments of the present disclo-
sure.

FIGS. SA and 5B depict example implementations of
integer summation randomizer and analyzer algorithms
according to example embodiments of the present disclo-
sure.

FIG. 6 depicts a flow chart diagram of an example method
to enable privacy-preserving aggregation of data according
to example embodiments of the present disclosure.

FIG. 7 depicts a flow chart diagram of an example method
for performing aggregation of private values according to
example embodiments of the present disclosure.

FIG. 8 depicts a flow chart diagram of an example method
to enable privacy-preserving aggregation ol data according
to example embodiments of the present disclosure.

FIG. 9 depicts a flow chart diagram of an example method
for performing aggregation of private values according to
example embodiments of the present disclosure.

FIG. 10 depicts a tlow chart diagram of an example
method to enable privacy-preserving aggregation of data
according to example embodiments of the present disclo-
sure.
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Reference numerals that are repeated across plural figures
are intended to i1dentify the same features in various imple-
mentations.

DETAILED DESCRIPTION

Overview

Generally, the present disclosure 1s directed to practical
communication-efficient and low-error algorithms for aggre-
gation of private data. For example, the proposed algorithms
can be implemented in the shuffled DP model. Specific
example operations that can be performed using the pro-
posed algorithms include summation (e.g., binary summa-
fion, integer summation) and histograms over a moderate
number of buckets. The proposed algorithms achieve accu-
racy that 1s arbiatrarily close to that of central DP algorithms
with an expected communication per user essentially match-
ing what 1s needed without any privacy constraints. Systems
and methods according to example aspects of the present
disclosure can achieve comparable performance to several
widely-used protocols such as Randomized Response (War-
ner, 1965) and RAPPOR (Erlingsson et al., 2014).

In particular, one aspect of the present disclosure provides
algorithms (e.g., which can be implemented in the shuffled
model) for the binary summation problem. Specifically, each
of a number of client devices can hold a private value (e.g.,
a binary value). Each client device can sample a respective
random value from a respective sampling distribution. For
instance, for any distribution D, , z~D, 1s used to denote a
random variable z that 1s distributed as D, . For two distri-
butions D, ;, D, ,, let D, +D, , (resp., D, ;—D, ,) denote the
distribution of z,+z, (resp., z,—z,) where z,~D, ,, z,~D, ,
are 1ndependent. For ke R,, we use k+D, to denote the
distribution of k+z where z~D, . A random value can be
sampled of the random variable and of the respective
sampling distribution.

For instance, one of the most basic distributed computa-
tion problems 1s summation (aka. aggregation) where the
goal of the analyzer 1s to estimate the sum of the user inputs.
In machine learning, such as in the field of federated
learning, private summation provides for private Stochastic
Gradient Descent (SGD), which 1n turn allows the private
training of deep neural networks that are guaranteed not to
overflt to any user-specific information. Moreover, summa-
tion 1s perhaps the most primitive functionality in database
systems 1n general, such as in private implementations.

A notable special case 1s binary summation (aka. counting
query) where each user holds a bit as an mput and the goal
of the analyzer 1s to estimate the number of users whose
input equals 1. The vector version of this problem captures,
e.g., the case where gradients have been quantized to bits 1n
order to reduce the communication cost (e.g., the 1-bit
SGD). Binary summation 1s of particular interest in machine
learning since it 1s sufficient for implementing any learning
algornithm based on stafistical queries, which includes most
of the known PAC-learning algorithms.

A generalization of the binary summation problem is that
of computing histograms (aka. frequency oracles or fre-
quency estimation), where each user holds an element from
some finite set [B]: ={1, ..., B} and the goal of the analyzer
1s to estimate for all je[B], the number of users holding
element j as input. Computing histograms 1s fundamental 1n
data analytics and 1s well-studied 1n DP, as private histogram
procedures can be used as a black-box to solve important
algorithmic problems such as heavy hitters as well as
unsupervised machine learning tasks such as clustering.
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Example aspects of the present disclosure can be particularly
beneficial for the regime where B<<n, which captures
numerous practical scenarios since the number of buckets 1s
typically small compared to the population size.

According to a typical private binary summation proce-
dures 1n the central setup, if user 1°s input 1s X, then the
analyzer computes the correct sum X,_,-X; and then adds to
it a random variable sampled from some probability distri-
bution D. . A common choice of D is the Discrete Laplace
distribution with parameter €, which yields an (g, 0)-DP
protocol for binary summation with an asymptotically tight
MSE of O(1/e7); this is considered optimal in the central DP
model. In order to emulate the prototypical central model
mechanism in the shuffled model, 1t 1s possible to distribute
both the signal and the noise over the n users. Distributing
the signal can be naturally done by having each user 1 merely
send their true input bit x.. Distributing the noise 1s signifi-
cantly more challenging since the shuffled model 1s sym-
metric and does not allow coordination of noise across users.

For the binary summation problem, example aspects of
the present disclosure provide for a private protocol in the
shuffled model achieving mean squared error (MSE) arbi-
trarily close to the central performance of the Discrete
Laplace mechanism while having an expected communica-
tion per user of 1+0(1) messages of 1 bit each. For instance,
for every €<0(1) and every 0, Ye (0,1/2), there is an (€, 0)-DP
protocol for binary summation in the multi-message shuftled
model with error equal to a Discrete Laplace random vari-
able with parameter (1—y)e and with an expected commu-
nication per user of

2
| +O[lﬂg (1/5)]

yein

bits. For the standard setting of constant € and 0 inverse-
polynomial 1n n and for an arbitrarily small positive constant
Y, the expected communication per user in this result 1s
1+0(1) bits. Note that 1 bit of communication per user 1s
required for accurate estimation of the binary summation
even 1n the absence of any privacy constraints.

This result can be extended to a protocol for histograms
that, with a moderate number of buckets, has error arbitrarily
close to the central DP performance of the Discrete Laplace
mechanism while using essentially minimal communication.
For instance, for every €<0(1) and every 0, Ye(0,1/2), there
is an (&, 0)-DP protocol for histograms on sets of size B in
the multi-message shuffled model, with error equal to a
vector of independent Discrete Laplace random variables
each with parameter

(1 —ye
g)

and with an expected number of messages sent per user
equal to

yetn

O[ Blﬂgz(l/ﬁ)]?

each consisting of |_10g B k1 bits. The expected communi-
cation per user in this result 1s |_10g B +140(1) bits. Here
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again, log B bits of communication per user 1s required for
accurate estimation of the histogram even in the absence of
any privacy constraints.

