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1

METHODS AND SYSTEMS FOR LEARNING
NOISE DISTRIBUTIONS FOR NEURAL
NETWORKS

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims priority to U.S. Provisional Appli-
cation No. 62/916,123, entitled “METHOD AND SYSTEM

OF LEARNING NOISE ON INFORMAITION FROM
INFERENCES BY DEEP NEURAL NETWORK™ and filed

on Oct. 16, 2019. The entirety of the above application 1s
incorporated by reference as part of the disclosure of this
patent document.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under
FA9550-17-1-0274 awarded by the Air Force Oflice of
Scientific Research and under CNS-1703812 and ECCS-
1609823 awarded by the National Science Foundation. The

government has certain rights 1n the mvention.

TECHNICAL FIELD

This patent document relates to machine learning tech-
niques, mcluding deep neural networks (DNNs).

BACKGROUND

A deep neural network (DNN) 1s an artificial neural
network (ANN) with multiple layers between the input and
output layers. DNNs are applicable to a wide range of
services and applications such as language translation, trans-
portation, intelligent search, e-commerce, and medical diag-
nosis.

SUMMARY

The technology disclosed 1n this patent document relates
to methods, devices and applications for learning noise
distribution on information from inferences by machine
learning techniques such as deep neural networks (DNNs).

In an embodiment of the disclosed technology, a data
processing method includes determining an amount of
shredding used 1n a shredding operation by which source
data 1s converted into shredded data, and transferring the
shredded data over an external network to a remote server
for a data processing task. The shredding reduces the infor-
mation content while incurring limited accuracy loss of the
data processing task. The data processing task includes an
inference task using machine learning techniques such as
deep neural network.

For example, the limited accuracy loss or the limited
degradation may be measurable and managed to be within a
target performance loss.

In another embodiment of the disclosed technology, a data
processing method includes determining an amount of
shredding used 1n a shredding operation by which source
data 1s converted into shredded data, and transferring the
shredded data over an external network to a remote server
for an inference computing. The amount of shredding is
determined reduce an information content due to the shred-
ding operation and to limit a degradation 1n an accuracy of
the inference computing due to the shredding operation.
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2

In another embodiment of the disclosed technology, a
method of transmitting data over a network includes gener-

ating source data to be transmitted over the network, per-
forming a shredding operation on the source data to generate
shredded data such that the source data 1s not recoverable
from the shredded data, and transmitting the shredded data
over the network. The shredding operation includes adding
noise to the source data to generate the shredded data
including reduced data content and added noise such that an
inference from the shredded data by a data processing
method yields a same outcome as an inference from the
source data.

In another embodiment of the disclosed technology, a
method 1ncludes selecting, as a local network, one or more
layers of a deep neural network (DNN) with multiple layers
between mnput and output layers such that a computation of
the one or more layers 1s made on an edge device and
selecting, as a remote network, remaining layers of the
DNN, obtaining a first activation tensor by providing an
iput to the local network and obtaining an output of the
local network responsive to the mput, obtaining a second
activation tensor by injecting a sampled noise tensor to the
first activation tensor, feeding the first activation tensor and
the second activation tensor to the remote network to obtain
first and second results, respectively, from the remote net-
work, finding a traimned noise tensor that minimizes a loss
function of the DNN, adding the trained noise tensor to a
third activation to be transmitted to the remote network, and
transmitting the third activation.

In another embodiment of the disclosed technology,
method of feeding the data through a deep neural network
(DNN) includes initializing a noise tensor with a predeter-
mined noise distribution, training the noise tensor such that
the accuracy of the model i1s regained and the noise tensor 1s
fit to a distribution, storing the parameters of the fitted noise
distribution and tensor element orders of the noise tensor,
and performing inference of the DNN based on the noise
sampled from the stored distributions and tensor element
orders of the noise tensor. The performing of the inference
of the DNN includes drawing samples from the stored
parameters of the stored noise distribution to populate noise
tensors, rearranging tensor elements of the noise tensors to
match the stored tensor element orders of the noise tensor,
applying the noise tensors to activations, and transmitting
the final noisy activation.

The subject matter described 1n this patent document can
be implemented 1n specific ways that provide one or more of
the following features.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows the relationship between privacy, accuracy
loss and computational cost.

FIGS. 2A-2B 1illustrate noise injection in the system
implemented based on some embodiments of the disclosed
technology.

FIGS. 3A-3D show accuracy-privacy trade-ofl in 4 other
example networks, cut from their last convolution layer.

FIGS. 4A-4D shows accuracy-privacy trade-off 1n 4 other
example networks, cut from their last convolution layer.

FIGS. SA-5B shows accuracy-privacy trade-ofl for an
example of convolution neural network for face recognition
and another example of convolution neural network, cut
from their last convolution layer.

FIG. 6A illustrates graphs indicating in vivo privacy, and
FIG. 6B illustrates graphs indicating accuracy, showing in
vivo notion of privacy and accuracy per iteration of trainming,
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on an example of convolution neural network, when the last
convolution layer 1s the cutting point.

FIG. 7 shows 1n vivo notion of privacy, normalized
accuracy of private task and primary task per epoch of
training on an example ol convolution neural network for
face recognition, when the last convolution layer 1s the
cutting point.

FIGS. 8A-8B show normalized misclassification rate of
private labels (1dentity) and privacy improvement compari-
son with the deep private feature extraction (DPFE) for
different accuracy levels of the primary task (gender clas-
sification) over an example of convolution neural network
for face recognition on face recognition dataset.

FIG. 9A shows 1n vivo vs €x vivo notion of privacy in an
example of convolution neural network, and FIG. 9B shows
1n vivo vs €X vivo notion of privacy in another example of
convolution neural network, for different cutting points.

FIG. 10A shows computation/communication costs and
privacy with deeper layers selected 1n an example of con-
volution neural network for the noise addition of an example
of the disclosed technique, and FIG. 10B shows computa-
tion/communication costs and privacy with deeper layers
selected 1n another example of convolution neural network
for the noise addition of the example of the disclosed
technique.

FIG. 11 shows an example of the noise distribution
training phase based on some embodiments of the disclosed
technology.

FIG. 12 shows an example of the inference phase based
on some embodiments of the disclosed technology.

FIG. 13 shows an example of a data processing method
based on some embodiments of the disclosed technology.

FIG. 14 shows an example method of transmitting data
over a network based on some embodiments of the disclosed
technology.

FIG. 15 shows an example of a deep neural network
implemented based on some embodiments of the disclosed
technology.

FIG. 16 shows an example of an edge device 1n commu-
nication with a cloud based on some embodiments of the
disclosed technology.

DETAILED DESCRIPTION

Online services that utilize the cloud infrastructure are
now ubiquitous and dominate the IT industry. The limited
computation capability of edge devices, such as cellphones,
or personal assistants, and the increasing processing demand
of learming models has naturally pushed most of the com-
putation to the cloud. Coupled with the advances 1n learming,
and deep learning, this shift has also enabled online services
to offer a more personalized and more natural interface to the
users. These services continuously receive raw, and 1n many
cases, personal data that needs to be stored, parsed, and
turned into nsights and actions. In many cases, such as
home automation or personal assistant, there i1s a rather
continuous flow of personal data to the service providers for
real-time inference. While this model of cloud computing
has enabled unprecedented capabilities due to the sheer
power of remote warchouse-scale data processing, it can
significantly compromise user privacy. When data 1s pro-
cessed on the service provider cloud, 1t can be compromised
through side-channel hardware attacks or deficiency in the
software stack. But even in the absence of such attacks, the
service provider can share the data with business partners or
government agencies. Although the industry has adopted
privacy techniques for data collection and model training,
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scant attention has been given to the privacy of users who
increasingly rely on online services for inference.

A wide variety of deep neural network (DNN) applica-
tions increasingly rely on the cloud to perform their huge
computation. This heavy trend toward cloud-hosted infer-
€Nce Services raises serious privacy concerns. Such cloud-
hosted miference services require the sending of private and
privileged data over the network to remote servers, exposing
it to the service provider. Even 11 the provider 1s trusted, the
data can still be vulnerable over communication channels or
via side-channel attacks at the provider.

