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GENERATE FIRST SENSOR DATA FROM A LOCAL SENSOR IN
A FIRST VEHICLE OF A FIRST MODALITY

RECEIVE SECOND SENSOR DATA VIA WIRELESS
COMMUNICATIONS FROM A REMOTE SENSOR OF A SECOND
MODALITY IN A SECOND VEHICLE

APPLY A ML ALGORITHM TO THE RECEIVED SECOND
SENSOR DATA AND THE FIRST SENSOR DATA

GENERATE A RELATIVE POSE OF THE LOCAL SENSOR
RELATIVE TO THE REMOTE SENSOR BASED ON THE
APPLICATION OF THE ML ALGORITHM TO THE SECOND
SENSOR DATA AND THE FIRST SENSOR DATA

GENERATE A COMBINED DEPTH MAP BASED ON THE
APPLICATION OF THE ML ALGORITHM TO THE SECOND
SENSOR DATA AND THE FIRST SENSOR DATA

UTILIZE THE COMBINED DEPTH MAP TO NAVIGATE A
REGION DEPICTED BY THE COMBINED DEPTH MAP
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SYSTEMS AND METHODS OF
COOPERATIVE DEPTH COMPLETION
WITH SENSOR DATA SHARING

TECHNICAL FIELD

The present disclosure relates generally to improving
systems that enable autonomous driving, and 1n particular,
some 1mplementations may relate to 1imaging systems used
to capture data of environments through which vehicles
navigate.

DESCRIPTION OF RELATED ART

Autonomous driving systems embedded in an autono-
mous vehicle can employ various 1maging techniques to
capture one or more 1mages ol a surrounding environment
through which the autonomous vehicle 1s navigating. The
imaging techniques may comprise image capture and image
processing procedures. The image capture procedures may
utilize one or more of ultrasonic sensors, radio detection and
ranging (RADAR) systems, light detection and ranging
(LiIDAR) systems, light amplification by stimulated emis-
sion of radiation (laser) systems, camera systems, and other
sensors or systems that capture data regarding the surround-
ing environment. The 1mage processing procedures may
process the captured data to 1dentify features and aspects of
the environment, such as boundaries of the road, objects in
the environment, and the like, that the vehicle can use to
navigate the environment. However, each of these imaging
techniques have positive and negative attributes. For
example, camera and other systems that capture images of
the environment may provide dense data with less accuracy
than LiDAR, RADAR, or similar systems that capture
accurate but sparse (1.¢., less dense) point cloud data relative
to the environment. Thus, improvements to the autonomous
driving systems can be realized with improvements to the
imaging techniques.

BRIEF SUMMARY OF THE DISCLOSURE

In accordance with one embodiment, a method comprises
generating first sensor data from a local sensor 1n a first
vehicle of a first modality. The method further comprises
receiving second sensor data from a remote sensor of a
second modality 1n a second vehicle and applying a ML
algorithm to the second sensor data and the first sensor data.
The method may further comprise generating, based on
application of the ML algorithm to the second sensor data
and the first sensor data: a relative pose of the remote sensor
relative to the local sensor and a combined depth map based
on the second sensor data, the first sensor data, and the
relative pose. The method may additional comprise utilizing,
the combined depth map to navigate an environment
depicted by the combined depth map.

In some embodiments, one of the local sensor of a first
modality and the remote sensor of a second modality com-
prises a one or more of a RADAR sensor or a LIDAR sensor
and the other of the local sensor of a first modality and the
remote sensor ol a second modality comprises an RGB
camera sensor.

In some embodiments, the second sensor data 1s received
from the remote sensor of the second modality in the second
vehicle via a wireless communication using a local radio
circuit.

In some embodiments, the first sensor data comprises a
raw 1mage captured by a camera modality local sensor and
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2

the second sensor data comprises a point cloud captured by
a LIDAR modality remote sensor.

In some embodiments, applying a ML algorithm to the
second sensor data and the first sensor comprises: extracting,
a lirst feature vector based on the first sensor data using a
first feature extractor, extracting a second feature vector
based on the second sensor data using a second feature
extractor, and concatenating the first feature vector with the
second feature vector.

In some embodiments, generating the relative pose com-
prises generating a translation vector and a rotation vector
corresponding to the relative pose of the remote sensor
relative to the local sensor via a regression network based on
the first feature vector and the second feature vector.

In some embodiments, generating the combined depth
map comprises: generating a backprojected sparse depth
map based on overlapping corresponding regions of the
point cloud and the 1image according to the translation vector
and the rotation vector of the relative pose between the local
sensor and the remote sensor and combining the backpro-
jected sparse depth map and a depth map generated based on
the raw 1mage using an autoencoder to generate the com-
bined depth map.

In accordance with another embodiment, a system com-
prises a local sensor, a receiver circuit, a processor, and a
memory. The local sensor may be of a first modality and
configured to generate first sensor data. The recerver circuit
may be configured to receive second sensor data from a
remote sensor of a second modality. The memory may be
configured to store mnstructions that, when executed by the
processor, cause the processor to: apply a ML algorithm to
the received second sensor data and the first sensor data,
estimate a relative pose of the local sensor relative to the
remote sensor based on application of the ML algorithm,
generate a combined depth map based on the second sensor
data, the first sensor data, and the relative pose, and utilize
the combined depth map to navigate a region depicted by the
combined depth map.

In some embodiments, one of the local sensor of a first
modality and the remote sensor of a second modality com-
prises a one or more of a RADAR sensor or a LIDAR sensor
and the other of the local sensor of a first modality and the
remote sensor of a second modality comprises an RGB
camera Sensor.

In some embodiments, the first sensor data comprises a
raw 1mage captured by a camera modality local sensor and
the second sensor data comprises a point cloud captured by
a LiIDAR modality remote sensor.

In some embodiments, application of the ML algorithm to
the second sensor data and the first sensor comprises further
instructions that, when executed by the processor, further
cause the processor to: extract a first feature vector based on
the first sensor data using a first feature extractor, extract a
second feature vector based on the second sensor data using,
a second feature extractor, and concatenate the first feature
vector with the second feature vector.

In some embodiments, the instructions that cause the
processor to generate the relative pose comprise instructions
that cause the processor to generate a translation vector and
a rotation vector corresponding to the relative pose of the
remote sensor relative to the local sensor via a regression
network based on the first feature vector and the second
feature vector.

In some embodiments, the instructions that cause the
processor to generate the combined depth map comprise
instructions that cause the processor to: generate a backpro-
jected sparse depth map based on overlapping corresponding
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regions of the point cloud and the 1mage according to the
translation vector and the rotation vector of the relative pose
between the local sensor and the remote sensor and combine
the backprojected sparse depth map and a depth map gen-
crated based on the raw i1mage using an autoencoder to
generate the combined depth map.

In some embodiments, a cloud-based system comprises a
receiver circuit configured to receive: first sensor data from
a first remote sensor of a first modality at a first vehicle and
second sensor data from a second remote sensor of a second
modality at a second vehicle. In some embodiments, cloud-
based system further comprises a processor and a memory
configured to store instructions that, when executed by the
processor, cause the processor to: apply a ML algorithm to
the first sensor data and the second sensor data, estimate a
relative pose of the first sensor relative to the second sensor
based on application of the ML algorithm, and generate a
combined depth map based on the first sensor data, the
second sensor data, and the relative pose. The cloud-based
system may further comprise a transmitter circuit configured
to transmit the combined depth map to at least one of the first
vehicle or the second vehicle to enable the at least one of the
first vehicle or the second vehicle to navigate an environ-
ment depicted by the combined depth map.

In some embodiments, one of the first sensor of a first
modality and the second sensor of a second modality com-
prises a one or more of a RADAR sensor or a LIDAR sensor
and the other of the first sensor of a first modality and the
second sensor ol a second modality comprises an RGB
camera sensor.

In some embodiments, the first sensor data comprises a
raw 1mage captured by a camera modality first sensor and
the second sensor data comprises a point cloud captured by
a LiIDAR modality second sensor.

In some embodiments, application of the ML algorithm to
the second sensor data and the first sensor data comprises
turther instructions that, when executed by the processor,
turther cause the processor to: extract a first feature vector
based on the first sensor data using a first feature extractor,
extract a second feature vector based on the second sensor
data using a second feature extractor, and concatenate the
first feature vector with the second feature vector.

In some embodiments, the instructions that cause the
processor to generate the relative pose comprise istructions
that cause the processor to generate a translation vector and
a rotation vector corresponding to the relative pose of the
first sensor relative to the second sensor via a regression
network based on concatenation of the first feature vector
with the second feature vector.

In some embodiments, the instructions that cause the
processor to generate the combined depth map comprise
instructions that cause the processor to: generate a backpro-
jected sparse depth map based on overlapping corresponding,
regions of the point cloud and the 1mage according to the
translation vector and the rotation vector of the relative pose
between the first sensor and the second sensor and combine
the backprojected sparse depth map and a depth map gen-
crated based on the raw i1mage using an autoencoder to
generate the combined depth map.

