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ULTRA-WIDE INSTANTANEOUS
BANDWIDTH COMPLEX NEUROMORPHIC
ADAPTIVE CORE PROCESSOR

CROSS-REFERENCE TO RELATED
APPLICATIONS

This 1s a Continuation-in-Part application of U.S. appli-

cation Ser. No. 17/3735,724, filed 1n the United States on Jul.
14, 2021, entitled, “Low Size, Weight and Power (SWAP)
Eflicient Hardware Implementation of a Wide Instantaneous
Bandwidth Neuromorphic Adaptive Core (NeurACore)”,
which 1s a Non-Provisional Application of U.S. Provisional
Application No. 63/051,877, filed on Jul. 14, 2020 and U.S.
Provisional Application No. 63/051,851, filed on Jul. 14,
2020, the enftirety of which are hereby incorporated by
reference.

This 1s also a Non-Provisional Application of U.S. Pro-
visional Application No. 63/150,024, filed in the United
States on Feb. 16, 2021, entitled, “Ultra-Wide Instantaneous
Bandwidth Complex Neuromorphic Adaptive Core Proces-
sor,” the entirety of which 1s incorporated herein by refer-
ence.

BACKGROUND OF INVENTION
(1) Field of Invention

The present invention relates to a signal processor and,
more particularly, to a signal processor for complex signal
denoising in the ultra-wide instantaneous bandwidth.

(2) Description of Related Art

Noise reduction, or denoising, 1s the process of removing
noise from a signal. Noise reduction techniques exist for
audio and 1images. All signal processing devices, both analog
and digital, have traits that make them susceptible to noise.
Noise can be random or white noise with an even frequency
distribution, or frequency-dependent noise mntroduced by a
device’s mechanism or signal processing algorithms.

Current systems, such as conventional channelizers, oper-
ate over a smaller frequency band and require a large latency
to achieve processing results. A channelizer 1s a term used
tor algorithms which select a certain frequency band from an
input signal. The 1mput signal typically has a higher sample
rate that the sample rate of the selected channel. A channel-
1zer 1s also used for algorithms that select multiple channels
from an mnput signal 1n an ethcient manner. Additionally,
current machine learning approaches to signal processing
require large quantities of online/offline traiming data.

Thus, a continuing need exists for a system that does not
require any pre-training and enables real-time signal denois-
ing in the ultra-wide bandwidth for both real-valued and
complex input signals.

SUMMARY OF INVENTION

The present invention relates to a signal processor and,
more particularly, to a Neuromorphic Adaptive Core (Neu-
rACore) signal processor for complex signal denoising in
ultra-wide instantaneous bandwidth. The NeurACore signal
processor comprises a digital signal pre-processing unit
operable for performing cascaded decomposition of a wide-
band complex valued In-phase and Quadrature-phase (I/Q)
input signal in real time. The wideband complex valued I/QQ
input signal 1s decomposed 1nto I and Q sub-channels. The
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2

NeurACore signal processor further comprises a NeurACore
and local learning layers operable for performing high-
dimensional projection of the wideband complex valued I/QQ
input signal into a high-dimensional state space. A global
learning layer of the NeurACore signal processor 1s operable
for performing a gradient descent online learming algorithm,
and a neural combiner operable for combining outputs of the
global learning layer to compute signal predictions corre-
sponding to the wideband complex valued I/Q iput signal.

In another aspect, the cascaded decomposition 1s a multi-
layered 1/QQ decomposition scheme, wherein for each layer,
a sample rate of the layer 1s reduced by half compared to a
preceding layer 1n the cascaded decomposition.

In another aspect, the cascaded decomposition 1s a three
layer I/Q decomposition scheme, and wherein the gradient
descent online learning algorithm 1s an eight-dimensional
gradient descent online learming algorithm.

In another aspect, the gradient descent online learning
algorithm uses eight-dimensional state variables and weight
matrices by cross coupling the eight-dimensional state vari-
ables 1n weights update equations and output layer update
equations.

In another aspect, the digital signal pre-processing i1s
further operable for implementing blind source separation
(BSS) and feature extraction algorithms with updates to
interpret denoised eight-dimensional state variables.

In another aspect, the NeurACore comprises high-dimen-
sional signal processing nodes with adaptable parameters.

Finally, the present mvention also includes a computer
program product and a computer implemented method. The
computer program product includes computer-readable
instructions stored on a non-transitory computer-readable
medium that are executable by a computer having one or
more processors, such that upon execution of the mnstruc-
tions, the one or more processors perform the operations
listed herein. Alternatively, the computer implemented
method includes an act of causing a computer to execute
such instructions and perform the resulting operations.

BRIEF DESCRIPTION OF THE DRAWINGS

The objects, features and advantages of the present inven-
tion will be apparent from the following detailed descrip-
tions of the various aspects of the invention 1n conjunction
with reference to the following drawings, where:

FIG. 1 1s a block diagram depicting the components of a
system for complex signal denoising according to some
embodiments of the present disclosure;

FIG. 2 1s an illustration of a computer program product
according to some embodiments of the present disclosure;

FIG. 3 1s an illustration of an ultra-wideband Neuromor-
phic Adaptive Core (NeurACore) architecture according to
some embodiments of the present disclosure;

FIG. 4A 1s an 1llustration of real valued wideband input
data 1n a cascaded In-Phase and Quadrature-Phase (1/QQ)
decomposition concept of frequency translation of a single
tone according to some embodiments of the present disclo-
SUre;

FIG. 4B 1s an 1llustration of first level 1/QQ decomposition
in a cascaded I/QQ decomposition concept of Irequency
translation of a single tone according to some embodiments
of the present disclosure;