The respective sampling distribution for each client
device can be a respective base distribution of a shared
infinitely divisible distribution. As 1s known 1n the art, an
infinitely divisible distribution refers to a distribution that 1s
decomposable into the sum of n 1.1.d. (not necessarily
non-negative) base distributions for any positive integer n.
Thus, a shared infinitely divisible distribution can be decom-
posed to provide each client device with a respective base
distribution. Examples of infinitely divisible distributions
include the Poisson distribution and the negative binomal
distribution. As used herein, a distribution D over non-
negative integers 1s said to be infinitely divisible 1f and only
if, for every ne N,, there exists a distribution D , such
that D , +...+D , 1sidentical to D , where the sum 1s over
n distributions.

One basic discrete non-negative infinitely divisible dis-
tribution is the Poisson distribution with parameter A, which
can be sampled by summing n 1.1.d. samples from a Poisson
distribution with parameter A/n, for any positive integer n.
The resulting Poisson mechanism can thus be used as a
candidate binary summation procedure in the shuffled
model. It turns out that this mechanism is (g, 0)-DP if A is
set to

O( log(1/6&) ]

In this case, the expected communication cost of transmit-
ting the per-user noise is equal to the expectation A/n, which
1s much smaller than 1. It 1s possible to reduce the commu-
nication by considering the Negative Binomial distribution
NB(r,p). This distribution 1s infinitely divisible as a random
sample from NB(r,p) can be generated by summing n 1.1.d.
samples from NB (r/n, p), for any positive integer n. As one

example, the negative binomial distribution with parameters
>0, pe[0,1], denoted NB(r, p), which has probability mass

(k+r—1

A )(1 - p)p

at all keZ_, is
NB(r, p),,=NB(r/n,p).

Each client device, having obtained a respective random
value by sampling its respective sampling distribution, can
generate a multiset of messages, where the multiset of
messages contains a number of increment messages that 1s
equal to a sum of the device’s respective private value and
respective random value. The multiset of messages can be
transmitted (e.g., in accordance with the shuifled model) for
aggregation by an analyzer. One example implementation of
this protocol 1s given in Algorithm 1 of FIG. 3A.

Thus, an analyzer can receive a total number of increment
messages from all client devices. The analyzer can deter-
mine an expected sampling value for the infinitely divisible
distribution and subtract the expected sampling value from
the total number of increment messages to produce an
aggregate value. One example implementation of this pro-
tocol 1s given 1n Algorithm 2 of FIG. 3B.

Another example aspect of the present disclosure 1is
directed to a more complex family of protocols that provide
lower error and improved privacy relative to the proposed

infinitely divisible; specifically,

10

15

20

25

30

35

40

45

50

35

60

65

3

protocols which leverage a single infinitely divisible distri-
bution. Specifically, instead of randomly sampling from a
single sampling distribution, each client device can generate
a random value from three respective sampling distributions,
where each respective sampling distribution 1s a base dis-
tribution from an 1nfinitely divisible distribution. Thus, three
infinitely divisible distributions can be used.

Each client device, having obtained respective first, sec-
ond, and third random values by sampling its respective first,
second, and third sampling distributions, can generate a
multiset of messages. The multiset of messages can contain
a number of increment messages that 1s equal to a sum of the
device’s respective private value, first random value, and
third random value. In addition, the multiset of messages can
further contain a number of decrement messages that 1s
equal to the sum of the second and third random values. The
multiset of messages can be transmitted (e.g., 1n accordance
with the shuifled model) for aggregation by an analyzer. One
example implementation of this protocol 1s given in Algo-
rithm 3 of FIG. 4A

For instance, in some 1mplementations, each message 1s

one of an increment (e.g., +1) value or a decrement (e.g., —1)
value. This template leads to a distributed noise strategy that
can achieve near-central accuracy. The Discrete Laplace
distribution with parameter & 1s the same as the distribution
of the difference of two independent NB(1, ™) random
variables, and 1s thus infinitely divisible. This noise can be
distributed 1n the shuffled model by letting each user sample
two independent random variables Z' and Z~ from NB(1/n,
e™), and send Z' increment messages and Z~ decrement
messages to the shuffler. This mechanism would achieve the
same error as the central Discrete Laplace mechanism.
However, since the analyzer can still see the number of
increment messages, this scheme 1s no more private than the
(non-negative) mechanism with noise distribution NB(1,
e ), and thus may not be (€, 0)-DP. To leverage the power
of sending both positive and negative messages, it 1s this
desirable to correlate the input-dependent and noise com-
ponents sent by the users so that the analyzer 1s unable to
extract much information about the user inputs from one
type of messages. One manner to do so by employing a
unary version of the split-and-mix procedure. Namely, 1n
addition to the aforementioned random variables Z' and Z~,
each user will independently sample a third random variable
7> from another infinitely divisible distribution, and will
send Z'+Z° increment messages and Z°+7Z> decrement mes-
sages. Note that in this case, when Z is sufficiently “spread
out”, the analyzer cannot extract much information from
counting the number of increments alone, since the noise
from Z° already overwhelms the user inputs. Thus, for some
infinitely divisible noise distributions, the resulting mecha-
nism is (¢, 0)-DP and incurs an error that can be made
arbitrarily close to that of the central Discrete Laplace
mechanism, while incurring an expected communication
overhead per user that goes to 0 with as n increases.
The analyzer can receive all of the messages (both incre-
ment and decrement). The analyzer can determine an
expected sampling value for a combination of the first
infinitely divisible distribution and the second infinitely
divisible distribution. For example, the expected sampling
value can be an expected value for a difference between the
first infinitely divisible distribution and the second infinitely
divisible distribution. The analyzer can subtract the expected
sampling value and the total number of decrement messages
from the total number of increment messages to produce an
aggregate value. One example implementation of this pro-
tocol 1s given in Algorithm 4 of FIG. 4B
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For mstance, one example aspect of the present disclosure
provides for a computer-implemented method for perform-
ing aggregation ol private values. The method can include
receiving a plurality of messages generated by a plurality of
client devices, wherein the plurality of messages include a
total number of increment messages, wherein a respective
device-specific number of the increment messages generated
by each client device 1s equal to a sum of a respective
random value sampled by the client device from a respective
sampling distribution and a respective private value known
by the client device, and wherein, for each client device, the
respective sampling distribution 1s a respective base distri-
bution of an infinitely divisible distribution. The method can
include determining an expected sampling value for the
infinitely divisible distribution. The method can include
subtracting the expected sampling value from the total
number of increment messages to produce an aggregate
value.