Other features and aspects of the disclosed technology
will become apparent from the following detailed descrip-
tion, taken 1 conjunction with the accompanying drawings,
which 1illustrate, by way of example, the features in accor-
dance with embodiments of the disclosed technology. The
summary 1s not intended to limit the scope of any inventions
described herein, which are defined solely by the claims
attached hereto.
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4
BRIEF DESCRIPTION OF TH.

(L]

DRAWINGS

The present disclosure, 1n accordance with one or more
various embodiments, 1s described 1n detail with reference to
the following figures. The figures are provided for purposes
of 1llustration only and merely depict typical or example
embodiments.

FIG. 1 1s a schematic representation of an example hybnid
vehicle with which embodiments of the systems and meth-
ods disclosed herein may be implemented.

FIG. 2 illustrates an example architecture for capturing
and processing 1mages of an environment of a vehicle, 1n
accordance with one embodiment of the systems and meth-
ods described herein.

FIG. 3 1s an example computing component that may be
used to mmplement various Ifeatures of embodiments
described in the present disclosure.

FIG. 4 depicts a high-level tlow diagram of an example
system of vehicles configured to perform cooperative depth
completion based on sensor data from different modality
image sensors from different vehicles in accordance with
various embodiments.

FIG. § depicts a tlow diagram providing additional details
regarding the capture and sharing of data between vehicles
of an example system performing the cooperative depth
completion 1 accordance with various embodiments.

FIG. 6 depicts a flow diagram detailing the data process-
ing by an example end-to-end cooperative depth completion
pipeline 1n accordance with various embodiments.

FIG. 7 depicts a flow diagram of an example system
configured to collect training data used to train the end-to-
end cooperative depth completion pipeline in accordance
with various embodiments.

FIG. 8 depicts a high-level flow diagram of a system
configured to collect training data used to train an example
end-to-end cooperative depth completion pipeline 1n accor-
dance with various embodiments.

The figures are not exhaustive and do not limit the present
disclosure to the precise form disclosed.

DETAILED DESCRIPTION

Embodiments of the systems and methods disclosed
herein can provide a solution for generating accurate depth
information for an environment. Specifically, the systems
and methods disclosed herein may provide a novel and
non-obvious solution for generating accurate and detailed
environmental depth maps. Embodiments fuse sensor data
from a first modality sensor, such as a camera sensor,
onboard a first vehicle with sensor data from a second
modality sensor, such as a LiDAR sensor, onboard a second
vehicle, where the sensor data 1s shared between the vehicles
via vehicle-to-vehicle (V2V) wireless communications. The
second vehicle may be 1n close proximity to the first vehicle
but at a location relative to the first vehicle where a per-
spective of the second vehicle adds detail that 1s not avail-
able to the first vehicle, and vice versa. The first vehicle can
process the fused sensor data to generate environmental
depth information, such as a depth map, that 1s more detailed
than environmental depth information generated based on
only the camera sensor data or only the LiIDAR sensor data.

In some embodiments, the 1maging systems collect data
from one single sensor (for example, a LiDAR or camera
sensor) or multiple sensors (for example, a LiDAR and a
camera sensor) onboard a single vehicle. As such, the image
processing systems may generate depth information, such as
a depth map, based on the data collected by the one or more
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sensors of the single vehicle. However, the generated depth
map may have a limited field of view (FOV) based on the
location and perspective of the single vehicle, which may
reduce the accuracy and density of the image data and
resulting depth map generated at the single vehicle. In
embodiments where sensor data from a first LIDAR on a first
vehicle 1s shared with sensor data from a second LiDAR on
a second vehicle, the fused depth map may lack detail
provided by images generated from cameras or other sensor
modalities. Furthermore, when the single vehicle only col-
lects data from a single modality sensor, the depth map 1itself
may be generated based on less complete data than depth
maps generated based on data from multiple modalities of
SENSOrs.

Each of these example systems do not and cannot lever-
age sensor data of different modalities and from nearby
vehicles to improve data capture and field of view (FOV) for
the single vehicle when generating depth maps or 3D
reconstructions of the environment. Thus, the single vehicle
cannot generate the same accurate and dense depth map as
the fused camera data captured by one or more onboard
sensors of different modalities on {first and second vehicles
navigating a road.

Based on the depth map generated from point cloud data
captured by a first modality sensor disposed on a first vehicle
and 1mage data captured by a second modality sensor
disposed on a second vehicle, the systems and methods
disclosed herein may be configured to estimate a dynamic
relative pose of each of the first and the second modality
sensors from {irst and second vehicles in proximity of each
other. The estimated relative poses may be further leveraged
to generate accurate depth maps based on the sensor data and
stitching or fusing the FOV from both sensors of the first
vehicle and the second vehicle together. An entire pipeline
of processing the individual sensor data to fusing the pro-
cessed sensor data can be implemented 1n one single deep
neural network and trained 1n an end-to-end manner. Further
detail regarding implementing the disclosed technology 1s
provided below.

The systems and methods disclosed herein may be imple-
mented with any of a number of different vehicles and
vehicle types. For example, the systems and methods dis-
closed herein are used with automobiles, trucks, motor-
cycles, recreational vehicles, and other like on-or off-road
vehicles. In addition, the principals disclosed herein may
also extend to other vehicle types as well. An example
hybrid electric vehicle (HEV) 1n which embodiments of the
disclosed technology may be implemented 1s 1llustrated 1n
FIG. 1. Although the example described with reference to
FIG. 1 1s a hybrid type of vehicle, the systems and methods
for cooperative depth completion with sensor data sharing
described herein can be implemented in other types of
vehicles, including gasoline- or diesel-powered vehicles,
fuel-cell vehicles, electric vehicles, or other vehicles.

FIG. 1 1llustrates a drive system of a vehicle 2 that may
include an internal combustion engine 14 and one or more
clectric motors 22 (which may also serve as generators) as
sources of motive power. Driving force generated by the
internal combustion engine 14 and motors 22 can be trans-
mitted to one or more wheels 34 via a torque converter 16,
a transmission 18, a differential gear device 28, and a pair of
axles 30.

As an HEV, vehicle 2 may be driven/powered with either
or both of engine 14 and the motor(s) 22 as the drive source
for travel. For example, a first travel mode may be an
engine-only travel mode that only uses internal combustion
engine 14 as the source of motive power. A second travel
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mode may be an EV travel mode that only uses the motor(s)
22 as the source of motive power. A third travel mode may
be an HEV travel mode that uses engine 14 and the motor(s)
22 as the sources of motive power. In the engine-only and
HEV travel modes, vehicle 2 relies on the motive force
generated at least by internal combustion engine 14, and a
clutch 15 may be included to engage engine 14. In the EV
travel mode, vehicle 2 may be powered by the motive force
generated by motor 22 while engine 14 may be stopped and
clutch 15 disengaged.

Engine 14 can be an internal combustion engine such as
a gasoline, diesel or similarly powered engine 1n which fuel
1s 1jected 1nto and combusted 1n a combustion chamber. A
cooling system 12 can be provided to cool the engine 14
such as, for example, by removing excess heat from the
engine 14. For example, the cooling system 12 can be
implemented to include a radiator, a water pump, and a
series of cooling channels (not shown in FIG. 1). In opera-
tion, the water pump circulates coolant through the engine
14 to absorb excess heat from the engine. The heated coolant
1s circulated through the radiator to remove heat from the
coolant, and the cold coolant can then be recirculated
through the engine. A fan (not shown in FIG. 1) may also be
included to increase the cooling capacity of the radiator. The
water pump, and 1n some instances the fan, may operate via
a direct or indirect coupling to the driveshaft of engine 14.
In other applications, either or both the water pump and the
fan may be operated by electric current such as from battery
44.

An output control circuit 14A may be provided to control
drive (output torque) of the engine 14. The output control
circuit 14A may 1nclude a throttle actuator to control an
clectronic throttle valve that controls fuel injection, an
ignition device that controls ignition timing, and the like.
The output control circuit 14A may execute output control of
engine 14 according to a command control signal(s) sup-
plied from an electronic control unit 50, described below.
Such output control can include, for example, throttle con-
trol, fuel 1njection control, and 1gnition timing control.

Motor 22 can also be used to provide motive power to and
adjust vehicle speed of vehicle 2 and 1s powered electrically
via a battery 44. The motor 22 may be connected to the
battery 44 via an inverter 42. Battery 44 may be imple-
mented as one or more power storage devices including, for
example, batteries, capacitive storage devices, and so on.
When the battery 44 1s implemented using one or more
batteries, the batteries can include, for example, nickel metal
hydride batteries, lithium 1on batteries, lead acid batteries,
nickel cadmium batteries, lithium 10on polymer batteries, and
other types of batteries. The battery 44 may also be used to
power electrical or electronic systems in the vehicle 2
besides the motor 22. The battery 44 may be charged by a
battery charger 45 that receives energy from internal com-
bustion engine 14. For example, an alternator or generator
may be coupled directly or indirectly to a drive shait of
internal combustion engine 14 to generate an electrical
current as a result of the operation of internal combustion
engine 14. A clutch or switch (not shown) can be included
to engage/disengage the battery charger 45. The battery 44
may also be charged by motor 22 such as, for example, by
regenerative braking or by coasting during which time motor
22 operates as generator.

