12 United States Patent

US012001351B2

(10) Patent No.: US 12,001,351 B2

Chachad et al. 45) Date of Patent: *Jun. 4, 2024
(54) MULTIPLE-REQUESTOR MEMORY ACCESS USPC e e, 710/307
PIPELINE AND ARBITER See application file for complete search history.
(71) Applicant: TEXAS INSTRUMENTS :
INCORPORATED, Dallas, TX (US) (56) References Cited
U.S. PATENT DOCUMENTS
(72) Inventors: Abhijeet Ashok Chachad, Plano, TX
(US); David Matthew Thompson, 5,903,908 A 5/1999 Singh et al.
Dallas, TX (US) 6,430,654 Bl 8/2002 Mehrotra et al.
6,895,482 Bl 5/2005 Blackmon et al.
: 90,501,411 B2 11/2016 Guthrie et al.
(73) ASSlgnee: Texas InStrumentS Incorporatedﬂ 10:896:141 B2 K 1/202 Cl)lok le*“? “““““““““ G06F 13/1615
Dallas, TX (US) 11,138,117 B2* 10/2021 Chachad GOGF 12/0888
11,194,617 B2 12/2021 Chachad et al.
(*) Notice: Subject to any disclaimer, the term of this 11,461,254 B1* 10/2022 Singh GOG6F 12/0882
patent is extended or adjusted under 35 38%; 88‘?3%23 i ?gg?g iiﬁ‘g‘rel‘l‘e et ﬂl*l
1 erson et al.
U.5.C. 154(b) by 0O days. 2016/0124890 Al 5/2016 Thompson et al.
This patent 1s subject to a terminal dis-
claimer. FOREIGN PATENT DOCUMENTS
(21) Appl. No.: 17/734,174 EP 1217526 6/2002
WO 2018031149 2/2018
(22) Filed: May 2, 2022
OTHER PUBLICATIONS
(65) Prior Publication Data |
International Search Report for PCT/US2020/034472 dated Aug.
US 2022/0261360 Al Aug. 18, 2022 27. 2020.
Related U.S. Application Data * cited by examiner
(63) Continuation of application No. 16/882,503, filed on
May 24, 2020, now Pat. No. 11,321,248. Primary Examiner — Brian T Misiura
(60) Provisional application No. 62/852,404, filed on May (74) ‘Ab‘for ney, Agent, or Firm — Brian D. Graham; Frank
24, 2019, provisional application No. 62/852.411, D. Cimino
filed on May 24, 2019.
(37) ABSTRACT
(51) Int. CL _ _
GO6F 13/16 (2006.01) In described examples, a coherent memory system 1ncludes
GO6F 12/08 (2016.01) a central processing unit (CPU) and first and second level
(52) U.S. CL. caches. The memory system can include a pipeline for
CPC GO6F 13/1605 (2013.01); GOGF 12/08 accessing data stored 1n one of the caches. Requestors can
’ (2013.01) access the data stored in one of the caches by sending
(58) Field of Classification Search requests at a same time that can be arbitrated by the pipeline.

CPC GO6F 13/1605; GO6F 12/0875; GO6F

12/0897;, GO6F 12/0811

500A
™

20 Claims, 7 Drawing Sheets

L2 SRAM BANK INTERFACE - 4 VIRTUAL BANKS

¢ ANVE IVILMIA
L XMNVE TVNLHIA
0 MNVE Tv1dIA

r— - T

1 520 1 510 i
| | f} | | / |
| | | | I
i BANK 1 lli BANK { !I
| |] I
It r<lististiisl M isils!lislis] !
| | X 2 o A » o X o z I
| | - P - s | § - P c c !
11 (2L IBVIZEVIE 1 12T BRI
1 |ISIISTIBLIB]L 1 (BLISTIBLIS] ¢
BEREIRE: ?: - I EEIRE: ? =1 I
| | | | |
| | | |
l 522 /1 I
| | | I
I I R R R

JINVNAQ
odd

~—
—
3
=
4 "
-

e\
= :
— [DId
£
)
—
= 91ANOD OISV EQNSIN
—
i —
il } Tev

| vyl ONIMOO1D -
r~ _ - i1r__- "
S N — — — | 11| 5= — —
- | eyl ~| swsisiad | (| T2 || €21 lZh [l 2 |] el m
> | 140 || a1 gSXe 1 | 1| a gSXe L]
7 | | |

| | | |

| ||

| JOViL _ =
N /NOLLVTININZ
. " :
= | (4OLJ3A + UVIVOS)] (4OLJIA + UVIVOS)
E | NMOQHIMOd | | X/9] X/9

_ | | |

| ||

LGl

¢ DId

YITIONINOD | ~L¥2
€ 13ATT

US 12,001,351 B2

_
_
1 | 3JHOVD WILDIA
_ L7 MOQVHS HITIONINOD NG 7
= “ JHOVD NIVIA v 7 Z TIATT
e ' | V1MOavHs
3 | vz
= | PET Sore
|
_ JHOVD WILDIA TN INGS
_ |
< AVHS LT
m _ AHOYVYAIH SHOYD 1] L 13A3T
= | AHOWIW Z1/L 1
. _
-
>] 622 444 122
Ndd . 017

U.S. Patent

U.S. Patent Jun. 4, 2024 Sheet 3 of 7 US 12,001,351 B2

512b - 2dp 512b - 2dp 3
WRITES, VICTIMS, |2 READ,
SNOOP RESP DMA WRITE
SNOOP 512b - 2dp
WRITE
= VICTIMS, | —
= SNOOPRESP, | &
7 512b - 2dp READ | ©
Z DATAWRITERESP | | DRUDMAREAD | & | N
L CFGWRITE | = o
S 512b 2dp READ i =
0 O -
5 BLK Coh =
O
Y i
;_, 512b 2dp READ
< =AU
O 512b - 2dp
= READ DATA SNOOP
»
640 TABLERD | & |
< — ¢) o o)
2 28 [7 e & = 53
~ & v | 519b READ/ Q I 64b TABLE RD L
512b READ lréjl o o0 o
b
5|| READDATA
m
o 5?{;3 ;g
O
= i I Y 512b READ/
| B o @R 512b 2dp READ WRITE
£ ECRI O 2 | |
" = | | = BLK Coh
2 NS | IS8 |8
7 WRITE
™ 64b SCALAR WR

64b SCALARRD

512b VECTOR WR 512b - 2dp READ

512b READ/

363
2 [64K..4M] S+SRAM
4 PHYSICAL BANKS x 4 VIRTUAL BANKS x 512b y
331 300

&

O

l—

- > | DATA WRITE RESP
512b VECTOR RD = WRITE
64b SCALAR | B SNOOP

[] RW =Y O
=N 1024b 2 | @ 512b READ/
s VECTORRW | © [512b- 2dp WRITES, WRITE
—_ ~ VICTIMS, SNOOP

0 RESP

US 12,001,351 B2

Sheet 4 of 7

Jun. 4, 2024

U.S. Patent

08Y

vV DIA cop~ | ¥ITIONINOD
NMOQYIMOd

QINVNAC

V8Y ~roog E I woaamod |47 | nouvinna |57 [anonsw |

¢ qz1S

17 JOV4HILINI
lm
l) ANV gV

¢ az1S ovn | | TIVM3:
M..m...m [INVHS ¢
] 003
¢] qzLs
MR
Ton N39S D03 L.V
SV MTo0m
¢ qz1S
2\
L 9400
A
00V

ovy

Hmms_ 444 AVEOVL ISaN | CvV s_éo&
n_: epy] MOQYHS V1 | | 21 g m_zo«o 71

WS LoV
asnods3y avad b 4 aimum 940 ‘avay viwas

3LIYM VN 'FSNOJSTY 'dS3Y JOONS 'SINILOIA | dOONS

av3ay 214dpz-| 9zi8 JLIYM dpz-| 9Z18§

147
0SY

dAT1041INOD dHIVO ¢

H3SN 919 TVYNYILNI TYNYILXI-AONTHIHOD AHOWIN

204 NVHOVL

JNN
dS3y
V1VGQ 0CY dOONS
SSIN m_,qm_.m (vd am JOONS '‘SWILIIA
dpz-1 M8 gy ‘STLINM
qz18 93 Qb9 aidez-L
qz1s

A% CCv LCY

0 3400

U.S. Patent Jun. 4, 2024 Sheet 5 of 7 US 12,001,351 B2

rr— " " 7 7 7 /7]
| |
| VIRTUAL BANK 0 | o
N
| | o
l o | o| | VIRTUAL BANK 1
P E i
| @ | | VIRTUAL BANK 2
| S
: VIRTUAL BANK 3 : o
L e
rr— 7]
| |
| VIRTUAL BANK 0 | o
N
| | ©
¥ | o | —| | VIRTUAL BANK 1 '
< | NN v |
1 = |
< | @ || VIRTUAL BANK 2
| I
> : VIRTUAL BANK 3 : o <
S L o __ _ 0
E ““““““““““““““ _ .
o [_ Bl O
= | l E
Z | VIRTUAL BANK 0 | o
¢ N
Z I | ©
D | ~ | | VIRTUAL BANK 1
| < |
~ 1 | D] | VIRTUAL BANK2
l | &
</ : VIRTUAL BANK 3 : o
-
- L e e e _
rr— " - - -]

512b

512b

-~ s40

VIRTUAL BANK (:
VIRTUAL BANK 1
VIRTUAL BANK 2 l
VIRTUAL BANK 3 l

[
l
|
|
|
|
|
I
I
l
|
|
|
l
|
I
L

US 12,001,351 B2

da¢ DIA
rARe rARS AR AR G215 AR AR FARY
r-—Tt-—-—--T--1r-——T-—-——-T--r~—T-—-———t--r—T-———1——17
| | | | | | | _
| _ 1 | __ _ | 1 1 | _ |
ﬂ | | | | | | | |
I = =] 1l [o =] Il [= =1 1l [- |
S|z < | 11| < | 11 | < | 11 | E > |
21| Z 2| 11 | Z S| 11 | 2 S| 11 | Z < |
v p _ ol — ~_ 1] ~_ . - _~ ol e ‘
<[<T <t <T < <I <L <L
|2 S 1 |3 S 1|3 S| 11 |3 > |
| o O | | o 0 | | o o | | o o _
T S = 1] S =] S =] S = |
~ | | | | | 1 | |
- | 0 MNVY 1 | | MNVH | | ¢ MNYY | | € MNVY |
m | | | | | | | |
— |] | | | | | |
L___ O Jbo_ o Qes Je____ L I B ovs

U.S. Patent

U.S. Patent Jun. 4, 2024 Sheet 7 of 7 US 12,001,351 B2

600
601 N 602 603 604 605 FIG. 6

DMC . REQUESTORS

——— ———-
. =l Bl B COUNTERS]T. N
=| §| g & £
x| S| 5| & K 609

- v
W D
ollellellg] | 2|l
Sl E|| B E] | B
621 623A] 623B ey
_ FIFO1.N]
RAU RAU e
fla 922 || kA | AREA
BANKMAXRAU || x8x [BANKTRAU || BANKORAU | coq
63 STAGE PIPES/ | STAGE 1 STAGE 1
STALINGARS || BANKS | STALLINGARB || STALLINGARB |Ior " —
ADDRESS ADDRESS ADDRESS | L"ASTASET
630 -CREDITS 632 -CREDITS -CREDITS
STRUCTURAL || 1x8x | -STRUCTURAL || -STRUCTURAL
1 PPES. Y] EVE
641~[[Bankmaxrau |25 T Bank 1R | [BanKoRAU | T RauTAGE 2
_____ | STAGE 2-NBARB || _ _ _| STAGE 2-NBARB || STAGE 2-NB ARB |L- = = — = -
- === ==
851 |PIPE STAGE PO
mmmmm TAGACCESS H——————|P¥ 88 oo
PIPE STAGE P!

071~ Hrrmiss ConTRoL 672 [F’IF‘E STAGE P3

L L2 RAM DATA B

32 MEMORY s &
&3 | === |28 —-F-————o———————— —

= 5 %

<
z S 673

| PIPE STAGE P4
682 it

681 683 = //
MASTER ARB FOR MASTER ARB FOR
691~ MSMC TRANSACTIONS DMC TRANSACTIONS [™-692

US 12,001,351 B2

1

MULTIPLE-REQUESTOR MEMORY ACCESS
PIPELINE AND ARBITER

CROSS-REFERENCE TO RELATED
APPLICATION

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 16/882,503, filed May 24, 2020, which claims

the benefit of U.S. Provision& Application No. 62/852,404,
filed May 24, 2019, and the benefit of U.S. Provisional
Patent Application No. 62/852,411, filed May 24, 2019, each
of which 1s incorporated herein by reference in its entirety
and for ail purposes.

BACKGROUND

Processing devices can be formed as part of an integrated
circuit, such as a part of a system on a chip (SoC). In some
examples, the SoC includes at least one central processing
unit (CPU), where each CPU of the SoC 1s coupled to an
integrated (e.g., shared) memory system. The memory sys-
tem can 1nclude, for example, a multi-level cache memory
(e.g., static RAM—SRAM-—formed on the integrated cir-
cuit of the SoC) and at least one main memory (e.g.,
dynamic RAM—DRAM and/or DDR—memory that can be
external to the integrated circuit of the SoC).

Increasingly complex memory architectures continue to
provide scalability challenges when adding (or coupling)
increasingly powertul CPUs to a processing device. The
scalability challenges remain, and can become even greater,
when multiple CPUs share a common address space of a
memory system. Portions of the common address space of
shared memory can include various levels of coherent cache
(e.g., where various levels can contain different memories
for storing data having a unique address).

In one example, a CPU 1n a cached memory system can
consume an entire cache line every 4 cycles, which places
additional processing demands of a cache designed to coher-
ently share stored cache information between various CPUs.
Such latencies can be lengthened when a cache 1s configured
to protect certain areas of cache memory from being read or
altered by at least one CPU that would otherwise be per-
mitted to access lines of cache. Increasing the data security
of such systems can require increased processing power
and/or more eflicient processing architectures.

SUMMARY

In described examples, a coherent memory system
includes a central processing unit (CPU) and first and second
level caches. The memory system can include a pipeline for
accessing data stored 1n one of the caches. Requestors can
access the data stored i one of the caches by sending
requests at a same time that can be arbitrated by the pipeline.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a high-level system diagram showing an
example dual core scalar/vector processor formed as a
system-on-chip.

FIG. 2 1s a high-level diagram showing levels of an
example hierarchical memory system.

FIG. 3 shows an example one- or optionally two-core
scalar and/or vector processor system 300 having a coherent
and hierarchical memory architecture.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4 shows an example umified memory controller of a
second level of a coherent and hierarchical memory archi-
tecture.