Researchers have attempted to grapple with this problem
by employing cryptographic techniques such as multiparty
execution and homomorphic encryption in the context of
DNNs. However, these approaches sufler from a prohibitive
computational and communication cost, exacerbating the
already complex and compute-intensive neural network
models. Worse still, this burdens additional encryption and
decryption layers to the already constrained edge devices
despite the computational limit being the main imncentive of
oflloading the inference to the cloud.

Some embodiments of the disclosed technology may be
used to reduce the information content of the communicated
data without compromising the cloud service’s ability to
provide a DNN inference with acceptably high accuracy. A
method and system of learning noise distribution based on
some embodiments of the disclosed technology may be used
to learn, without altering the topology or the weights of a
pre-trained network, an additive noise distribution that sig-
nificantly reduces the information content of communicated
data while maintaining the inference accuracy. Such a tech-
nique may be called “shredder” in the context of this patent
document. The method implemented based on some
embodiments of the disclosed technology learns the additive
noise by casting 1t as a tensor of trainable parameters to
devise a loss function that strikes a balance between accu-
racy and imnformation degradation. The loss function exposes
a knob for a disciplined and controlled asymmetric trade-off
between privacy and accuracy. The method implemented
based on some embodiments of the disclosed technology,
while keeping the DNN intact, enables inference on noisy
data without the need to update the model or the cloud. The
method 1mplemented based on some embodiments of the
disclosed technology can greatly reduce the mutual infor-
mation between the mput and the communicated data to the
cloud compared to the original execution while only sacri-
ficing a small loss 1n accuracy.

FIG. 1 shows the relationship between privacy, accuracy
loss and computational cost. Some embodiments of the
disclosed technology take an orthogonal approach to reduce
the information content of the remotely communicated data
through noise ijection without imposing a significant com-
putational cost. In order to avoid a significant loss in
accuracy by noise 1njection, the method implemented based
on some embodiments of the disclosed technology includes
learning a noise tensor with respect to a loss function that
incorporates both accuracy and a measure of privacy. Leamn-
ing noise does not require retraining the network weight
parameters or changing its topological architectures. This
rather non-intrusive approach 1s particularly interesting as
most enterprise DNN models are proprietary and retraiming,
hundred of millions of parameters i1s resource and time-
consuming. The method implemented based on some
embodiments of the disclosed technology, however, may
learn a much smaller noise tensor through a gradient-driven
optimization process. In some embodiments of the disclosed
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technology, the noise can be seen as an added trainable set
ol parameters that can be discovered through an end-to-end
training algorithm.

In some embodiments of the disclosed technology, the
noise tramning loss 1s such that 1t exposes an asymmetric
tradeoll between accuracy and privacy as show in FIG. 1. As
such the same model can be run on the same cloud on
intentionally noisy data without the need for retraiming or the
added cost of supporting cryptographic computation. The
objective 1s to minimize the accuracy loss while maximally
reducing the information content of the data that a user sends
to cloud for an 1inference service. This problem of offloaded
inference 1s different than the classical differential privacy
setting where the main concern i1s the amount of indistin-
guishability of an algorithm, 1.e., how the output of the
algorithm changes if a single user opts out of the input set.
In inference privacy, however, the 1ssue 1s the amount of raw
information that 1s sent out. As such, Shanon’s Mutual
Information (MI) between the user’s raw mput and the
communicated data to the cloud 1s used as a measure to
quantitively discuss privacy.

The method and system implemented based on some
embodiments of the disclosed technology can retrain the
network weights and incorporate both privacy and accuracy
in the optimization loss by casting noise-injection to protect
privacy as finding a tensor of trainable parameters through
an optimization process. Empirical analysis shows some
implementations of the disclosed technology reduces the
mutual mformation between the mput and the communi-
cated data by 70.2% compared to the original execution with
only 1.46% accuracy loss.

As depicted 1n FIG. 1, the disclosed technology can be
implemented in some embodiments to take an orthogonal
approach, dubbed shredder, and aim to reduce the informa-
tion content of the remotely communicated data through
noise injection without imposing significant computational
cost. In some implementations, a portion of the DNN
inference 1s executed on the edge and the rest 1s delegated to
the cloud and noise 1s applied to the intermediate activation
tensor that 1s sent to the remote servers from the first portion.
However, as shown, noise injection can lead to a significant
loss 1n accuracy 1f not administered with care and discipline.
To address this challenge, examples of the technique

(“shredder”) implemented based on some embodiments of

the disclosed technology use a gradient-based learning pro-
cess to extract the distributions of noise from different
learned samples. To learn the noise samples, the technique
implemented based on some embodiments of the disclosed
technology defines a loss function that incorporates both
accuracy and the distance of the intermediate representation
of the same public label. In some implementations, the
“shredder” technique uses a seltf-supervised learning process
to learn representations (i.e., noise-1njected activations) to
have larger distance for different labels and closer distance
for the same labels. This feature enables the shredder to
focus the noise-injected representations on the public labels
and diminish the classification capability of the DNN on
possible unseen private labels. In this whole process, the
only trainable parameters are the noise tensors while the
weilghts and topology of the network 1s kept intact and the
possible private labels are not exposed to shredder. This
rather non-intrusive approach 1s particularly interesting as
most enterprise DNN models are proprietary, and retraining,
hundred of millions of parameters 1s resource and time
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The main insight 1s that the noise can be seen as an added
trainable set of parameter probabilities that can be discov-
ered through repetition of an end-to-end self-supervised
training process. The technique implemented based on some
embodiments of the disclosed technology devises the noise
training loss such that 1t exposes an asymmetric tradeoil
between accuracy and privacy as depicted in FIG. 1. The
objective 1s to mimimize the accuracy loss while maximally
reducing the mformation content of the data that a user sends
to cloud for an inference service.

Phase I: Learning the Noise Distributions

The techmque implemented based on some embodiments
of the disclosed technology may include two phases: 1) an
oflline noise learning phase; and 2) an inference phase.

The first phase takes 1n the DNN architecture, the pre-
trained weights, and a training dataset. The training dataset
1s the same as the one used to train the DNN. The output of
this phase 1s a collection of 100 tuples of multiplicative noise
distributions and additive noise distributions each coupled
with the order for the elements of that noise tensor (to
maintain relative order of elements and preserve accuracy)
for the inference phase. This phase also determines which
layer 1s the optimal choice for cutting the DNN to strike the
best balance between computation and communication
while considering privacy. The deeper the cutting point, the
higher the privacy level, given a fixed level of loss i1n
accuracy. This 1s due to the abstract representation of data 1n
deeper layers of neural networks, which cause for less
communicated information to begin with, giving the frame-
work a head start. So, as a general rule 1t 1s better to choose
the deepest layer that the edge device can support. In some
implementations, the best cutting point 1n term of commu-
nication and computation costs can be determined experi-
mentally by examining each layer in terms of total time of
computation and communication to pick the lowest. In
addition, this phase outputs the mean accuracy and a margin
of error for 1its collection of distributions. This mean and
margin are achieved by experimentation on a held-out
portion of the training set.

In the context of this patent document, the word “edge
device” 1s used to indicate any piece of hardware that
controls data flow at the boundary between two networks.
Examples of the edge device mclude edge cellphones,
personal assistants, or other network devices.

In the context of this patent document, the words “opti-
mal” and “best” that are used 1n conjunction with the DNN
1s used to indicate DNN layers, values or conditions that
provide a better performance for the DNN than other layers,
values or conditions. In this sense, the words optimal and
best may or may not convey the best possible result achiev-
able by the DNN.