An electronic control unit 50 (described below) may be
included and may control the electric drive components of
the vehicle 2 as well as other vehicle components. For
example, the electronic control umt 50 may control the
inverter 42, adjust driving current supplied to motor 22, and
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adjust the current received from motor 22 during regenera-
tive coasting and breaking. As a more particular example,
output torque of the motor 22 can be increased or decreased
by the electronic control unit 50 through the inverter 42.

The torque converter 16 can control the application of 5

power from the engine 14 and motor 22 to the transmission
18. The torque converter 16 can include a viscous fluid
coupling that transfers rotational power from the motive
power source to the driveshait via the transmission. Torque
converter 16 can include a conventional torque converter or
a lockup torque converter. In other embodiments, a mechani-
cal clutch can be used 1n place of torque converter 16.

Clutch 15 can be 1included to engage and disengage engine
14 from the drivetrain of the vehicle 2. In the illustrated
example, a crankshaft 32, which 1s an output member of the
engine 14, may be selectively coupled to motor 22 and the
torque converter 16 via the clutch 15. The clutch 15 can be
implemented as, for example, a multiple disc type hydraulic
frictional engagement device whose engagement 1s con-
trolled by an actuator such as a hydraulic actuator. The
clutch 15 may be controlled such that 1ts engagement state
1s complete engagement, slip engagement, and complete
disengagement, depending on the pressure applied to the
clutch. For example, a torque capacity of the clutch 15 1s
controlled according to the hydraulic pressure supplied from
a hydraulic control circuit (not illustrated). When the clutch
15 1s engaged, power transmission 1s provided 1n the power
transmission path between the crankshaft 32 and torque
converter 16. On the other hand, when the clutch 15 1s
disengaged, motive power from the engine 14 1s not deliv-
ered to the torque converter 16. In a slip engagement state,
the clutch 15 1s engaged, and motive power 1s provided to
the torque converter 16 according to a torque capacity
(transmission torque) of the clutch 15.

As alluded to above, vehicle 2 may include the electronic
control umt 50. The electronic control unit 50 may include
circuitry to control various aspects of the vehicle 2 opera-
tion. The electronic control unit 30 includes, for example, a
microcomputer that includes a one or more processing units
(e.g., microprocessors ), memory storage (e.g., RAM, ROM,
etc.), and I/O devices. The processing units of the electronic
control unit 50 execute instructions stored in the memory
storage to control one or more electrical systems or subsys-
tems in the vehicle 2. The electronic control unit 50 can
include a plurality of electronic control units such as an
clectronic engine control module, a powertrain control mod-
ule, a transmission control module, a suspension control
module, a body control module, and so on. As a further
example, the electronic control umit 50 can control systems
and functions such as doors and door locking, lighting,
human-machine interfaces, cruise control, telematics, brak-
ing systems (e.g., ABS or ESC), battery management sys-
tems, and so on. These various control units can be 1mple-
mented using two or more separate electronic control units
or using a single electronic control unit.

In the example 1llustrated 1n FIG. 1, the electronic control
unit 50 receives information from a plurality of sensors
included 1n the vehicle 2. For example, the electronic control
unit 50 may receive signals that indicate vehicle operating
conditions or characteristics, or signals that can be used to
derive vehicle operating conditions or characteristics. These
may 1include, but are not limited to accelerator operation
amount, A -, a revolution speed, N, of the engine 14 (for
example, engine RPM), a rotational speed, N, ., of the
motor 22 (motor rotational speed), and vehicle speed, N
These may also include torque converter 16 output, N-(e.g.,
output amps indicative of motor output), brake operation
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amount/pressure, B, battery SOC (i.e., the charged amount
for battery 44 detected by an SOC sensor). Accordingly, the
vehicle 2 can include a plurality of sensors 52 that can be
used to detect various conditions internal or external to the
vehicle and provide sensed conditions to the electronic
control unit 50 (which, again, may be implemented as one or
a plurality of individual control circuits). In one embodi-
ment, the sensors 52 may be mcluded to detect one or more
conditions directly or indirectly such as, for example, fuel
ceilicitency, E,., motor efliciency, E, ., hybrid (engine
14+motor 12) efliciency, acceleration, A, etc.

In some embodiments, one or more of the sensors 52 may
include their own processing capability to compute the
results for additional information that can be provided to the
electronic control unit 50. In other embodiments, one or
more of the sensors 32 may be data-gathering-only sensors
that provide only raw data to the electronic control unit 50.
In further embodiments, the one or more sensors 52 may
include hybrid sensors that provide a combination of raw
data and processed data to the electronic control unit 50. The
one or more sensors 32 may provide an analog output or a
digital output.

The sensors 52 may detect not only vehicle conditions but
also external conditions of the vehicle 2 as well. For
example, sonar, radar, LiDAR, or other vehicle proximity
sensors, and cameras or other image sensors can detect
external conditions of the vehicle 2. These sensors can be
used to detect, for example, trailic signs indicating a current
speed limit, road curvature, obstacles, neighboring vehicles,
and so on. Still other sensors may include those that can
detect road grade. While some sensors can be used to
actively detect passive environmental objects, other sensors
can be mncluded and used to detect active objects such as
those objects used to implement smart roadways that may
actively transmit and/or receive data or other information.
The electronic control unit 50 may receive data captured
from the camera sensor and/or the LiDAR sensor and
convey the received data to an image processing component
and/or an autonomous driving component (not shown). In
some embodiments, the sensors 52 or the electronic control
unmt 50 may include a vehicle-to-vehicle (V2V) or vehicle-
to-other (V2X) communication interface that enables the
vehicle 2 to communicate wirelessly with neighboring
vehicles or other electronic devices. Further details regard-
ing some of the components of the vehicle 2 are provided
below with reference to FIG. 2.

FIG. 2 1illustrates an example system 200 for capturing
and processing data of the environment of the vehicle 2 of
FIG. 1, in accordance with one embodiment of the systems
and methods described herein. The system 200 includes an
image processing circuit 210, a plurality of sensors 152
(which may correspond to the sensors 52), and a plurality of
vehicle systems 158. The sensors 152 and the vehicle
systems 158 can communicate with the 1mage processing
circuit 210 via a wired or wireless communication interface.
Although the sensors 152 and vehicle systems 158 are
depicted as communicating with the imaging circuit 210,
they can also communicate with each other as well as with
other vehicle systems or other vehicles. In some embodi-
ments, the 1mage processing circuit 210 1s implemented as
an ECU or as part of an ECU such as, for example, the
clectronic control unit 50. In other embodiments, the image
processing circuit 210 1s implemented independently of the
ECU.

The image processing circuit 210 1n this example includes
a communication circuit 201, a processing circuit 203 com-
prising a processor 206 and memory 208, and a power
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supply 212. Components of the image processing circuit 210
are 1llustrated as communicating with each other via a data
bus, although other communication interfaces, wired or
wireless, can be included.

The processor 206 can include a GPU, CPU, micropro-
cessor, or any other suitable processing system. The memory
208 may include one or more various forms of memory or
data storage (e.g., flash, RAM, etc.) that may be used to store
one or more ol calibration parameters, machine learning
algorithms, 1mages (captured or training), point clouds,
instructions, and variables for the processor 206 as well as
any other suitable imformation. The memory 208 can be
made up of one or more modules of one or more diflerent
types of memory and may be configured to store data and
other information as well as operational instructions that
may be used by the processor 206 to utilize the image
processing circuit 210.

Although the example of FIG. 2 1s 1illustrated using the
processing circuit 203, as described below with reference to
circuits disclosed herein, the processing circuit 203 can be
implemented utilizing any form of circuitry including, for

example, hardware, software, or a combination thereof. By
way of further example, one or more processors, controllers,
ASICs, PLAs, PALs, CPLDs, FPGAs, logical components,
software routines or other mechanisms might be imple-
mented to make up the image processing circuit 210.

The communication circuit 201 comprises either or both
a wireless transceiver circuit 202 with an associated antenna
214 and a wired /O interface 204 with an associated
hardwired data port (not illustrated). The wireless trans-
ceiver circuit 202 can include a transmitter and a receiver
(not shown) to allow wireless communications via any of a
number of communication protocols such as, for example,
Wi-Fi, Bluetooth, millimeter wave (mmWave), near field
communications (NFC), Zighee, and any of a number of
other wireless communication protocols whether standard-
1zed, proprietary, open, point-to-point, networked or other-
wise. The antenna 214 1s coupled to the wireless transceiver
circuit 202 and 1s used by the wireless transceiver circuit 202
to transmit and/or receive radio signals wirelessly to and/or
from wireless equipment with which it 1s connected. These
radio signals can include various information that 1s sent or
received by the i1mage processing circuit to/from other
entities, such as the sensors 152 and the vehicle systems 158.
In some embodiments, the wireless transceiver circuit 202 1s
used to communicate mformation for other aspects of the
vehicle 2.