FIG. SA shows an example level 2 memory bank interface
of the system of FIG. 4 having 4 virtual banks per physical
bank.

FIG. 5B shows an example level 2 memory bank interface
of the system of FIG. 4 having 2 virtual banks per physical
bank.

FIG. 6 1s a flow diagram of an example banked, selec-
tively blocking cache controller pipeline having reservation-
based arbitration and scheduling of cache transactions.

DETAILED DESCRIPTION

In the drawings, like reference numerals refer to like
clements, and the various features are not necessarily drawn
to scale.

A processing device can be formed as part of an integrated
circuit, such as a system on a chip (S0C). As described
hereinbelow, the processing device can include example
security features for protecting security of data in a memory
system (such as a multi-level cache system).

FIG. 1 1s a high-level system diagram showing an
example dual core scalar/vector processor formed as a
system-on-chip. SoC 100 1s an example dual core scalar
and/or vector processor that includes a central processing
unit (CPU) 110 core. The CPU 110 core includes a level one
istruction cache (L11) 111, a level one data cache (L1D)
112, and a streaming engine (SE) 113 such as a dual
streaming engine (2xSE). The SoC 100 can further include
an optional CPU 120 core, which includes a level one
istruction cache (LL1I) 121, a level one data cache (L1D)
122, and a streaming engine 123. In various example, the
CPU 110 core and/or CPU 120 core can include a register
file, an arithmetic logic unit, a multiplier, and program tlow
control units (not specifically shown), which can be
arranged for scalar and/or vector processing. The SoC 100
includes a level two unified (e.g., combined nstruction/data)
cache (L2) 131 that 1s arranged to selectively cache both
instructions and data.

In an example, the CPU 110, level one instruction cache
(L1I) 111, level one data cache (L1D) 112, streaming engine

113, and level two unified cache (LL.2) 131 are formed on a
single integrated circuit. In an example, the scalar central
processing unit (CPU) 120 core, level one mnstruction cache
(L1I) 121, level one data cache (L.1D) 122, streaming engine
123, and level two unified cache (IL2) 131 are formed on a
single integrated circuit that includes the CPU 110 core.

In an example, the SoC 100 1s formed on a single
integrated circuit that also includes auxiliary circuits such as
dynamic power control (DPC) powerup/powerdown circuit
141, emulation/trace circuits 142, design for test (DFT)
programmable built-in self-test (PBIST) and serial message
system (SMS) circuits 143, and clocking circuit 144. A
memory controller (e.g., a multicore shared memory con-
troller level 3, “MSMC3”) 151 1s coupled the SoC 100 and
can be integrated on the same integrated circuit as the SoC
100. The MSMC3 can include memory access functions
such as direct memory access (DMA), so that the MSMC3
can function as (or function in cooperation with) a DMA
controller.

CPU 110 operates under program control to execute data
processing operations upon data stored 1n a memory system
(e.g., that includes memory shared by multiple cores). The

US 12,001,351 B2

3

program for controlling CPU 110 includes of a plurality of
instructions that are fetched before decoding and execution
by the CPU 110.

The SoC 100 includes a number of cache memories. In an
example, the level one mstruction cache (L1I) 111 stores 5
istructions used by the CPU 110. CPU 110 accesses (1n-
cluding attempting to access) any of the plurality of mstruc-
tions from the level one instruction cache 111. Level one
data cache (L1D) 112 stores data used by CPU 110. CPU 110
accesses (including attempting to access) any addressed data 10
(e.g., any data pointed-to by any of the plurality of instruc-
tions) from level one data cache 112. The level one caches
(e.g., L11 111, L1D 112, and 2xSE 113) of each CPU (e.g.,
110 and 120) core are backed by a level two unified cache
(L2) 131. 15

In the event of a cache miss of any memory request to a
respective level one cache, the requested information (e.g.,
instruction code, non-stream data, and/or stream data) is
sought from the level two unified cache 131. In the event the
requested information 1s stored in level two unified cache 20
131, the requested information 1s supplied to the requesting
level one cache for relaying the requested information to the
CPU 110. The requested information can be simultaneously
relayed to both the requesting cache and CPU 110 to reduce
access latency to the CPU 110. 25

The streaming engines 113 and 123 can be similar in
structure and operation. In SoC 100, the streaming engine
113 transiers data from level two unified cache 131 (L2) to
the CPU 110. Streaming engine 123 transfers data from level
two unified cache 131 to the CPU 110. In the example, each 30
streaming engine 113 and 123 controls (and otherwise
manages) up to two data streams.

Each streaming engine 113 and 123 1s arranged to transier
data of a defined type (e.g., defined structure and/or proto-
col), where the data i1s transferred as a stream. A stream 35
includes a sequence of elements of a selected, defined type.
Programs that operate on (e.g., consume) streams are nstan-
tiated (e.g., configure a processor as a special-purpose
machine) to read the included data sequentially and to
process each element of the data in turn. 40

In an example, the stream data includes an indication of
defined beginning and ending 1n time (e.g., where the
indication can be used to determine a respective beginning
and/or ending point in time). The stream data include
clements that generally are of a fixed element size and type 45
throughout the stream. The stream data can include a fixed
sequence of elements where programs cannot seek randomly
seek elements included within the stream. In an example,
stream data 1s read-only while active, so that programs
cannot write to a stream while simultaneously reading from 50
the stream.

When a stream 1s opened by an example streaming
engine, the streaming engine: calculates the address; fetches
the defined data type from level two unified cache; performs
data type manipulations; and delivers the processed data 55
directly to the requesting programmed execution unit within

Region

L1 SRAM

4

the CPU. The data type manipulations can include manipu-
lations such as zero extension, sign extension, and data
clement sorting/swapping (e.g., matrix transposition).

In various examples, the streaming engines are arranged
to execute real-time digital filtering operations on defined
data types (e.g., well-behaved data). Such engines reduce
memory access times (e.g., otherwise encountered by the
requesting processor), which frees the requesting processor
to execute other processing functions.

In various examples, the streaming engines increase
operational efliciency of the level one cache. For example,
a streaming engine can minimize the number of cache miss
stalls because the stream bufler can bypass the L1D cache
(e.g., 111). Also, a streaming engine can reduce the number
of scalar operations otherwise required to maintain a control
loop and manage the respective address pointers. The stream
engines can include hardware memory address generators
which reduces the software execution otherwise encoun-
tered (e.g., which frees the CPU to perform other tasks)
when generating addresses and managing control loop logic.

The level two unified cache 131 1s further coupled to
higher level memory system components via memory con-
troller 151. The memory controller 151 handles cache
misses occurring in the level two unified cache 131 by
accessing external memory (not shown in FIG. 1). The
memory controller 131 1s arranged to control memory-
centric functions such as cacheability determination, error
detection and correction, and address translation.

The example SoC 100 system 1ncludes multiple CPUs 110
and 120. In systems that include multiple CPUs, the memory
controller 151 can be arranged to control data transfer
between the multiple CPUs and to maintain cache coherence
among processors that can mutually access an external
memory.

FIG. 2 1s a high-level diagram showing levels of an
example hierarchical memory system. Memory system 200
1s an example hierarchical memory system that includes a
CPU 210 and controllers (e.g., 222, 232, and 241) for
maintaining memory coherence of three respective levels of
caching and memory. A first level cache (e.g., L1 data cache)
includes .1 SRAM (static ram) 221, level 1 controller 222,
.1 cache tags 223, and victim cache tags 224. The first level
cache includes memory accessible by the CPU 210 and 1s
arranged to temporarily store data on behalf of the CPU 210,
for example. A second level cache (e.g., L2 unified cache)
includes 1.2 SRAM 231, level 2 controller 232, 1.2 cache
tags 233, shadow L1 main cache tags 234, and shadow L1
victim cache tags 234. The second level cache includes
memory accessible by the CPU 210 and 1s arranged to
temporarily store data on behall of the CPU 210, for
example. The memory system 200 1s coherent throughout
and the memory regions of the various levels of cache can
include local memory (e.g., including cache lines) that 1s/are
addressable by the CPU. Table 1 shows different memory
regions present 1in the memory system 200, and whether each
memory region can be configured as coherent.

TABLE 1

Description Coherent/Cacheable status

Attached SRAM for the Level 1 Non-cacheable, inherently
controller coherent because all

reads/writes go to the

US 12,001,351 B2

S
TABLE 1-continued

Region Description

Attached SRAM for the Level 2
controller

.2 SRAM

Coherent/Cacheable status

Cacheable in LL1D. Coherent
between the following

masters: /O (DMA, non-
caching), Streaming Engine
(non-caching), MMU (non-
caching), L1D (caching). L2 can
initiate snoop transactions to
L1D as it determines

Attached SRAM for the Level 3
controller

.3 SRAM

Cacheable in 1D and 1.2.
Coherent between different
modules. 1.2 enforces

coherence snoop transactions
initiated by L3. L2 can initiate
snoop transactions to L1D as it

determines necessary.

Cacheable in 1D and 1.2.
Coherent between different
modules. 1.2 enforces

Memory port attached to Level 3
controller

External memory/DDR

coherence snoop transactions
initiated by L3. L2 can initiate
snoop transactions to L1D as it

determines necessary.

The CPU 110 1s bidirectionally coupled to the level 1
controller 222, which 1s bidirectionally coupled in turn to the
level 2 controller 232, which in turn 1s bidirectionally
coupled to the level 3 controller 234, so that at least three
levels of cache memory are coupled to the CPU 210. Data
transiers mto and out of L1 SRAM 221 cache memory 1s
controlled by level 1 controller 222. Data transfers into and
out of L2 SRAM 231 cache memory 1s controlled by level
2 controller 232.

The level 1 controller 222 i1s coupled to (and 1n some
examples includes) the L1 cache tags 332 and the victim
cache tags 224. The L1 cache tags 223 are non-data parts of
respective L1 cache lines, which have respective data stored
in the SRAM 221 cache memory. The L1 victim cache tags
(e.g., stored 1n tag ram) 224 are non-data parts of cache lines,
where each cache line includes a respective line of data
stored 1n the SRAM 221 cache memory. In an example,
cache lines evicted from the L1 cache are copied into the
victim cache, so that, for example, the L1 cache tags 223 are
copied into (or otherwise mapped 1nto) the L1 victim cache
tags 224. The victim cache can, for example, store the
otherwise evicted data at the L1 level, so that a memory
request by the CPU 210 that “hits” the line stored in the
victim cache can be responded to without having to access
the L2 level cache (e.g., so that access times are reduced in
such cases).

The level 2 controller 232 is coupled to (e.g., includes)
two sets of cache tags. A first set of cache tags includes L2
cache tags 233, where are non-data parts of respective L2
cache lines, and where each cache line includes a respective
line of data stored in the SRAM 231 cache memory. The
second set of cache tags includes the shadow L1 main cache
tags 234 and the shadow L1 victim cache tags 235. The
shadow L1 main cache tags 234 generally correspond to
(e.g., point to or include the same information as) the L1
cache tags 223. The shadow L1 victim cache tags 235
generally correspond to (e.g., point to or include the same
information as) the L1 victim cache tags 224. The shadow
[.1 main cache tags 234 include at least the valid and dirty
status of the corresponding cache lines in L1 cache tags 223,
while the shadow L1 victim cache tags 235 include at least
the valid and dirty status of the corresponding cache lines in
.1 victim cache tags 224.

25

30

35

40

45

50

55

60

65

The level 2 controller 232 generates snoop transactions to
maintain (e.g., including updating and achieving) read and
write coherence of the second level cache with the state of
the first level cache. For example, the level 2 controller 232
sends snoop transactions to the level 1 controller to deter-
mine the status of L1D cache lines and updates the shadow

tags (e.g., 234 or 235) that pertain to the L1D cache lines
being queried. The shadow tags (e.g., 234 or 235) can be
used only for snooping transactions that are used to maintain
.2 SRAM coherency with the level one data cache. In an
example, updates for all cache lines 1n higher level caches
can be 1gnored to increase the efliciency of the L1-to-L2
cache interface.

In response to the snoop request data returned by the level
1 controller 222, the level 2 controller 232 updates the
shadow tags (e.g., 234 or 235) that correspond to the L1
cache lines being snooped. Events for which updates are
executed 1nclude events such as allocation of L1D cache
lines and such as dirty and invalidate modifications to data
stored in L1 SRAM 221.

Hardware cache coherence 1s a technique that allows data
and program caches in different groups called ““shareability
domains” (e.g., shared across different CPUs, or even within
a single CPU), as well as different requestors (including
those that might not include caches) to have permission to
access (e.g., read) the most current data value for a given
address 1n memory. Ideally, this “coherent” data value 1is
required to be accurately reflected to every observer 1n the
shareability domain. An observer can be a device such as a
cache or requestor that 1ssues commands to read a given
memory location.

Through the use of memory attributes, certain memory
locations can be marked as “shareable”, and others can be
marked as ‘“‘non-shareable.” To maintain complete coher-
ency 1n an ideal system, only the shareable memory regions
(e.g., where a region can be one or more contiguous loca-
tions) need be kept coherent between the caches/requestors
(observers) that are part of a same shareability domain.
Coherency for non-shareable memory locations need not be
maintained. Described hereinbelow are methods and appa-
ratus arranged to efliciently achieve coherency for the share-
able memory regions. When a shareable memory region 1s
coherent, it 1s shareable, for example, because all of the data

US 12,001,351 B2

7

locations of the shareable memory region have the most
current value of the data assigned to each location of the
shareable memory region.

Described hereinbelow are techniques, control logic, and
state information of an example functionally correct coher-
ent system. Fach observer can 1ssue read (and optionally
write) requests to locations that are marked shareable. More-
over, caches can also have snoop requests 1ssued to them,
requiring their cache state to be read, returned, or even
updated, in response to a type of the snoop operation.

In a multi-level cache hierarchy, the middle levels of the
cache hierarchy (e.g. L2) are able to both send and receive
snoop operations (e.g., to maintain coherency between the
different levels of the cache). In contrast, the first level of a
cache hierarchy (e.g. level 1 controller 222) receives snoop
operations but does not dispatch snoop operations. More-
over, the last level of the cache hierarchy (e.g. the level 3
controller 241) can dispatch snoop operations but does not
receive snoop operations. Generally, snoop operations are
intrinsically dispatched in a higher cache levels to lower
cache levels withing a cache hierarchy (e.g., where lower
represents cache structures closer to the CPU processing
clement and higher represents cache structures farther away
from the CPU processing element).

The level 2 controller 232 includes hardware, control
logic, and state information for accurately querying, deter-
mimng, and processing the current state of coherent (share-
able) cache lines 1n the level 1 cache (e.g., L1D 112), where
the lower-level cache 1s arranged as a heterogeneous cache
system. In an example, the level 1 controller 222 manages a
heterogeneous cache system that includes a main cache (e.g.,
set associative) and a victim cache (e.g., fully associative).