Phase 1I: Shredder Inference and Noise Sampling,

In this phase, for each inference pass (each time a data 1s
given to the neural network) the collection of tuples, from
phase I, 1s sampled for a tuple of multiplicative noise
distribution, additive noise distribution and element orders.
Then, the noise distributions (which are both Laplace dis-
tributions) are sampled to populate the additive and multi-
plicative noise tensors, which have the same dimensions as
the intermediate activation. Then, the elements of both noise
tensors are rearranged, so as to match the saved order for that
distribution. For this, the sampled elements are all sorted,
and are then replaced according to the saved order of indices
from the learning phase. This process makes predicting the
noise tensor non-trivial for the adversary, since the noise for
cach input data 1s generated stochastically. The multiplica-
tive noise, which 1s merely a scale and has the same shape
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as the intermediate activations, 1s applied to intermediate
activations followed by the generated additive noise and the
final noisy activation 1s sent from the edge device to the
cloud where the rest of the inference will take place.
FIGS. 2A-2B 1illustrate examples of noise 1njection 1n the
system 1mplemented based on some embodiments of the

disclosed technology.

Trainable Noise Tensor

Given a pre-trained network f(x,0) with K layers and
pretrained parameters 9, a cutting point, layer , where the
computation of all the layers [0 . . . layer ] are made on the
edge, 1s selected. Those layers are referred to as local
network, L.(x,0,) where O, 1s a subset of 0 from the original
model.

The remaining layers, 1.e., [(layer +1) . . . layer, ], are
deployed on the cloud.) These layers are referred to as
remote network, R(x,0,), as shown 1n FIG. 2A.

The user provides mput x to the local network, and an
intermediate activation tensor a=1.(x,0,) 1s produced. Then,
a noise tensor n 1s added to the output of the first part, a'=a+n
This a' 1s then communicated to the cloud where R (a', 0,)
1s computed on noisy data and produces the result y=1'(x,n,
0) that 1s at sent back to the user.

The objective 1s to find the noise tensor n that minimizes
the loss function discussed below. To be able to do this
through a gradient based method of optimization, we must

find the Jy/on:

&_y . aff(x: 9: H) . Eq (1_1)
on o n -
OR((a+n), ) - dlayer, , y dLayer,,, d(a+n)
dn ~ dLayery_, d(a+n) dn

n

==

Since 1.(x,0,) 1s not a function of n, it is not involved in
the backpropagation. Gradient of R 1s also computed
through chain rule as shown above. Therefore, the output 1s
differentiable with respect to the noise tensor.

Similarly, the objective 1s to find the noise tensors nl, n2
that minimize the loss function as will be discussed below,
while the rest of the model parameters are fixed. To be able
to do this through a gradient based method of optimization,
we must find the Jdy/Gnl and cy/cn2. For the former, we

have:
dy 0f(x,0,m,m) OR(m Xa+n), ) Eq. (1-2)
(3'?11 B (9.’“11 B @nl B
dlayer, , dLayer_,, O(ny Xa+n)
R ¢
dLayet, , O Xa+ns) @FEl
_dnyxa
h (9?‘11 —4

Since L(x,08,) 1s not a function of nl or n2, i1t 1s not
involved in the backpropagation. The same math can be
applied to get dy/on2. Gradient of R 1s also computed
through chain rule as shown above. Therefore, the output 1s
differentiable with respect to the noise tensor and gradient
based methods can be employed to solve the optimization
problem.

Ex Vivo Notion of Privacy

In some embodiments of the disclosed technology, the
privacy 1s measured based on how much information is
leaked from input of the network to the data sent across to
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the cloud. Information leakage 1s defined as the mutual
information between X and a, 1.e., I(X,a), where

I(x; a)sz mlﬂgzjj dxda.

Mutual information has been widely used in the literature
for both understanding the behavior of neural networks, and
also to quantily information leakage 1n anonymity systems
in the context of databases. The method and system based on
some embodiments of the disclosed technology use the
reverse of mutual information (1/MI) as the main and final
notion of privacy and this can be referred to as ex vivo
privacy. In some implementations, the information between
the user-provided mput and the intermediate state that 1s sent
to the cloud 1s quantified. The mutual information 1s con-
sidered an 1nformation theoretic notion, and therefore it
quantifies the average amount of information about the input
(x) that 1s contained 1n the intermediate state (a). For
example, if X and a become independent, I(x,a)=0 and 1f a=x,
then the mutual information becomes the maximum value of
I(x,a)=H(x) where H(x) 1s Shanon’s entropy of the random
variable x

In Vivo Notion of Privacy

As the final goal, the method and system based on some
embodiments of the disclosed technology may reduce the
mutual information between x and a'; however, calculating
the mutual information at every step of the training 1s too
computationally intensive. Therefore, instead the method
and system based on some embodiments of the disclosed
technology can introduce an i1n vivo notion of privacy whose
purpose 1s to guide the noise training process towards better
privacy, 1.e., higher 1/MI. To this end, the method and
system based on some embodiments of the disclosed tech-
nology can use the reverse of signal to noise ratio (1/SNR)
as proxy for the ex vivo notion of privacy. Mutual informa-
tion 1s shown to be a function of SNR 1n noisy channels. In
some 1mplementations, the relation between the two and
show that SNR i1s a reasonable choice may be empirically
investigated.

Loss Function
The objective of the optimization 1s to find the additive noise
distribution 1n such a way that 1t minimizes I(x,a") and at the
same time maintains the accuracy. In other words, 1t mini-
mizes |R(a, 8)—R(a', 0)|. Although these two objectives
seem to be conflicting, 1t 1s still a viable optimization, as the
results suggest. The high dimensionality of the activations,
their sparsity, and the tolerance of the network to perturba-
tions yields such behavior.

The noise tensor that 1s added 1s the same size as the
activation 1t 1s being added to. The number of elements 1n
this tensor would be the number of trainable parameters 1n
our method. The method and system based on some embodi-
ments of the disclosed technology may initialize the noise
tensor to a Laplace distribution with location parameter u
and scale parameter b. Similar to the initialization in the
traditional networks, the 1nitialization parameters, 1.e., b and
u are considered hyperparameters in the training and need to
be tuned. This mitialization affects the accuracy and amount
of noise (privacy) of the method and system implemented
based on some embodiments of the disclosed technology.

The method and system based on some embodiments of
the disclosed technology can be used to evaluate the privacy
of the technique during inference through ex vivo (1/MI)
notion of privacy. However, during training, calculating MI

Eq. (2)
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for each batch update would be extremely compute-inten-
sive. For this reason, the method and system based on some
embodiments of the disclosed technology may use an in vivo
notion of privacy which uses (SNR) as a proxy to MI. In
other words, the method and system based on some embodi-
ments of the disclosed technology may incorporate SNR 1n
the loss function to guide the optimization towards increas-
ing privacy. The method and system based on some embodi-
ments of the disclosed technology may use the formulation
SNR=E[a’]/6°(n), where E[a”] is the expected value of the
square of activation tensor, and 6-(n) is the variance of the
noise added. Given the 1n vivo notion of privacy above, the
loss function would be:

1 Eq. (3)

ot (n)

M
_ Zyﬂ,clﬂg(pﬂ,::) +A

c=1

Where the first term 1s cross entropy loss for a classifi-
cation problem consisting M classes (y, . indicates whether
the observation o belongs to class ¢ and P, _ 1s the probabil-
ity given by the network for the observation to belong to
class c¢), and the second term 1s the 1nverse of variance of the
noise tensor to help 1t get bigger and thereby, increase in
vivo privacy (decrease SNR). A is a coefficient that controls
the 1impact of in vivo privacy in training. Since the numera-
tor in the SNR formulation implemented based on some
embodiments of the disclosed technology 1s constant, 1t 1s
not involved 1n the calculations. The standard deviation of a
group of finite numbers with the range R=max—min 1s
maximized 1f they are equally divided between the mini-

mum, min, and the maximum, max. This 1s 1n line with the
observations that as the magnitude of the noise increases, the
In vivo privacy increases. In some implementations, the

noise tensor 1s 1nitialized in a way that some elements are
negative and some are positive. The positive ones get bigger,
and the negative ones get smaller, therefore, the standard
deviation of the noise tensor becomes bigger after each
update. Therefore, the technique implemented based on
some embodiments of the disclosed technology employs a
formulation opposite to 1.2 regularization, in order to make
the magnitude of noise elements greater. Thus, the loss
becomes:

M N Eq. (4)
_ Zyﬂ,clﬂg(pﬂ,ﬂ) — PLZ'”I'
c=1 i=1

This applies updates opposite to L2 regularization term
(weight decay, and A is similar to the decay factor), instead
of making the noise smaller, 1t makes its magnitude bigger.
The A exposes a knob here, balancing the accuracy/privacy
trade-off. That’s why 1t should be tuned carefully for each
network. If 1t 1s very big, at each update the noise would get
much bigger, impeding the accuracy from improving. And 1f
it 1s too small, 1ts effect on the noise may be minimal. In one
example, —0.01, —0.001, and —0.0001 may be used. In
general, as the networks and the number of training param-
eters get bigger, it 1s better to make 2 smaller to prevent the
optimizer from making huge updates and overshooting the
accuracy.