The wired I/O interface 204 can include a transmitter and
a recerver (not shown) for hardwired communications with
other devices. For example, the wired I/O interface 204 can
provide a hardwired interface to other components, 1includ-
ing the sensors 152 and vehicle systems 158. The wired I/O
interface 204 can communicate with other devices using
Ethernet, controller area network (CAN), or any of a number
of other wired communication protocols whether standard-
1zed, proprietary, open, point-to-point, networked or other-
wise.

The power supply 212 can include one or more of a
battery or batteries (such as, e.g., Li1-10n, Li-Polymer, N1iMH,
Ni1Cd, NiZn, and N1H,,, to name a few, whether rechargeable
or primary batteries,), a power connector (e.g., to connect to
vehicle supplied power, etc.), an energy harvester (e.g., solar
cells, piezoelectric system, etc.), or 1t can include any other
suitable power supply. In some embodiments, the power
supply 212 corresponds to or receives power from the
battery 44 of the vehicle 2.
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The sensors 152 can include additional sensors that may
or may not otherwise be included on the vehicle 2 1n which
the 1mage processing system 200 1s implemented. In the
illustrated example, the sensors 152 include one or more of
a camera sensor 214, a LiDAR sensor 216, a radar sensor
218, and environmental sensors 228. In some embodiments,
the camera sensor 214 generates or captures 1mages of the
environment of the vehicle 2 1n one or more directions
relative to the vehicle 2. The camera sensor 214 can com-
prise an RGB or similar sensor. The LiDAR sensor 216 may
comprise transmitter and receiver components. The trans-
mitter may emit light waves in one or more directions. These
emitted light waves may reflect oil of objects 1n the envi-
ronment. The receiver may detect the reflected waves, which
then may be analyzed (for example, by the processing circuit
203) to 1dentily the location, speed, depth, and direction of
the objects. In some embodiments, the reflected waves are
analyzed as points 1n a 3D space representing the environ-
ment or objects therein. The radar sensor 218 may also
comprise transmitter and receiver components and operate
similar to the LiDAR sensor 216 but using radio waves
instead of light waves. The environmental sensors 228 may
comprise other sensors that detect one or more features of
the environment, such as light detection, rain detection, frost
detection, and similar sensors. Additional sensors 232 can
also be included as may be appropriate for a given imple-
mentation of the image processing circuit 210.

The vehicle systems 158 can include any of a number of
different vehicle components or subsystems used to control
or monitor various aspects of the vehicle 2 and 1ts perfor-
mance. In this example, the vehicle systems 1358 include a
GPS or other vehicle positioning system 272; torque splitters
274 can control distribution of power among the vehicle
wheels such as, for example, by controlling front/rear and
left/right torque split; engine control circuits 276 to control
the operation of engine (e.g. Internal combustion engine 14);
cooling systems 278 to provide cooling for the motors,
power electronics, the engine, or other vehicle systems;
suspension system 280 such as, for example, an adjustable-
height air suspension system, and other vehicle systems.

During operation, the image processing circuit 210 can
receive and process information from various vehicle sen-
sors of the sensors 152 to generate depth maps and similar
information regarding the environment and location of
objects therein, which can help navigate the vehicle through
the environment. The communication circuit 201 can be
used to transmit and receive information between the sen-
sors 152 of the vehicle 2 or another vehicle, between the
vehicle 2 and a cloud-based computing system, and so forth.

As used herein, the terms circuit and component used
herein, for example, with respect to FIG. 2 might describe a
given unit of functionality that can be performed 1n accor-
dance with one or more embodiments of the present appli-
cation. As used herein, a component might be implemented
utilizing any form of hardware, software, or a combination
thereof. For example, one or more processors, controllers,
ASICs, PLAs, PALs, CPLDs, FPGAs, logical components,
solftware routines or other mechanisms might be 1mple-
mented to make up a component. Various components
described herein may be implemented as discrete compo-
nents or described functions and features can be shared in
part or in total among one or more components. In other
words, as would be apparent to one of ordinary skill in the
art after reading this description, the various features and
functionality described herein may be implemented 1n any
given application. They can be implemented 1n one or more
separate or shared components 1n various combinations and




US 12,018,959 B2

11

permutations. Although various features or functional ele-
ments may be individually described or claimed as separate
components, 1t should be understood that these features/
functionality can be shared among one or more common
software and hardware elements. Such a description shall
not require or imply that separate hardware or software
components are used to implement such features or func-
tionality.

Where components are implemented 1n whole or 1n part
using software, these software elements can be implemented
to operate with a computing or processing component
capable of carrying out the functionality described with
respect thereto. One such example computing component 1s
shown in FIG. 3. Various embodiments are described 1in
terms of this example-computing component 300. After
reading this description, 1t will become apparent to a person
skilled 1n the relevant art how to implement the application
using other computing components or architectures.

Referring now to FIG. 3, computing component 300 may
represent, for example, computing or processing capabilities
found within the vehicle 2, for example, 1n a self-adjusting
display, desktop, laptop, notebook computers, tablet com-
puters, and the electronic control unit 50. They may be found
in hand-held computing devices (tablets, PDA’s, smart
phones, cell phones, palmtops, etc.). They may be found in
workstations or other devices with displays, servers, or any
other type of special-purpose or general-purpose computing
devices as may be desirable or appropriate for a given
application or environment. Computing component 300
might also represent computing capabilities embedded
within or otherwise available to a given device. For
example, a computing component might be found 1n other
clectronic devices, such as, for example, portable computing
devices, and other electronic devices that might include
some form of processing capability.

The computing component 300 might include, for
example, one or more processors, controllers, control com-
ponents, or other processing devices. This can include a
processor 304, which corresponds to the processor 206 of
FIG. 2. The processor 304 might be implemented using a
general-purpose or special-purpose processing engine, as
described above with respect to the processor 206. The
processor 304 may be connected to a bus 302. However, any
communication medium can be used to facilitate interaction
with other components of computing component 300 or to
communicate externally.

The computing component 300 might also include one or
more memory components, simply referred to herein as
main memory 308. For example, random access memory
(RAM) or other dynamic memory, might be used for storing
information and instructions to be executed by processor
304, similar to the memory 208. The main memory 308
might also be used for storing temporary variables or other
intermediate mformation during execution of instructions to
be executed by the processor 304. The computing compo-
nent 300 might likewise include a read only memory
(“ROM”™) or other static storage device coupled to the bus
302 for storing static information and instructions for the
processor 304.

The computing component 300 might also include one or
more various forms of information storage mechanism 310,
which might include, for example, a media drive 312 and a
storage unit interface 320. The media drive 312 might
include a drive or other mechanism to support fixed or
removable storage media 314. For example, a hard disk
drive, a solid-state drive, a magnetic tape drive, an optical
drive, a compact disc (CD) or digital video disc (DVD) drive
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(R or RW), or other removable or fixed media drive might
be provided. The storage media 314 might include, for
example, a hard disk, an integrated circuit assembly, mag-
netic tape, cartridge, optical disk, a CD or DVD. The storage
media 314 may be any other fixed or removable medium that
1s read by, written to, or accessed by the media drive 312. As
these examples 1llustrate, the storage media 314 can include
a computer usable storage medium having stored therein
computer software or data.

In alternative embodiments, information storage mecha-
nism 310 might include other similar instrumentalities for
allowing computer programs or other instructions or data to
be loaded into computing component 300. Such mstrumen-
talities might include, for example, a fixed or removable
storage umit 322 and an terface 320. Examples of such
storage units 322 and interfaces 320 can include a program
cartridge and cartridge interface, a removable memory (for
example, a flash memory or other removable memory com-
ponent) and memory slot. Other examples may include a
PCMCIA slot and card, and other fixed or removable storage
units 322 and interfaces 320 that allow software and data to
be transferred from storage unit 322 to the computing
component 300.

The computing component 300 might also include a
communications interface 324. Communications interface
324 might be used to allow software and data to be trans-
ferred between computing component 300 and external
devices. Examples of communications intertace 324 might
include a modem or softmodem, a network interface (such
as Ethernet, network interface card, IEFE 802 .XX or other
interface). Other examples include a commumnications port
(such as for example, a USB port, IR port, RS232 port
Bluetooth® interface, or other port), or other communica-
tions 1nterface. Software/data transferred via communica-
tions interface 324 may be carried on signals, which can be
clectronic, electromagnetic (which includes optical) or other
signals capable of being exchanged by a given communi-
cations interface 324. These signals might be provided to
communications interface 324 via a channel 328. Channel
328 might carry signals and might be implemented using a
wired or wireless communication medium. Some examples
of a channel might include a phone line, a cellular link, an
RF link, an optical link, a network interface, a local or wide
area network, and other wired or wireless communications
channels.

In this document, the terms “computer program medium”
and “computer usable medium” are used to generally refer
to transitory or non-transitory media. Such media may be,
¢.g., memory 308, storage unit 320, media 314, and channel
328. These and other various forms of computer program
media or computer usable media may be mvolved 1n carry-
Ing one or more sequences of one or more 1nstructions to a
processing device for execution. Such instructions embodied
on the medium, are generally referred to as “computer
program code” or a “computer program product” (which
may be grouped 1n the form of computer programs or other
groupings). When executed, such mstructions might enable
the computing component 300 to perform features or func-
tions of the present application as discussed herein.