The coherence of the memory system 200 can be enforced
by recording the status of each cache line of the caches of
cach cache line using a MESI (modified-exclusive-shared-
invalid) Coherence scheme (including derivatives thereof).
The standard MESI cache coherence protocol includes the
four states: modified, exclusive, shared, invalid (or deriva-
tives thereol) for each cache line.

The Modified state indicates that values 1in the respective
cache line are modified with respect to main memory, and
that the values 1n the cache line are held exclusively 1n the
current cache. The Modified state indicates that the values 1n
the line are explicitly not present or not valid in any other
caches 1n the same shareability domain.

The Exclusive state indicates that the values 1n the respec-
tive cache line are not modified with respect to main
memory, but that the values 1n the cache line are held
exclusively in the current cache. This indicates that the
values 1n the line 1s explicitly not present or not valid in any
other caches 1n the same shareability domain.

The Shared state indicates that the values 1n the respective
cache line are not modified with respect to main memory.
The values 1n the cache line can be present 1n multiple
caches 1n the same shareability domain.

The Invalid state indicates that any values 1n the respec-
tive cache line are to be treated as if they are not present in
the cache (e.g., as a result of being mvalidated or evicted).

A shareability domain can be defined as a collection of
caches that must remain coherent with one another. Not all
MESI states are necessarily required to implement a coher-
ent system with multiple levels of cache hierarchy. For
example, the shared state can be eliminated (e.g., at the cost
of performance), which results 1n a MEI coherence system.
In an MEI coherent system, exactly one cache 1n the entire
system can hold a copy of each MEI cache line at a given

5

10

15

20

25

30

35

40

45

50

55

60

65

8

time, regardless of whether the cache line 1s modified (or
could be modified 1n the future).

The unit of coherence 1 a coherent cache system is a
single cache line, so that length of data (e.g., the number of
addresses for accessing the data within a cache line, whether
32, 64, or 128 bytes) 1s treated as an atomic unit of
coherence. In the example system 300 (described hereinbe-
low with respect to FIG. 3), the caching mechamism shared
between L1D and L2 includes a unit of coherence of 128
bytes. Generally, the structures and tracking mechanisms of
the first and second levels of cache operate on the selected
unit of coherence in an atomic manner.

Various coherency transactions can be initiated for the
purpose ol maintaining cache coherency. Such coherency
transactions include transaction types such as Read, Write,
Snoop, Victim. Each transaction type can have multiple
forms/variants, which are included by the bus signaling
protocol (such as the VBUSM.C protocol specification).

A Read coherency transaction includes returming the
“current” (e.g., most recent) value for the given address,
whether that value 1s stored at the endpoint (e.g., 1n external
memory), or in a cache in the coherent system.

A Write coherency transaction includes updating the
current value for the given address, and invalidating copies
stored 1n caches 1n the coherent system.

A Cache maintenance operation (CMO) includes opera-
tions that in1tiate an action to be taken 1n the coherent caches
(L1D and L2) for a single address.

A Snoop coherency transaction (“Snoop”) includes read-
ing, invalidating, or both reading and invalidating copies of
data stored 1n caches. Snoops are 1nitiated by a higher level
controller of the hierarchy to a cache at the next lower level
of the hierarchy. The snoops can be further propagated by
the controller of a lower level cache to even lower levels of
the hierarchy as needed to maintain coherency.

A Victim coherency transaction includes sending a victim
cache line (*“Victim”) from a lower level cache in the
hierarchy to the next higher level of the cache hierarchy.
Victims are used to transfer modified data up to the next
level of the hierarchy. In some situations, victims can be
turther propagated up to higher levels of the cache hierarchy.
In an example situation where the L1D sends a victim to L2
for an address 1n the DDR or L3 SRAM, and the line 1s not
present 1n the L2 cache, the L2 controller 1s arranged to
forward the victim to the next level of the cache hierarchy.

Table 2 describes example coherent commands that can
be mitiated between L2 and the various masters that interact

with the .2 cache.

TABLE 2
Master Master-initiated [.2-1nitiated
PMC Read none
MMU Read none
Streaming Read, none
Engine (SE) CMO
DMC Read, Write, Victim Snoop
MSMC Snoop, DMA Read, Read, Write, Victim

(L3 controller) DMA Write

The level 2 controller 232 maintains local miormation
(e.g., 1n the level 2 shadow tags) that 1s updated to reflect
cach change of the monitored state information that occurs
within the hardware FIFOs, RAMs, and logic within the first
level cache, so that the current (e.g., most recent) state of all
coherent cache lines present in both the main cache and
victim cache in the L1 controller can be determined locally

US 12,001,351 B2

9

at the level 2 cache. Pipelined hardware on a dedicated bus
between the level 1 cache and the level 2 cache can increase
the speed of keeping the level 2 shadow registers updated
and reduce the demand for the bidirectional data access bus
that 1s used to read and write data between the level 1 cache
and the level 2 cache. Accurately updating the shadowed
information maintains the correct data values and function-
ality of a coherent hardware cache system.

FIG. 3 shows an example one- or optionally two-core
scalar and/or vector processor system 300 having a coherent
and hierarchical memory architecture. System 300 i1s an
example coherent shared memory system, such as system
200 or SoC 100. The system 300 includes at least one CPU
core. For example, a first core can include first CPU 310,
DMC 361, 32 KB L1D cache 312, PMC 362, 32 KB L1I
cache 311, and dual stream bufler 313. An optional second
core can include components similar to the first core. The
CPU 310 (and second core 320, 1f present) are coupled via
respective mterfaces to the UMC 363, which 1s arranged to
control the L2 cache tags and memory.

Generally described, system 300 includes various cache
controllers such as program memory controller (PMC) 362
(c.g., for controlling data transfer to and from level 1
program 311 cache) and data memory controller (DMC) 361
(e.g., for controlling data transfer into and out of level 1 data
cache 312). As shown 1n FIG. 1, the L2 cache can be shared
between the two processing cores. System 300 also icludes
unified memory controller (UMC) 363 (e.g., for controlling
data transiers between level 2 and level 3 caches). The UMC
363 is included by the level 2 cache, which 1s described
hereinbelow with respect to FIG. 4, for example. The UMC
363 1s coupled to the MMU (memory management unit) 391
and the MSMC 3351. The DMC 361, the PMC 362, the SE
313, MSMC 351, and the MMU 391 are requestors, all of
Wthh can access memory stored 1n the L2 cache.

In an example, the system 300 1s a pipelined caches and
memory controller system for fixed- and/or floating-point
DSPs (digital signal processors). The system 300 includes at
least one such CPU core (where each CPU core includes
respective private L1 caches, controllers, and stream bui-
fers), and a shared L.2 cache controller. The system 300 can
provide bandwidth of up to 2048-bits of data per cycle,
which 1s an 8-times bandwidth improvement over a previ-
ous-generation system. The L1D can sustain transferring
512-bits of data to the CPU every cycle, and the L2 cache
can transfer 1024-bits of data to the dual stream bufler every
cycle. The L1 and L2 controllers have the ability to queue up
multiple transactions out to a next higher level of memory,
and can reorder out-or-order data returns. The LI1P 311
controller supports branch exit prediction from the CPU and
can queue up multiple prefetch misses to the L2 cache
included by UMC 363.

The system 300 includes full soft error correction code
(ECC) on its data and TAG rams (e.g., described hereinbe-
low with respect to FIG. 4). The employed ECC scheme
provides error correction for data transmitted over processor
pipelines and interface registers, in addition to the error
correction for memory-stored data. The system 300 supports
tull memory coherency 1n which, for example, the internal
(e.g., included by the level 1 and level 2 caches) caches and
memories are kept coherent with respect to each other and
with respect to external caches and memories (such as the
MSMC 331 for level 3 caching and such as external memory
at a fourth and final level memory hierarchy). The UMC 363
maintains coherency between the multiple L1Ds and main-
tains coherency between the L1Ds and each of the higher,
successive levels of the cache and memory. The UMC 363

10

15

20

25

30

35

40

45

50

55

60

65

10

can maintain coherency with the dual streaming engine by
snooping (e.g., via a pipeline separate from a stream data-
path) L1D cache lines in response to streaming engine reads.

-

The system 300 supports coherency throughout virtual
memory schemes, and includes address translation, nTLBs
(micro translation look-aside builers), L.2 page table walks,
and L1P cache invalidates. The UMC 363 can support one
or two stream bullers, each with two streams. The stream
bufler data are kept coherent to the L1D cache, where each
stream builer has a pipelined, high bandwidth interface to L2
cache.

The system 300 includes example interfaces between

various components ol differing hierarchies in the system
300. With the possible exceptions of the CPU-to-DMC

(CPR-DMC) and the CPU-to-PMC (CPR-PMC) interfaces,

the inter-level interfaces and data paths can be architected in
accordance with a pipelined, multiple transactions standard
(e.g., VBUSM or MBA).

The example interfaces include the CPU-DMC, CPU-
PMC, DMC-UMC, PMC-UMC, SE-UMC, UMC-MSMC,

MMU-UMC, and PMC-MMU interfaces. The CPU-DMC
includes a 512-bit vector read and a 512-bit vector write and
a 64-bit scalar write. The CPU-PMC includes a 512-bit read.
The DMC-UMC includes a 3512-bit read and 512-bit write
interfaces for executing cache transactions, snoop transac-
tions, LIDSRAM DMA, and external MMR accesses (e.g.,
where each such interface can handle 2 data phase transac-
tions). The PMC-UMC interface includes a 512-bit read
(which supports 1 or 2 data phase reads). The SE-UMC
interface includes 512-bit read (which supports 1 or 2 data
phase reads). The UMC-MSMC UMC nterface includes
512-bit read and 512-bit write (with overlapping Snoop and

DMA ftransactions). MMU-UMC interface includes page
table walks from L2. The PMC-MMU interface includes
wILB miss to MMU.

The L1P 311 includes a 32 KB L1P cache that 1s 4-way
set associative having a 64-byte cache line size, where each
line 1s virtually indexed and tagged (48-bit virtual address).
The LI1P 311 includes auto prefetching on L1P misses
(where a prefetch miss from L2 can include a two data phase
data return. The L1P 311 1s coupled to (e.g., included by) and
controlled by the PMC 362.

The PMC 362 supports prefetch and branch prediction
with the capability to queue up to a variable number (e.g., up
to 8) fetch packet requests to UMC (e.g., to enable deeper
prefetch 1n program pipeline).

The PMC 362 includes error correction codes (ECC) with
parity protection on data and tag RAMs (e.g., 1-bit error
detection for tag and data RAMs). The Data RAM parity
protection 1s supplied with 1 parity bit per every 32 bits). In
tag RAMSs, a panty error can force auto-invalidate and
pre-fetch operations.

The PMC 362 supports global cache coherence opera-
tions. The PMC 362 can single-cycle cache mvalidate with
support for three modes (e.g., All Cache Lines, MMU Page
Table Base 0, and MMU Page Table Base 1).

The PMC 362 provides virtual memory by virtual-to-
physical addressing on misses and incorporates a WILB to
handle address translation and for code protection.

The PMC 362 provides emulation and debugging capa-
bility by including access codes that can be returned on reads
to indicate the level of cache that the data was read from and
bus error codes that can be returned to indicate pass/tail
status of all emulation reads and writes. The PMC 362
provides extended control register access including L1P
ECR registers accessible from the CPU through a non-

US 12,001,351 B2

11

pipelined interface. The extended control registers are not
memory mapped, and istead can be mapped via a MOVC
CPU 1nstruction.

L.1D Cache 312 1s a direct mapped cache, and 1s mirrored
in parallel with a 16 entry fully associative victim cache. The
LL1D Cache 312 includes a 32 KB memory configurable
down to 8 KB cache. The L1D Cache 312 includes a dual
datapath (e.g., for 64-bit scalar or 1-Kb vector operands).
The L1D Cache 312 includes a 128-byte cache line size. The
LID Cache 312 includes read allocate cache support for both
write-back and write-through modes. The LID Cache 312 1s
physically 1indexed, physically tagged (44-bit physical
address), supports speculative loads and hit under miss, has
posted write miss support, and provides write merging on all
outstanding write transactions iside LID. The LID Cache
312 supports a FENCE operation on outstanding transac-
tions. The LID 1s auto-flushing and 1dle-flushing.

The LID Cache 312 includes LID SRAM {for supporting
accesses from CPU and DMA. The amount of available
SRAM 1s determined by the total of L1D memory and L1D
cache size.

The DMC 361 includes lookup table and histogram
capability to support 16 parallel table lookup and histo-
grams. The DMC 361 can imtial the lookup table and
dynamically configure the L1D SRAM into multiple
regions/ways in response to a selected degree of parallelism.

The DMC 361 includes 64-bit and 512-bit CPU load/store
bandwidth, 1024 bit LID Memory bandwidth. The DMC
361 provides support for 16 interfaces for 64-bit wide banks
with up to 8 outstanding load misses to L.2. Physical banks
and virtual banks are described hereinbelow with respect to
FIG. SA and FIG. 5B.

The DMC 361 includes Error Detection and Correction
(ECC). The DMC 361 includes ECC Detection and Correc-
tion on a 32-bit granularity. This includes full ECC on data
and tag RAMs with 1-bit error correction and 2-bit error
detection for both. The DMC 361 provides ECC syndromes
on writes and victims out to L2. The DMC 361 receives ECC
syndromes with read data from L2, and performs detection
and correction before presenting the validated data to CPU.
The DMC 361 provides full ECC on victim cache lines. The
DMC 361 provides provide read-modify-write support to
prevent parity corruption on partial line writes. The ECC
L.2-L1D mterface delays correction for read-response data
pipeline ECC protection.

The DMC 361 provides emulation and debug execution
by returning access codes (e.g., DAS) on reads to indicate
the level of cache that the data was read from. Bus error
codes can be returned to indicate pass/fail status of emula-
tion reads and writes. The contents of the cache tag RAMSs
are accessible via the ECR (extended control register).

The DMC 361 provides atomic operations on the Swap
operation or the Compare and Swap operations to cacheable
memory space and increment to cacheable memory space.

The DMC 361 provides coherence including fully MESI
(modified-exclusive-shared-invalid) support in both main
and victim caches. The DMC 361 provides support global
cache coherence operations including snoops and cache
maintenance operation support from L2, snoops for L2
SRAM, MSMC SRAM and External (DDR) addresses and
tull tag-RAM comparisons on snoop and cache maintenance
operations.

In an example, the DMC 361 provides 48-bit wide virtual
memory addressing for physical addressing of memory
having physical addresses of 44-bits.