When 1nitializing noise with a Laplace distribution, the
scale factor of the distribution determines the initial 1n vivo
privacy. Depending on the imitial in vivo privacy, initial
accuracy and the A, different scenarios may occur. One
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scenario is where A is tuned so that the in vivo privacy
remains constant, the same as 1ts 1nitial value (within a small
fluctnation range) and only the accuracy increases. Another
scenar1o occurs if the initial in vivo privacy 1s a lot bigger
than what 1s desired (this usually occurs 1f the initialized
noise tensor has a high scale factor)—it 1s easier (faster 1n
terms of training) to set 2 very small or equal to zero and
train until accuracy 1s regained. In this case the in vivo
privacy will decrease as the accuracy 1s increasing, but since
it was extremely high before, even after decreasing it 1s sfill
desirable. One other possibility i1s that the initial 1n vivo
privacy 1s lower than what we want and when training starts,
it will increase as accuracy increases (or if 1t 1s not perturbed
much by the initial noise, it stays constant).

Loss Function and Self-Supervised Learning

The objective of the optimization 1s to find the noise
distributions 1n such a way as to minimize I(x,a') and at the
same time maintains the accuracy. Although these two
objectives seem to be conflicting, it 1s still a viable optimi-
zation, as the results suggest. The high dimensionality of the
activations, their sparsity, and tolerance of the network to
perturbations yields such behavior. Thus, the technique
implemented based on some embodiments of the disclosed
technology uses self-supervision to train the noise tensors to
achieve an intermediate representation of the data that
contains less private information. In a problem definition,
the framework 1s not aware of what data 1s considered
private. It only knows the primary classification task of the
network. Therefore, the framework assumes that anything
except the primary labels 1s excessive information. In other
words, the training process uses the information it has,
supervises itself, and learns a representation that only con-
tains the necessary information without access to the private
labels. To make this possible, the technique implemented
based on some embodiments of the disclosed technology
attempts at decreasing the distance between representations
(intermediate activations) of inputs with the same primary
labels and increasing the distance between those with dif-
ferent labels. This approach trains the noise tensors as if the
framework 1s speculating what information may be private,
and 1t tries to remove 1it, but using only the public primary
labels.

The performance of this self-supervised process against
private label classification shows its effectiveness 1n causing
high misclassification rates for them. As mentioned before,
the shredder technique may use two noise tensors, both of
which are the same size as the activations they are being
multiplied by (scaled) and added to. The number of elements
in these noise tensors equals to the number of trainable
parameters in our method. The rest of the model parameters
are all fixed.

During conventional training at each iteration, a batch of
training data 1s selected, fed through the network. Then,
using a given loss function, back-propagation and gradient
based methods, the trainable parameters are updated. The
shredder’s algorithm, however, as shown 1n table 1 below,
modifies this by choosing a second random batch of training
data, passing 1t through the first partition of the neural
network, L (x,9;) in FIG. 2B, and then applying both
multiplicative (e.g., n,) and additive (e.g., n,) noise tensors.
This yields a'; and a’; for members of the main batch and
random batch, respectively. Then, the 1.2 distance between
the representations for corresponding members of the main
batch and the random batch 1s computed. If the correspond-
ing elements 1n each of the batches have the same primary
labels, the distance between their representations should
have a positive coeflicient, since we would want to decrease
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it. If the primary labels are different, the distances would get
a negative coefficient before being used 1n the loss function.
Hence, a loss function with the formulation below 1s given:

M Eq. (5)
R Z -1 yﬂ,clﬂg(pﬂ,c) +

A(Z(f,ﬁzrf:r-‘ﬂ; ~ 4 ‘2 " Z(z’,ﬁ:}’fﬂ- (o= fai - % ‘2))

g J

TABLE 1

Training process algorithm of “shredder” technique

Procedure Training {model, training set, A, ¢)
For all (data, labels) € training set do
(data_rand, labels_rand) <« random (training_set)
output ¢« model.local (data)
output < model.local (output)
output_rand < model.local {data_rand)
output ¢« model.local (output_rand)
distance <« loutput_rand — outputl?
positive « (labels = labels_rand)
negative < (labels != labels_rand)
positive ¢« sum (distance X positive)
negative ¢<— sum {distance X negative)
logits <« model (data)
loss < CrossEntropy (logits, labels) + A(pos+(c—neg))
update_noise_tensors (loss)
End for
End procedure

-1 ON L s o D = OND O -] O s o D e

As discussed above, where the first term 1s cross entropy
loss for a classification problem consisting M classes (y,, ..
indicates whether the observation o belongs to class ¢ and
p,.. 1s the probability given by the network for the obser-
vation to belong to class c¢) and the second term minimizes
the distance between intermediate activations with same
labels while maximizing the distance between those with
different labels. 1 and j are iterators over the main batch and
random batch members, respectively and Y 1s the primary
label for that batch member. A and ¢ are hyperparameters
that should be tuned for each network. A exposes a knob
here, balancing the accuracy/privacy trade-off. That’s why 1t
should be tuned carefully for each network. If 1t 1s very bag,
at each update the noise would get much bigger, impeding
the accuracy from improving. And 1f 1t 1s too small, 1ts effect
on the noise would be minimal. In some 1mplementations,
0.01, 0.001 and 0.0001 can be used.

The shredder technique 1nitializes the multiplicative noise
tensor to () and the additive tensor to a Laplace distribution
with location parameter u and scale parameter b. Similar to
the 1nitialization in the traditional networks, our initializa-
tion parameters, 1.e., b and u are considered hyperparameters
in the training and need to be tuned. This 1nitialization
affects the accuracy and amount of initial noise (privacy) of
our model.

The privacy of the technique during inference through ex
vivo (1=MI) notion of privacy can be evaluated. However,
during training, calculating mutuwal information (MI) for
each batch update may be intractable. Thus, the shredder
technique uses an 1n vivo notion of privacy which uses
(SNR) as a proxy to MI. In other words, the shredder
technique uses SNR to monitor privacy during training. In
some implementations, the shredder technique can use the
formulation SNR=E[a“]/6°(n), where E[a”] is the expected
value of the square of activation tensor, and 6°(n) is the
variance of the noise, which 1s a—a, using the notation from
FIG. 2B. This can be used to estimate the relative privacy
achieved for each set of hyperparameters, during parameter
tuning.
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Extracting Distributions and Element Orders

During training, the model 1s constantly tested on a held
out portion of the fraining set. When the accuracy goes
higher than a given threshold (the amount the user 1s willing
to compromise) the training 1s halted and the shredder
technique proceeds to distribution extraction. The technique
implemented based on some embodiments of the disclosed
technology can use maximum likelihood estimation of the
distribution parameters, 1.e., loc and scale, to fit each learned
noise tensor to a Laplace distribution. It’s worth mentioning
that this stage 1s executed offline. The parameters for these
Laplace distributions are saved. The element orders of the
noise tensor are also saved. By the element orders, the sorted
indices of the elements of the flattened noise tensor 1s meant.
For instance, 1f a tensor looks like [[3.2, 4.8], [7.3, 1.5]], it’s
flattened version would be [3.2, 4.8, 7.3, 1.5], and the sorted
which 1s what the collector saves would be [2, 1, 0, 3].