FIG. 4C 1s an 1llustration of second level 1/QQ decompo-
sition 1n a cascaded 1/(QQ decomposition concept of frequency
translation of a single tone according to some embodiments
of the present disclosure;
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FIG. 5A 1s an 1llustration of a first example of a phase
relationship between 27¢ level resonator state functions
according to some embodiments of the present disclosure;

FIG. 5B 1s an 1llustration of a second example of a phase
relationship between 27“ level resonator state functions
according to some embodiments of the present disclosure;

FIG. 5C 1s an illustration of a third example of a phase
relationship between 27“ level resonator state functions
according to some embodiments of the present disclosure;

FIG. 5D 1s an illustration of a fourth example of a phase
relationship between 27“ level resonator state functions
according to some embodiments of the present disclosure;

FIG. 6A 1s an 1illustration of an ordinary differential
equation for a first four-dimensional (4D) passive oscillator
with the same 2”¢ level baseband frequency according to
some embodiments of the present disclosure;

FIG. 6B 1s an 1illustration of an ordinary differential
equation for a second 4D passive oscillator with the same
27 level baseband frequency according to some embodi-
ments of the present disclosure;

FIG. 6C 1s an 1illustration of an ordinary differential
equation for a third 4D passive oscillator with the same 2%
level baseband frequency according to some embodiments
of the present disclosure;

FIG. 6D 1s an 1illustration of an ordmary differential
equation for a second 4D passive oscillator with the same
2" level baseband frequency according to some embodi-
ments of the present disclosure;

FIG. 7A 1s an illustration of the time domain response of
a resonator that 1s designed to resonate at 100 megahertz
(MHz) 1n the original band according to some embodiments
of the present disclosure;

FIG. 7B 1s an 1illustration of the frequency domain
response of the resonator that 1s designed to resonate at 100
MHz 1n the original band according to some embodiments of
the present disclosure;

FIG. 7C 1s an illustration of the time domain response of
a resonator that 1s designed to resonate at 200 MHz 1n the
original band according to some embodiments of the present
disclosure:

FIG. 7D 1s an 1illustration of the frequency domain
response of the resonator that 1s designed to resonate at 200
MHz 1n the original band according to some embodiments of
the present disclosure;

FIG. 7E 1s an 1llustration of the time domain response of
a resonator that 1s designed to resonate at 400 MHz 1n the
original band according to some embodiments of the present
disclosure:

FIG. 7F 1s an 1illustration of the frequency domain
response of the resonator that 1s designed to resonate at 400
MHz 1n the original band according to some embodiments of
the present disclosure;

FIG. 7G 1s an 1llustration of the time domain response of
a resonator that 1s designed to resonate at 600 MHz in the
original band according to some embodiments of the present
disclosure:

FIG. 7H 1s an 1illustration of the frequency domain
response of the resonator that 1s designed to resonate at 400
MHz 1n the original band according to some embodiments of
the present disclosure;

FIG. 8A 1s an illustration of of the time domain response
ol a resonator that 1s designed to resonate at 600 MHz 1n the
original band with the QQ value set for 100 according to some
embodiments of the present disclosure;

FIG. 8B 1s an 1illustration of the frequency domain
response of the resonator that 1s designed to resonate at 600
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MHz in the original band with the Q value set for 100
according to some embodiments of the present disclosure;

FIG. 8C 1s an illustration of the time domain response of
a resonator that 1s designed to resonate at 600 MHz 1n the
original band with the QQ value set for 10 according to some
embodiments of the present disclosure;

FIG. 8B 1s an illustration of the frequency domain
response of the resonator that 1s designed to resonate at 600
MHz in the original band with the Q value set for 10
according to some embodiments of the present disclosure;
and

FIG. 9 1s a block diagram depicting control of a device
according to various embodiments.

DETAILED DESCRIPTION

The present invention relates to a signal processor and,
more particularly, to a signal processor for complex signal
denoising 1n the ultra-wide instantancous bandwidth. The
following description 1s presented to enable one of ordinary
skill 1n the art to make and use the invention and to
incorporate 1t 1n the context of particular applications. Vari-
ous modifications, as well as a variety of uses in different
applications will be readily apparent to those skilled 1n the
art, and the general principles defined herein may be applied
to a wide range of aspects. Thus, the present invention 1s not
intended to be limited to the aspects presented, but 1s to be
accorded the widest scope consistent with the principles and
novel features disclosed herein.

In the following detailed description, numerous specific
details are set forth in order to provide a more thorough
understanding of the present invention. However, it will be
apparent to one skilled in the art that the present invention
may be practiced without necessarily being limited to these
specific details. In other instances, well-known structures
and devices are shown 1n block diagram form, rather than 1n
detail, in order to avoid obscuring the present invention.

The reader’s attention 1s directed to all papers and docu-
ments which are filed concurrently with this specification
and which are open to public inspection with this specifi-
cation, and the contents of all such papers and documents are
incorporated herein by reference. All the features disclosed
in this specification, (including any accompanying claims,
abstract, and drawings) may be replaced by alternative
features serving the same, equivalent, or similar purpose,
unless expressly stated otherwise. Thus, unless expressly
stated otherwise, each feature disclosed 1s one example only
ol a generic series of equivalent or similar features.

Furthermore, any element 1n a claim that does not explic-
itly state “means for” performing a specified function, or
“step for” performing a specific function, 1s not to be
interpreted as a “means™ or “step” clause as specified 1n 35
U.S.C. Section 112, Paragraph 6. In particular, the use of
“step of” or “act of” 1n the claims herein 1s not intended to
invoke the provisions of 35 U.S.C. 112, Paragraph 6.