The DMC 361 supports extended control register access.
L1D ECR registers are accessible from the CPU through a

10

15

20

25

30

35

40

45

50

55

60

65

12

non-pipelined interface. These registers are not memory
mapped, and 1nstead are mapped to a MOVC CPU 1nstruc-
tion.

The DMC supports 1.2 address aliasing (including VCOP
Address Aliasing mode). The aliasing can be extended to
multiple, separate buflers, such as the VCOP—IBUFAH,
IBUFAL, IBUFBH, IBUFBL buffers. The .2 address alias-
ing includes out-of-range and ownership checking for all
buflers to maintain privacy.

UMC 363 controls data flow 1into and out of L2 cache 331.
[.2 cache 331 1s 8-Way Set Associative, supports cache sizes
64 KB to 1 MB. L2 cache 331 policy includes random least
recently used (LRU) and/or random replacement. L2 cache
331 has a 128 byte cache line size. L2 cache 331 has a
write-allocate policy and supports write-back and write-
through modes. L2 cache 331 performs a cache invalidation
on cache mode changes, which 1s configurable and can be
disabled. L2 cache 331 1s physically indexed, physically
tagged (44-bit physical address) including 4 each of banked
tag RAM’s, which allow four independent split pipelines. L2
cache 331 supports 2 each of 64 byte streams from a

streaming engine, the LID and LIP caches, and configuration
and MDMA accesses on an unified interface to MSMC 351.

[.2 cache 331 caches MMU page tables.

An example L2 SRAM component of L2 cache 331
includes 4 each of 512-bit physical banks, with each physi-
cal bank having 4 virtual banks. Each bank (e.g., physical
and/or virtual bank) has independent access control. L2
SRAM includes a security firewall on L2 SRAM accesses.
.2 SRAM supports DMA accesses on a merged MSMC
interface.

UMC 363 provides prefetch hardware and on-demand
prefetch to External (DDR), MSMC SRAM and L2 SRAM.

The L2 cache provides error detection and correction
(e.g., ECC) on a 256-bit granularity. Full ECC Support 1s
provided for both tag and data RAMS with 1-bit error
correction and 2-bit error detection for both. The ECC (see,
for example ECC GEN RMW 471, described hereinbelow)
includes ECC syndrome on writes and victims out to MSMC
351 and includes Read-Modity-Writes on DMA/DRU writes
to keep parity valid and updated. The ECC 1s arranged to
correct and/or generate of multiple parity bits for data being
sent over datapaths/pipelines to the LIP 311 and SE 313.
This includes an auto-scrub to prevent accumulation of 1-bit
errors, and to refresh parity. The ECC clears and resets parity
on system reset.

UMC 363 provide emulation and debugging by returning
access codes on reads to indicate the level of cache that the
data was read from. Bus error codes are returned to indicate
pass/fail status of emulation reads and writes.

UMC 363 supports full coherence between the L1D 312,
2 Streams of the SE 313, L2 SRAM 331, MSMC 351 SRAM
and external memory (DDR). This imncludes L1D to shared
[.2 coherence, which can be maintained in response to
snoops for L2 SRAM, MSMC SRAM and External (DDR)
addresses. The coherence 1s maintained via a MESI scheme
and policies. UMC 363 includes user coherence commands
from the SE 313 and includes support for Global Coherence
operations.

UMC 363 supports Extended Control Register Accessing.
L1D ECR registers are accessible from the CPU through a
non-pipelined interface. The content of the ECR registers are
accessible 1n response to a MOVC CPU instruction.

The UMC 363 supports L2 address aliasing (including
VCOP Address Aliasing mode). The aliasing can be
extended to multiple, separate bullers, such as the VCOP—
IBUFAH, IBUFAL, IBUFBH, IBUFBL bufiers. The L2

US 12,001,351 B2

13

address aliasing includes out-of-range and ownership check-
ing for all buflers to maintain privacy.

The MSMC 351 allows the processor modules 110 to
dynamically share the internal and external memories for
both program and data within a coherent memory hierarchy.
The MSMC 351 includes internal RAM, which offers tlex-
ibility to programmers by allowing portions of the internal

RAM to be configured as shared level 3 RAM (SL3). The
shared level 3 RAM 1s cacheable in the local L2 caches. The
MSMC can be coupled to on-chip shared memory.

An MFENCE (memory fence) instruction 1s provided that
stalls the instruction execution pipeline of the CPU 310 until
the completion of all the processor-triggered memory trans-
actions, which can include: cache line fills; writes from L.1D
to L2 or from the processor module to MSMC 351 and/or
other system endpoints; victim write backs; block or global
coherence operations; cache mode changes; and outstanding
XMC pretetch requests. The MFENCE 1nstruction 1s useful
as a simple mechanism for stalling programs until dis-
patched memory requests reach their endpoint. It also can
provide ordering guarantees for writes arriving at a single
endpoint via multiple paths, for example, where multipro-
cessor algorithms depend on ordering of data written to a
specific address, and during manual coherence operations.

The system memory management unit (MMU) 391 1nvali-
dates uTLBs 1n response to processor context switches, for
example to maintain privacy.

FIG. 4 shows an example unified memory controller of a
second level of a coherent and hierarchical memory archi-
tecture. System 400 1s an example coherent shared memory
system, such as system 300. The system 400 includes at least
one CPU. For example, a first core (core 0) can include CPU
410, L1D 421, SE 422, L1P 423, and a MSMC 461, a
dynamic powerdown controller 463, and a level 2 memory
480. An optional second core (core 1) can include compo-
nents similar to the first core. The first core (and second core
412, if present) are coupled via respective interfaces to the
UMC 430, which 1s arranged to control the L2 cache tags
and memory.

The UMC 430 includes an L2 cache controller, a status
memory 440 (which includes L2 cache tag RAM 441, 1.2
MESI 442, .1D shadow tag RAM 443, .L1D MESI 444, and
tag RAM ECC 445), memory Coherency (external, internal,
global, user) 450 controller, MSMC interface 451, emulation
452 controller, power down controller 453, extended control
register (ECR) 454, firewall 470, ECC generator read-
modity-write (ECC GEN RMW), L2 SRAM/cache arbitra-
tion and intertace 472, and ECC checking 473.

Generally described (with reference to FIG. 3 and FIG. 4),
system 400 includes six requestor ports (e.g., interfaces)
coupled to the UMC 430: one PMC 362, one DMC 361, two
SE ports (included in one streaming engine, SE 313)
internal ECR 454 interface from the CPU (e.g., CPU 410),
and the MSMC 461. The DMC 361 interface has separate
512-bit read and write paths. This mterface can also be used
for snooping from the L1D cache. Each read transaction can
be either one or two data phases. The PMC 362 interface
consists of a 512-bits read-only path (LL1P fetch only). Each
read transaction can be either one or two data phases. Two
SE interfaces (of SE 313) are 512-bit read-only. F

Each read
transaction can be either one or two data phases. The read
transactions are also used as part of the user block coherence
tfunctionality. The MSMC 461 interface consists of separate
512-bit read and write paths. The separate 512-bit read and
write paths interfaces are also used for snoop commands,
read/write accesses to .2 SRAM, and read/write accessed to
LL1D SRAM. Each read transaction can be either one or two

10

15

20

25

30

35

40

45

50

55

60

65

14

data phases. The internal ECR 454 interface from each CPU
of system 400 1s a 64-bit non-pipelined 1ntertace, and 1s used
for configuration accesses to ECR 454 registers of the UMC
430.

The UMC to DMC interface includes: a 512-bit DMC
read path; a 512-bit DMC write path; DMC to UMC signals
(such as Read/Write/Victim Address, Address and Secure of
cache line evicted to victim bufler, Address and Secure of
cache line evicted from victim bufler, two tag update inter-
faces to indicate a clean line which was evicted from the
victim bufler, byte enables, read/write indicator, MMU Page
table attributes/privilege/security level indicators, snoop
response, 1D cache-mode signals such as size, size change
on, global coherence on, and global coherence type); and
UMC to DMC signals (such as snoop signaling, response on
reads and writes, and other such handshaking signals).
The UMC to PMC interface includes: a 512-bit PMC read
path; a PMC to UMC {fetch address; and other such hand-
shaking signals.

The UMC to SE interface includes: a 512-bit SE read
path; a SE to UMC fetch address; SE to UMC User Block
Coherence indicators; and other such handshaking signals.

The MSMC to UMC interface 1s coupled to carry multiple
types of transactions such as: Master DMA (MDMA, which
can include cache allocates, victims, long distance writes,

and non-cacheable reads, where such MDMA transactions
can onginate from the UMC); External Configuration
(ECFG, which can include read/write accesses to memory
mapped registers that can be physically located outside the
CPU core, where such read/write access can originate from
the UMC); DMA transactions (which can originate from the
MSMC and are transactions that can transfer data, for
example, between different CPU cores, between a CPU core
and an external DDR), or between a CPU core and a
non-DDR memory on the SOC, where the transaction can be
created by the DMA controller, and can be directed towards
either L2 SRAM or L1D SRAM); snoop transactions (which
can originate from the MSMC, and can be generated 1n
response to a transaction from another core, so that the
another core can snoop data from a first CPU core); and
Cache Warm (e.g., so that the MSMC can originate trans-
actions that UMC can use to allocate a line from a 3L cache

or an external memory to the UMC cache).
The UMC to MSMC mtertace includes: a 512-bit MSMC

read path; a 512-bit MSMC write path; MSMC to UMC
signals (such as Address, Byte enables, Read/write indicator,
MMU page table attributes/privilege/security level indica-
tors, snoop transactions, DMA transactions, and cache warm
transactions); and UMC to MSMC signals (such as snoop
response, address, byte enables, read/write indicator, and
MMU page table attributes/privilege/security level indica-
tors) and other such handshaking signals.

The UMC ECR Interface Memory Mapped Registers of
previous generations have been replaced by Extended Con-
trol Registers (ECR) 1n the system 400 and are mapped to
the MOV C CPU 1instruction. The UMC ECR path allows for
64-bit read/write access to the UMC’s control registers. For
configuration reads, the UMC 1s arranged to sample the
contents of the register and hold 1t for the duration of the
access. The UMC ECR mterface includes: a 64-bit ECR read
path; a 64-bit ECR write path; Address; Privilege/security
level indicators; Index, which can be used for cache tag
viewing; and other such handshaking signals.

An example UMC to MMU Interface includes: a 64-bit
read path; an address; and other such handshaking signals.

Some example UMC to L2 Interfaces include: either 2 or

4 virtual banks; 4 physical banks of .2 memory, where each

US 12,001,351 B2

15

bank includes an addressable unit of data that 1s 512-bits
wide; a 512-bit read datapath; a 512-bit write datapath;
address; byte-enables; memory enable indicator; read/write
indicators; virtual bank select; and other such handshaking
signals.

The UMC 430 includes a level 2 memory 480 (e.g.,
SRAM). The L2 memory 480 can include any suitable
number of banks and 4 banks 481, 482, 483, and 484 are
illustrated, where each such bank 1s coupled by respective
sets of a 512b read/write data path and an ECC data path.
The 4 banks can be organized as having 4 virtual banks each,
or as having 2 virtual banks each, as described hereinbelow
with reference to FIG. SA and FIG. 5B

FIG. 5A shows an example level 2 memory bank interface
of the system of FIG. 4 having 4 virtual banks per physical
bank. For example, the interface 500A includes physical
bank 510 (e.g., bank 0), physical bank 3520 (e.g., bank 1),
physical bank 530 (e.g., bank 2), and physical bank 540
(e.g., bank4). Each of the physical banks 510, 520, 530, and
540 respectively includes 4 virtual banks (virtual bank O,
virtual bank1, virtual bank 2, and virtual bank 3). Each of the

virtual banks of each physical bank includes a respective
multiplexor/demultiplexor, so that each respective virtual
bank of a given (e.g., addressed) physical bank can be
written to or read from in a virtual bank memory access.
Each virtual bank 1n a given physical bank can be succes-
sively accessed using (e.g., with overlapping or separate)
virtual bank memory accesses.

FIG. 5B shows an example level 2 memory bank interface
of the system of FIG. 4 having 2 virtual banks per physical
bank. For example, the interface S00B includes physical
bank 510 (e.g., bank 0), physical bank 3520 (e.g., bank 1),
physical bank 530 (e.g., bank 2), and physical bank 540
(e.g., bank4). Each of the physical banks 510, 520, 530, and
540 respectively includes 2 virtual banks (virtual bank O and
virtual bank 1). Each of the virtual banks of each physical
bank includes a respective multiplexor/demultiplexor, so
that each respective virtual bank of a given (e.g., addressed)
physical bank can be written to or read from 1n a virtual bank
memory access. Each virtual bank 1n a given physical bank

can be successively (e.g., with overlapping or separate)
virtual bank memory accesses.

With reference to FIG. 4 again, the UMC 430 includes
four 512-bit wide memory ports, which can be referred to as
UMC Memory Access Port (UMAP) ports. Each L2 SRAM
interface (e.g., an interface of a requestor to the L2 cache)
can support one new access per UMC cycle when the
memory banks arranged in the SRAM can respond within
cach UMC cycle. Accesses to the memory banks can be
pipelined over multiple UMC cycles, which can allow
higher-latency memories to be used. Fach of the wvirtual
banks can include differing latencies because each interface
verifies the availability of each virtual port, rather than the
availability of the physical bank as a whole.

The UMC L2 SRAM protocol accommodates a memory
that 1s connected directly to UMC 430. The UMC 430
presents address and read/write indications on the UMAP

boundary, and waits for a period of time (e.g., latency)
during which the L2 SRAM 1s “expected” to respond. The

UMC 430 1s able to control the four banks independently
Accesses to these virtual banks are 1ssued serially. Consecu-
tive requests to the same virtual bank result 1n a “bank
conflict” if the attached memory has greater than 1 cycle
pipeline latency. The second request 1s delayed until the first
request completes. Consecutive requests to different virtual

10

15

20

25

30

35

40

45

50

55

60

65

16

banks can proceed without delay (e.g., when the latency of
a later-accessed memory 1s not greater than twice the 1 cycle
pipelining latency).

The UMC 430 can read the returned data after the
programmed access latency (e.g., mn the absence of a
memory error). Two diflerent types of latencies are sup-
ported—pipeline latency, and access latency. Pipeline
latency 1s the number of cycles that UMC has to wait before
it can access the same virtual bank again. Access latency 1s
the number of cycles that 1t takes for the memory to present
data to UMC, after the read command has been presented. In
an example system, latencies from 1 to 6 for both pipeline
and access latencies are supported by the UMC 430.