Additionally, another example aspect of the present dis-
closure provides for a computer-implemented method for
performing aggregation of private values. The method can
include receiving a plurality of messages generated by a
plurality of client devices, wherein the plurality of messages
include a total number of increment messages and a total
number of decrement messages, wherein a respective
device-specific number of the increment messages generated
by each client device 1s equal to a sum of a respective first
random value sampled by the client device from a respective
first sampling distribution, a respective third sampling value
sampled by the client device from a respective third sam-
pling distribution, and a respective private value known by
the client device, wherein a respective device-specific num-
ber of the increment messages generated by each client
device 1s equal to a sum of a respective second random value
sampled from a respective second sampling distribution and
the respective third random value, and wherein, for each
client device, each of the respective first, second, and third
sampling distributions 1s a respective base distribution of a
first infinitely divisible distribution, a second infinitely divis-
ible distribution, and a third mfinitely divisible distribution.
The method can include determining an expected sampling
value for a combination of the first infinitely divisible
distribution and the second infinitely divisible distribution.
The method can 1nclude subtracting the expected sampling
value and the total number of decrement messages from the
total number of increment messages to produce an aggregate
value.

In some implementations, a combination of the first
infinitely divisible distribution and the second infinitely
divisible distribution produces a combined distribution that
has both positive and negative support. For example, the
combination of the first infinitely divisible distribution and
the second mfimitely divisible distribution can be a differ-
ence between the first infinitely divisible distribution and the
second 1nfinitely divisible distribution. As one example
implementation that i1s particularly beneficial, the first and
second infinitely divisible distributions can be negative
binomial distributions that are equal to each other, such that
theirr difference produces a Discrete Laplace distribution
with both positive and negative support.

Additional example aspects of the present disclosure
extend these protocols to an ordered plurality of values (e.g.,
a vector of status values). For example, s can be generated
by performing binary summation for each of a number of
buckets. Example implementations can extend the protocols
to multiple values by performing the protocol for each value
independently (e.g., and computationally 1n parallel). An
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index value can be atlixed or concatenated to each message
to 1ndicate which bucket the message corresponds to.

Yet additional aspects provide for improved paralleliza-
tion of the proposed techniques. For example, since, 1n some
example extensions of the proposed algorithms, a large
portion of the sampled random values may equal zero, the
inefliciency of actively sampling these zero-valued random
values can be eliminated by performing eflicient sampling in
which random values are sampled only for some subset of
the values to be aggregated, e.g., with the i1dentity and/or
number of values included 1n this subset being randomly
selected according to a fourth sampling distribution.

Additional aspects provide for extension of these algo-
rithms to summation problems beyond binary summation.
For instance, another example aspect of the present disclo-
sure 1s directed to a computer-implemented method to
enable privacy-preserving aggregation of data. The method
includes obtaining, by one or more computing devices,
private data comprising a private value. The method
includes sampling, by the one or more computing devices, a
first random value and a second random value from a first
sampling distribution, wherein the first sampling distribution
1s a base distribution of a first infinitely divisible distribu-
tion. The method includes sampling, by the one or more
computing devices, a third random value from a second
sampling distribution, wherein the second sampling distri-
bution 1s a base distribution of a second infinitely divisible
distribution. The method includes generating, by the one or
more computing devices, a multiset ol messages based at
least 1n part on the private value, the first random value, the
second random value, and the third random value, wherein
the multiset of messages comprises a first number of 1ncre-
ment messages equal to the first random value, wherein the
multiset of messages comprises a second number of decre-
ment messages equal to the second random wvalue, and
wherein the multiset of messages comprises a third number
of zero sum noise messages. The method includes providing,
by the one or more computing devices, the multiset of
messages for aggregation with a plurality of additional
multisets of messages respectively generated for a plurality
ol additional private values. In some 1mplementations, the
first sampling distribution subtracted from itself comprises a
Discrete Laplace distribution. In some implementations, the
second sampling distribution comprises a negative binomial
distribution. In some implementations, the first number of
increment messages and the second number of decrement
messages have a sum equal to Discrete Laplacian noise. In
some 1mplementations, the private value comprises an inte-
ger value 1n a range from zero to a maximum user value. In
some 1mplementations, the zero sum noise messages are
selected from a multiset such that values of the multiset are
bounded by the maximum user value and such that the sum
of all values in the multiset 1s equal to zero.

A principal goal within trustworthy machine learning 1s
the design of privacy-preserving algorithms. In recent years,
differential privacy (DP) has gained significant popularity as
a privacy notion due to the strong protections that 1t ensures.
DP properties are often expressed 1in terms of parameters €
and o, with small values indicating that the algorithm 1s less
likely to leak mformation about any individual within a set
ol n people providing data. It 1s common to set € to a small
positive constant (e.g., 1), and 0 to inverse-polynomial 1n n.

DP can be enforced for any statistical or machine learning,
task, and 1t 1s particularly well-studied for the real summa-
tion problem, where each user 1 holds a real number
x.<[0,1], and the goal 1s to estimate 2 x.. This constitutes a
basic building block within machine learning, with exten-
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sions including (private) distributed mean estimation, sto-
chastic gradient descent, and clustering. For instance, com-
munication-efficient private aggregation 1s a core primitive
in federated learning. It 1s also naturally related to mean
estimation 1n distributed models of DP. Additionally, com-
munication efficiency 1s a common requirement in distrib-
uted learning and optimization, and substantial effort 1s spent
on compression of the messages sent by users, through
multiple methods including hashing, pruning, and quantiza-
tion.

For 1nstance, the real summation problem has been well-
studied 1n several models of DP. In the central model where
a curator has access to the raw data and 1s required to
produce a private data release, the smallest possible absolute
error 1s known to be O(1/¢€). This can be achieved via the
ubiquitous Laplace mechanism, which 1s also known to be
nearly optimal for the most interesting regime of €<1. In
contrast, for the more privacy-stringent local setting where
each message sent by a user 1s supposed to be DP, the
smallest error 1s known to be @E(\/E). This significant gap
between the achievable central and local utilities has moti-
vated the study of intermediate models of DP.

The shuffle model reflects the setting where the user
reports are randomly permuted before being passed to the
analyzer. For instance, a trusted shuffler can receive a
plurality of messages (e.g., multisets of messages) from a
plurality of users, then randomly permutes all incoming
messages from the users before passing them to the analyzer.
Several efficient implementations of the shuffler have been
considered including mixnets, onion routing, secure hard-
ware, and third-party servers. Any suitable shuffler can be
utilized 1n accordance with example aspects of the present
disclosure, and/or the shuffler can be treated as a black box.
Two variants of the shuffle model have been studied: in the
multi-message case, each user can send multiple messages
to the shuffler, and in the single-message setting each user
sends one message.