(1) Principal Aspects

Various embodiments of the invention include three “prin-
cipal” aspects. The first 1s a system for complex signal
denoising. The system 1s typically in the form of a computer
system operating soitware or in the form of a “hard-coded”
instruction set. This system may be incorporated into a wide
variety of devices that provide different functionalities. The
second principal aspect 1s a method, typically in the form of
soltware, operated using a data processing system (com-
puter). The third principal aspect 1s a computer program
product. The computer program product generally repre-
sents computer-readable instructions stored on a non-tran-
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sitory computer-readable medium such as an optical storage
device, e.g., a compact disc (CD) or digital versatile disc
(DVD), or a magnetic storage device such as a floppy disk
or magnetic tape. Other, non-limiting examples of computer-
readable media include hard disks, read-only memory
(ROM), and flash-type memories. These aspects will be
described in more detail below.

A block diagram depicting an example of a system (1.e.,
computer system 100) of the present invention 1s provided 1n
FIG. 1. The computer system 100 1s configured to perform
calculations, processes, operations, and/or functions associ-
ated with a program or algorithm. In one aspect, certain
processes and steps discussed herein are realized as a series
ol instructions (e.g., software program) that reside within
computer readable memory units and are executed by one or
more processors of the computer system 100. When
executed, the instructions cause the computer system 100 to
perform specific actions and exhibit specific behavior, such
as described herein.

The computer system 100 may include an address/data
bus 102 that 1s configured to communicate information.
Additionally, one or more data processing units, such as a
processor 104 (or processors), are coupled with the address/
data bus 102. The processor 104 1s configured to process
information and 1nstructions. In an aspect, the processor 104
1s a microprocessor. Alternatively, the processor 104 may be
a different type ol processor such as a parallel processor,
application-specific 1ntegrated circuit (ASIC), program-
mable logic array (PLA), complex programmable logic
device (CPLD), or a field programmable gate array (FPGA).

The computer system 100 1s configured to utilize one or
more data storage units. The computer system 100 may
include a volatile memory unit 106 (e.g., random access
memory (“RAM?”), static RAM, dynamic RAM, etc.)
coupled with the address/data bus 102, wherein a volatile
memory unit 106 1s configured to store information and
instructions for the processor 104. The computer system 100
turther may include a non-volatile memory unit 108 (e.g.,

read-only memory (“ROM”), programmable ROM
(“PROM?”), erasable programmable ROM (“EPROM”),

clectrically erasable programmable ROM “EEPROM”),
flash memory, etc.) coupled with the address/data bus 102,
wherein the non-volatile memory unit 108 1s configured to
store static information and instructions for the processor
104. Alternatively, the computer system 100 may execute
instructions retrieved from an online data storage umit such
as 1n “Cloud” computing. In an aspect, the computer system
100 also may include one or more interfaces, such as an
interface 110, coupled with the address/data bus 102. The
one or more interfaces are configured to enable the computer
system 100 to interface with other electronic devices and
computer systems. The communication interfaces imple-
mented by the one or more interfaces may include wireline
(e.g., serial cables, modems, network adaptors, etc.) and/or
wireless (e.g., wireless modems, wireless network adaptors,
etc.) communication technology.

In one aspect, the computer system 100 may include an
input device 112 coupled with the address/data bus 102,
wherein the input device 112 1s configured to communicate
information and command selections to the processor 100.
In accordance with one aspect, the mput device 112 1s an
alphanumeric input device, such as a keyboard, that may
include alphanumeric and/or function keys.

Alternatively, the input device 112 may be an mput device
other than an alphanumeric input device. In an aspect, the
computer system 100 may include a cursor control device

114 coupled with the address/data bus 102, wherein the
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cursor control device 114 1s configured to communicate user
input information and/or command selections to the proces-
sor 100. In an aspect, the cursor control device 114 1s
implemented using a device such as a mouse, a track-ball, a
track-pad, an optical tracking device, or a touch screen. The
foregoing notwithstanding, 1n an aspect, the cursor control
device 114 1s directed and/or activated via mput from the
iput device 112, such as in response to the use of special
keys and key sequence commands associated with the input
device 112. In an alternative aspect, the cursor control
device 114 1s configured to be directed or guided by voice
commands.

In an aspect, the computer system 100 further may include
one or more optional computer usable data storage devices,
such as a storage device 116, coupled with the address/data
bus 102. The storage device 116 1s configured to store
information and/or computer executable nstructions. In one
aspect, the storage device 116 1s a storage device such as a
magnetic or optical disk drive (e.g., hard disk dnive
(“HDD”), floppy diskette, compact disk read only memory
(“CD-ROM?”), digital versatile disk (“DVD”)). Pursuant to
one aspect, a display device 118 1s coupled with the address/
data bus 102, wherein the display device 118 1s configured
to display video and/or graphics. In an aspect, the display
device 118 may include a cathode ray tube (“CR1”), liquid
crystal display (“LCD”), field emission display (“FED”),
plasma display, or any other display device suitable for
displaying video and/or graphic images and alphanumeric
characters recognizable to a user.

The computer system 100 presented herein 1s an example
computing environment in accordance with an aspect. How-
ever, the non-limiting example of the computer system 100
1s not strictly limited to being a computer system. For
example, an aspect provides that the computer system 100
represents a type of data processing analysis that may be
used 1 accordance with various aspects described herein.
Moreover, other computing systems may also be imple-
mented. Indeed, the spirit and scope of the present technol-
ogy 1s not limited to any single data processing environment.
Thus, 1n an aspect, one or more operations of various aspects
of the present technology are controlled or implemented
using computer-executable instructions, such as program
modules, being executed by a computer. In one 1implemen-
tation, such program modules include routines, programs,
objects, components and/or data structures that are config-
ured to perform particular tasks or implement particular
abstract data types. In addition, an aspect provides that one
or more aspects of the present technology are implemented
by utilizing one or more distributed computing environ-
ments, such as where tasks are performed by remote pro-
cessing devices that are linked through a communications
network, or such as where various program modules are
located 1n both local and remote computer-storage media
including memory-storage devices.