Varnations in latencies between differing types of SRAM
can be compensated for by inserting wait states into a
memory access, where the number of wait states 1s selected
in response to the latency of the memory being accessed.
One- and 2-cycle access latencies can be referred to as “0
wait-state” and 1 wait-state,” respectively.

Security 1s the term generally applied to the protection of
data 1n memory. The enforcement of security includes:
assigning permissions to particular masters, designating
memory address ranges with certain allowed actions for
certain permissions, and determining whether each read and
write transaction to each memory address includes suflicient
privilege to access a particular address and to block accesses
to the particular address to each transaction having an
insuilicient privilege.

Permission information includes permission possibilities
construed over various axes. For example, the permission
possibilities can be construed over the axes of Privilege,
Hypervisor, and Secure (e.g., security) level. Along the
Privilege axis, the permission possibilities include the pos-
sibilities of User or Supervisor. Along the Hypervisor (if
applicable) axis, the permission possibilities include the
possibilities of Root or Guest. Along the Security level axis,
the permission possibilities include the possibilities of
Secure or Non-secure. The permission possibilities are
enforced across the three levels of caches.

The example DSP architecture includes at least two
security states, each state having respective associated
memory attributes for controlling physical and/or logical
security components. The secure/non-secure state 1s an
attribute that accompanies (or 1s otherwise associated with)
the transaction presented by the CPU to the cache control-
lers. When the CPU 1s 1n a secure state (e.g., which can be
indicated by a csecure attribute indicated on each of the
transactions generated by the CPU), the cache controller of
cach of the cache levels allow the CPU to access secure and
non-secure memory locations. When the CPU 1s in a non-
secure state (e.g., which can be indicated by the csecure
attribute indicated on each of the transactions generated by
the CPU), the cache controller of each of the cache levels
allow the CPU to access non-secure memory locations but
prevents the CPU from accessing secure memory locations.
The csecure attribute can be a “secure code” (e.g., where the
secure code 1ncludes at least one bit of a secure status field
and/or digital word status for indicating a security level of a
process executing on the CPU. The secure code can be the
“secure bit” as described herein.

In an example, the L2 firewall 1s used to provide security
with respect to requestor-generated transactions that access
the L2 SRAM and with respect to the L2-generated memory
transactions that access higher levels of memory. The L2
firewall cooperates with the L3 firewall, so that the permis-
s1on possibilities are accessible for controlling transactions
that occur between the L2 and L3 caches. A secure firewall

US 12,001,351 B2

17

component 1s present at two interfaces: the UMC—MSMC
Interface (e.g., which protect transactions initiated by the
example CPU that go to or towards external memory), and
the UMC-L2RSAM Interface (e.g., to protect accesses that
g0 to or towards the L2 SRAM space).

Generally, a firewall can be configured 1n one of two
modes: a Whitelist Mode (e.g., wherein designations are
listed for indicating which masters/permissions are allowed
to access predetermined address regions), and a Blacklist
Mode (e.g., wherein designations are listed for indicating
which masters/permissions are blocked from accessing pre-
determined address regions). In an example, the predeter-
mined address regions can be predetermined before a time 1n
which the firewall blocks or allows an access to an address
in a predetermined address region.

To protect a selected level of cache memory controlled by
a firewall (for example), the permission information (e.g., a
protection policy for granting access permission to a par-
ticular block of addresses) can be stored 1n the selected level
of cache, so that selected regions of memory can be spe-
cifically protected by a listing of granted or denied access for
respective regions to be protected. For blacklisted areas, the
firewall 1s arranged to block accesses to any cacheable
memory location (e.g., any memory location having con-
tents that can be stored 1n a cache). In an example, pro-
gramming the firewall to block access to a cacheable
memory location by a process for which access 1s not
explicitly whitelisted can help prevent read-only memory
from being cached, and then later locally updated in the
cache due to a cache hit by a process.

Address areas for which no protection 1s specified exist
between the address areas listed in the whitelist or the
blacklist of the firewall. Such areas (e.g., “gray-listed areas™)
can result when not every possible memory location 1is
assigned a selected protection policy. Not associating a
selected protection policy for every possible memory loca-
tion can be a trade-ofl design choice due to the finite nature
of firewall configuration resources (such as limited memory
or address processing requirements).

Access to a cache protected by a firewall can be enhanced
(c.g., beyond the protection by a conventional firewall
without additional complexity that would otherwise entail
higher complexity circuits and layout space) in certain cache
operations that impact data stored in the gray-listed areas
(e.g., areas disjoint to the set of the union of the blacklisted
and whitelisted areas listed 1n the firewall). In an example,
the security level of the process that generated the data
stored 1 a particular cache line can be stored in the tag
memory associated with the particular cache line (including,
address tag, MESI status, and the herein-described status
bit), protects the data stored 1n a gray-listed area without, for
example, increasing the complexity of the firewall (e.g., 1n
order to narrow the scope of the gray-listed areas).

For an access request by a requestor that 1s allowed (e.g.,
not blocked) by the firewall to access a selected cache line
of a selected level cache, the selected cache line can be
selectively snooped (e.g., read out from the L1 cache, but
kept 1n the line present in the L1 cache), or snoop-invali-
dated (e.g., read out from the L1 cache, and removed from
the L1 cache), or invalidated (e.g., removed from the cache)
in response to a security context of access request and 1n
response to a stored secure code that 1s associated with the
selected cache line, where the stored secure code indicates
a security context ol a process at the time the process
generated the information stored 1n the selected cache line.
For example, the selectively invalidating or evicting a
selected cache line can be 1n response to a comparison of the

10

15

20

25

30

35

40

45

50

55

60

65

18

security context ol the access request against the security
context indicated by the secure code. For example, the
selectively mvalidating or evicting a selected cache line can
be 1n response to a comparison of the security context of the
access request against the security context indicated by the
secure code. For example, the selectively invalidating or
evicting a selected cache line can be determined in response
to the security context of the access request and the security
context indicated by the secure code are diflerent.

As described hereinbelow, selectively invalidating or
evicting the selected cache line 1n response to a security
context of access request and 1n response to a stored secure
code that indicates a security context of the selected cache
line can reduce the level of complexity of the firewall (e.g.,
to achieve a similar level of performance), can reduce the
length of the time otherwise taken to flush the L1D cache
(which 1s performed to prohibit malware from accessing
cached contents, for example), and can increase the overall
performance of the CPU/memory system that includes the
cache of the selected cache line

Evicting a reduced subset of cache lines reduces the
number of CPU stalls that would otherwise (e.g., without the
security matching of the memory request security context
against the security context of the cache line addressed by
the memory request) occur during the cache eviction pro-
cess. By not evicting data having the same security context,
which reduces or eliminates the latency encountered to
promulgate the evicted cache information to a memory
endpoint (e.g., external memory) and the latency otherwise
encountered when reloading the evicted line.

In writeback caches, a value 1n a memory location stored
in a line of cache can be modified (dirty, e.g., modified by
a CPU) with respect to main memory. When the memory
allocated for the modified cache line 1s determined to be
needed for other memory, the modified cache line can be
evicted. When the cache line that includes the modified
value 1s evicted from the cache, the evicted cache line
(which 1ncludes dirty memory) 1s progressively sent to the
next higher level of reduces the length of the time otherwise
taken to flush the LID cache, which increases the overall
performance of the memory system that includes the LID
cache by reducing the number of CPU stalls that occur
during the cache eviction the memory hierarchy. (The
evicted cache line can also be stored 1n a victim cache at the
same level of cache hierarchy.) In response to progressively
sending the dirty cache line to higher levels of cache, the
corresponding portion of main memory 1s ultimately
updated with the modified information stored in the evicted
cache line. When the corresponding portion of main memory
1s updated with the dirty cache line, all of memory 1ncludes
the modified data, so that the memory system 1s (for
example) once again coherent and so that the modified data
can be considered to be no longer dirty.

The UMC 430 (as described hereinabove with respect to
FIG. 4) 1s coupled to control the level 2 memory 480 1n
response to the firewall 470. The firewall 470 includes a
dedicated white-list firewall, which can be programmed to
allow/disallow access for selected L2 SRAM address
regions. Each of the selected L2 SRAM address regions can
be assigned a respective cache policy. The assigned respec-

tive cache policy can be a policy such as a selected permis-
s10n level for each kind of access (e.g., such as memory read
accesses or write accesses). Table 3 shows example caching
policy assignments.

US 12,001,351 B2

19

20

Fail-No cacheable permission
Pass-Has cacheable permission
Fail-No write permission (CM = 1)
Pass-Has write permission (CM = 1)
Fail-No cacheable permission

Pass-Has cacheable permission

Fail-No read permission (CM = 1)
Pass-Has read permission (CM = 1)

Fail-No cacheable permission

Pass-Has debug and cacheable
permissions (CM = 0, R/'W ignored)
Pass-Has debug permission and

cacheable ignored (CM = 1, debug

Fail-No cacheable permission

Pass-Has debug and cacheable

permissions (CM = 0, R/W 1gnored)

TABLE 3
Transaction
Attributes
(D = debug,
C = cacheable, Firewall Firewall
R = read, Region Cache
Transaction W = write) Permissions mode
Type D C R'W D C R W CM Firewall Result
Normal 0 0 W — 0 — Fail-No write permission
Write 0 0 W — 1 — Pass-Has write permission
Normal 0 0 R 0 — — Fail-No read permission
Read 0 0 R 1 — — Pass-Has read permission
Cacheable 0 1 W — 0 0
Write (CM = 0)
0 1 W — 1 0
(CM = 0, R/'W 1gnored)
0 W — 0 1
0 W — 1 1
Cacheable 0 R — 0 0
Read (CM = 0)
0 1 R — 1 0
(CM = 0, R/'W 1gnored)
0 1 R 0 — 1
0 1 R 1 — 1
Debug Write 1 0O W 0 — — Fail-No debug permission
1 O W 1 — — Pass-Has debug permission
(R/W 1gnored)
Debug Read 1 O R 0 — — Fail-No debug permission
1 O R 1 — — Pass-Has debug permission
(R/'W 1gnored)
Debug 1 1 W 0 — — Fail-No debug permission
Cacheable 1 1 W 1 0O 0
Write (CM = 0)
1 1 W 1 1 0
1 1 W 1 — 1
causes R/W 1gnored)
Debug 1 1 R 0 — — Fail-No debug permission
Cacheable 1 1 R 1 0O 0
Read (CM = 0)
1 1 R 1 1 0
1 1 R 1 — 1

Pass-Has debug permission and

cacheable 1gnored (CM = 1, debug
caused R/W 1gnored)

As described with respect to FIG. 2, for example, an
example L1D heterogeneous cache implementation can
cache L2 SRAM address(es) for each cached line 1in the L1
(data) cache 223 and (LL1D) victim cache 223. The manage-
ment of the L1D main and victim caches and the L.2 shadow
copies 1s performed in response to a dedicated protocol/
interface coupled between L1D and L2 controllers, which
allows passing allocation and relocation information from
the L1 to the L2 controllers. The L2 controller can respond
to transactions and information from the L1 and can also
create and enforce snoop transactions for maintaining I/O
(DMA) coherence from non-caching requestors within the
same shareability domain. The snoop transactions can cause
the L2 controller to mitiate changes to the shadow caches of

Signal mnemonic Description

caddress

csecure
cvictim__ address
cvictlm__secure
cvictlm_ mesl
cvictim_ valid
cmain__address

45

50

the L2 cache and to the main/victim caches of the L1D
cache.

The level 1 (e.g., LID) controller 222 can include pro-
gram-1nitiated cache maintenance operations (CMQO) that
can be selected by a programmer to manage the occupancy
of the caches 1n the L1D and L2 controllers at a granularity
ol an individual cache line.

In an example described herein with reference to FIG. 4,
CMO transactions can 1ssue from a streaming engine to the
L.2 controller (e.g., UMC 430) via a direction transaction on
a VBUSM.C protocol interface. The VBUSM.C protocol
interface 1s arranged to intercouple the SE 422 and the UMC
430. Table 4 shows an example VBUSM.C protocol inter-
face.

TABL.

(Ll
e

Actual Signal

Allocate address caddress
Allocate security level csecure
Address of line moving out of victim cache csband[96:53]
Secure bit for line moving out of victim cache csband[52]
MESI state for line moving out of victim cache csband[51:50]
Valid bit for all cvictim™ signals csband[49]
Address of line moved from main cache to victim cache csband[48:5]

US 12,001,351 B2

21
TABLE 4-continued

Signal mnemonic Description

cmain__secure
cmaln__mesl
cmain__valid
calloc

Valid bit for all cmain™ signals
Bit indicating whether the caddress
line will be allocated into main cache

The VBUS.C protocol includes an example csband signal.
The csband signal 1s a packed bus (e.g., 97 bits wide) that
concatenates several sub-signals, as shown 1n Table 4. The
csband signals are asserted to maintain coherency during
certain changes 1n cache state (e.g., where such changes can
occur 1n response to cache activities such as allocation of
cache lines and such as updating the shadow information 1n
the L2 controller.

At certain times, the software-initiated CMO can require
evicting/invalidating a block of addresses (or a single
address) for a specific security level (e.g. Secure only vs.
Non-secure only). A “secure code” (e.g., “secure bit”) 1s
described herein that can be used to control the L2 cache to
maintain a fine-grained control of the by evicting/invalidat-
ing of a reduced-size (e.g., minimum) subset of L1D cache
lines required by the CMO request. Such need for evicting/
invalidating lines of cache from the L1D can occur in
response to a change of a level of a privileged mode of the
CPU (e.g., from secure-to-nonsecure or from nonsecure-to-
secure). Table 5 shows an example tag line of L1D cache
that includes a secure bit (csecure 1n the bit 49 position) for
cach cache line 1n the L1D cache.

TABLE 5

TAG NAME 63 52 51 50 49 48 13 12 0

Reserved VALID TABLE CSECURE TAG Reserved
BASE

L1PCTAG

Table 6 shows field descriptions of an example tag line of
[.1D cache that includes a secure bit (csecure) for each cache
line 1n the L1D cache.

TABLE 6
Bit Field Description
12-0 Reserved Reads return O
48-13 TAG Tag for cached line
49 CSECURE Secure bit for cached line
50 TABLE BASE Privilege bits for cached line
51 VALID Line is present 1n the cache
63-52 Reserved Reads return O

Selected portions of the cache (e.g., subset of L1D cache
lines) to be evicted or invalidated are determined in response
to determining the status of the respective secure code for
cach cache line. Selecting a subset of the cache to be evicted
(for example, rather than evicting all lines of the cache),
reduces the length of the time otherwise taken to flush the
[.1D cache, which increases the overall performance of the
memory system that includes the 11D cache by reducing the
number of CPU stalls that occur during the cache eviction.
Table 6 shows a tag line of a L1D cache, which includes a
secure code bit for determining a secure status respective
line.