Noise Sampling

In some 1implementations, Laplace distribution 1s used for
initialization, and training 1s performed until the desired
noise level for the given in vivo privacy (1/SNR) and
accuracy 1s reached. At this point the noise tensor 1s saved,
and the same process 1s repeated multiple times. This 1s
similar to sampling from a distribution of noise tensors, all
of which yield similar accuracy and noise levels. After
enough samples are collected, the distribution for the noise
tensor 1s obtained. At this point, for each inference, noise
samples are drawn from the stored distribution, and this
noise 1s 1njected to the activation and sent to the cloud. In
this phase the sampling 1s performed only from stored noise
distributions and no training takes place here.

Empirical Evaluation

The accuracy-privacy trade-off, the noise training process
with the loss function, a comparison of the in vivo and ex
vivo notions of privacy and finally, a network cutting point
trade-off analysis will be discussed below.

Mutual Information (MI) 1s calculated using the Informa-
tion Theoretical Estimators Toolbox’s Shannon Mutual
Information with KL Divergence. In some implementations,
MI 1s calculated over the shuffled test sets on MNIST dataset
for LeNet, CIFAR-10 dataset for CIFAR-10, SVHN dataset
for SVHN, and ImageNet dataset for AlexNet. These photos
are shuffled through and chosen at random. Using mutual
information as a notion of privacy means that Shredder
targets the average case privacy, but does not guarantee the
amount of privacy that 1s offered to each individual user.

Table 2 summarizes experimental results. It 1s shown that
on the networks, the method and system based on some
embodiments of the disclosed technology can achieve on
average 70.2% loss 1n information while inducing 1.46%
loss 1n accuracy. The table 2 also shows that it takes the
disclosed system a short time to train the noise tensor, for
instance on AlexNet it 1s 0.1 epoch.

TABLE 2

Summary of the experimental results
of Shredder for the benchmark networks.

Benchmark LeNet CIFAR SVHN  Alexnet Gmean
Original Mutual Infor- 301.84 236.34 19.2 12661.51 —
mation

Shredded Mutual Infor- 18.9 00.2 7.1 4439 —
mation

Mutual Information Loss 93.74% 61.83% 64.58% 64.94% 70.2%
Accuracy Loss 1.34% 1.42% 1.12% 1.95% 1.46%
Shredder’s Leamable 0.19% 0.65% 0.04% 0.02% 0.10%
Params over Model Size

Number of Epochs of 6.3 1.7 1.2 0.1 1.06

Training
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The accuracy-privacy trade-ofl, the noise training process
with the examples of loss function discussed 1n this patent
document, and a comparison to another privacy protection
mechanism can be evaluated as discussed below.

Experimental methodology: Mutual Information (MI) 1s
calculated using the Information Theoretical Estimators
Toolbox’s Shannon Mutual Information with KL Diver-
gence. Due to the high dimensionality of the tensors (espe-
cially large images) mutual information estimations are not
very accurate. That 1s why some example techniques 1mple-
mented based on some embodiments of the disclosed tech-
nology use feature selection methods for large networks to
decrease dimensionality for MI measurements. The first step
1s using only one channel, from the three input channels,
since the other two channels hold similar information. The
second step 1s removing features with single unique value,
and also features with collinear coethicient of higher than
0.98. This helps reduce the dimensionality gravely. As will
be discussed below, MI 1s calculated over the shuflled test
sets on MNIST dataset for LeNet, CIFAR-10 dataset for
CIFAR-10, SVHN dataset for SVHN, ImageNet dataset for
AlexNet, a subset of 24 celebrity faces from VGG-Face for
VGG-16 and 20 Newsgroups for a 5 layer DNN. These
photos were shuflled through and chosen at random. The
primary classification task for VGG-16 1s modified to be
gender classification of the celebrity faces. Using mutual
information as a notion of privacy means that the shredder
technique targets the average case privacy, but does not
guarantee the amount of privacy that i1s offered to each
individual user.

Table 3 summarizes other experimental results. It 1s
shown that on the networks, the shredder technique can
achieve on average 66.90% loss 1 information while induc-
ing 1.74% loss 1 accuracy with an average margin of error
of 0.22%. The table also shows that it takes the shredder
technique a short time to train the noise tensor, for istance
on AlexNet it 1s 0.2 epoch. The shredder technique has
0.22% trainable parameters compared to another method,
Deep Private Feature Extraction (DPF.

E).
TABL,
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ol 1n another example of convolutional neural network (e.g.,
AlexNet). Here, CIFAR stands for Canadian Institute For

Advanced Research. SVHN stands for Street View House
Numbers and indicates i1mage dataset for developing
machine learning and object recognition algorithms.
AlexNet 1s another example of convolution neural network.
The zero-leakage line shows the original mutual information
between mput 1mages and activations at the cutting point.

There 1s a trade-ofl between the amount of noise that we
incur to the network, and its accuracy. As shown 1n FIG. 1,
Shredder attempts to increase privacy while keeping the
accuracy intact. FIG. 3 shows the level of privacy that can
be obtained by losing a given amount of accuracy for LeNet,
CIFAR-10, SVHN, and AlexNet. In FIG. 3, the number of
mutual information bits that are lost from the original
activation using our method 1s shown on the Y axis. The
cutting point of the networks 1s their last convolution layer.
This can be perceived as the output of the features section of
the network, i we divide the network into features and
classifier sections.

The zero-leakage line depicts the amount of information
that needs to be lost in order to leak no information at all. In
other words, this line points to the original number of mutual
information bits 1n the activation that 1s sent to the cloud,
without applying noise. The black dots show the information
loss that Shredder provides, given a certain loss 1n accuracy.
These trends are similar to that of FIG. 1, since the system
based on some embodiments of the disclosed technology
tries to strip the activation from 1its excess information,
thereby preserving privacy and only keeping the information
that 1s used for the classification task. This 1s the sharp (lugh
slope) rise 1n information loss, seen 1in sub-figures of FIG. 3.
Once the excess mnformation 1s gone, what remains 1s mostly
what 1s needed for inference. That 1s why there 1s a point (the
low slope horizontal line 1n the figures) where adding more
noise (losing more information bits) causes huge loss in
accuracy. The extreme to this case can be seen in 3a, where
approaching the Zero Leakage line causes about 20% loss 1n
accuracy.

Summary of the experimental results of Shredder for the benchmark networks.

Benchmark LeNet CIFAR SVHN Alexnet
Original Mutual 300.04 249.24 14.85 12661.52
Information

Shredded Mutual 31.2 115.3 5.1 5312.53
Information

Mutual Information Loss 89.60% 46.27% 64.86% 58.05%
Accuracy Loss 1.31% 1.78% 1.72% 1.95%
Margin of Error +0.59% +0.57%  +0.12% +0.01%
Shredder’s Learnable 0.39% 1.29% 0.09% 0.03%
Params/DPFE

Number of Epochs 5.2 1.8 2.2 0.2

of Training

Accuracy-Privacy Trade-Off

FIG. 3 shows accuracy-privacy trade-ofl in 4 other
example networks, cut from their last convolution layer
Specifically, FIG. SA 3D show accuracy-privacy trade-oil in
4 other example networks, cut from their last convolution
layer Specifically, FIG. 3A shows accuracy-privacy trade-
ofl 1n an example of convolutional neural network (e. 2.,
LeNet), FIG. 3B shows accuracy-privacy trade-ofl 1n

20

VGG-16  News group  Average

28732.21 27.8 -

7168.75 0.52 -
75.05% 76.55% 66.90%
2.18% 1.99% 1.74%
+0.04% +0.02% +0.22%
0.04% 0.10% 0.32%

5.7 5.2 2.2

60

FIGS. 4A-4D shows accuracy-privacy trade-off 1n 4 other
example networks, cut from their last convolution layer

Specifically, FIG. 4A shows accuracy- prlvacy trade-ofl 1n
AlexNet, FIG. 4B shows accuracy- prlvacy trade-ofl 1n
CIFAR, FIG. 4C shows accuracy-pnvacy trade-ofl 1n
SVHN, and FIG. 4D shows accuracy-privacy trade-ofl in

20Newsgroup. The zero leakage line shows the original
mutual information between input 1mages and activations at

another example of neural network (e.g., CIFAR), FIG. 3C 65 the cutting point.

shows accuracy-privacy trade-ofl in another example of
neural network, and FIG. 3D shows accuracy-privacy trade-

FIGS. SA-5B shows accuracy-privacy trade-ofl for VGG-
16 (FIG. SA) and LeNet (FIG. 5B), cut from their last
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convolution layer. The zero leakage line shows the original
mutual information between input images and activations at
the cutting point. The righthand Y axis shows the normalized
(over pre-trained accuracy) misclassification rate of private
labels.