An 1llustrative diagram of a computer program product
(1.e., storage device) embodying the present invention 1s
depicted in FIG. 2. The computer program product is
depicted as floppy disk 200 or an optical disk 202 such as a
CD or DVD. However, as mentioned previously, the com-
puter program product generally represents computer-read-
able instructions stored on any compatible non-transitory
computer-readable medium. The term “instructions” as used
with respect to this mvention generally indicates a set of
operations to be performed on a computer, and may repre-
sent pieces of a whole program or individual, separable,
software modules. Non-limiting examples of “instruction”
include computer program code (source or object code) and
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“hard-coded™ electronics (1.e., computer operations coded
into a computer chip). The “instruction” 1s stored on any
non-transitory computer-readable medium, such as in the
memory ol a computer or on a tloppy disk, a CD-ROM, and
a flash drive. In either event, the instructions are encoded on
a non-transitory computer-readable medium.

(2) Specific Details of Various Embodiments of the Inven-
tion Described 1s an implementation of the Ultra-Wide
Instantaneous Bandwidth (IBW) Neuromorphic Adaptive
Core (NeurACore) processor, used for the denoising of
real-valued and complex In-Phase and Quadrature-Phase
(I/QQ) signals (1.e., signals 1n ultra-wide IBW). IBW refers to
the bandwidth 1n which all frequency components can be
simultaneously analyzed. The term “real-time bandwidth™ 1s
often used interchangeably with IBW to describe the maxi-
mum continuous radio frequency (RF) bandwidth that an
mstrument generates or acquires. A real-valued signal 1s a
complex signal where all the imaginary component of all the
complex values are strictly zero. Real-valued signals have
one degree of freedom. Complex signals are often used to
represent signals, or data, with two degrees of freedom, such
as magnitude and phase, or kinetic and potential energy.

The invention described herein 1s a system for real-time,
real-valued and complex I/QQ signal denoising in ultra-wide
IBW with processor clock speed that 1s lower than the data
sampling rate. The denoiser according to embodiments of
the present disclosure provides detection and denoising
capabilities for complex (I/QQ) signals, including low prob-
ability of intercept (LPI), low probability of detection
(LPD), and frequency hopping signals. A LPI radar 1s a radar
employing measures to avoid detection by passive radar
detection equipment (such as a radar warning receiver
(RWR), or electronic support receiver) while it 1s searching
for a target or engaged 1n target tracking. LPI and LPD allow
an active acoustic source to be concealed or camoutlaged so
that the signal 1s essentially undetectable. Frequency-hop-
ping spread spectrum (FHSS) 1s a method of transmitting,
radio signals by rapidly changing the carrier frequency
among many distinct frequencies occupying a large spectral
band. Signals rapidly change, or hop, their carrier frequen-
cies among the center frequencies of these sub-bands 1n a
predetermined order.

Additionally, the denoiser improves the signal-to-noise
ratio (SNR) performance by >20 decibels (dB) for a varniety
of different wavetorms, as will be described 1n detail below.
Key advantages of the present invention compared to current
state-oi-the art systems are the ultra-low latency detection
and denoising of wideband mput signals. Comparable sys-
tems, like a conventional channelizer, would operate over a
smaller frequency band and likely require larger latency to
achieve the same processing results. Additionally, the sys-
tem enables detection and denoising of fast frequency hop-
ping signals that cannot be achieved with current frequency
channelization-based systems. While current machine leamn-
ing approaches would require large quantities of online/
offline traiming data, the system described herein does not
require any pre-training.

The ultra-wide IBW for the real-time digital signal pro-
cessing system (1.¢., NeurACore) according to embodiments
of the present disclosure 1s defined as where the mmcoming
signal’s sample rate 1s larger than the digital signal proces-
sor’s (1.e., NeurACore) clock speed. Here, it 1s assumed that
the iput signal 1s uniformly sampled with a sampling clock
whose clock speed 1s Is (sampling frequency, or sampling,
rate) The samples are quantized and fed to the digital signal
processor whose clock rate 1s Ic. In computing, the clock rate
refers to the frequency at which the clock generator of a
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processor can generate pulses, which are used to synchro-
nize the operation of 1ts components. The clock rate 1s used
as an 1ndicator of the processor’s speed and 1s measured 1n
clock cycles per second. The heart of the invention described
herein 1s a cascaded 1/QQ decomposition that enables Neu-
rACore to achieve an instantaneous bandwidth (IBW) that 1s
significantly higher than the clock speed of the digital
processor. The system described herein, which 1s an ultra-
wide IBW real-time denoiser (where 1s>ic), greatly
improves SWAP (size, weight, and power) of hardware over
comparable systems with the same performance, such as a
conventional channelizer. In the present invention, the sam-
pling rate 1s twice the IBW. The input signal with a chan-
nelizer typically has a higher sample rate than the sample
rate of the selected channel.

The NeurACore processor architecture, depicted 1n FIG.
3, consists of several elements. A high-speed (e.g., IBW
greater than 200 MHz) digital signal pre-processing unit 300
performs cascaded I/Q decomposition of the complex input
signal 302 1n real time. A neuromorphic adaptive core and
local learning layers 304 perform high-dimensional projec-
tion of the input signal into the high-dimensional state space
of the core’s dynamical model, where A, represents the
core state-space coeflicients. A global learning layer 306
(1.e., output layer that performs the gradient descent online
learning) and neural combiner 308 perform gradient
descent-based online learning of the output layer weights
from the global learning layer 306 to achieve short-term
signal prediction of the mput signal without any knowledge
of the signal 1itself. The neural combiner 308 combines the
I and Q outputs from the global learning layer 306. Output
I 314 and Output Q 316 represent the signal predictions.