The calloc signal 1s asserted to mitiate read commands
issued from L1D for reading an L2 cache line. The assertion

Secure bit for line moving from main cache to victim cache
MESTI state for line moving from main cache to victim cache

10

15

20

25

30

35

40

45

50

55

60

65

22

Actual Signal

csband[4]
csband|[3:2]
csband|1]
csband[O]

of calloc (e.g. calloc==1) indicates that the given cache line
(caddress+csecure) 1s being allocated by the L1D main
cache. The csband information 1s used to update L1D
shadow 1nformation in the L2 controller when calloc 1s
asserted (e.g., calloc==1). When calloc 1s not asserted (e.g.,
calloc==0), the valid bits (cmain_valid and cvictim_valid)
of the addressed cache line are set to 0, so that (for example)
the 1D cache lines are not changed when the calloc signal
1s not asserted.

Generally, the same cache line (e.g., where a cache line 1s
unmiquely 1dentified by an address and the state of the secure
code) cannot be read by two requestors at the same time (e.g.
while being transferred from main to victim cache, and
while being transferred out of the victim cache). To help
avoid this conflict, the values of the cvictim_address and the
cvictim_secure (the secure bit for the L1D victim cache line)
signals can be prohibited from exactly matching the respec-
tive values of the cmain_address and cmain_secure signals
during the time 1n which the calloc signal 1s asserted
(calloc==1) and the valid bits for the addressed cache line
are set (e.g., when cmain_valid==1 and cvictim_valid==1).

The snoop and DMA transactions imtiated by the L3
controller operate similarly to the CMO transactions 1ssued
by the streaming engine. For example, such snoop and DMA
transactions 1include a secure code for indicating the security
level of the process of the originating request.

The coherent read transactions 1ssued from the MMU or
the streaming engine also operate similarly to the CMO
transactions 1ssued by the streaming engine. For example,
the coherent read transactions include a secure code for
indicating the security level of the coherent read requests.

In various examples, the L2 controller (e.g., L2 cache
controller 431) 1s arranged to receive from a requestor an
access request that indicates a selected cache line. The L2
controller 1s arranged to compare a secure code of the
received access request against a stored secure code that 1s
associated with the secure context ol a previous access
request that wrote the present information into the selected
cache line. In response to the comparison, the selected cache
line can be selectively invalidated or evicted, so that a subset
(e.g., a set smaller than the entire set) of selected cache lines
1s validated or evicted in response to a change in the
security level (e.g., as indicated by the secure code) of the
requestor.

The L2 controller 1s coupled to a level two data cache,
which 1s stored L2SRAM physical structure. The L2ZSRAM
1s a monolithic endpoint RAM, and 1s arranged to store none,
one, or two cache lines for an address indicated by an access
request from a requestor. In various examples, a number of
cache lines for a single cacheable address that can be stored
in the L2SRAM 1s equal to the number of security levels that
can be indicated by the secure code of the received access
request. In an example, the secure code 1s a bit (e.g., the
“secure bit”’), so that data for storing in a given cacheable
address can be stored 1n a first cache line associated with the
first possible value of the secure code (e.g., when the secure
bit 1s 0), and so that data for storing 1n the given cacheable

US 12,001,351 B2

23

address can be stored 1n a second cache line associated with
the second possible value of the secure core (e.g., when the
secure bit 1s 1).

Coherency 1s maintained by including a field (e.g., a bit
field) for the secure code (e.g., a secure bit) 1 each of the
L1D tags, L2 tags, and L2 shadow tags. When an access
request results 1n information being written into a cache line
for any of the L1D tags, L2 tags, and L2 shadow tags, the
secure code (e.g., secure bit) of (e.g., included by) the access
request 1s further propagated to the other caches that include
(or are to include) the information of the cache line indicated
by the access request.

The access request includes a secure code for indicating
a security level of the security context of the requestor
iitiating the access code. As described hereinbelow, the
secure code (e.g., secure bit) can be included 1n an L 1D tag,
a CMO or Snoop transaction, an MMU or SE read transac-
tion, and a DMA read/write transaction. An L2 snoop
transaction to L1D includes the secure code of the originat-
ing CMO/Snoop/Read/DMA transaction request.

When a transaction 1s processed by the L2 controller that
requires a lookup 1n the shadow copy of the L1D main or
victim cache tags, the L2 controller evaluates the secure
code of the cache line addressed by the transaction being
processed to determine a “hit” or a “miss” (e.g., by the
access to the L1D cache line). For example, a hit 1s deter-
mined for the incoming transaction: 1) in response to
detecting a match between the stored secure code of the
addressed cache line 1n the shadow tags and the secure code
of the incoming transaction; AND 2) in response to detecting
a match between an address of a cached line 1n the shadow
tags and the cache line address of the incoming transaction.
In the example, a miss 1s determined for the incoming
transaction: 1) in response to not detecting a match between
the stored secure code of the addressed cache line 1n the
shadow tags and the secure code of the incoming transac-
tion; OR 2) 1n response to not detecting a match between an
address of a cached line 1n the shadow tags and the cache
line address of the incoming transaction.

To help ensure the L1D accurately performs its own
hit/miss detection of subsequent snoop transactions pro-
cessed by the L1D, the secure code associated with the most
recent cache line hit by the L2 controller can be transterred
to the L1D controller. The secure code associated with the
most recently cache line hit by the L2 controller can be
transierred to the L1D controller via a snoop transaction
initiated by the L2 controller (via the VBUSM.C bus 1nter-
face protocol signaling) in response to the most recent cache
line hit (e.g., that includes the hit/miss detection in response
to the state of the secure code).

In contrast, conventional solutions lack a secure code 1n
the cache tags that indicates a security level of the requestor
context by which the cache line was tagged. Such a lack of
retaining the security level of the requestor context by which
the cache line was tagged can result 1n gross security control
faults (e.g., because the distinction between secure and
non-secure contexts security level of the requestor context
by which the cache line was tagged can potentially allow an
access request to be processed at a security level different
from the security level of the requestor context by which the
cache line was tagged.

The distinction between secure and non-secure contexts in
the cache tags enables fine-grained cache eviction/invalida-
tion of cache lines stored under a first context, for example,
without 1mpacting the caching performance of cache lines
stored under a context different from the first context. In an
example where a non-secure cache line 1s 1nvalidated via a

10

15

20

25

30

35

40

45

50

55

60

65

24

CMO operation, the secure line can remain in the cache,
which results 1n an 1mproved caching performance of the
cache line stored i the secure solftware context. For
example, this improvement can occur 1n cases where both
the cache line stored 1in the non-secure software context and
the cache line stored in the secure software context share the
same tagged address 1n the same cache.

The eficiency of L2 controller to accurately perform
coherent snoop operations to the L1D can be improved by
performing the coherent snoop operations to the L1D for the
subset of cases in which both the cached addresses and the
security levels for the addressed cache line and the access
request are the same. The selection-of which coherent snoop
operations to the L1D are to be mitiated-can be determined
in response to evaluating the security level of the software
context indicated by the secure code (e.g., the state of the
secure bit) of the transaction, where the state of secure bit 1s
stored 1n the cache tags in L1D (main or victim) cache and
1s also stored/maintained in the shadow copy of the L1D/L.2
cache tags 1n the L2 cache.

Some comparable DSP SoCs include a single pipe (e.g.,
data pipeline) over which both accesses by a single CPU
(e.g., where the accesses can include bus traflic resulting
from load, store, and fetch instructions), DMA accesses, and
local L2 accesses are transmitted, sequentially, across the
single pipe. Such DSP system architectures did not support
ellicient accessing of multiple parallel banks due to the
single pipeline over which L2 accesses were carried.

In some such examples, the L2 cache subsystem was not
shared with other sources such as an MMU, or any other data
streaming requestor, due to bandwidth constraints of the
single pipe coupled between the DSP and the L2 cache
subsystem. Moreover, functions such as 10 coherence and
safety are constrained due to such bandwidth constraints.
The problem of limited bandwidth over the single pipe 1s
turther aggravated by the sequential nature of data process-
ing by which data throughput i1s limited by processing
latencies that can lengthen the time, for example, that DSP
accesses block other requestors from accessing the single
pipeline.

As described herein, a hierarchical, coherent memory
system 1ncludes a midlevel (e.g., L2) memory and cache
controller. In an example, an .2 memory and L2 controller
1s arranged to increase the bandwidth of a requestor-to-L.2-
cache pipeline while increasing the variety of heterogeneous
requestors of the L2 cache. In an example, the datapath from
the L2 cache and through a portion of the controller 1s
multi-banked such that each requestor can effectively reach
a Tull throughput (e.g., a full throughput of the requestor) to
access each bank (e.g., via a dynamically assigned parallel
portion of the L2 pipeline to a requested bank of the L2
cache).

The requestors (and respective cache transactions) can
include an L 1P (fetch), L1D (load/store), a MSMC (DMA to

.2 or LIDSRAM, snoop, and CacheWarm), a MMU (page
translation), a streaming engine (Streaming data on multi
ports, cache coherency/maintenance operations). The desti-

nation endpoints of the requestor cache transactions can
include an .2 SRAM, an LL1D SRAM, an L2 cache, a

MSMC SRAM, an L3 cache, external DDR, and other
circuits (e.g., circuits that are external to the DSP and the
support structures that are closely coupled to the DSP). The
.2 controller 1s arranged to maintain coherency between the
caches at each level of the hierarchy of the memory system,
so that the caches of the hierarchical memory system main-
tain full coherency. 10 coherency to L2 SRAM can also be
maintaimned by the L2 controller. The L2 controller can

US 12,001,351 B2

25

include ECC for protecting data stored or transmitted
through FIFOs and pipeline structures throughout the 1.2
controller-to-LL2 cache memory datapaths.

The L2 controller 1s arranged to dynamically arbitrate
between multiple requestors and to allocate a priority of
accesses across multiple banks, so that each requestor 1s able
to achueve a full throughput (e.g., from the viewpoint of the
requestor). The L2 controller 1s arranged to select a set of
optimizations in response to the type of requestor and
requested cache transaction, so that an overall better system
performance 1s achieved as a result of the selective alloca-
tion 1n parallel of banks and respective pipes. The allocation
ol parallel resources (such as banks and respective pipes)
can be determined 1n response to the type of requestor and/or
type of request, which allows the allocated resources (e.g.,
banks and pipes) to be etliciently shared by the multiple
requestor 1n parallel (e.g., in an overlapping manner). The
parallelism achieves a high level of data transier rates and
capacity, so that processor/requestor stalls (that would oth-
erwise occur) are reduced and the available pipeline
resources can be selectively allocated to service requestor
cache operations.

The structures and techniques described herein selectively
control and maintain a very high level of parallel data traflic
in an example DSP system. The example system can include
an arbiter for selecting and assigning datapath resources in
response to the capabilities and priorities of each individual
requestor. The structures and techniques described herein
maintain data coherency throughout schemes for multiple
banking (e.g., including banked pipes), dynamic Arbitration,
optimized banking, and pipelining.

Memory and a cache controller are provided. To arrange
parallelism of data transfers and achieve high levels of data
throughput, an .2 cache controller can include banked cache
memory, where each such bank 1s controlled 1n response to
a control and datapath structure pipeline. Each such structure
can have mdependent and dedicated access to 1ts memories
by a requestor. The pipeline can include sections for either
blocking or not blocking transactions generated by one or
more requestors. The non-blocking section(s) of the pipeline
help ensure that transactions (e.g., high-priority transac-
tions) that can potentially cause stalls 1n the system when not
processed, are allowed to bypass other transactions. The
blocking section(s) of the pipeline are used to store stalled
transactions and to arbitrate between (e.g., selectively block
transactions from) diflerent requestors and transactions.

In various examples, the cache related memornies (e.g., tag
RAM, snoop tag RAM, MESI RAM) are banked in parallel
in an arrangement that 1s similar to an arrangement of the .2
memory, which includes parallel banking structures.

FIG. 6 1s a tlow diagram of an example banked, selec-
tively blocking cache controller pipeline having reservation-
based arbitration and scheduling of cache transactions. The
pipeline 600 1s an example pipeline. The pipeline 600 1s

individually coupled to instances of wvarious kinds of
requestors including PMC 601 (such as PMC 362), DMC

602 (such as DMC 361), SE 603 (such as SE 313), MSMC
604 (such as MSMC 351), and CMMU 605 (such as MMU
391).

The overall UMC pipeline arbitration control can be
arranged 1n six sections: a) a blocking Resource Allocation
Unit (RAU) with extended local arbitration (ELA), which 1s
coupled to a respective requestor; b) a RAU STAGE 1 (a
blocking level-1 arbitration unit), which 1s coupled to a
respective bank (e.g., banked pipe); ¢) a RAU STAGE 2 (a
non-blocking Level-2 Arbitration Unit), which 1s coupled to
a respective bank (e.g., banked pipe); d) a group of concat-

5

10

15

20

25

30

35

40

45

50

55

60

65

26

cnated, non-blocking PO-P3 pipeline stages, which 1s
coupled to a respective bank; ¢) a blocking P4 Stage, which
includes the exit FIFOs of a banked pipeline; and 1) a cache
miss and snoop arbitration and send section (which includes
arbiters 691 and 692).

Each of the requestors (e.g., PMC 601, DMC 602, SE 603,
MSMC 604, and CMMU 603) 1s coupled to the pipeline 600
and can 1ssue at least one cache access operation (transac-
tion) for accessing the L2 RAM data memory 672. Each of
the transactions are received and buflered 1n a respective
arbitrating FIFO 610 (e.g., so that any or all of the requests
in a particular FIFO can be prioritized based the particular
FIFO that receives transactions of the particular kind of
requestor coupled to the FIFO). In the example, each FIFO

610 1s coupled to a respective RAU unit.
The first section of the RAU ELA includes RAU 621,

RAU 622, RAU 623A, RAU 623B, RAU 624, and RAU
625. The RAU 621 1s coupled to receive fetch transactions
from the PMC 601. The RAU 622 is coupled to receive 1n
parallel the read/write, victim, snoop/read response, and
snoop response transactions from the DMC 602. The RAU
623 A 1s coupled to receive read transactions from the SE
603. The RAU 623B 1s coupled to receive read transactions
from the SE 603. The RAU 624 1s coupled to receive 1n
parallel block read/write, non-blocking write, snoop, and
read response transactions from the MSMC 604. The RAU
625 1s coupled to recerve read transactions from the CMMU
605.