FIG. 4 depicts a high-level flow diagram 400 of an
example system configured to perform cooperative depth
completion based on sensor data from different modality
image sensors Irom different vehicles in accordance with
vartous embodiments. The diagram 400 includes a first
vehicle 402 having a first modality sensor 404, such as a
L1iDAR sensor, that generates a point cloud 406 of an
environment of the first vehicle 402 from a perspective or
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point of view (POV) of the first vehicle 402. The diagram
400 turther includes a second vehicle 412 having a second
modality sensor 414, such as an RGB camera sensor, that
generates an 1image 416 of the environment from a POV of
the second vehicle 412. In some embodiments, the first
modality sensor 404 and the second modality sensor 414
have different poses relative to each other.

The first and second vehicles 402, 412 may share data,
such as the point cloud 406, the image 416, or data generated
therefrom. In the diagram 400, the first vehicle 402 shares
the point cloud 406 (or a portion thereof) with the second
vehicle 412 via communication 407. The communication
407 between the first vehicle 402 and the second vehicle 412
may occur via a V2V or similar communication protocol,
such as mmWave communications, infrared (IR) communi-
cations, Bluetooth communications, or other wireless com-
munications. The second vehicle 412 may use the shared
point cloud 406 1n combination with the 1mage 416 gener-
ated by the second modality sensor 414 1n an end-to-end
cooperative depth completion pipeline for fusing the shared
point cloud 406 and the image 416 as described herein.

In some embodiments, where the point cloud 406 com-
prises data of the entire 3D environment of the first vehicle
402, the first vehicle 402 may share only a portion of the
point cloud 406 that 1s relevant to the second vehicle 412.
The second vehicle 412, being the recipient of the point
cloud 406 from the first vehicle 402, may fuse the received
point cloud 406 with the image 416 at 417 to generate a
complete dense point cloud 420. Because the complete
dense point cloud 420 includes the data from both the point
cloud 406 as well as the data from the image 416, the
complete dense point cloud 420 has a wider FOV and range
than either of the point cloud 406 or the image 416 1ndi-
vidually. This complete dense point cloud 420 can then be
used at 425 by the second vehicle 412 to perform various
operations, such as perception, localization, and mapping of
objects, etc., 1n the environment of the second vehicle 412.
In some embodiments, the second vehicle 412 can share one
or more of the complete dense point cloud 420 or results of
the various operations with neighboring vehicles, such as the
first vehicle 402, or with a centralized server (not shown) for
use by other vehicles.

By combining the point data from the point cloud 406
with the data from the image 416, the second vehicle 412 1s
able to overcome the disadvantages of using the data gen-
crated by only one of the first sensor 404 and the second
sensor 414 while maintaiming the respective benefits of both
sensors. For example, point clouds are viewed generally as
having more accurate data than camera 1mages, while cam-
cra 1images generally have denser data than point clouds. By
tusing the point cloud 406 with the image 416, the accurate
data of the point cloud 406 1s maintained and used to
supplement the lesser accurate 1image data while the dense
data of the image 416 supplements the sparser data of the
point cloud 406. Thus, fusing data from the different sensor
modalities enables cooperative depth completion, whereby
the point cloud 406 and the image 416 are used coopera-
tively to provide more complete depth data than either the
point cloud 406 or the image 416 alone. This complete depth
data, which may comprise a depth map or the complete
dense point cloud, may be more reliable and detailed than
depth maps and other depth information generated based on
either single sensor modality.

Furthermore, fusing the sensor data obtained by diflerent
vehicles may base the complete dense point cloud 420 on
different perspectives and poses, which generally may not be
available from multiple sensors on a single vehicle. For
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example, the first vehicle 402 with the sensor 404, generally,
may be at least 5-10 feet away from the second vehicle 412
with the sensor 414 and may be as far as dozens or hundreds
of feet away from the second vehicle 412. This distance
between the first and second vehicles 402, 412 may provide
different perspectives between the respective sensors 404,
414 on the respective vehicles 402, 412. Where the distance
and poses between the sensors 404, 414 are greater, fusing
corresponding data may provide additional detail that would

not be available from either the point cloud 406 or the image
416. This additional data may be helpiul or useful for

processing to enable one or more autonomous driving opera-
tions.

In view of the above, the complete dense point cloud 420
generated based on the end-to-end cooperative depth
completion pipeline described herein may provide various
benefits, as introduced above, over single sensor depth
maps, depth maps generated based on single modality sensor
data from different vehicles, and depth maps generated
based on multimodality sensor data from a single vehicle.
FIG. 5 provides further detail regarding the capture,
exchange, and processing of sensor data described 1n FIG. 4.

FIG. 5 depicts a flow diagram 500 providing additional
details regarding the capture and sharing of data between
vehicles of an example system the cooperative depth
completion i accordance with various embodiments. More
specifically, the diagram 500 provides a more detailed
representation of an example of data capture and sharing by
a transmitter vehicle 502 (for example, corresponding to the
first vehicle 402) and data receipt, capture, and processing
by a receiver vehicle 512 (for example, corresponding to the
second vehicle 412).

The transmitter vehicle 502 may capture a (raw) point
cloud 506 using a LiDAR, or similar, sensor (such as the
L1DAR sensor 404). The point cloud 506 may comprise a set
of data points 1n a 3D space representing the 3D environ-
ment around the transmitter vehicle 502. As introduced, the
pomnts 1n the pomnt cloud 506 may represent points on
surfaces of objects 1n a FOV of the LiDAR sensor that reflect
a signal emitted by the LiDAR sensor.

The point cloud 506 may have a density based on how
many points the point cloud 506 contains in a given region
of space. For example, a low density point cloud includes a
low number of points that definitively identify boundaries of
the receiver vehicle 512 (such as a roof line, front and rear
bumpers, and the like) but not much more. On the other
hand, a high density point cloud may include suflicient
points to i1dentily definitively particular features of the
receiver vehicle 512 (such as mirrors, handles, windows,
lights, and so forth) along with the boundaries of the receiver
vehicle 512. However, capturing a high density point cloud
may require more expensive LiDAR sensors and more
processing time as compared to low density point cloud.
Thus, given the cost and processing constraints associated
with vehicle sensors, the LiDAR sensor of the transmaitter
vehicle 502 (or the receiver vehicle 512) may generally
generate the point cloud 506 having a limited density.

In some embodiments, the point cloud 3506 includes
extrancous data, such as duplicate points, and so forth. The
transmitter vehicle 502 may downsample the point cloud
506 at block 505 to obtain a sparse, or partial, point cloud
510 having fewer data points than the point cloud 506.
Downsampling the point cloud 506 may comprise applying
one or more downsampling technmiques to reduce informa-
tion redundancy, error, and so forth, in the point cloud 506,
thereby improving (for example, reducing) bandwidth, stor-
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age, and processing requirements associated with the sparse
point cloud 510 as compared to the point cloud 506.

The transmitter vehicle 502 may transmit the sparse point
cloud 510 to the receiver vehicle 512 1n combination with a
transmitter GPS or other pose data 515. The pose data 515
may correspond to a pose of the LiDAR sensor, such as the
L1iDAR sensor 216, and/or the transmitter vehicle 502 that
generates the sparse point cloud 510. The transmitter vehicle
502 may transmit the combination of the pose data 515 and
the sparse point cloud 510 to the receiver vehicle 512 using,
a radio 508. As introduced above, the radio 508 may
comprise a mmWave radio, a Bluetooth radio, a Wi-Fi1 radio,
and so forth, to communicate wirelessly with the receiver
vehicle 512 using a wireless communication 530.

The receiver vehicle 512 may receive the sparse point
cloud 510 from the transmitter vehicle 502 communication
530 with a radio 518, having similar functionality and
capability as the radio 508. The receiver vehicle 512 may
employ a camera sensor (corresponding to the camera sensor
414) to generate an 1mage 516 (corresponding to the image
416). The camera sensor may capture the environment of the
receiver vehicle 512 and generate the image 516 to include
representations of objects 1n a FOV of the camera sensor.
The 1image 516 may include a very dense representation of
objects 1n the environment but have low accuracy because
the 1mage 316 captures all objects 1n the environment with
high detail but the image 516 may lose depth between
objects 1n the environment. Capturing higher accuracy
Images may require more expensive camera sensors 414 and
more processing time as compared to lower accuracy
images. Thus, given the cost and time constraints associated
with vehicle sensors, the sensor 414 may generate the image
416 having a limited accuracy.

The receiver vehicle 512 may combine the sparse point
cloud 510 with the image 3516 using a depth correction
network 532. The depth correction network 532 may per-
form, at least 1n part, the data processing and fusing of data
for the end-to-end cooperative depth completion pipeline
introduced above. More specifically, the depth correction
network 532 fuses the sparse point cloud 510 with the image
516 to generate a corrected dense point cloud 520 that 1s
more detailled and more accurate than each of the sparse
point cloud 3510 and the image 514 individually. Details of
operation of the depth correction network 332 are provided
below with reference to FIG. 6.