As described above, a unique concept of the mvention 1s
the cascaded 1I/Q signal decomposition and related signal
processing algorithms where the wideband complex valued
(I/Q) input signal 302 1s further decomposed into I and Q
sub-channels (1.e., 1ol I, Qof I, I of Q and Q of Q) for a two
layer I/QQ decomposition scheme. The advantage of the two
layer 1/QQ signal decomposition is that the sample rate of the
four correlated sub-channels i1s reduced by a factor of two
compared to the sample rate of the 1% layer I/QQ decomposed
input signal 310. This cascading operation can be continued
until the condition offscas<=fc 1s satisfied. Here, fscas 1s the
required sample rate for the time series data at the last
cascading layer. For every new cascading layer, the sample
rate 1s reduced by half (i.e., fscas=Is/2 for a single layer,
tscas=1s/4 for two layers, Iscas=Is/8 for three layers), where
ts 1s the sample rate of the real-valued nput signal.

(2.1) Ultra-Wideband NeurACore Architecture

The basic innovation that enables the ultra-wideband
NeurACore architecture 1s shown 1n FIG. 3. To increase the
bandwidth of NeurACore beyond the clock speed of the
digital processor (1.e., I, ;.1 001), the unique concept
of cascaded In-phase and Quadrature-phase (I/QQ) signal
decomposition and related signal processing algorithms was
utilized, as described above. The 1/QQ decomposition ensures
umque and invertible signal transformation between the
original I/QQ mput and its decomposed counterpart, so inter-
preting and converting back these low sample rate multidi-
mensional signals into the original I/Q signal 1s always
possible.

These cascaded 1/Q signal decompositions can be contin-
ued to many levels, ensuring that the actual digital signal
processor clock speed can always be larger than the sample
rate of the last decomposition level (.e.,
Y at 110 sampiing~Teioai)- FOr €Xxample, an existing NeurACore
hardware implementation (disclosed 1n U.S. application Ser.
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No. 17/3775,724, which 1s hereby incorporated by reference
as though fully set forth herein) operated at 300 MSps (mega
samples per second), so a three layer 1/Q signal decompo-
sition will ensure processing signals with >1 gigahertz
(GHz) IBW. This means that most of the internal signals
used 1n the Core and Blind Source Separation (BSS) will be
cight-dimensional so one must use an eight-dimensional
gradient descent online learning algorithm, as described 1n
detail below.

The following are references that describe the use of the
gradient descent online learning algorithm for updating
output layer weights for an online learning system: M.
Lukosevictus and H. Jaeger, “Reservoir computing
approaches to recurrent neural network training”’, Computer
Science Review, 2009, and Jing Dai, et al., “An Introduction
to the Echo State Network and its Applications 1n Power
System”, 15th International Conference on Intelligent Sys-
tem Applications to Power Systems, 2009, both of which are
hereby incorporated by reference as though fully set forth
herein. The system according to embodiments of the present
disclosure improves upon these approaches by extending the
signal processing bandwidth beyond the clock speed of the
processor (Is>1c), where the real-time denoising processing,
algorithm 1s implemented, and extending the basic gradient
descent online learning algorithm into the cascaded I/QQ
decomposed signal domain. By utilizing additional learning
layers, such as the global learning layer, along with the
extended capability of the neuromorphic adaptive core 304,
the present invention enables real-time signal denoising in
ultra-wide bandwidth for both real-valued and complex
(I/QQ) 1mput signals.

The most challenging aspect of the unique cascaded 1/Q)
decomposition-based signal processing concept 1s to design
the state space models for the nodes in the neuromorphic
adaptive core that behave the same way as the nodes 1n the
current, not cascaded, design (1.e., passive resonators with
adaptable Q-values and resonant frequencies). In the current
design, the standard two-dimensional state space models are
used for these passive resonators that must be abstracted to
high-dimensional models, assuming that their state space
models will be driven by the cascaded 1/QQ decomposed high
dimensional signals. In other words, one needs to design an
abstract high-dimensional oscillator array with adaptable
parameters. HRL Laboratories, LLC has developed and
verified, by analysis and MatlLab simulations, such abstract
high dimensional signal processing nodes that form the key
building blocks for the ultra-wide bandwidth NeurACore, as
described 1 U.S. application Ser. No. 17/375,724.

The other significant algorithm change in the ultra-wide
bandwidth NeurACore design compared to the previously
disclosed, not cascaded, version 1s the online learning algo-
rithm that must utilize the high-dimensional state variables
from the core 1n the online learning/adaptation process. HRL
Laboratories, LLC has developed such gradient descent
online learning algorithm that 1s currently utilized in the
existing NeurACore field-programmable gate array (FPGA)
hardware prototype, as described 1n U.S. application Ser.
No. 17/375,724. In the current hardware implementation, the
learning algorithm utilizes two-dimensional (I and Q) state
variables along with two-dimensional weight matrices. For
the ultra-wide bandwidth NeurACore architecture described
herein, the learning algorithm 1s extended to eight-dimen-
sional state variables and weight matrices by properly cross
coupling the eight-dimensional state variables 1n the weights
update and output update equations.