For the real summation problem, 1t 1s known that the
smallest possible absolute error in the single-message shufile
model is @(n'’®). In contrast, multi-message shuffle proto-
cols exist with a near-central accuracy of O(l/€), but they
suffer several drawbacks 1n that the number of messages sent
per user 1s required to be at least 3, each message has to be
substantially longer than in the non-private case, and in
particular, the number of bits of communication per user has
to grow with log(1/0)/log n. This (at least) 3-fold commu-
nication blow-up relative to a non-private setting can be a
limitation in real-time reporting use cases (where encryption
costs could be dominant) and 1n federated learning settings
(where great effort 1s undertaken to compress the gradients).
According to example aspects of the present disclosure,
however, near-central accuracy and near-zero communica-
fion overhead are possible for real aggregation over suifi-

ciently many users.

In particular, example aspects of the present disclosure
provide that, for any 0<e<O(1), C, 0e(0,1/2), there is an
(e, 0)-DP real summation protocol in the shuffle model
whose mean squared error (MSE) 1s at most the MSE of the
Laplace mechanism with parameter (1-C)e, each user sends

. log(1/d)
1 + O.;' E[
=

messages in expectation, and each message contains
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%lﬂgn + O(lﬂgé)

bits. Note that C)QE hides a small poly(log n, 1/€, 1/C) term.
Moreover, the number of bits per message 1s equal, up to
lower order terms, to that needed to achieve MSE O(1) even
without any privacy constraints.

This guarantee follows from an analogous result for the
case of integer aggregation, where each user 1s given an
element 1n the set {0,1, ..., A} (with A an integer, referred
to herein as a maximum user value), and the goal of the
analyzer 1s to estimate the sum of the users’ inputs. This task
1s referred to as the A-summation problem. Note that the
case where A=1 can also be referred to as the binary
summation problem. For A-summation, the standard mecha-
nism 1n the central model 1s the Discrete Laplace (aka
Geometric) mechanism, which first computes the true
answer and then adds to 1t a noise term sampled from the
Discrete Laplace distribution with parameter €/A. Systems
and methods according to example aspects of the present
disclosure achieve an error arbitrarily close to this mecha-
nism 1n the shuffle model, with minimal communication
overhead. For 1nstance, according to example aspects of the
present disclosure, for any 0<e<0(1), v, 0€(0,1/2), AeN, ,
there is an (g, 0)-DP A-summation protocol in the shuffle
model whose MSE 1s at most that of the Discrete Laplace
mechanism with parameter (1—Yy)e/4, and where each user
sends

N @( Alog(1/ 5)]

YEN

messages 1n expectation, with each message containing
|_10g A%+1 bits. Note that the O(*) hides a poly log A factor.
Additionally, note that the number of bits per message in the
protocol 1s within a single bit from the minimum message
length needed to compute the sum without any privacy
constraints. Incidentally, for A=1, this result improves the
communication overhead obtained by existing art

2 2
O[lﬂg (1/5)] " O[lﬂg (1/5)].

EEH &

This improvement 1s significantly beneficial in practice.

Furthermore, according to example aspects of the present
disclosure, the following corollary holds for the 1-sparse
vector summation problem, where each user 1s given a
1-sparse (possibly high-dimensional) vector of norm at most
1, and the goal 1s to compute the sum of all user vectors with
minimal €, error. In particular, for every de N, , and 0<e<O
(1), C, 0 (0,1/2), there is an (€, 0)-DP algorithm for 1-sparse
vector summation in d dimensions in the shuffle model
whose *, error is at most that of the Laplace mechanism
with parameter (1-C)e/2, and where each user sends

~  f[dlog(l/8)
(72 ]

messages in expectation, and each message contains
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1 1
logd + =1 + N log—
0g 5 0gn [Dgg)

bits.

Example aspects of the present disclosure may be dis-
cussed herein with reference to the A-summation protocol
for the purposes of illustration. One of ordinary skill in the
art should understand that aspects discussed with respect to
A-summation can be extended to any real summation pro-
tocol, such as by randomized discretization techniques.
Example aspects of the present disclosure are intended to
encompass protocols other than A-summation when appro-
priate.

The shuffle or shuffled model of differential privacy 1s
useful due to i1t being a middle ground between the well-
studied central and local models. Example aspects of the
present disclosure can be beneficial for summing or aggre-
gating real numbers or integers, which 1s as a basic primitive
in numerous machine learning tasks, in the shuffle model.
Example aspects of the present disclosure can provide for a
protocol achieving error arbitrarily close to that of the
(Discrete) Laplace mechanism in central differential privacy,
while each user only sends 14+0(1) short messages in expec-
tation.

Achieving a similar performance to the central-DP Dis-

crete Laplace mechanism in the shuffle model presents
challenges. For instance, added noise has to be divided
among all users, instead of being added centrally. Fortu-
nately, this can be solved through the infinite divisibility of
some distributions, such as Discrete Laplace distributions.
For instance, there 1s a distribution D ' for which, if each
user 1 samples a noise z; independently from D', then
z,+ . . . +z_ has the same distribution as DLap(e/A). To
implement the above 1dea 1n the shufile model, each user has
to be able to send their noise z; to the shuifler. This noise can
be sent in unary, 1.e., if z,>0, the +1 (increment) message can
be sent z. times and, otherwise, the —1 (decrement) message
can be sent —z, times. This 1s 1n addition to user 1 sending
their own 1nput Xx; 1f i1t 1s non-zero. The analyzer can then
sum up all the messages from the user(s).
Unfortunately, this zero-sum noise approach may not be
shuffle-DP for A>1 because, even after shuffling, the ana-
lyzer can still see u,, the number of messages j, which 1is
exactly the number of users whose input 1s equal to | for
112, . . ., A}. To overcome this 1ssue, noise can be
implemented at the values u; themselves, while at the same
time preserving the accuracy. This can be achieved by
making some users send additional messages whose sum 1s
equal to zero; e.g., a user may send {—1, —1, +2} 1n
conjunction with previously described messages. Since the
analyzer sums up all the messages, this additional zero-sum
noise still does not affect accuracy. For 1nstance, notice that
the analyzer still sees the number of messages u;’s, which
are now highly correlated due to the zero-sum noise added.
This 1s unlike most DP algorithms where noise terms are
added independently to each coordinate. Thus, by a careful
change of basis, the view can be reduced to the independent-
noise case.

For instance, consider the case where A=2. In this case,
there are two zero-sum “noise atoms’” that a user might send:
(—1, +1) and (-1, —1, +2). These two kinds of noise are sent
independently, 1.e., whether the user sends (—1, +1) does not
affect whether (—1, —1, +2) 1s also sent. After shuifling, the
analyzer sees (u_,, u,,, u,,). Observe that there 1s a one-
to-one mapping between this and (v,, v,, v;) defined by
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V=t —2:0,,, Vo=U_—Uu,—U,,, Vii=—u_,+u,,+2-u_,,
meaning that the privacy of each i1s related. Consider the
effect of sending the (+1, —1) noise: v, 1s increased by one,
whereas v,, v, are completely unaffected. Similarly, when
(—1,—1, +2) noise 1s sent, v, 1s increased by one, whereas v,
v, are completely unatfected. Hence, the noise added to v,
v, are independent. Finally, v; 1s exactly the sum of all
messages, which was noised by the DLap noise explained
earlier.