Each RAU ELA 1s arranged to arbitrate transactions of the
particular transaction types received from a respective
requestor. The transactions sent by a given requestor can
include various types of transactions, which can be broadly
classified as either Blocking or Non-Blocking. Other such
attributes, which can be orthogonal to the category of
blocking/non-blocking can be classified by attributes such as
thread, response, or other such attributes suitable for arbi-
tration, scheduling, or other prioritization activities for
ordering the progress of transactions through the pipeline
600. Such arbitration can be customized 1n response to the
type of requestor and the type of transactions that are sent
from a particular requestor (including a particular kind of
requestor).

Each of the RAU units 1s a blocking (e.g., selectively
blocking) umt, so that any and all transactions can be
selectively (and temporarily) stalled at and by a respective
RAU unit, for example, 1n response to the next following
(e.g., downstream) pipe stage being stalled.

Types of transactions that can be arbitrated (e.g., selec-
tively arbitrated) by the RAU include: 1) blocking reads and
writes (e.g., icluding transactions such as data loads and
stores, code fetches, and streaming engine reads), where
such transactions can be stalled behind (e.g., stalled 1n
response to a determination that the transaction has a lower
priority than) non-blocking transactions or non-blocking
responses; 2) non-blocking writes (e.g., including transac-
tions from transferring L1D victims from a local CPU or
from a different core having a line cached in the local
memory system), where such transactions are arbitrated
against other non-blocking and response transactions based
on coherency rules; 3) non-blocking snoops (e.g., snoops
from MSMC), which are arbitrated against other non-block-
ing and response transactions based on coherency rules; 4)
responses (e.g., responses such as responses to a read or
cache line allocate transaction sent out to MSMC, or for a
snoop sent to L1D), where the responses are arbitrated
against other non-blocking and response transactions based
on coherency rules; and 5) DMA (e.g., DMA transactions

US 12,001,351 B2

27

that are prioritized as being associated with a diflerent thread
of a differing priority), where—as a general rule—DMA
transactions can be stalled behind other non-blocking or
blocking transactions 1n cases where arbitration prohibits
other cache transactions from blocking any DMA transac-
tion over a relatively long period of time.

Any given requestor 1s not necessarily required to origi-
nate (e.g., 1ssue or send) all possible types of transactions.
Described herein following are examples of requestors and

the respective arbitration adjudicated by the respective RAU
units.

Firstly, the DMC 601 (which can be an L1 data controller)

1s a requestor that can originate the following types of
transactions: a) blocking reads; b) blocking writes; ¢) non-
blocking write (L1D wvictims); d) non-blocking snoop
responses; and €) non-blocking DMA responses (for L1D
SRAM). Non-blocking transactions can win arbitration over
blocking transactions. Arbitrations between the various non-

blocking transaction and non-blocking commands are pro-
cessed 1n the order that they arrive (e.g., FIFO). DMA

responses that access L1D SRAM are not necessarily
required to be arbitrated 1n response to ordering commands.

Secondly, the PMC 602 (which can be an L1 program
controller) 1s a requestor that can originate only blocking
reads (in an example). In various implementations of the
example DSP, the read transactions sent from the PMC are
processed 1n order (although an extension of the arbitration
control can allow them to be processed out of order).

Thirdly, the SE 603 (streaming engine) 1s a requestor that
can originate blocking reads and CMO (cache maintenance
operations) transactions. In various implementations of the
example DSP, the read and CMO access transactions from
the SE are processed in order (although an extension of the
arbitration control can allow them to be processed out of
order).

Fourthly, the CMMU 605 (which 1s a memory manage-
ment unit) 1s a requestor that can originate only blocking
reads (in an example). In various implementations of the
example DSP, the read transactions from the CMMU are
processed 1n order (although an extension of the arbitration
control can allow them to be processed out of order).

Fifthly, the MSMC 604 1s a requestor that can originate
the following types of transactions: a) blocking DMA read;
b) blocking DMA write; ¢) non-blocking write (1D victims
from another core and/or processor); d) non-blocking snoop:;
and ¢) non-blocking read response. The non-blocking trans-
actions are weighted to win arbitration over blocking trans-
actions. Arbitration between non-blocking transactions 1is
adjudicated in response to an ordering that can help maintain
memory coherency. However, read responses can be arbi-
trated 1n any order, because of a lack of a hazard in the
ordering of concurrent read responses.

The Level-1 Arbitration (S1 Arb) 1s coupled to one or
more of the outputs of the RAU ELA stage to receive
transactions from each requestor, which have been arbitrated
by the FIFOs 610. The outputs of RAU can be dynamically
selectively coupled and/or structurally coupled to a particu-
lar bank selected from paralleled banks coupled 1n parallel
(as described herein following) in response to dynamic
conditions such as an address of the transaction, a type of the
transactions, and/or be coupled to a particular requestor
based on an expected processing load. The ‘winning’ trans-
action arbitrated from each requestor are presented to the
level-1 arbitration (S1 Arb) for further arbitration. The
level-1 arbitration stage includes blocking units, so the
transactions pending in the level-1 arbitration unit can be

10

15

20

25

30

35

40

45

50

55

60

65

28

stalled within the RAU stage 1 in the event that a next
following pipe stage 1s stalled.

Bank 630 (e.g., Bank Max) includes the arbiter 631, the
arbiter 641, the tag access unit 651, the tag ECC 661, the
hit/miss Control 671,the L2 RAM data memory 672, the data
ECC 673, and the FIFO[I . N] 683. A Bank 1 can iclude
a piped bank that includes the arbiters 632 and 642 as well

as other units similar to units 1n respective stages ol Bank
Max (630). A Bank O can include a piped bank that includes

the arbiters 633 and 643 as well as other units similar to units
in respective stages of Bank Max (630).

The RAU stage 1 of pipeline 600 includes a row of
arbiters, where each of the arbiters 631, 632, and 633 1s
included as an entry point of a respective banked pipes (each
of which banked pipe can—or can be included by—one of
the paralleled banks, such as bank 630). The arbiters 631,
632, and 633 are coupled to receive transactions from the
outputs of the data path of the RAU ELA (e.g., 621-625), so
that the paralleled arbiters can arbitrate the transactions

received from the RAU ELAS in parallel. The arbiters 631,
632, and 633 can share information between themselves, so
that arbitration of a first arbiter (e.g., 631) can be adjudicated
in response to a second arbiter (e.g., 632). Various example
configurations of the RAU stage 1 can include one through
eight arbitrators, so that one through eight pipes/banks can
be arranged to adjudicate arbitration of the recerved trans-
actions 1n parallel.

Each of the arbiters of the banks of arbiters in the RAU
stage 1 1ncludes various checking devices for adjudicating
an arbitration 1n response to determinations of a set of
checks. A result of the arbitration can be that a transaction
1s allowed to proceed to the next stage (e.g., RAU stage 2)
upon successiully completing the checks of the checking
devices.

A first check includes determining address hazards.
Depending on the type of transaction and the type of the
requestor generating the transaction, the address of the
request 1s hazarded to address in the pipeline, and the
transactions sent out to external devices (which might
require dependent transactions to be stalled). Non-blocking
transaction are hazarded against other non-blocking trans-
action only, while blocking transactions are hazarded against
blocking and non-blocking transactions.

A second check includes determining structural and pipe-
line hazards. The structural and pipeline hazards are a kind
of hazards that are dependent on (e.g., caused by limitations
ol) the pipeline and interface microarchitecture. Hazarding
can be performed in situations such as: a) multiple transac-
tions attempting to simultaneously access a same interface
(e.g., where one transaction can be a read response fora L1D
read generated by a MSMC, and where another transaction
can be a read hit for an L.1D read, so that the results of both
transactions would be ready to be returned to the L1D 1n the
same cycle); b) contlicts between simultaneous accesses to
the tag, snoop and MESI RAMs, which can occur because
the tag, snoop, and MESI read can be accessed from two
different stages in the pipeline; and ¢) contlicts between the
[.2 cache and SRAM, which can occur because a multi-
phase transaction (such as the read-modify-write transac-
tion) would conflict with a ‘winning’ transaction for access
to the same bank.

A third check includes determining reservation credits. To
help reduce the interaction (e.g., adverse interaction, where
external factors could otherwise reduce the efliciency of the
internal arbitration) between internal arbitration and external
credits (from other modules), the UMC 1s arranged to
selectively 1ssue (e.g., “consume” reservation credits from a

US 12,001,351 B2

29

pool of) reservation credits from a pool of reservation credits
and to spend (e.g., “release” the reservation credits back to
the pool). The reservation credits from the pool of reserva-
tion credits are consumed and released mternally to the
pipeline 600. In an example, the pool of reservation credits
includes the depths of each of the exit FIFOs of the P4 pipe
stage. The third check can include determining an amount of
reservation credits to be consumed for each transaction in
response to the type of requestor and the type of transaction.
Examples of reservation credits include: a) read allocate
command credit (e.g., where the reservation credits can be
consumed from the reservation credit pool when space 1s
available 1 the P4 pipe stage “to exit” a read allocate
command from the pipeline 600); b) write allocate command
and date credit (e.g., where space 1s available 1n the P4 pipe
stage for exiting a write allocate command, and where space
1s available for the write data to be held so that write data can
be merged later); ¢) write command credit (e.g., where space
1s available 1n the P4 pipe stage for exiting a non-allocating
write command); d) L1D victim (e.g., where space 1s avail-
able 1 the P4 pipe stage for exiting the L1D wvictim
command and data); ¢) L2 victims (e.g., where space 1s
available 1n the P4 pipe stage for exiting the L2 victim
command and data); 1) snoop (e.g., where space 1s available
in the snoop response queue 1n the event a response 1s to be
generated, and where space 1s available in the snoop queue
in the P4 stage i the event a snoop 1s to be sent to L1D); g)
DMA to L2SRAM (e.g., where space 1s available 1n the
DMA response queue 1n the event a response 1s to be
generated, and also where space 1s available in the snoop
queue 1n the P4 stage 1n the event a snoop 1s to be sent to
LL1D 1n response to the DMA ftransaction); h) DMA to
L1DSRAM (e.g., where space 1s available 1n the DMA
queue P4 stage, which 1s where the DMA transaction results
are to be forwarded to DMC); and 1) read response to L1D
(e.g., Tor reads that hit the L2 cache or are for reading the
[L2SRAM, the read data could be stalled by the DMC: to
prevent stalls resulting from the read responses to L1D from
backing up the entire pipeline, a separate read response
FIFO (not shown) can be include to queue a sequence of the
read responses, and the read response FIFO can be couple to
cach of (e.g., shared by) each of the banked pipes).
Regarding Level-2 Arbitration (S2 Arb), each requestor
(e.g., the DMC 601, the PMC 602, the SE 603, the MSMC
604, and the CMMU 605) can have one or more
transaction(s) which is (are) eligible for final arbitration and
entry into (e.g., a banked pipe of) a non-blocking RAU stage
2 of the pipeline 600. In various examples, each transaction
for each requestor 1s separately arbitrated, or multiple trans-
actions Irom each requestor can be commonly arbitrated.

10

15

20

25

30

35

40

45

30

The RAU stage 2 of pipeline 600 includes a bank of
arbiters, such as arbiters 641, 642, and 643. The arbiters 641,

642, and 643 are coupled to receive transactions from the
respective outputs of arbiters 631, 632, and 633.

The second level of arbitration (e.g., RAU stage 2) 1s a
non-blocking section of the pipeline, so that each banked
pipe continues to determine a sequence of arbitration win-
ners, so that no transaction can stall indefinitely. As
described hereinbelow, a combination of fixed and dynamic
arbitration 1s arranged to prevent indefinite stalls.

A first arbitration competition can exist between request-
ors 1n a first group of two requestor types including stream-
ing engine reads and including data loads and/or stores. The
relative importance of winmng for either of these competing
transactions can be determined by evaluating the adverse or
beneficial eflects of the first arbitration competition on the
application. To selectively determine the relative impor-
tance, a user (e.g., system designer) can program configu-
ration registers (via memory mapping and or extended
control registers) to load a bandwidth management counter
with a value indicating a relative arbitration priority between
the first two requestor types.

A second arbitration competition can exist between
requestors 1n a second group of two requestor types includ-
ing a first output port and a second output port, where both
are output ports of the same streaming engine. In addition to
the two streaming engines with separate ports shown 1n the
example pipeline 600, other pipeline examples can include
a single streaming engine that shares the two ports among
two or more streams. Because the UMC might not be
signaled to recerve the actual stream-to-port mapping of the
SE, and because such mapping can be dynamically changed,
the SE port O-port 1 relative bandwidth management counter
in the memory mapped registers can be programmed by a
user, so that (e.g., 1n response to the user programming) the
UMC can determine a relative arbitration between the two
ports.

A third arbitration competition can exist between request-
ors 1 a third group of two requestor types, where the
transactions from the requestors are DMA reads/writes.
Such arbitrations can be determined by using counters to
manage data trailic resulting from the requested transac-
tions.

Table 7 shows a user portal for accessing the three sets of
counters to mnduce a selected bias 1n arbitration results (e.g.,
so that a first application that provides real-time results can

run uninterrupted and a second application that provides
less-critical results 1s subjected to more delays than the first

application).

TABLE 7
Field Field
REGID REGISTER Register Fields MSB LSB Access Reset Register Description
Ox281 L2CC RSVD 03 >4 R 0
SE._BW_CNT 53 51 RW 010 SEO, SE1 Relative Bandwidth
Management Counter
RSVD 50 49 R 0
DMA_BW_CNT 48 46 RW 011 DMA Bandwidth
Management Counter
RSVD 45 44 R 0
CPU_BW_CNT 43 41 RW 011 CPU (Load/Store) Bandwidth
Management Counter
RSVD 40 38 R 0

US 12,001,351 B2

31

At the end of the RAU stage 2, each of the banked pipes
has a respective unique winning transaction, each of which
1s then forwarded (e.g., forwarded in response to winning) to
the next stages (e.g., the PO-P3 stages) of each of the banked
pIpes.

Regarding the first four pipe stages (e.g., stages PO-P3
present 1 each of the banked pipes), the stages PO through
P3 are non-stalling and non-blocking. The non-stalling
design helps to avoid transaction stalls 1n the PO-P3 stages
of the pipeline 600. Each transaction admitted to the PO-P3
stages 1s processed 1n 1 or 2 cycles by the stages, and each
such admitted transaction can have guaranteed slots. Trans-
action stalls are avoided because the arbitration before PO
(e.g., in RAU stages 1 and 2) has ensured that a suflicient
bandwidth remains 1n the PO-P3 stages (as well as 1n the
downstream portions therefrom of the pipeline 600), so that
cach winning transaction entering stage PO—and for any
secondary transactions that each winning transaction might
respectively generate—can be subsequently processed by at
least stages P1-P3 without stalling.

The example functionality of stage PO (pipe stage O)
includes credit management and cache and SRAM function-
ality as described herein following.