Optionally, the disclosed ultra-wide IBW NeurACore can
be extended with Blind Source Separation (BSS) and feature
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extractions algorithms that also need to be updated to
properly interpret the denoised eight-dimensional state vari-
ables 1n order to accurately separate the unknown signal(s)
from the signal mixture where all signals are represented by
cight-dimensional state variables. Energy and phase maps
for the real-time spectrogram are generated from the eight-
dimensional state variables. At this stage of the processing
one can convert back the abstract high-dimensional energy
and phase maps 1nto conventional spectrogram 1mage(s) for
the classification algorithm that 1s tramned on conventional
spectrogram 1mages. However, the processing scheme
described herein enables new classification approaches,
where the classifier (e.g., deep learning neural network) can
be trained directly on the high-dimensional energy and
phase maps. It 1s believed that the high-dimensional energy
and phase maps contain significantly more unique features
about the signals than conventional spectrograms and will
cnable significantly improved classification performance. To
increase the bandwidth of the NeurACore beyond the clock
speed of the digital processor (1.e., L, 1"t or00r), Cas-
caded In-phase and Quadrature-phase (I/QQ) signal decom-
position and related signal processing algorithms are uti-
lized. The wideband, complex-valued (1/QQ) input signal 1s
turther decomposed 1nto I and QQ sub-channels (1.e., 1 of I,
of I, I of Q and Q of Q) for a two layer I/Q decomposition,
as shown in FIG. 3.

A MatLab simulation example showing how a single tone
at 149.9 MHz will be translated to —0.1 MHz at the second
decomposition level (312 1n FIG. 3) 1s depicted in FIGS.
4A-4C. It 1s assumed that the original sample rate 1s 400
MHz, corresponding to a 200 MHz bandwidth. At the first
decomposition level (310 1n FIG. 3), the tone is translated to
49.9 MHz, as shown in FIG. 4B. At the second decompo-
sition level (312 i FIG. 3), the single tone translates into
four properly phase aligned tones each having resonant
frequency of 0.1 MHz, as shown 1n FIG. 4C.

FIGS. 5A-5D illustrate all four phase alignment combi-
nations between the four time series representing the four
different frequencies in the original wideband signal. All
four frequencies, I-of-1, Q-of-1I, I-01-Q, and Q-o1-Q, (repre-
sented by different types of lines (e.g., dashed, solid, bold)
shown 1n FIGS. 5A-5D translate to the same baseband
frequency (1.e., 0.1 MHz). However, their phase alignment
umquely 1dentifies each original frequency 1n the wide band
as shown 1n the figures.

FIGS. 6 A-6D depict four coupled Ordinary Diflerential
Equations (ODE) sets for the four four-dimensional (4D)
resonators that have the same baseband resonant frequency,
but represent four different resonances in the wide band. The
ODEs are parameterized by the baseband resonant fre-
quency and quality factor (QQ) values. The four ODE systems
have a very similar basic structure but have different sign
arrangements associated with the required phase constraints
between the different states. It 1s interesting to observe that
some of the terms associated with resonator losses are
positive. However, the passivity constraints are enforced via
the cross-coupling terms and negative loss values 1n the
main diagonal elements.

FIGS. 7A-TH show MatLab simulation results for the 4D
resonators excited by a wideband chirp signal. Here, 1t 1s
assumed a 350 MHz processor clock speed for simulating
the 4D resonators and 1.4 G samples per second (Sps)
sampling rate for the real valued wideband input time series.
The mput 1s a wideband chirp signal with its instantaneous
frequency covering the DC-700 MHz frequency band. The
overall bandwidth 1s 700 MHz. After the second level I/QQ

decomposition, the original 700 MHz bandwidth chirp sig-
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nal 1s converted ito four 175 MHz bandwidth signals
sampled at 350 MHz sample rate each.

FIGS. 7A and 7B show the time domain and frequency
domain responses, respectively, of the 1°* resonator that is
designed to resonate at 100 MHz in the original band. The
Q value 1s set for 1000 to make the resonant frequency
clearly visible. This resonator has the state space model that
1s 1dentical to the model m FIG. 6A. The simulation result
shows proper wideband responses of the 4D resonator with
resonant frequency equal to 100 MHz.

FIGS. 7C and 7D show the time domain and frequency
domain responses, respectively, of the 2”¢ resonator that is
designed to resonate at 200 MHz 1n the original band. This
resonator has the state space model that 1s 1dentical to the
model 1n FIG. 6B. The Q value 1s set for 1000 to make the
resonant frequency clearly visible. The simulation result
shows proper wideband responses of the 4D resonator with
resonant frequency equal to 200 MHz.

FIGS. 7E and 7F show the time domain and frequency
domain responses, respectively, of the 3’ resonator that is
designed to resonate at 400 MHz 1n the original band. This
resonator has the state space model that 1s identical to the
model 1 FIG. 6C. The Q value 1s set for 1000. The
simulation result shows proper wideband responses of the
4D resonator with resonant frequency equals to 400 MHz.

FIGS. 7G and 7H show the time domain and frequency
domain responses, respectively, of the 4” resonator that is
designed to resonate at 600 MHz 1n the original band. This
resonator has the state space model that 1s 1dentical to the
model 1 FIG. 6D. The Q value 1s set for 1000. The
simulation result shows proper wideband responses of the
4D resonator with resonant frequency equals to 600 MHz. It
1s 1mportant to note that no parasitic resonances are visible
on either the time domain or frequency domain plots. The
image Ifrequency resonances are suppressed by more than

300 dB.

FIGS. 8A-8D show MatlLab simulation results for the 4D
resonators excited by a wideband chirp signal. Here, the
resonators have different Q values. Additionally, a 350 MHz
processor clock speed i1s assumed for simulating the 4D
resonators and 1.4 giga samples per second (GSps) sampling,
rate for the real valued wideband mput time series. The
instantaneous frequency of the chirp covers the DC-700
MHz frequency band. The overall bandwidth 1s 700 MHz.
After the second level 1/Q decomposition, the original 700
MHz bandwidth chirp signal 1s converted into four 175 MHz
bandwidth signals sampled at 350 MHz sample rate as
betore.