One example aspect of the present disclosure provides a
protocol for A-summation that 1s private 1n the shuifle DP
model. In the protocol, the randomizer will send a multiset
of messages, each of which 1s an integer in {—A, . . ., +A}.
The analyzer sums up all the incoming messages. The
messages sent from the randomizer can be categorized into
three classes. A first class can be the input class. For
instance, each user (e.g., user device) 1 will send 1ts private
value X, if it 1S non-zero. A second class can be the central
noise class. This can include the noise whose sum 1s equal
to the Discrete Laplace noise used 1n algorithms in the
central DP model. This noise 1s sent 1in “unary” as +1 or —1
messages. Finally, a third class can be zero-sum noise. In
effect, the messages are “flooded” with noise that cancels
out. This noise comes from a carefully chosen sub-collec-
tion & of the collection of all multisets of {—A, ..., +AN0}
whose sum of elements 1s equal to zero (e.g., {—1, —1, +2}
may belong to o . Each s€ & (e.g., each valid set of integers
comprising a zero-sum message) can be referred to herein as
a noise atom. For instance, the zero sum noise messages can
be selected from a multiset of candidate sets such that values
of the multiset are bounded by the maximum user value and
such that the sum of all values in the multiset 1s equal to
zero. Additionally, the multiset may exclude zero values.

One example implementation of this protocol 1s given in
Algornithm 5 of FIG. 5A and Algorithm 6 of FIG. 5B, which
are referred to as the Correlated Noise mechanism. The
protocol 1s specified by the following infinitely divisible
distributions over Z.,. the “central” noise distribu-
tion D ““"”*, and for every se §,, the “flooding” noise
distribution D °. Note that since s 1s a multiset, Line & of
Algornithm 1 goes over each element the same number of
fimes 1t appears 1n s; e.g., if s={—1, —1, +2}, the 1teration
m=—1 1s executed twice. It 1s noted that the mean squared
error (MSE) of this protocol is 2Var(D ““""“"). Furthermore,
the distribution D ““*"* in some implementations may not
necessarily be the Discrete Laplace distribution. For
instance, in some 1mplementations, the distribution D central
is selected so that D <D ™74 is DLap. As a result,
2Var(D ““**!y is indeed equal to the variance of the Discrete
Laplace noise. Furthermore, it 1s noted that each user sends
at most

L + l(Q[E[z:)f‘:"*f’“’*’ﬂf] - Zsesm -[E[z)f])

!

messages 1n expectation, each comprising |_10g A 1 bits.
The systems and methods of the present disclosure pro-
vide a number of technical effects and benefits, including, as
one example, reducing probability of a privacy failure event
assoclated with secure aggregation of private data. In par-
ticular, the systems and methods described herein can pro-
vide for a technique for use with the shuffled model, which
can prevent an adversary, especially an adversarial analyzer,
from learning any and/or all of the private data. For example,
the privacy analysis for many existing secure aggregation
protocols assumes of an “honest but curious” server that
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does not deviate from the protocol, so some level of trust in
the secure aggregation server 1s required. In contrast, pro-
tocols based on shuflling operate with much weaker assump-
tions on the server. In addition to this advantage, along with
providing differential privacy guarantees, the proposed pro-
tocols provide mmproved communication ethciency and
reduced errors. Thus, secure aggregation can be performed
with reduced communication costs. Reduced communica-
tion costs can conserve computing resources such as pro-
cessor usage, memory usage, network bandwidth, and the

like.

With reference now to the Figures, example embodiments
of the present disclosure will be discussed 1n further detail.

Example Devices and Systems

FIG. 1 depicts an example computing system 100 that can
be used to implement one example application of the meth-
ods and systems of the present disclosure in the federated
learning context. Federated learning 1s provided as one
example only, the proposed aggregation techniques can be
applied to many other different problems/applications. The
system 100 can be implemented using a client-server archi-
tecture that includes a server 110 that communicates with
one or more client devices 130 and/or a shufller 150 over a
network.

Each client device 130 can include one or more pro-
cessor(s) 132 and a memory 134. The one or more pro-
cessor(s) 132 can 1nclude, for example, one or more central
processing units (CPUs), graphics processing units (GPUs)
dedicated to efliciently rendering images or performing
other specialized calculations, and/or other processing
devices. The memory 134 can include one or more com-
puter-readable media and can store information accessible
by the one or more processors 132, including instructions
136 that can be executed by the one or more processors 132
and data 138.

The 1nstructions 136 can include instructions for 1mple-
menting a local updater configured to determine one or more
local updates to a machine-learned model (e.g., a set of
values descriptive of changes to the model parameters based
on a set of locally stored training data). For example, the
local updater can perform one or more training techniques
such as, for example, backwards propagation of errors to
re-train or otherwise update the model based on the locally
stored training data. The local updater can be included 1n an
application or can be 1included 1n the operating system of the
device 130.

The locally stored data 138 such as the local update can
be considered private data. The local update 1s used only as
one example of private data that can be securely aggregated.
Any form of private data can be securely aggregated accord-
ing to the described techniques.

The instructions 136 can further include 1nstructions for
implementing a randomizer or encoder to randomize/encode
the private data such as the local update. For example, the
randomizer/encoder can perform one or more of the ran-
domizing/encoding techniques described herein. In particu-
lar, the randomizer can randomize the private data into a
multiset comprising a plurality of multiset values or mes-
sages and the messages can be transmitted to a shuiller 150.

The clhient device 130 of FIG. 1 can include various
input/output devices for providing and recerving informa-
tion from a user, such as a touch screen, touch pad, data entry
keys, speakers, and/or a microphone suitable for voice
recognition.
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The client device 130 can also include a network interface
used to communicate with one or more remote computing
devices (e.g. server 110) over the network. The network
interface can include any suitable components for intertac-
ing with one more networks, including for example, trans-
mitters, recervers, ports, controllers, antennas, or other suit-
able components.

The shufller 150 can receive a respective plurality of
messages from each of the client devices 130 and can
randomly shuflle them so that the messages are randomly
distributed amongst each other without regard to which of
the plurality of different devices 130 generated each mes-
sage. In some implementations, multiple shufllers can be
used (e.g., sequentially) to provide added layer(s) of privacy
assurance.

The system 100 also 1includes a server 110, such as a web
server. The server 110 can be implemented using any
suitable computing device(s). The server 110 can have one
or more processors 112 and one or more memory devices
114. The server 110 can be implemented using one server
device or a plurality of server devices. In implementations 1n
which a plurality of devices 1s used, such plurality of devices
can operate according to a parallel computing architecture,
a sequential computing architecture, or a combination
thereof.