There 15 a trade-ofl between the noise that 1s applied to the
network, and 1ts accuracy. As shown in FIG. 1, the technique
implemented based on some embodiments of the disclosed
technology attempts to increase privacy (noise) while keep-
ing the accuracy intact. FIGS. 4A-4D and FIGS. SA-5B
show the level of privacy that can be obtained by losing a
given amount of accuracy for LeNet, CIFAR-10, SVHN,

AlexNet, VGG-16 and 20Newsgroups. The primary classi-
fication task for AlexNet, CIFAR, SVHN and 20News-

groups 1s their conventional use-case, and a private task 1s
not defined. However, in FIGS. 5A-5B for LeNet and
VGG-16, the primary classification task can be modified to
learn whether the number 1n the image 1s greater than five,
and to detect the gender of faces 1n the 1images, respectively.
The private tasks are defined as classilying what the num-
bers 1n the 1mages are exactly and identifying the faces in the
celebrity 1mages.

FIGS. 4A-4D and FIGS. 5A-5B show the number of
mutual information bits that are lost from the original
activation using our method, on the left side Y axis. For
LeNet and VGG-16, 1n FIGS. SA-5B, there 1s a second Y
axis which shows the normalized (over pre-trained accu-
racy) misclassification rate for the private task. The cutting
point of the networks 1s their last convolution layer. The
dotted Zero Leakage line depicts the amount of information
that needs to be lost 1n order to leak no mnformation at all. In
other words, this line points to the original number of mutual
information bits 1n the activation that 1s sent to the cloud,
without applying noise. The connected dots show the infor-
mation loss that the shredder technique implemented based
on some embodiments of the disclosed technology provides,
given a certain loss 1n accuracy. These trends are similar to
that of FIG. 1, since the shredder technique tries to strip the
activation from 1ts excess information, thereby preserving
privacy and only keeping the information that 1s used for the
classification task. This 1s the sharp (high slope) rise 1n
information loss, seen 1n FIGS. 4A-4D and FIGS. SA-5B.
Once the excess information 1s removed, the residue 1s what
1s needed for inference. That 1s why there 1s a point (the
low-slope horizontal line 1n the figures) where adding more
noise (losing more information bits) causes significant accu-
racy loss. The extreme to this case can be seen in FIGS. 5A
and 4D, where approaching the zero leakage line causes over
7% loss. The misclassification rate for private tasks in LeNet
and VGG-16 1s increasing, as more information 1s lost.

Loss Function and Noise Traiming Analysis

FIG. 6A 1llustrates graphs indicating 1in vivo privacy, and
FIG. 6B illustrates graphs indicating accuracy, showing in
vivo notion of privacy and accuracy per iteration of training,
on AlexNet, when the last convolution layer 1s the cutting
point. The lines labeled with “privacy agnostic (regular)”
show regular training with cross entropy loss function. The
lines labeled with “shredder” show the disclosed system’s
learning, with loss function shown 1n Equation (4).

As Equation (4) shows, the loss function implemented
based on some embodiments of the disclosed technology has
an extra term, 1n comparison to the regular cross entropy loss
function. This extra term 1s intended to help decrease signal
to noise ratio (SNR). FIGS. 6A and 6B show part of the
training process on AlexNet, cut from 1ts last convolution
layer. The lines labeled with “privacy agnostic (regular)”
show how a regular noise training process would work, with
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cross entropy loss and Adam Optimizer. As FIG. 6 A shows,
the 1n vivo notion of privacy (1/SNR) decreases for regular
training as the traimning moves forward. For Shredder how-
ever, the privacy increases and then stabilizes.

This 1s achieved through tuning of the A 1n Equation (4).
When the in vivo notion of privacy reaches a certain desired
level, A 1s decayed to stabilize privacy and {facilitate the
learning process. I 1t 1s not decayed, the privacy will keep
increasing and the accuracy would increase more slowly, or
even start decreasing. The accuracy, however, increases at a
higher pace for regular training, compared to the disclosed
system 1n FIG. 6B. It 1s noteworthy that this experiment was
carried out on the training set of ImageNet, and when the
training 1s finished, there 1s negligible degradation 1n accu-
racy for the disclosed system, Shredder, on the test set, in
comparison to the regularly trained model.

FIG. 7 shows 1n vivo notion of privacy, normalized
accuracy of private task and primary task per epoch of
training on VGG-16, when the last convolution layer 1s the
cutting point.

FIG. 8A shows normalized misclassification rate of pri-
vate labels (identity) and FIG. 8B shows privacy improve-
ment comparison with DPFE (Deep Private Feature Extrac-
tion) for different accuracy levels of the primary task (gender
classification) over VGG-16 on VGG-Face dataset.

As Equation (5) shows, the loss function implemented
based on some embodiments of the disclosed technology has
an extra term, 1n comparison to the regular cross entropy loss
function. This extra term 1s intended to help eliminate excess
information. FIG. 7 shows part of the training process on
V(GG-16 for gender classification on the VGG-Face dataset,
cut from 1ts last convolution layer. The multiplicative noise
tensor was 1nitialized to 1 and the additive to 0, so as to
better show the eflectiveness of the method, on a pre-trained
network with no mmtial noise to help privacy. The line
indicating the accuracy of the private task shows 1dentifying
which face belongs to whom.

As FIG. 7 shows, the 1n vivo notion of privacy (1=SNR)
1s 1ncreasing as the traiming moves forward. The accuracy of
the private task, however, 1s decreasing while the accuracy
of the primary task is relatively stable. It 1s noteworthy that
the accuracy numbers are normalized to the pretrained
accuracies for private and primary tasks.

The DPFE (Deep Private Feature Extraction) 1s a privacy
protection mechanism that aims at obfuscating given private
labels. For these experiments, VGG-16 network 1s used with
celebrity images which 1s the same setup used in the DPFE.
DPFE partitions the network 1n two partitions, first partition
to be deployed on the edge and the second for the cloud. It
also modifies the network architecture by adding an auto-
encoder 1n the middle, to reduce dimensions, and then
re-training the entire network with its loss function. DPFE’s
loss function assumes knowledge of private labels, and tries
to maintain accuracy while removing the private labels
through decreasing the distance between intermediate acti-
vations with diflerent private labels and increasing the
distance between intermediate activations of inputs with the
same private label. After training, for each inference, a
randomly generated noise 1s added to the intermediate
results on the fly. DPFE can only be effective if the user
knows what s/he wants to protect against, whereas the
shredder technique implemented based on some embodi-
ments of the disclosed technology oflers a more general
approach that tries to eliminate any information that is
irrelevant to the primary task. Table 3 has a row which
compares the number of trainable parameters for the shred-

der technique with DPFE and 1t can be seen that the shredder
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technique’s parameters are extremely lower than DPFE’s.
DPFE also incurs extra computation overhead with 1ts
embedded auto-encoder and 1s 1ntrusive to the model, since
it modifies the architecture and parameters, and needs to
re-deploy the model. Whereas, the shredder technique does
not modily the already deployed models, it just multiplies
and adds the noise.

To run experiments, the intermediate outputs of the net-
works are fed to two classifiers, for gender and 1dentity. FIG.
8A compares DPFE to the shredder technique implemented
based on some embodiments of the disclosed technology in
terms of the misclassification rate of the private task, 1.e. the
identity classification (identity compromise) for given levels
of accuracy for the main task. The shredder technique
implemented based on some embodiments of the disclosed
technology causes negligibly less misclassification rate,
which can be attributed to 1ts unawareness of the private
labels, and also its fewer number of trainable parameters
which limit i1ts control on the training.