FIGS. 8A and 8B show the time domain and frequency
domain responses, respectively, of the 4” resonator that is
designed to resonate at 600 MHz in the original band. The
Q value 1s set for 100. This resonator has the state space
model that 1s i1dentical to the model i FIG. 6D. The
simulation result shows proper wideband responses of the
4D resonator with resonant frequency equals to 600 MHz
and Q value of 100.

FIGS. 8C and 8D show the time domain and frequency
domain responses, respectively, of the 4” resonator that is
designed to resonate at 600 MHz in the original band.
However, unlike FIGS. 8A and 8B, here the Q value 1s set
for 10. This resonator also has the state space model that 1s
identical to the model in FIG. 6D. The simulation result
shows proper wideband responses of the 4D resonator with
resonant frequency equal to 600 MHz and Q value of 10.
The widening of the resonance curve around the resonant
frequency 1s clearly visible on the plots. It 1s important to
note that no parasitic resonances are visible on either the
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time domain or frequency domain plots. The i1mage 1ire-
quency resonances are suppressed by more than 300 dB.

The online learning algorithm must utilize the high-
dimensional state variables from the core in the online
learning/adaptation process. For the ultra-wide bandwidth
NeurACore architecture that can achieve >1 GHz IBW, the
learning algorithm 1s extended to eight-dimensional state
variables and weights matrices by properly cross-coupling
the eight-dimensional state variables 1n the weights update
and outputs update equations. The BSS and feature extrac-
tions algorithms are also updated to properly interpret the
detected and denoised eight-dimensional state variables 1n
order to accurately separate the unknown signal(s) from the
signal mixture where all signals are represented by eight-
dimensional state variables. Energy and phase maps for the
real-time spectrogram are generated from the eight-dimen-
sional state variables.

During the development of this concept, a systemic
gradual approach was utilized 1n validating the cascaded I/QQ
decomposition for NeurACore by first focusing on the
two-layer version for which most internal signals are four-
dimensional and can achieve 2*fs IBW. The two-layer case
was validated with four-dimensional state variables, gradi-
ent descent equations, and global learning layer for the
output weights. The extensions ol the BSS and feature
extraction algorithms to the two-layer cascaded I/(Q formu-
lation were also validated. The lessons learned from the
validation of the two-layer version can be incorporated into
the generalized three layer and beyond cascaded 1/Q algo-
rithm formulation and implementation that will achieve
>4%fs IBW.

Many commercial and military signal processing plat-
forms require small size, ultra-wide bandwidth operation,
ultra-low C-SWaP (cost, size, weight, and power) signal
processing units, and artificial intelligence enhanced with
real-time signal processing capability. This includes, but 1s
not limited to radar, communication, acoustic, audio, video,
and optical wavelorms.

(2.2) Control of a Device

As shown 1n FIG. 9, the NeurACore 900 1n 1ts hardware
implementation has many applications. In one aspect, the
system with the NeurACore 900 can be used for signal
denoising to denoise noisy input signals 901. In some
aspects, the NeurACore 900 can be used to control a device
902 based on the signal denoising (e.g., a mobile device
display, a virtual reality display, an augmented reality dis-
play, a computer monitor, a motor, an autonomous vehicle,
a machine, a drone, a camera, etc.). In some embodiments,
the device 902 may be controlled to cause the device 902 to
move or otherwise initiate a physical action based on the
denoised signal.

In some embodiments, a drone or other autonomous
vehicle may be controlled to move to an area where an
object 1s determined to be based on the imagery. In yet some
other embodiments, a camera may be controlled to orient
towards the identified object. In other words, actuators or
motors are activated to cause the camera (or sensor) to move
or zoom 1n on the location where the object 1s localized. In
yet another aspect, 1f a system 1s seeking a particular object
and 11 the object 1s not determined to be within the field-
of-view of the camera, the camera can be caused to rotate or
turn to view other areas within a scene until the sought-after
object 1s detected.

In addition, in a non-limiting example of an autonomous
vehicle having multiple sensors, such as cameras, which
might include noisy signals that need denoising. The system
can denoise the signal and then, based on the signal, cause
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the autonomous vehicle to perform a vehicle operation. For
instance, i two vehicle sensors detect the same object,
object detection and classification accuracy 1s increased and
the system described herein can cause a precise vehicle
maneuver for collision avoidance by controlling a vehicle
component. For example, 1f the object 1s a stop sign, the
system may denoise a noisy input signal to identity the stop
sign and then may cause the autonomous vehicle to apply a
functional response, such as a braking operation, to stop the
vehicle. Other appropriate responses may include one or
more of a steering operation, a throttle operation to increase
speed or to decrease speed, or a decision to maintain course
and speed without change. The responses may be appropri-
ate for avoiding a collision, improving travel speed, or
improving eiliciency. Non-limiting examples of devices that
can be controlled via the NeurACore include a vehicle or a
vehicle component, such as a brake, a steering mechanism,
suspension, or safety device (e.g., airbags, seatbelt tension-
ers, etc.). Further, the vehicle could be an unmanned aerial
vehicle (UAV), an autonomous ground vehicle, or a human
operated vehicle controlled erther by a driver or by a remote
operator. As can be appreciated by one skilled in the art,
control of other device types 1s also possible.