The server 110 can also include a network interface used
to communicate with one or more client devices 130 over the
network. The network interface can include any suitable
components for interfacing with one more networks, includ-
ing for example, transmitters, receivers, ports, controllers,
antennas, or other suitable components.

The one or more processors 112 can include any suitable
processing device, such as a microprocessor, microcon-
troller, integrated circuit, logic device, or other suitable
processing device. The one or more memory devices 114 can
include one or more computer-readable media, including,
but not limited to, non-transitory computer-readable media,
RAM, ROM, hard drnives, flash drives, or other memory
devices. The one or more memory devices 114 can store
information accessible by the one or more processors 112,
including computer-readable instructions 116 that can be
executed by the one or more processors 112.

The instructions 116 can be any set of instructions that
when executed by the one or more processors 112, cause the
one or more processors 112 to perform operations. For
instance, the instructions 116 can be executed by the one or
more processors 112 to implement a global updater 120. The
global updater 120 can be configured to update a global
model based at least 1n part on a sum or average of local
updates computed at the client devices 130.

The mstructions 116 can further include instructions that
cause the server 110 to implement an analyzer 122. The
analyzer 122 can determine the sum or average of local
updates based on the shufiled messages. The analyzer 122
can perform any of the analysis techniques described herein.

As shown in FIG. 1, the one or more memory devices 114
can also store data 118 that can be retrieved, mampulated,
created, or stored by the one or more processors 112. The
data 118 can include, for instance, local updates, global
parameters, and other data. The data 118 can be stored 1n one
or more databases. The one or more databases can be
connected to the server 110 by a ligh bandwidth LAN or
WAN, or can also be connected to server 110 through the
network. The one or more databases can be split up so that
they are located 1in multiple locales.

The server 110 can exchange data with one or more client
devices 130 and/or shufller 150 over the network. Any
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number of client devices 130 can be connected to the server
110 and/or shufiler 150 over the network. Each of the client
devices 130 can be any suitable type of computing device,
such as a general purpose computer, special purpose com-
puter, laptop, desktop, mobile device, navigation system,
smartphone, tablet, wearable computing device, gaming
console, a display with one or more processors, or other
suitable computing device.

The network can be any type of communications network,
such as a local area network (e.g. intranet), wide area
network (e.g. Internet), cellular network, or some combina-
tion thereoi. The network can also mclude a direct connec-
tion between a client device 130 and the server 110. In
general, communication between the server 110 and a client
device 130 can be carried via network interface using any
type of wired and/or wireless connection, using a variety of
communication protocols (e.g. TCP/IP, HTTP, SMTP, FTP),

encodings or formats (e.g. HIML, XML), and/or protection
schemes (e.g. VPN, secure HI'TP, SSL).

Example Shuflled Model

FIG. 2 depicts a block diagram of an example shufiled
model 200 according to example embodiments of the pres-
ent disclosure. Generally (e.g., as depicted in FIG. 2), a
protocol P in the shuflled model can include a randomizer
algorithm R (e.g., randomizer 204), a shufller algorithm S
(c.g., shufller 208), and an analyzer algornithm A (e.g.,
analyzer 210). A randomizer algorithm 204 can receive a
user’s private data 202 as mput and produce a plurality of
messages 206 (also referred to herein as a “multiset”) based
on the private data. For instance, some example aspects of
the present disclosure generally relate to the randomizer
algorithm 204. The shufller algorithm 208 can receive a
plurality of multisets 206 and shuflle and/or permute the
plurality of multisets 206 to produce a plurality of shufiled
multisets, or, in other words, a uniform random permutation
of the mput multisets.

The analyzer algorithm 210 can receive the plurality of
shuflled multisets and output some desired output 212 from
the plurality of shuflled multisets, such as an aggregate of
the private data, without knowing the exact private data.
Additionally, some example aspects of the present disclo-
sure can relate to the analyzer algorithm 210. In the shuiiled
model, 1t 1s generally assumed that the randomizer 204 and
shufller 208 are trustworthy, while analyzer 210 may not
necessarily be trustworthy. In other words, the privacy in the
shuflled model can be guaranteed with respect to the mnput
to the analyzer 210, 1.e. the output of the shufliler 208.

Aspects of the present disclosure are generally related to
the randomizer algorithm 204 and/or the analyzer algorithm
208. Generally, any suitable shufller algorithm 206 can be
employed 1n accordance with the present disclosure. For
instance, the shufller algorithm 206 can be implemented
according to any suitable shuflling algorithm, such as, but
not limited to, onion routing, mixnets, third-party servers,
and/or secure hardware, or combination thereof, 1n accor-
dance with the present disclosure.

Example Methods

FIG. 6 depicts a flow chart diagram of an example method
600 to enable privacy-preserving aggregation of data
according to example embodiments of the present disclo-
sure. Although FIG. 6 depicts steps performed 1n a particular
order for purposes of 1llustration and discussion, the meth-
ods of the present disclosure are not limited to the particu-
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larly illustrated order or arrangement. The various steps of
the method 600 can be omitted, rearranged, combined,
and/or adapted 1n various ways without deviating from the
scope of the present disclosure.

The method 600 includes, at 602, obtaining, by one or
more computing devices, private data comprising a private
value. The method 600 includes, at 604, sampling, by the
one or more computing devices, a first random value from
a first sampling distribution, wherem the first sampling
distribution 1s a base distribution of a first infinitely divisible
distribution. The method 600 includes, at 606, sampling, by
the one or more computing devices, a second random value
from a second sampling distribution, wherein the second
sampling distribution 1s a base distribution of a second
infinitely divisible distribution. The method 600 includes, at
608, sampling, by the one or more computing devices, a
third random wvalue from a third sampling distribution,
wherein the third sampling distribution 1s a base distribution
of a third mfimitely divisible distribution. The method 600
includes, at 610, generating, by the one or more computing
devices, a multiset of messages based at least in part on the
private value, the first random value, the second random
value, and the third random wvalue, wherein the multiset of
messages comprises a first number of mcrement messages
equal to a sum of the private value, the first random value,
and the third random value, and wherein the multiset of
messages comprises a second number of decrement mes-
sages equal to a sum of the second random value and the
third random wvalue. The method 600 includes, at 612,
providing, by the one or more computing devices, the
multiset of messages for aggregation with a plurality of
additional multisets of messages respectively generated for
a plurality of additional private values.

FIG. 7 depicts a flow chart diagram of an example method
700 for performing aggregation of private values according
to example embodiments of the present disclosure. Although
FIG. 7 depicts steps performed 1n a particular order for
purposes of 1llustration and discussion, the methods of the
present disclosure are not limited to the particularly illus-
trated order or arrangement. The various steps of the method
700 can be omitted, rearranged, combined, and/or adapted 1n
various ways without deviating from the scope of the present
disclosure.