FIG. 8B shows privacy improvement of the shredder
technique implemented based on some embodiments of the
disclosed technology over DPFE. It can be inferred from
FIG. 8B that the shredder technique implemented based on
some embodiments of the disclosed technology performs
better, since 1t has a more general approach which scrambles
more overall information. DPFE takes an approach which 1s
directed at a specific goal, which impedes 1t from providing
privacy for aspects other than the private task. To compare
the methods more intuitively, i there are 1mages of people
with their surroundings, DPFE would make sure that the
identities of these people are hidden, but would not eliminate
the background, or any other information. The shredder
technique implemented based on some embodiments of the
disclosed technology, however, removes mformation 1n all
aspects, possibly eliminating the background as well.

In Vivo Vs. Ex Vivo Notion of Privacy Analysis

FIG. 9A shows 1n vivo vs €x vivo notion of privacy in
SVHN, and FIG. 9B shows 1n vivo vs ex vivo notion of
privacy 1n LeNet, for different cutting points. The simailar
slope of the lines show that different layers behave similarly
in terms of losing information (ex vivo privacy) when the
same amount of noise 1s applied to them during training (in
VIVO privacy).

Due to the operations that take place along the execution
of different layers of a neural network (e.g., convolution,
normalization, pooling, etc.), mutual mformation between
the mputs to the network and the activations keep decreasing,
as we move forward. So, deeper layers have lower mutual
information than the more surface layers, and when noise 1s
injected into them, 1t 1s similar to giving the privacy level a
head start, since 1t already has less information compared to
a layer on the surface. FIG. 9A shows that incurring the same
amount of noise (which induces 1n vivo privacy, SNR) to
convolution layers of SVHN, causes information loss of for
all four layers. This does not mean the same amount of ex
vivo privacy, because each layer had a different starting
point for ex vivo privacy. What it means 1s that the infor-
mation loss 1s proportional to incurred noise and the pro-
portion 1s consistent over all the 4 layers shown.

Cutting Point Trade-Ofls

FIG. 10A shows computation/communication costs and
privacy with deeper layers selected in SVHN for Shredder’s
noise addition, and FIG. 10B shows computation/commu-

nication costs and privacy with deeper layers selected in
LeNet for Shredder’s noise addition. The method and system
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based on some embodiments of the disclosed technology
maintain a minimal accuracy loss of for all of the cutting
points.

Layer selection for network cutting point depends on
different factors and i1s mostly an mterplay of communica-
tion and computation of the edge device. It depends on how
many layers of the network the edge device can handle
computationally, and how much data 1t can send through the
connection protocols it can support. If deeper layers are
selected in the network, there will be a lower mutual
information between the image and activation at the begin-
ning, and even more mformation will be lost by maximizing
the noise. Therefore, as a general rule, 1t 1s better to choose
the deepest layer that the edge device can support.

As shown 1n FIGS. 10A and 10B, the deeper the layer, the
more unnecessary information will be lost, and therefore ex
vivo privacy 1s monotonically increasing. Computation cost
1s also monotonically increasing as 1t’s a cumulative func-
tion ol computation costs of all the preceding layers. Com-
munication cost, on the other hand, 1s not typically mono-
tonic as the size of the output of a layer can be smaller and
also larger than the size of its input. Some embodiments of
the disclosed technology may model the total cost as for a
specific cutting point. For SVHN, as FIG. 10A shows,
Conv6 1s the obvious cutting point choice as 1t incurs less
cost and exhibits more privacy compared to other layers.
That 1s mainly because Conv6 has significantly smaller
output than 1ts preceding layers and 1t substantially brings
down the communication cost. For LeNet (FIG. 10B),
Conv2 1s selected over Conv0 as incurring one percent cost
1s likely worth the gained privacy level.

As cloud-based DNNs impact more and more aspects of
users’ everyday life, 1t 1s timely and crucial to consider their
impact on privacy. As such, the method and system based on
some embodiments of the disclosed technology use noise to
reduce the information content of the communicated data to
the cloud while still maintaining high levels of accuracy. By
casting the noise 1njection as an optimization for finding a
tensor of differentiable elements, the disclosed method and
system may strike an asymmetric balance between accuracy
and privacy. Experimentation with multiple DNNs showed
that the disclosed method and system can significantly
reduce the information content of the communicated data
with only 1.46% accuracy loss.

FIG. 11 shows an example of the noise distribution
training phase based on some embodiments of the disclosed
technology. The example of the noise distribution traiming
phase may include, at operation 1110, mmitializing noise
tensor with Laplace distribution, at operation 1120, traiming
the noise tensor, at operation 1130, fitting the trained tensor
to a Laplace distribution, at operation 1140, saving the
parameters of the Laplace distribution and the element
orders, and at operation 1150, going back to operation 1110,
unless there are 100 saved distributions.

FIG. 12 shows an example of the inference phase based
on some embodiments of the disclosed technology. The
example of the inference phase may include, at operation
1210, randomly choosing a distribution and saved order
tuple, at operation 1220, drawing enough samples from the
Laplace distribution to populate the noise tensors, at opera-
tion 1230, re-arranging tensor elements to match the saved
order, at operation 1240, applying the noise tensors to the
activations, and at operation 1250, sending the activations
over the network.

FIG. 13 shows an example of a data processing method
based on some embodiments of the disclosed technology.
The example of a data processing method may include, at




US 12,008,470 B2

19

operation 1310, determining an amount of shredding used 1n
a shredding operation by which source data 1s converted nto
shredded data, and, at operation 1320, transiferring the
shredded data over an external network to a remote server
for a data processing task. Here, the shredding reduces the
information content and incurs a limited degradation to an
accuracy of the data processing task due to the shredding
operation.

FIG. 14 shows an example method of transmitting data
over a network based on some embodiments of the disclosed
technology. The example method of transmitting data over a
network may include, at operation 1410, generating source
data to be transmitted over the network, at operation 1420,
performing a shredding operation on the source data to
generate shredded data such that the source data 1s not
recoverable from the shredded data, and, at operation 1430,
transmitting the shredded data over the network.

FIG. 15 shows an example of a deep neural network 1500
implemented based on some embodiments of the disclosed
technology. The deep neural network 1500 may include a
deep neural network system 1510, one or more input nodes
1520, and one or more output nodes 1330. The deep neural
network system 1510 may include one or more processors
1512 and one or more memory devices 1514 operatively
coupled to the one or more processors 1512. One or more of
the processors 1512 may be operable to receive data and
noise. The deep neural network 1500 may perform the
operations of the noise distribution training phases discussed
above.

One or more of the processors 1512 may be operable to
train the deep neural network 1500 based on a traiming
dataset. The training can be performed to learn the noise
distributions. In some implementations, one or more of the
processors 1512 may be operable to determine which layer
1s the optimal choice for cutting the DNN to strike the best
balance between computation and communication while
considering privacy. In some implementations, one or more
of the processors 1512 may be operable to configure one or
more mput nodes 1520 and one or more output nodes 1530.

FIG. 16 shows an example of an edge device 1610 in
communication with a cloud 1620 based on some embodi-
ments of the disclosed technology. When a set of data 1s
given to the neural network trained as discussed above, the
edge device 1610 and the cloud 1620 may perform the
operations of the inference phase discussed above. In some
implementations, the edge device 1610 may perform the
operations ol the inference phase, including choosing a
distribution, drawing samples from the distribution, re-
arranging tensor elements to match the saved order, and
applying the noise tensors to the activations. The final noisy
activation 1s sent from the edge device 1610 to the cloud
1620 to perform the rest of the inference. The operations of
the inference phase performed by the edge device 1610 and
the cloud 1620 may maintain the accuracy of the data
processing task by using the deep neural network 1500
trained to learn the noise distributions.