The receiver vehicle 512 stitches the corrected dense
point cloud 520 together with the sparse point cloud 510 to
generate a stitched and corrected point cloud image 5235
(which may correspond to the complete dense point cloud
420). The stitched and corrected point cloud 1image 525 may
comprise a complete depth map or point cloud with a wider
range and FOV of the 3D environment around the receiver
vehicle 512 as compared to the sparse point cloud 510 and
the image 514 individually. This stitched and corrected point
cloud image 520 can be used for different autonomous
vehicle tasks, such as 3D object detection, perception,
localization, and HD mapping.

FIG. 6 depicts a flow diagram 600 detailing data process-
ing by an example end-to-end cooperative depth completion
pipeline in accordance with various embodiments. In main-
taining consistency ol the discussion introduced above,
operations of the diagram 600 are performed by the receiver
vehicle 512, though such operations can be shared with the
transmitter vehicle 502 or with a cloud computing environ-
ment.

As discussed above, the transmitter vehicle 502 may
provide the sparse point cloud 610, which corresponds to the
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sparse point cloud 510, to the receiver vehicle 512, which
performs the processing for the flow diagram 600 as shown.
Alternatively, the transmitter vehicle 502 may generate the
shared sparse point cloud 610 and turther generate a forward
range view 602 for sharing with the receiver vehicle 512 (not
shown 1n FIG. 6). Additionally, the transmitter vehicle 502
may Iurther process the forward range view 602 with a
feature extractor ({or example, similar to a feature extractor
622 discussed below) and share an extracted feature vector
with the receiver vehicle 512 instead of sharing the sparse
point clout 610 or the forward range view 602. Thus, the
transmitter vehicle 502 may share one or more of the sparse
point cloud 610, the forward range view 602, or the feature
vector generated by the feature extractor 622 with the
receiver vehicle 512. The discussion below assumes that the
transmitter vehicle 502 shares the sparse point cloud 610
with the receiver vehicle 512 and that the recerver vehicle
512 performs the subsequent processing of the sparse point
cloud 610.

The receiver vehicle 512 may process the shared sparse
point cloud 610 to generate a forward range view 602.
Specifically, an image processing module, such as the image
processing circuit 210 of FIG. 2, may convert the recerved
sparse point cloud 610 to the forward range view 1mage 602
(for example, corresponding to a view captured by the
sensor 1n a forward direction with respect to the transmitter
vehicle 502), which has accurate depth information. Addi-
tionally, as described above, the receiver vehicle 512 may
generate the raw 1mage 616 using a camera sensor. The
receiver vehicle 512 may process both the forward range
view 1mage 602 and the image 616 with the end-to-end
cooperative depth completion pipeline 620. In some
embodiments, a deep neural network of the end-to-end
cooperative depth completion pipeline 620 can learn how to
optimally combine the received sparse point cloud 510 with
the 1mage 516 to obtain the final combined 3D info for
perception, etc. Specifically, the image processing module
may process the forward range view image 602 and the
image 612 with one or more feature extractors 622 and 624,
respectively. In some embodiments, the feature extractors
622 and 624 correspond to convolutional neural network
(CNN) based feature extractors or learning networks. The
feature extractors 622 and 624 may process the forward
range view 1mage 602 and the image 612, respectively, to
identily respective features of the images that can be used to
simplity and/or improve processing of the images 602 and
616 by the end-to-end cooperative depth completion pipe-
line 620. For example, the feature extractor 622 may extract
feature vectors that represent aspects of the forward range
view 1mage 602 and make the processing thereol more
cilicient while the feature extractor 624 extracts feature
vectors that represent aspects of the image 616 and make
processing of the image 616 more eflicient. In some embodi-
ments, the extracted feature vectors are learned {feature
vectors. The extracted feature vectors from the {feature
extractor 622 and 624 may be concatenated or combined via
a concatenate layer 626 to generate a concatenated vector.
The concatenated vector may be an input to a vector
regression network 628. The vector regression network 628
may comprise a regression network (for example, using
Gradient descent methodologies) that takes the mput con-
catenated vector generated by the concatenate layer 626 and
identifies rotation and translation vectors for a relative pose.
Specifically, the vector regression network 628 may regress
or output the relative pose between the LiDAR sensor that
generated the sparse point cloud 610 and the camera sensor
that generated the image 616, where the relative pose 1s
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output as the rotation and translation vectors. In some
embodiments, the vector regression network 628 1s a
machine learming network that i1s tramned to identity the
relative pose between two inputs, such as the forward range
view 602 and the mput image 616.

Based on the rotation and translation vectors, a 3D
transformer network 630 may backproject the sparse point
cloud 610 1into an 1mage space of the mput image 616 and
generate a backprojected sparse depth map 606. Backpro-
jection 1s used to convert data from the sparse point cloud
610 1nto the 1mage space of the input image 616 based on
spreading the data from the sparse point cloud 610 back into
the input 1mage 616. The 3D transformer network 630 may
use the rotation and translation vectors representative of the
relative pose between the sensors that generated the sparse
point cloud 610 and the image 616 to properly align the
sparse point cloud 610 and the image 616 when creating the
backprojected sparse depth map 606. Specifically, the rela-
tive pose may direct the 3D transformer network 630 on how
to manipulate one or both of the sparse point cloud 610 and
the 1image 616 to obtain the proper alignment therebetween.
Only once the sparse point cloud 610 and the image 616 are
aligned can data from the two be combined to improve upon
the corresponding individual data sets.

Once the 3D transformer network 630 generates the
backprojected sparse depth map 606, a concatenation layer
632 and an autoencoder/decoder 634 may concatenate or
stitch the backprojected sparse depth map 606 with a depth
map (or depth image) 604 of the input 1mage 616 to generate
a concatenated image. More specifically, the concatenation
layer 632 and the autoencoder/decoder 634 may automati-
cally stitch the backprojected sparse depth map 606 together
with the depth map 604 such that corresponding portions of
the depth maps 604, 606 that overlap are aligned. The
autoencoder/decoder 634 may employ a fully convolutional
network or U-Net architecture to generate a corrected accu-
rate depth map 636. Thus, the autoencoder/decoder 634 may
learn, for example, based on the overlapping portions of the
depth maps 604, 606, how to optimally stitch or combine the
backprojected sparse depth map 606 and the depth map 604.
In some embodiments, the autoencoder/decoder 634 may be
replaced with one or more other types of deep neural
networks to perform the corresponding processing to com-
bine the respective depth maps 604, 606.

In some embodiments, the end-to-end cooperative depth
completion pipeline 620 can be tramned in an end-to-end
manner based on one or more of photometric losses, chamier
distances, temporal consistency losses, and the like. The
photometric losses may correspond to a dense pixel-wise
error between a predicted depth map output by the and the
corrected depth map 636. In some embodiments, the cham-
fer distances are a sum of squared distances of the nearest
points between two point clouds (for example, the shared
sparse point cloud 610 and the predicted depth map), and the
temporal consistency loss 1s an accumulated temporal error
between predicted and ground truth relative poses.

In some embodiments, the end-to-end cooperative depth
completion pipeline can be trained to use input of raw
images 616 and the sparse point cloud 610 to train the
pipeline such that inputs of the sparse point cloud 610 (or the
torward range view 602) and the image 616 to generate an
output corrected depth map 636 for use with autonomous
systems, such as perception, localization, mapping, and so
torth.

In some embodiments, whether the transmitter vehicle
502 or the receiver vehicle 512 performs certain processing
(such as generating the forward range view 602 from the
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sparse point cloud 610 or extracting feature vectors from the
forward range view 602) i1s determined based on which
vehicle has capabilities and bandwidth for the corresponding
processing. For example, where the transmitter vehicle 502
1s more resource constrained, the recerver vehicle 512 may
perform more processing (e.g., generate the forward range
view 602 and subsequent processing from the sparse point
cloud received from the transmitter vehicle 502). On the
other hand, where the receiver vehicle 512 1s more resource
constrained, the transmitter vehicle 502 may perform more
processing (e.g., generate the forward range view 602 and
extract the feature vector from the forward range view 602)
and share the extracted feature vector with the receiver
vehicle 512 to reduce computations required by the recetver
vehicle 512.

In some embodiments, the end-to-end cooperative depth
completion pipeline described herein can be trained to work
in various embodiments 1rrespective of relative poses
between the transmitter and receiver vehicles 502, 512 and
corresponding sensors 304, 514, and so forth. Furthermore,
the corrected depth maps 636 generated by the end-to-end
cooperative depth completion pipeline may be shared with
other vehicles traveling through the same environment.

In some embodiments, the transmitter and receiver
vehicles 502, 512 may share the sparse point cloud 610 and
the 1image 616 and/or corresponding corrected point cloud
image 525 with a centralized server (not shown). Such
sharing may enable the centralized server to continuously
accumulate data that can be used to retrain the models
continuously or periodically (for example, one or more of
the feature extractors 622, 624, the vector regression net-
work 628, the 3D transformer network 632, or the autoen-
coder/decoder 634).