The method 700 1ncludes, at 702, receiving a plurality of
messages generated by a plurality of client devices, wherein
the plurality of messages comprise a total number of 1ncre-
ment messages and a total number of decrement messages,
wherein a respective device-specific number of the incre-
ment messages generated by each client device 1s equal to a
sum ol a respective first random value sampled by the client
device from a respective first sampling distribution, a
respective third sampling value sampled by the client device
from a respective third sampling distribution, and a respec-
tive private value known by the client device, wherein a
respective device-specific number of the increment mes-
sages generated by each client device 1s equal to a sum of a
respective second random value sampled from a respective
second sampling distribution and the respective third ran-
dom value, and wherein, for each client device, each of the
respective first, second, and third sampling distributions 1s a
respective base distribution of a first infinitely divisible
distribution, a second infinitely divisible distribution, and a
third infimitely divisible distribution. The method 700
includes, at 704, determining an expected sampling value for
a combination of the first infinitely divisible distribution and
the second infinitely divisible distribution. The method 700
includes, at 706, subtracting the expected sampling value
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and the total number of decrement messages from the total
number of increment messages to produce an aggregate
value.

FIG. 8 depicts a flow chart diagram of an example method
to 800 enable prnivacy-preserving aggregation of data
according to example embodiments of the present disclo-
sure. Although FIG. 8 depicts steps performed 1n a particular
order for purposes of 1llustration and discussion, the meth-
ods of the present disclosure are not limited to the particu-
larly illustrated order or arrangement. The various steps of
the method 800 can be omitted, rearranged, combined,
and/or adapted 1n various ways without deviating from the
scope of the present disclosure.

The method 800 includes, at 802, obtaining, by one or
more computing devices, private data comprising a private
value. The method 800 includes, at 804, sampling, by the
one or more computing devices, a random value from a
sampling distribution, wherein the sampling distribution
comprises a base distribution of an infinitely divisible dis-
tribution. The method 800 includes, at 806, generating, by
the one or more computing devices, a multiset of messages
based at least in part on the private value and the random
value, wherein the multiset of messages comprises a number
of increment messages equal to a sum of the private value
and the random value. The method 800 includes, at 808,
providing, by the one or more computing devices, the
multiset of messages for aggregation with a plurality of
additional multisets of messages respectively generated for
a plurality of additional private values.

FIG. 9 depicts a flow chart diagram of an example method
900 for performing aggregation of private values according
to example embodiments of the present disclosure. Although
FIG. 9 depicts steps performed 1 a particular order for
purposes of 1llustration and discussion, the methods of the
present disclosure are not limited to the particularly illus-
trated order or arrangement. The various steps of the method
900 can be omitted, rearranged, combined, and/or adapted 1n
various ways without deviating from the scope of the present
disclosure.

The method 900 includes, at 902, receiving a plurality of
messages generated by a plurality of client devices, wherein
the plurality of messages comprise a total number of incre-
ment messages, wherein a respective device-specific number
of the increment messages generated by each client device
1s equal to a sum of a respective random value sampled by
the client device from a respective sampling distribution and
a respective private value known by the client device, and
wherein, for each client device, the respective sampling
distribution 1s a respective base distribution of an infinitely
divisible distribution. The method 900 includes, at 904,
determining an expected sampling value for the infinitely
divisible distribution. The method 900 includes, at 906,
subtracting the expected sampling value from the total
number of icrement messages to produce an aggregate
value.

FIG. 10 depicts a flow chart diagram of an example
method 900 to enable privacy-preserving aggregation of
data according to example embodiments of the present
disclosure. Although FIG. 10 depicts steps performed 1n a
particular order for purposes of illustration and discussion,
the methods of the present disclosure are not limited to the
particularly 1llustrated order or arrangement. The various
steps of the method 900 can be omitted, rearranged, com-
bined, and/or adapted 1n various ways without deviating
from the scope of the present disclosure.

The method 1000 includes, at 1002, obtaining, by one or
more computing devices, private data comprising a private
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value. The method 1000 includes, at 1004, sampling, by the
one or more computing devices, a first random value and a

second random value from a first sampling distribution,
wherein the first sampling distribution 1s a base distribution
of a first mfinitely divisible distribution. The method 1000
includes, at 1006, sampling, by the one or more computing
devices, a third random value from a second sampling
distribution, wherein the second sampling distribution 1s a
base distribution of a second infinitely divisible distribution.
The method 1000 includes, at 1008, generating, by the one
or more computing devices, a multiset of messages based at
least 1n part on the private value, the first random value, the
second random value, and the third random value, wherein
the multiset of messages comprises a first number of 1ncre-
ment messages equal to the first random value, wherein the
multiset of messages comprises a second number of decre-
ment messages equal to the second random wvalue, and
wherein the multiset of messages comprises a third number
of zero sum noise messages. The method 1000 1ncludes, at
1010, providing, by the one or more computing devices, the
multiset of messages for aggregation with a plurality of
additional multisets of messages respectively generated for
a plurality of additional private values. In some 1mplemen-
tations, the first sampling distribution subtracted from itself
comprises a Discrete Laplace distribution. In some imple-
mentations, the second sampling distribution comprises a
negative binomial distribution. In some implementations,
the first number of increment messages and the second
number of decrement messages have a sum equal to Discrete
Laplacian noise. In some implementations, the private value
comprises an integer value 1 a range from zero to a
maximum user value. In some 1mplementations, the zero
sum noise messages are selected from a multiset such that
values of the multiset are bounded by the maximum user
value and such that the sum of all values in the multiset 1s
equal to zero. In some implementations, a plurality of zero
sum noise messages can be generated. Additionally and/or
alternatively, each of the plurality of zero sum noise mes-
sages can be generated based at least 1n part on an indepen-
dent random variable.

ADDITIONAL DISCLOSUR.

(L]

The technology discussed herein makes reference to serv-
ers, databases, soltware applications, and other computer-
based systems, as well as actions taken and information sent
to and from such systems. The inherent flexibility of com-
puter-based systems allows for a great variety of possible
configurations, combinations, and divisions of tasks and
functionality between and among components. For instance,
processes discussed herein can be implemented using a
single device or component or multiple devices or compo-
nents working in combination. Databases and applications
can be implemented on a single system or distributed across
multiple systems. Distributed components can operate
sequentially or in parallel.