Finally, while this invention has been described 1n terms
of several embodiments, one of ordinary skill 1n the art will
readily recognize that the invention may have other appli-
cations 1n other environments. It should be noted that many
embodiments and implementations are possible. Further, the
following claims are in no way intended to limit the scope
of the present mvention to the specific embodiments
described above. In addition, any recitation of “means for”
1s 1ntended to evoke a means-plus-function reading of an
clement and a claim, whereas any elements that do not
specifically use the recitation “means for”, are not intended
to be read as means-plus-function elements, even 1t the
claim otherwise includes the word “means”. Further, while
particular method steps have been recited 1n a particular
order, the method steps may occur in any desired order and
tall within the scope of the present invention.

What 1s claimed 1s:

1. A Neuromorphic Adaptive Core (NeurACore) signal
processor for ultra-wide mnstantaneous bandwidth denoising
ol a noisy signal, comprising:

a digital signal pre-processing unit, the digital signal
pre-processing unit being operable for performing cas-
caded decomposition of a wideband complex valued
In-phase and Quadrature-phase (I/QQ) mput signal 1n
real time,

wherein the wideband complex valued I/Q 1put signal 1s
decomposed into I and Q sub-channels;

a NeurACore and local learning layers, the NeurACore
and local learning layers operable for performing high-
dimensional projection of the wideband complex val-
ued I/Q mput signal into a high-dimensional state
space;

a global learning layer, the global learning layer operable
for performing a gradient descent online learning algo-
rithm; and

a neural combiner, the neural combiner operable for
combining outputs of the global learning layer to
compute signal predictions corresponding to the wide-
band complex valued 1I/QQ mput signal.

2. The NeurACore signal processor as set forth 1n claim

1, wherein the cascaded decomposition 1s a multi-layered
I/QQ decomposition scheme, wherein for each layer, a sample
rate of the layer 1s reduced by half compared to a preceding
layer 1n the cascaded decomposition.
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3. The NeurACore signal processor as set forth 1n claim
2, wherein the cascaded decomposition 1s a three layer 1/QQ
decomposition scheme, and wherein the gradient descent
online learning algorithm 1s an eight-dimensional gradient
descent online learning algorithm.
4. The NeurACore signal processor as set forth 1in claim
3, wherein the gradient descent online learming algorithm
uses eight-dimensional state variables and weight matrices
by cross coupling the eight-dimensional state variables in
weilghts update equations and output layer update equations.
5. The NeurACore signal processor as set forth 1n claim
4, wherein the digital signal pre-processing 1s turther oper-
able for implementing blind source separation (BSS) and
feature extraction algorithms with updates to interpret
denoised eight-dimensional state variables.
6. The NeurACore signal processor as set forth 1n claim
1, wherein the NeurACore comprises high-dimensional sig-
nal processing nodes with adaptable parameters.
7. A computer program product comprising a non-transi-
tory computer-readable medium having computer-readable
instructions stored thereon, wherein the computer-readable
istructions are executable by a computer having one or
more processors for causing the one or more processors 1o
perform operations of:
performing cascaded decomposition of a wideband com-
plex valued In-phase and Quadrature-phase (I/QQ) input
signal 1n real time 1nto I and Q sub-channels;

performing high-dimensional projection of the wideband
complex valued I/Q mput signal into a high-dimen-
sional state space;

performing a gradient descent online learning algorithm;

and

combining outputs of the global learning layer to compute

signal predictions corresponding to the wideband com-
plex valued 1I/Q input signal.

8. The computer program product as set forth in claim 7,
wherein the cascaded decomposition 1s a multi-layered 1/Q
decomposition scheme, wherein for each layer, a sample rate
of the layer 1s reduced by half compared to a preceding layer
in the cascaded decomposition.

9. The computer program product as set forth 1n claim 8,
wherein the cascaded decomposition 1s a three layer 1/Q)
decomposition scheme, and wherein the gradient descent
online learning algorithm 1s an eight-dimensional gradient
descent online learming algorithm.

10. The computer program product as set forth in claim 9,
wherein the gradient descent online learning algorithm uses
cight-dimensional state variables and weight matrices by
cross coupling the eight-dimensional state variables 1n
weilghts update equations and output layer update equations.

11. The computer program product as set forth in claim
10, wherein blind source separation (BSS) and feature
extraction algorithms are implemented with updates to inter-
pret denoised eight-dimensional state variables.

12. A computer implemented method for ultra-wide
instantaneous bandwidth denoising of a noisy signal, the
method comprising an act of:

causing one or more processers to execute instructions

encoded on a non-transitory computer-readable

medium, such that upon execution, the one or more

processors perform operations of:

performing cascaded decomposition of a wideband
complex valued In-phase and QQuadrature-phase
(I/Q) mmput signal 1 real time into I and Q sub-
channels:
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performing high-dimensional projection of the wide-
band complex valued I/Q mput signal into a high-
dimensional state space;

performing a gradient descent online learning algo-
rithm; and

combining outputs of the global learning layer to
compute signal predictions corresponding to the
wideband complex valued I/QQ input signal.

13. The method as set forth in claim 12, wherein the
cascaded decomposition 1s a multi-layered 1/QQ decomposi-
tion scheme, wherein for each layer, a sample rate of the
layer 1s reduced by half compared to a preceding layer 1n the
cascaded decomposition.

14. The method as set forth in claim 13, wherein the
cascaded decomposition 1s a three layer I/Q decomposition
scheme, and wherein the gradient descent online learning
algorithm 1s an eight-dimensional gradient descent online
learning algorithm.

15. The method as set forth in claim 14, wherein the
gradient descent online learning algorithm uses eight-di-
mensional state variables and weight matrices by cross
coupling the eight-dimensional state variables in weights
update equations and output layer update equations.

16. The method as set forth in claim 15, wherein the
digital signal pre-processing is further operable for imple-
menting blind source separation (BSS) and feature extrac-
tion algorithms with updates to interpret denoised eight-
dimensional state variables.
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