Implementations of the subject matter and the functional
operations described in this patent document can be 1imple-
mented 1n various systems, digital electronic circuitry, or in
computer software, firmware, or hardware, including the
structures disclosed in this specification and their structural
equivalents, or 1n combinations of one or more of them.
Implementations of the subject matter described in this
specification can be implemented as one or more computer
program products, 1.¢., one or more modules ol computer
program instructions encoded on a tangible and non-transi-
tory computer readable medium for execution by, or to
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control the operation of, data processing apparatus. The
computer readable medium can be a machine-readable stor-
age device, a machine-readable storage substrate, a memory
device, a composition of matter effecting a machine-read-
able propagated signal, or a combination of one or more of
them. The term “data processing unit” or “data processing
apparatus” encompasses all apparatus, devices, and
machines for processing data, including by way of example
a programmable processor, a computer, or multiple proces-
sors or computers. The apparatus can include, 1n addition to
hardware, code that creates an execution environment for the
computer program in question, e.g., code that constitutes
processor firmware, a protocol stack, a database manage-
ment system, an operating system, or a combination of one
or more of them.

A computer program (also known as a program, software,
soltware application, script, or code) can be written 1n any
form of programming language, including compiled or
interpreted languages, and 1t can be deployed in any form,
including as a stand-alone program or as a module, compo-
nent, subroutine, or other unit suitable for use in a computing
environment. A computer program does not necessarily
correspond to a file 1n a file system. A program can be stored
in a portion of a file that holds other programs or data (e.g.,
one or more scripts stored 1n a markup language document),
in a single file dedicated to the program in question, or in
multiple coordinated files (e.g., files that store one or more
modules, sub programs, or portions of code). A computer
program can be deployed to be executed on one computer or
on multiple computers that are located at one site or dis-
tributed across multiple sites and interconnected by a com-
munication network.

The processes and logic flows described 1n this specifi-
cation can be performed by one or more programmable
processors executing one or more computer programs to
perform functions by operating on 1nput data and generating
output. The processes and logic flows can also be performed
by, and apparatus can also be implemented as, special
purpose logic circuitry, e.g., an FPGA (field programmable
gate array) or an ASIC (application specific integrated
circuit).

Processors suitable for the execution of a computer pro-
gram include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive 1structions and data from a read only memory or a
random access memory or both. The essential elements of a
computer are a processor for performing instructions and
one or more memory devices for storing instructions and
data. Generally, a computer will also include, or be opera-
tively coupled to recerve data from or transfer data to, or
both, one or more mass storage devices for storing data, e.g.,
magnetic, magneto optical disks, or optical disks. However,
a computer need not have such devices. Computer readable
media suitable for storing computer program instructions
and data include all forms of nonvolatile memory, media and
memory devices, including by way of example semiconduc-
tor memory devices, e.g., EPROM, EEPROM, and flash
memory devices. The processor and the memory can be
supplemented by, or incorporated 1n, special purpose logic
circuitry.

While this patent document contains many specifics, these
should not be construed as limitations on the scope of any
invention or of what may be claimed, but rather as descrip-
tions of features that may be specific to particular embodi-
ments of particular inventions. Certain features that are
described 1n this patent document 1n the context of separate
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embodiments can also be implemented in combination 1n a
single embodiment. Conversely, various features that are
described in the context of a single embodiment can also be
implemented 1n multiple embodiments separately or 1n any
suitable subcombination. Moreover, although features may
be described above as acting 1n certain combinations and
even 1mmtially claimed as such, one or more features from a
claimed combination can in some cases be excised from the
combination, and the claimed combination may be directed
to a subcombination or variation of a subcombination.

Similarly, while operations are depicted in the drawings 1n
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or 1n sequential order, or that all illustrated operations
be performed, to achieve desirable results. Moreover, the
separation of various system components 1 the embodi-
ments described in this patent document should not be
understood as requiring such separation in all embodiments.

Only a few implementations and examples are described
and other implementations, enhancements and variations
can be made based on what i1s described and illustrated 1n
this patent document.

What 1s claimed are techniques and structures as
described and shown, including:

1. A data processing method, comprising:

determining an amount of conversion from source data to

converted data 1n a conversion operation; and
transferring the converted data over an external network
to a remote server for a data processing task,

wherein the conversion shredding reduces an information

content to be transferred over the external network to
the remote server and incurs a limited degradation to an
accuracy ol the data processing task due to the con-
version operation,

wherein the conversion operation includes a training

operation that includes:

initializing a noise tensor with a predetermined noise

distribution;

training the noise tensor such that the trained noise tensor

maintains the accuracy and 1s then fitted to a distribu-
tion; and

storing parameters and tensor element orders of the

trained noise tensor.

2. The method of claim 1, wherein the data processing
task includes an interference computing of a machine learn-
ing technique.

3. The method of claim 2, wherein the conversion opera-
tion includes adding a noise to the source data to generate
the converted data.

4. The method of claim 1, wherein the conversion opera-
tion further includes:

drawing samples from the stored parameters of the traimned

noise tensor;

rearranging tensor clements of the selected samples to

match the stored tensor element orders of the noise
tensor; and

applying the rearranged tensor elements to activations to

be transterred to the remote server.

5. The method of claim 1, wherein the noise distribution
1s a distribution with a set of parameters.

6. The method of claim 1, wherein the conversion opera-
tion 1ncludes:

selecting, as a local network, one or more layers of a deep

neural network (DNN) with multiple layers between
input and output layers such that a computation of the
one or more layers 1s made on an edge device config-
ured to control data flow at a boundary between the
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local network and the DNN and selecting, as a remote
network, remaining layers of the DNN;

obtaining a first activation tensor by providing an mnput to

the local network and obtaining an output of the local
network responsive to the iput;

obtaining a second activation tensor by injecting a noise

tensor sampled from stored distributions to the first
activation tensor:;
teeding the first activation tensor and the second activa-
tion tensor to the remote network to obtain first and
second results, respectively, from the remote network;

finding a trained noise tensor that mimmizes a loss
function of the DNN;

adding the trained noise tensor to a third activation to be

transmitted to the remote network; and

transmitting the third activation.

7. The method of claim 6, wherein the loss function 1s
determined based on a difference between the first and
second results.

8. The method of claim 6, wherein the trained noise tensor
1s determined such that mutual information between the
input and at least one of the first and second activation
tensors 1s minimized.

9. The method of claim 8, wherein the mutual information
between the input and the at least one of the first and second
activation tensors 1s determined based on a signal to noise
ratio.

10. The method of claim 6, wherein the first activation
tensor 1s an mmtermediate activation tensor for training.

11. A method of transmitting data over a network, com-
prising:

generating source data to be transmitted over the network;

performing a conversion operation on the source data to

convert the source data into converted data such that
the source data 1s not recoverable from the converted
data; and

transmitting the converted data over the network,

wherein the conversion operation includes:

selecting, as a local network, one or more layers of a deep

neural network (DNN) with multiple layers between
input and output layers such that a computation of the
one or more layers 1s made on an edge device config-
ured to control data flow at a boundary between the
local network and the DNN and selecting, as a remote
network, remaining layers of the DNN;

obtaining a first activation tensor by providing an nput to

the local network and obtaining an output of the local
network responsive to the put;

obtaining a second activation tensor by injecting a noise

tensor sampled from stored distributions to the first
activation tensor;
teeding the first activation tensor and the second activa-
tion tensor to the remote network to obtain first and
second results, respectively, from the remote network;

finding a trained noise tensor that minimizes a loss
function of the DNN;

adding the trained noise tensor to a third activation to be

transmitted to the remote network; and

transmitting the third activation.

12. The method of claim 11, wherein the network 1includes
a deep neural network (DNN).

13. The method of claim 12, wherein the conversion
operation includes adding noise to the source data to gen-
erate the converted data including reduced data content and
added noise such that an inference from the converted data
by the DNN vyields a same outcome as an inference from the
source data.




US 12,008,470 B2
23 24

14. The method of claim 11, wherein the sampled noise
tensor 1s obtained based on a distribution with a set of
parameters.

15. The method of claim 11, wherein the loss function 1s
determined based on a difterence between the first and 5
second results.

16. The method of claim 11, wherein the trained noise
tensor 1s determined such that mutual information between
the mnput and at least one of the first and second activation
tensors 1s minimized. 10

17. The method of claim 16, wherein the mutual infor-
mation between the mput and the at least one of the first and
second activation tensors 1s determined based on a signal to
noise ratio.

18. The method of claim 11, wherein the first activation 15
tensor 1s an termediate activation tensor for training.
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