In some embodiments, the transmitter and/or receiver
vehicles 502, 512 share this data with the centralized server
dynamically while the vehicles 502, 512 are traveling or
when the vehicles 502, 512 are parked 1n an area having, for
example, Wi-F1 coverage. In some embodiments, the receive
vehicle 512 may share the processed data with the central-
1zed server and use this data to retrain the model. In some
embodiments, the retrained or updated models on the cen-
tralized server can be downloaded by the transmitter and
recerver vehicles 502, 512 for use such that the vehicles 502,
512 utilize the most up-to-date models for the processing
described above.

In some embodiments, the LiDAR sensor can be replaced
with any other sensor that generates a highly accurate but
sparse point cloud for sensed data and the camera sensor can
be replaced with any other sensor that generates highly
dense, less accurate data for sensed data. The fusion
described by the end-to-end cooperative depth completion
pipeline herein may employ variations of sensors than those
described herein that maintain the benefits of the accuracy of
the point clouds fused with the density of images. Thus, the
difference of modalities makes the fusion described herein
work.

FIG. 7 depicts a high-level flow diagram 700 of an
example system configured to collect training data used to
train the end-to-end cooperative depth completion pipeline
in accordance with various embodiments.

Specifically, the diagram 700 shows that a transmuitter
vehicle 702 (corresponding to the transmitter vehicle 602)
having a LiDAR sensor 704 that generates a point cloud 706
that 1s wirelessly shared with a recerving vehicle 712. As
described above, the wireless sharing can be performed by
any means ol wireless communication. The shared point
cloud 706 may correspond to a full point cloud as captured
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by the LiDAR sensor 704, such as the point cloud 506, or a
partial or sparse point cloud, such as the sparse point cloud
510.

A recerver vehicle 712 (corresponding to the receiver
vehicle 612) comprises a LIDAR sensor 714 and a camera
sensor 715. The LiDAR sensor 714 may generate a local
point cloud from which the receiver vehicle 712 generates
ground truth depth data 716, while the camera 715 generates
a raw 1mage 717, corresponding to the image 316. In some
embodiments, the receiver vehicle 712 may use the ground
truth depth data as a target for training how the receirved
point cloud 706 1s fused with the image 717. For example,
the receiver vehicle 712 can try different methods of fusing,
the received point cloud 706 with the image 716 to obtain a
resulting depth map that 1s similar to the ground truth depth
map generated from the LiDAR sensor 714. Thus, the
ground truth depth map can be used to train the end-to-end
cooperative depth completion pipeline described herein.

FIG. 8 shows example steps that can be performed by an
image processing circuit 210 (or an external controller) of a
transmitting or recerving vehicle that performs the process-
ing described herein when executing one or more operations
in performance of method 800 1n accordance with various
embodiments. For example, the processor 206 can fetch,
decode, and/or execute one or more instructions for per-
forming various steps of the method 800. Various instruc-
tions (e.g., for performing one or more steps described
herein) can be stored in non-transitory storage medium of
the memory 208 and/or corresponding control logic cir-
cuitry, where the term “non-transitory” does not encompass
transitory propagating signals. “Non-transitory” as used
herein refers to any media that store data and/or instructions
that cause a machine to operate 1n a specific fashion. Such
non-transitory media may comprise non-volatile media and/
or volatile media. Non-volatile media includes, for example,
optical or magnetic disks. Volatile media includes dynamic
memory. Common forms of non-transitory media include,
for example, a floppy disk, a flexible disk, hard disk, solid
state drive, magnetic tape, or any other magnetic data
storage medium, a CD-ROM, any other optical data storage
medium, any physical medium with patterns of holes, a
RAM, a PROM, and FEPROM, a FLASH-EPROM,
NVRAM, any other memory chip or cartridge, and net-
worked versions of the same. As described in detail below,
machine-readable storage medium of the memory 208 may
be encoded with executable instructions, for example,
instructions for executing steps of the method 800. Non-
transitory media 1s distinct from but may be used in con-
junction with transmission media. Transmission media par-
ticipates 1n transferring information between non-transitory
media. For example, transmission media includes coaxial
cables, copper wire and fiber optics, including the wires that
comprise bus between the processor 206 and the memory
208. Transmission media can also take the form of acoustic
or light waves, such as those generated during radio-wave
and infra-red data communications.

The method 800 may comprise a method of handling
sensor data from a number of sensors of diflerent modalities
disposed on different vehicles to generate a fused depth map.
Operations that make up the method 800 may be performed
by one or more vehicles, such as the transmitting vehicle 702
or the receiving vehicle 712 of FIG. 7. For example, the
operations of the method 800 are described as being per-
formed by the recerving vehicle 712. Furthermore, the
operations of the method 800 would likely be performed by
the 1mage processing circuit 210, regardless of the combi-
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nation of the transmitting vehicle 702 or the receiving
vehicle 712 that performs the operations, or 1n a cloud-based
computing environment.

A step 805 of the method 800 comprises the receiving
vehicle generating a first sensor data from a local sensor
having a first modality. In some embodiments, where the
method 800 1s performed by the receiving vehicle 712, the
local sensor having the first modality comprises a camera
sensor disposed at the receiving vehicle. In some embodi-
ments, the recerving vehicle may comprise the LiDAR
SEeNsor.

At step 810, the receiving vehicle may receive a second
sensor data via wireless communications from a remote
sensor o a second modality disposed at a second vehicle.
Where the local sensor 1s the camera sensor, the remote
sensor of the second modality may comprise a LiDAR or
similar point cloud generating sensor. Where the local sensor
1s the LiDAR sensor, the remote sensor may comprise a
camera or similar imaging sensor.

At step 815, the receiving vehicle may apply a machine
learning (ML) algorithm to the first sensor data and the
second sensor data. In some embodiments, the ML algorithm
may comprise the processing mtroduced above with respect
to the end-to-end cooperative depth completion pipeline
620. In some embodiments, the processor 206 and the
memory 208 of the image processing circuit 210 may
comprise hardware and instructions that facilitate employing
a ML algorithm and other deep learning or similar process-
ing. image processing circuit 210 may comprise a machine
learning. In some embodiments, applying the ML algorithm
may comprise one or more ol applying one or more feature
extractors (e.g., feature extractors 622, 624) to the first
and/or second sensor data, applying a vector regression
network (e.g., vector regression network 628) to concat-
enated layers from the feature extractors, using a 3D trans-
former network (e.g., the 3D transformer network 630) to
generate a backprojected sparse depth map (e.g., the back-
projected sparse depth map 606), or employing a concat-
enation layer and autoencoder to generate a corrected accu-
rate depth map (e.g., the corrected accurate depth map 636).

At step 820, the receiving vehicle may generate a relative
pose of the local sensor relative to the remote sensor based
on the application of the ML algorithm to the first sensor
data and the second sensor data. As introduced above, this
may comprise applying the vector regression network 628 to
the features extracted and concatenated from a forward view
image generated from the received second sensor data and
the 1mage generated from the first sensor data.

At step 8235, the receiving vehicle may generate a com-
bined depth map based on the application of the ML
algorithm to the first sensor data and the second sensor data.
In some embodiments, this combined depth map corre-
sponds to one or more of the backprojected sparse depth map
606 or the corrected accurate depth map 636.

At step 830, the receiving vehicle may utilize the com-
bined depth map to navigate a region depicted by the
combined depth map. For example, when the combined
depth map generated at step 825 comprises the corrected
accurate depth map 636, the receiving vehicle may use the
combined depth map to perform various operations, such as
perception, localization, and mapping of objects, etc., 1n the
environment of the receiving vehicle.

In some embodiments, while the method 800 1s described
as being performed by the receiving vehicle, 1t will be
understood that the corresponding operations are performed
by the 1mage processing circuit 210 or similar processing
components disposed 1n the receiving vehicle. Furthermore,
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in some embodiments, the operations of the method 800 are
performed 1n a cloud-based computing system where there
are no local sensors and both sensors are remote from the
components performing the processing. As such, the cloud-
based or centralized processing system may receive sensor
data from multiple vehicles and perform the processing
associated with FIG. 6 above to implement the ML algo-
rithms of the end-to-end cooperative depth completion pipe-
line 620 to generate, for example, one or more of the
backprojected sparse depth map 606 or the corrected accu-
rate depth map 636. In some embodiments, the one or more
generated depth maps are communicated back to one or
more of the multiple vehicles to enable one or more of the
multiple vehicles to perform various operations, such as
perception, localization, and mapping of objects, etc., in the
environment.

It should be understood that the various features, aspects,
and functionality described 1n one or more of the individual
embodiments are not limited 1n their applicability to the
particular embodiment with which they are described.
Instead, they can be applied, alone or 1n various combina-
tions, to one or more other embodiments, whether or not
such embodiments are described and whether or not such
features are presented as being a part of a described embodi-
ment. Thus, the breadth and scope of the present application
should not be limited by any of the above-described exem-
plary embodiments.