While the present subject matter has been described 1n
detail with respect to various specific example embodiments
thereof, each example 1s provided by way of explanation,
not limitation of the disclosure. Those skilled 1n the art, upon
attaining an understanding of the foregoing, can readily
produce alterations to, variations of, and equivalents to such
embodiments. Accordingly, the subject disclosure does not
preclude inclusion of such modifications, varniations and/or
additions to the present subject matter as would be readily
apparent to one of ordinary skill i the art. For instance,
teatures 1llustrated or described as part of one embodiment
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can be used with another embodiment to yield a still further
embodiment. Thus, 1t 1s mntended that the present disclosure
cover such alterations, variations, and equivalents.

What 1s claimed 1s:
1. A computer-implemented method to enable privacy-
preserving aggregation of data, the method comprising:

obtaining, by one or more computing devices, private data
comprising a private value associated with a client
device;

sampling, by the one or more computing devices, a first
random value from a first sampling distribution asso-
ciated with the client device, wherein the first sampling

distribution 1s a base distribution of a first infinitely

divisible distribution;
sampling, by the one or more computing devices, a

second random value from a second sampling distri-
bution, wherein the second sampling distribution 1s a
base distribution of a second infinitely divisible distri-
bution:

sampling, by the one or more computing devices, a third

random value from a third sampling distribution,
wherein the third sampling distribution 1s a base dis-
tribution of a third infinitely divisible distribution;

generating, by the one or more computing devices, a

multiset of messages for the client device based at least
in part on the private value, the first random value, the
second random value, and the third random value,
wherein the multiset of messages comprises a first
number of increment messages equal to a sum of the
private value, the first random value, and the third
random value, and wherein the multiset of messages
comprises a second number of decrement messages
equal to a sum of the second random value and the third
random value; and

transmitting, by the one or more computing devices over

a network, the multiset of messages for differentially
private aggregation with a plurality of additional mul-
tisets of messages respectively generated for a plurality
of additional private values respectively associated
with a plurality of additional client devices;

wherein the first infinitely divisible distribution 1s shared

among the plurality of additional client devices.

2. The computer-implemented method of claim 1,
wherein a combination of the first infinitely divisible distri-
bution and the second infinitely divisible distribution pro-
duces a combined distribution that has both positive and
negative support.

3. The computer-implemented method of claim 2,
wherein the combination of the first infinitely divisible
distribution and the second infinitely divisible distribution
comprises a difference between the first infinitely divisible
distribution and the second infinitely divisible distribution.

4. The computer-implemented method of claim 2,
wherein the combined distribution comprises a Discrete
Laplace distribution.

5. The computer-implemented method of claim 1,
wherein the first infimitely divisible distribution 1s equal to
the second infinitely divisible distribution.

6. The computer-implemented method of claim 1,
wherein one or more of the first infinitely divisible distri-
bution, the second infinitely divisible distribution, and the
third 1nfinitely divisible distribution respectively comprise
respective negative binomial distributions.

7. The computer-implemented method of claim 1,
wherein one or more of the first infinitely divisible distri-
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bution, the second infinitely divisible distribution, and the
third infinitely divisible distribution respectively comprise
Poisson distributions.

8. The computer-implemented method of claim 1, turther
comprising repeating the method of any preceding claim for
at least a subset of an ordered plurality of private values,
wherein a respective index value for each private value in
the subset of the ordered plurality of private values 1s
concatenated onto each message of the multiset of messages
generated for such private value.

9. The computer-implemented method of claim 8,
wherein the method further comprises randomly selecting
the number of private values included 1n the subset of the
ordered plurality of private values from a fourth sampling
distribution.

10. The computer-implemented method of claim 8,
wherein repeating the method of any preceding claim for at
least the subset of an ordered plurality of private values
comprises repeating, computationally in parallel, the method
of any preceding claim for each private value in at least the
subset of an ordered plurality of private values.

11. The computer-implemented method of claim 1,
wherein the private value 1s a binary value.

12. A computer-implemented method to enable privacy-
preserving aggregation of data, the method comprising:

obtaining, by one or more computing devices, private data

comprising a private value associated with a client
device;

sampling, by the one or more computing devices, a

random value from a sampling distribution associated
with the client device, wherein the sampling distribu-
tion comprises a base distribution of an infinitely
divisible distribution;

generating, by the one or more computing devices, a

multiset ol messages for the client device based at least
in part on the private value and the random value,
wherein the multiset of messages comprises a number
of imncrement messages equal to a sum of the private
value and the random value; and

transmitting, by the one or more computing devices over

a network, the multiset of messages for differentially
private aggregation with a plurality of additional mul-
tisets of messages respectively generated for a plurality
of additional private values respectively associated
with a plurality of additional client devices;

wherein the infimitely divisible distribution i1s shared

among the plurality of additional client devices.

13. The computer-implemented method of claim 12,
wherein the infinitely divisible distribution comprises a
Poisson distribution.

14. The computer-implemented method of claim 12,
wherein the infinitely divisible distribution comprises a
negative binomial distribution.

15. A computer-implemented method to enable privacy-
preserving aggregation of data, the method comprising:

obtaining, by one or more computing devices, private data

comprising a private value associated with a client
device;

sampling, by the one or more computing devices, a first

random value and a second random value from a first
sampling distribution associated with the client device,
wherein the first sampling distribution 1s a base distri-
bution of a first infinitely divisible distribution;
sampling, by the one or more computing devices, a third
random value from a second sampling distribution,
wherein the second sampling distribution 1s a base
distribution of a second infinitely divisible distribution;
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generating, by the one or more computing devices, a

multiset of messages for the client device based at least
in part on the private value, the first random value, the
second random value, and the third random wvalue,
wherein the multiset of messages comprises a first
number of imcrement messages equal to the first ran-
dom value, wherein the multiset of messages comprises
a second number of decrement messages equal to the

second random value, and wherein the multiset of
messages comprises a third number of zero sum noise
messages; and

transmitting, by the one or more computing devices over

a network, the multiset of messages for differentially
private aggregation with a plurality of additional mul-
tisets of messages respectively generated for a plurality
of additional private values respectively associated
with a plurality of additional client devices;

wherein the first infinitely divisible distribution 1s shared

among the plurality of additional client devices.
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16. The computer-implemented method of claim 15,
wherein the first sampling distribution subtracted from itself
comprises a Discrete Laplace distribution.

17. The computer-implemented method of claim 15,
wherein the second sampling distribution comprises a nega-
tive binomial distribution.

18. The computer-implemented method of claim 185,
wherein the first number of imncrement messages and the
second number of decrement messages have a sum equal to
Discrete Laplacian noise.

19. The computer-implemented method of claim 185,
wherein the private value comprises an integer value 1n a
range from zero to a maximum user value.

20. The computer-implemented method of claim 19,
wherein the zero sum noise messages are selected from a
multiset such that values of the multiset are bounded by the
maximum user value and such that the sum of all values in
the multiset 1s equal to zero.
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