Terms and phrases used in this document, and variations
thereol, unless otherwise expressly stated, should be con-
strued as open ended as opposed to limiting. As examples of
the foregoing, the term “including” should be read as
meaning “including, without limitation” or the like. The
term “example” 1s used to provide exemplary instances of
the 1tem 1n discussion, not an exhaustive or limiting list
thereot. The terms “a” or “an” should be read as meaning “at
least one,” “one or more” or the like; and adjectives such as
“conventional,”  “traditional,” ‘“normal,” “standard.”
“known.” Terms of stmilar meaning should not be construed
as limiting the 1tem described to a given time period or to an
item available as of a given time. Instead, they should be
read to encompass conventional, traditional, normal, or
standard technologies that may be available or known now
or at any time 1n the future. Where this document refers to
technologies that would be apparent or known to one of
ordinary skill 1n the art, such technologies encompass those
apparent or known to the skilled artisan now or at any time
in the future.

The presence of broademing words and phrases such as
“one or more,” “at least,” “but not limited to” or other like
phrases in some instances shall not be read to mean that the
narrower case 1s intended or required in instances where
such broadenming phrases may be absent. The use of the term
“component” does not imply that the aspects or functionality
described or claimed as part of the component are all
configured 1n a common package. Indeed, any or all of the
various aspects ol a component, whether control logic or
other components, can be combined 1n a single package or
separately maintained and can further be distributed 1n
multiple groupings or packages or across multiple locations.

Additionally, the various embodiments set forth herein are
described 1n terms of exemplary block diagrams, flow charts
and other illustrations. As will become apparent to one of
ordinary skill in the art after reading this document, the
illustrated embodiments and their various alternatives can be
implemented without confinement to the 1llustrated
examples. For example, block diagrams and their accompa-
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nying description should not be construed as mandating a
particular architecture or configuration.

What 1s claimed 1s:

1. A method, comprising:

generating {irst sensor data from a local sensor 1n a first
vehicle of a first modality;

receiving second sensor data from a remote sensor of a
second modality 1n a second vehicle;

applying a ML algorithm to the second sensor data and the
first sensor data;

generating, based on application of the ML algorithm to
the second sensor data and the first sensor data:

a relative pose of the remote sensor relative to the local
sensor, with the relative pose being a position and
orientation of the remote sensor relative to a location
of the local sensor, and the position and the orien-
tation of the remote sensor being distinct from a
second position and second orientation of the second
vehicle; and

a combined depth map based on the second sensor data,
the first sensor data, and the relative pose; and

utilizing the combined depth map to navigate an environ-

ment depicted by the combined depth map.

2. The method of claim 1, wherein one of the local sensor
of a first modality and the remote sensor of a second
modality comprises one or more of a RADAR sensor or a
L1DAR sensor and the other of the local sensor of a first
modality and the remote sensor of a second modality com-
prises an RGB camera sensor.

3. The method of claim 1, wherein the second sensor data
1s received from the remote sensor of the second modality 1n
the second vehicle via a wireless communication using a
local radio circuat.

4. The method of claim 1, wherein the first sensor data
comprises a raw 1mage captured by a camera modality local
sensor and the second sensor data comprises a point cloud
captured by a LiDAR modality remote sensor.

5. The method of claim 1, wherein the applying the ML
algorithm to the second sensor data and the first sensor
COmMprises:

extracting a first feature vector based on the first sensor

data using a first feature extractor;

extracting a second feature vector based on the second

sensor data using a second feature extractor; and

concatenating the first feature vector with the second
feature vector.

6. The method of claim 5, wherein the generating the
relative pose comprises generating a translation vector and
a rotation vector corresponding to the relative pose of the
remote sensor relative to the local sensor via a regression
network based on the first feature vector and the second
feature vector.

7. The method of claim 6, wherein the first sensor data
comprises a raw 1mage captured by a camera modality local
sensor and the second sensor data comprises a point cloud
captured by a LIDAR modality remote sensor; and

wherein generating the combined depth map comprises:

generating a backprojected sparse depth map based on
overlapping corresponding regions of the point cloud
and the image according to the translation vector and
the rotation vector of the relative pose between the
local sensor and the remote sensor; and

combining the backprojected sparse depth map and a
depth map generated based on the raw 1mage using,
an autoencoder to generate the combined depth map.
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8. A system, comprising;:

a local sensor of a first modality configured to generate

first sensor data;

a recetrver circuit configured to receive second sensor data

from a remote sensor of a second modality;

a processor; and

a memory configured to store instructions that, when

executed by the processor, cause the processor to:

apply a ML algorithm to the received second sensor
data and the first sensor data;

generate a relative pose of the local sensor relative to
the remote sensor based on application of the ML
algorithm by generating a translation vector and a
rotation vector corresponding to the relative pose of
the local sensor relative to the remote sensor via a
regression network based on a first feature vector and
a second feature vector;

generate a combined depth map based on the second
sensor data, the first sensor data, and the relative
pose; and

utilize the combined depth map to navigate a region
depicted by the combined depth map.

9. The system of claim 8, wherein one of the local sensor
of a first modality and the remote sensor of a second
modality comprises one or more of a RADAR sensor or a
L1DAR sensor and the other of the local sensor of a first
modality and the remote sensor of a second modality com-
prises an RGB camera sensor.

10. The system of claim 8, wherein the first sensor data
comprises a raw 1mage captured by a camera modality local
sensor and the second sensor data comprises a point cloud
captured by a LiDAR modality remote sensor.

11. The system of claim 8, wherein application of the ML
algorithm to the second sensor data and the first sensor
comprises further instructions that, when executed by the
processor, further cause the processor to:

extract the first feature vector based on the first sensor

data using a first feature extractor;

extract the second feature vector based on the second

sensor data using a second feature extractor; and
concatenate the first feature vector with the second feature
vector.

12. The system of claim 8, wherein the first sensor data
comprises a raw 1mage captured by a camera modality local
sensor and the second sensor data comprises a point cloud
captured by a LiDAR modality remote sensor; and

wherein the nstructions that cause the processor to gen-

crate the combined depth map comprise instructions

that cause the processor to:

generate a backprojected sparse depth map based on
overlapping corresponding regions of the point cloud
and the image according to the translation vector and
the rotation vector of the relative pose between the
local sensor and the remote sensor; and

combine the backprojected sparse depth map and a
depth map generated based on the raw 1mage using
an autoencoder to generate the combined depth map.

13. A cloud-based system comprising:

a recerver circuit configured to receive:

first sensor data from a first sensor of a first modality at
a first vehicle; and

second sensor data from a second sensor of a second
modality at a second vehicle;

a Processor;

a memory configured to store instructions that, when

executed by the processor, cause the processor to:
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apply a ML algorithm to the first sensor data and the
second sensor data;

generate a relative pose of the first sensor relative to the
second sensor based on application of the ML algo-
rithm, with the relative pose being a position and
orientation of the first sensor relative to a location of
the second sensor, the relative pose of the first sensor
being distinct from a second relative pose of the first
vehicle and the location of the second sensor being
distinct from a second location of the second vehicle;
and

generate a combined depth map based on the first
sensor data, the second sensor data, and the relative
pose; and

a transmitter circuit configured to transmit the combined

depth map to at least one of the first vehicle or the
second vehicle to enable the at least one of the first
vehicle or the second vehicle to navigate an environ-
ment depicted by the combined depth map.

14. The system of claim 13, wherein one of the first sensor
of a first modality and the second sensor of a second
modality comprises one or more of a RADAR sensor or a
L1DAR sensor and the other of the first sensor of a first
modality and the second sensor of a second modality com-
prises an RGB camera sensor.

15. The system of claim 13, wherein the first sensor data
comprises a raw 1mage captured by a camera modality first
sensor and the second sensor data comprises a point cloud
captured by a L1IDAR modality second sensor.

16. The system of claim 13, wherein application of the
ML algorithm to the second sensor data and the first sensor
data comprises further instructions that, when executed by
the processor, further cause the processor to:

extract a {irst feature vector based on the first sensor data

using a {irst feature extractor;

extract a second feature vector based on the second sensor

data using a second feature extractor; and
concatenate the first feature vector with the second feature
veCtor.

17. The system of claim 16, wherein the instructions that
cause the processor to generate the relative pose comprise
instructions that cause the processor to generate a translation
vector and a rotation vector corresponding to the relative
pose of the first sensor relative to the second sensor via a
regression network based on concatenation of the first
feature vector with the second feature vector.

18. The system of claim 17, wherein the first sensor data
comprises a raw 1mage captured by a camera modality first
sensor and the second sensor data comprises a point cloud
captured by a LiDAR modality second sensor; and

wherein the instructions that cause the processor to gen-

crate the combined depth map comprise instructions

that cause the processor to:

generate a backprojected sparse depth map based on
overlapping corresponding regions of the point cloud
and the 1image according to the translation vector and
the rotation vector of the relative pose between the
first sensor and the second sensor; and

combine the backprojected sparse depth map and a
depth map generated based on the raw 1mage using
an autoencoder to generate the combined depth map.

19. The system of claim 8, wherein the local sensor 1s
located 1n a first vehicle and the remote sensor 1s located 1n
a second vehicle.

20. The system of claim 8, wherein the relative pose 1s a
position and orientation of the local sensor relative to a
location of the remote sensor, with the position and the
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orientation of the local sensor being distinct from a second
position and second orientation of the first vehicle.
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