The credit management functionality of stage PO includes
managing the consumption ol the reservation credits
described herein with respect to the S1 arbitration. As
described hereinbelow with reference to Table 8, an appro-
priate set of reservation credits are consumed 1n stage PO and
released 1n a later stage. The consumption of various kinds
of reservation credits 1n stage PO 1s described herein fol-
lowing.

A read allocate command reservation credit 1s consumed
for any read that can potentially create a miss to MSMC.
Because the tag, MESI or snoop RAMs have not been
evaluated in stage PO, the hit/miss evaluation results are not
necessarilly available here, and the consumption of this
credit 1s based on other factors. The other factors can
include: 1) determining whether the line 1s cacheable for
reads and writes; 2) determining whether the line could
potentially require a snoop transaction, €.g., where the line
was marked cacheable and shareable; 3) determining
whether the address of the transaction points to an endpoint
that has different coherency requirements; and 4) determin-
ing whether one of the requestors (e.g., of the transactions
being arbitrated) 1s able to generate snoop transactions.

A write allocate command and data reservation credit 1s
consumed for any write that can potentially write allocate
and create a miss to MSMC. Because the tag or MESI RAMs
are not evaluated 1n stage PO, the hit/maiss evaluation results
might not be available at stage PO, so that the consumption
of this credit 1s based on other factors (such as the factors
described hereinabove).

A write command credit 1s an example reservation credit
that 1s consumed for any write that can potentially miss the
cache, 1s not write allocated, and 1s to be sent out as a write
miss to the MSMC. Because the tag or MESI RAMSs are not
evaluated in stage PO, the hit/miss evaluation results are not
necessarily available at stage PO, and the consumption of
this credit 1s based on other factors (such as the factors
described hereinabove).

An L1D victim reservation credit 1s consumed for any
L.1D victim that can potentially miss the cache, where the
LL1D victim, as a result of the cache miss, 1s to be sent out
to the MSMC. Because the tag or MESI RAMs are not

evaluated 1n stage PO, the hit/miss evaluation results might

10

15

20

25

30

35

40

45

50

55

60

65

32

not be available at stage PO, and the consumption of this
credit 1s based on other factors (such as the factors described
hereinabove).

An L2 victim reservation credit 1s consumed for any read
or write that can potentially create a miss to MSMC, so that
a dirty line 1s to be evicted from the .2 cache. Because the
tag, MESI or snoop RAMs are not evaluated in stage PO, the
hit/miss evaluation results might not be available at stage PO,
and the consumption of this credit 1s based on other factors
(such as the factors described heremnabove).

A snoop reservation credit 1s consumed for any read or
write that can potentially create a snoop to L1D. Because the
snoop RAM are not evaluated i stage PO, the hit/miss
evaluation results might not be available at stage PO, and the
consumption of this credit 1s based on other factors (such as
the factors described hereinabove).

A DMA to L2SRAM reservation credit 1s consumed for
any DM A read that does not indicate a snoop to L1D and that
can read from the L2ZSRAM. Because the snoop RAM 1s not
cvaluated 1n stage PO, the hit/miss evaluation results might
not be available at stage PO, and the consumption of this
credit 1s based on other factors (such as the factors described
hereinabove).

DMA to LIDSRAM: reservation credits need not be
consumed for this transaction because space 1s available 1n
the DMA queue P4 stage (e.g., without necessarily requiring
a reservation station in the P4 exit FIFO) and because the
DMA transactions can be forwarded to the DMC. The DMA
transactions can be forwarded without tag or snoop checks.

A read response to L1D reservation credit 1s consumed for
any read that can potentially read from the L2 cache or
[L2SRAM and send data back to DMC. Because the tag,
MESI or snoop RAMs are not evaluated in stage PO, the
hit/miss evaluation results might not be available at stage PO,
and the consumption of this credit 1s based on other factors
(such as the factors described heremnabove).

The credit management functionality of stage PO includes
managing the cache and SRAM functionality. The PO pipe
stage 1ncludes (or 1s coupled to) the tag access unit 6351. The
tag access umt 1s arranged to preprocess each of the read
transactions to be sent to the L2 tag RAM, L2 MESI RAM,
snoop shadow tag (LL1D), victim shadow tag (L1D Victim
cache), and the firewall.

The stage P1 (pipe stage 1) includes cache and SRAM
functionality. The stage P1 consumes a pipeline cycle while
processing the reads of the various cache-related RAMs
listed hereimabove.

The stage P2 (pipe stage 1) includes cache and SRAM
functionality. The tag ECC 661 consumes a pipeline cycle
while performing ECC detection and correction for verify-
ing data read from the various cache-related RAMs listed
above (e.g., for correcting soit errors caused in circuits
added by the pipeline 600), and while performing an 1nitial
part of the hit/miss determination.

The stage P3 (pipe stage 1) includes credit management
functionality. The hit/miss results for both the .2 cache and
the L1D shadow cache are determined by the Hit/Miss
Control 671, and some of the respective reservation credits
are released here by the hit/miss Control 671.

Some of the reservation credits released by the hit/miss
control 671 can include: a) read allocate command credit
(e.g., 1n response to a read hitting the L2 cache, the respec-
tive reservation credit 1s released here, because (for
example) a miss cannot be generated and sent to the
MSMC); b) Write allocate command and date credit (e.g., 1n
response to a write hitting the L2 cache, the respective
reservation credit 1s released here, because (for example) a

US 12,001,351 B2

33

write allocate miss might not be generated and sent to the
MSMC); ¢) Write command credit (e.g
write hitting the

., In response to a

L2 cache, the respective reservation credit

1s released here, because (for example) a write miss cannot
be generated and sent to the MSMC); d) L1D victim (e.g.,
in response to an L1D victim hitting the L2 cache, the

il

respective reservation credit i1s released here, because (for
L2

., 1n response to a read or write hitting the L2

example) the victim cannot be sent to the MSMC); ¢)
victims (e.g
cache, the respective reservation credit 1s released here,
because (for example) the L2 victim cannot be generated to
the MSMC—f the read or write misses the 1.2 cache, but the
line being replaced 1s not dirty, then too, the respective
reservation credit 1s released here, because (for example) the
[.2 victim might not be generated and sent to the MSMC);
1) snoop (e.g., 1n response to the transaction missing the L1D

cache (including missing both the main and victim caches),
the respective reservation credit i1s released here, because
(for example) a snoop cannot be generated to DMC); g)
DMA to L2SRAM (e.g., 1n response to the transaction
hitting the L1D cache (including hitting both the main and
victim caches), the respective reservation credit 1s released
here, because (for example) a snoop can be sent to the

DMC); h) DMA to L1DSRAM (e.g., a respective reserva-
tion credit 1s not released here); and 1) read response to L1D
(e.g., a respective reservation credit).

The stage P3 (pipe stage 1) includes cache and SRAM

functionality. The hit/miss control 671 continues processing
of the hit/miss evaluation, and—in at least some cases—can
generate the final result for both the L2 cache and the L1D
snoop filters. In response to the final result for both the L2
cache and the L1D snoop filters, the stage P3 can also
perform initialization functions such as setting up the cache
accesses for subsequent hits, L2ZSRAM access, commands
for miss, error status, and exceptions.

The L2 RAM data memory 672 1s coupled to receive
transactions from the stage P3 and to forward data retrieved
in response to the transactions received from the stage P3 to
the Data ECC 673. The transactions received from the
hit/miss control 671 of the stage P3 can bypass the L2 RAM
data memory 672 by traversing the L2VCT (level-2 victim
generated by an L2 cache miss) path to reach the cache miss
681 1n the stage P4, by traversing the SRAM bypass-cache
miss path to reach the cache miss 681 1n the stage P4, and
by traversing the SRAM bypass snoop path to reach the
snoop 682 1n the stage P4.

The stage P4 1s a final portion of the full pipeline (e.g.,
stages PO-P4, as well as pipeline 600): the stage P4 1s
blocking, while the stages P0O-P3 are non-b. ocking. The
stage P4 includes FIFO and other storage butlers that help
1solate the frontend of the pipeline from the external inter-
faces, and the external credits that are applied to those
interfaces. Commands that enter stage PO are guaranteed an
entry (e.g., without being blocked) into an exit FIFO entry
in stage P4, but the rate at which the FIFO-entered trans-
actions are retired from these the stage P4 FIFOs 1s depen-
dent upon on the stages after P4 and external credits.

MSMC (e.g., cache and misses) and DMC (snoop, DMA
to LIDSRAM) sets of transactions and reservation credits
are handled independently of the handling of reservation
credits consumed and released for other kinds of transac-

10

15

20

25

30

35

40

45

50

55

60

65

34

tions. For example, any outputs of the stage P4 of the
pipeline can be independently coupled to a selected input of
the master arbiter for MSMC transactions 691 or to a

selected input of the master arbiter for DMC transactions
692.

Regarding reservation credit management, all the con-
sumed reservation credits can be released 1n the P4 stage (so
that the reservation credit 1s recycled to the reservation

credit pool), so that the transaction can proceed to the next
stage, and eventually to the endpoint (e.g., the MSMC or the
DMC).

Although the P4 stage can be a blocking stage, in some

conditions, the blocking transactions might not be allowed
to block a non-blocking transaction. An example of such a

blocking condition could be a case 1n which a blocking read

ticient

1s not allowed to proceed due to there being insu

reservation credits available for the UMC (Universal
Memory Controller)-MSMC nterface. In such a case, a L1D
victim or L2 victim would be allowed to be sent out when
the required reservation credits (non-blocking reservation
credits) are present on the UMC-MSMC 1nterface. Deter-

mining whether suflicient credits are available 1s managed

by a state machine (not explicitly shown) that monitors the
availability of external credits available from the UMC-
MSMC 1nterfaces, monitors the availability of external
credits available on the DMA/snoop pipe stage (e.g., the
erent exits FIFOs

of a bank, so that more reservation credits can be consumed

next stage), and arbitrates between the dif

ticient

than would otherwise be available to guarantee su

resources using only the (internal) reservation credits.

The cache miss, snoop arbitration and send stage 1s a
common stage that receives and forwards transactions
received from all banked pipes (e.g., the outputs of each
banked pipes). The cache miss, snoop arbitration and send
stage includes the master arbiter for MSMC transactions 691
and the master arbiter for DMC transactions 692. Transac-

tions from any pipe that are destined for transmission to the
MSMC can be arbitrated by the master arbiter for MSMC

transactions 691, so that the arbitration for such transactions
1s 1solated and independent from the arbitration for the
transactions ifrom any pipe that are mtended for DMC. The
cache miss, snoop arbitration and send stage evaluates the
type and number of external credits required to send a
particular transaction out to the endpoint (IMSMC or DMC)

based on the transaction type and arbitrates one transaction
from the pipes that can be sent to external devices.

In an example pipeline 600, the FIFO[1 ... N] 683 1s a
set of banked pipe exit FIFOs 1n the stage P4. Each of the
exit FIFOs has a respective depth of reservation stations
(e.g., “slots™) 1n which 1t can temporarily builer a sequence
of recerved transactions. The number of reservation stations
in a particular exit FIFO determines the number of reserva-
tion credits available for the given FIFO. For each exit FIFO
in FIFO[1 . . . N] 683, there 1s a respective counter 1n
counters[]1 ... N] 609. The number of maximum reservation
credits for a selected FIFO can be loaded into the respective
reservation counter to iitialize the reservation counter.
Table 8 shows example transaction assignments and reser-
vation credits for associated pairs of reservation counters

and exit FIFOs.

US 12,001,351 B2

33

TABLE 8
RESERVATION

FIFO COUNTER Used for
FIFO_A COUNTER_A Read and Write Commands to MSMC
FIFO_B COUNTER_B Write Data to MSMC
FIFO_C COUNTER_C L2 Victim Data to MSMC
FIFO_D COUNTER_D LID Victim Data to MSMC
FIFO_E COUNTER_E Snoop Response to MSMC
FIFO_F COUNTER_F DMA Read Response to MSMC
FIFO_G COUNTER_G Snoop Command to DMC
FIFO_ H COUNTER_H DMA Command to DMC
FIFO_I COUNTER_I DMA Write Data to DMC

Each entry stored in a respective FIFO can be 1in one of 4
states: unoccupied state, in which the reservation counter
value 1s equal to the starting value; a reserved but not
occupied state, in which the reservation counter value 1s
smaller than the starting value; an occupied (and reserved)
state, 1n which the reservation counter value 1s smaller than
the starting value; and a full state, in which the reservation
counter value has a value of zero.

The arbitration for the transactions stored in the exit
FIFOs 1s performed 1n response to reservation credit actions,
which can “consume” reservation credits (e.g., in response
to the number of reservation stations as indicated by the
respective depths of the exit FIFOs) or “release’ reservation
credits (e.g., the reservation credits that have previously
been consumed).

The consumption of reservation credits can occur in
response to a reservation being made for storing a transac-
tion entry 1n a particular exit FIFO. The reservation counter
associated with the particular exit FIFO can be decremented
in response to the reservation credit being consumed, such
that the availability of open reservation stations in the
particular exit FIFO can be tracked. At this point in the
“reservation credit cycle,” the transaction entry has not
necessarily yet been pushed into reservation station of the
particular exit FIFO; the consumption of the reservation
credit indicates the formerly open reservation station has
been reserved and 1s (until released) not available to accept
a reservation. Accordingly, a credit count 1s decremented 1n
response to a respective consumption of a reservation credit.

The release of reservation credits can occur 1n response to
a transaction entry being “popped” from (e.g., made to exit)
the particular FIFQO, so that the formerly entered transaction
entry 1s no longer being stored 1n the FIFO. Accordingly, the
reservation credit count in the associated reservation credit
counter 1s incremented 1n response to the respective release
of a reservation credit.

The pipeline 600 i1ncludes blocking stages, which allow
types of transactions having lower priority to be held (e.g.,
temporarily stalled), while types of transactions having
higher priority are allowed to proceed 1n favor of the
transaction types having lower priorities. Additionally, dif-
ferent transaction types can require different amounts of
reservation credits, where an amount of reservation credits
to be consumed can be determined 1n response to an amount
of reservation credits that 1s associated with a particular type
of transaction. In an example arbitration described herein
following, a transaction 1s allowed to proceed 1f and only 1f
all the required credit types have counter values greater than
zero (e.g., which indicates that the respective FIFO for the
reservation counter 1s not in the full state).

In the example arbitration, a transaction enters the RAU
stage 2. The entering transaction 1s an example transaction,
where the transaction 1s an SE (streaming engine) coherent

36

Starting Value

15

20

25

30

35

40

45

50

35

60

65

(Maximum Value)

1

o B e o BB O

and cacheable read transaction having an endpoint that 1s
outside of the .2 cache controller. The type of the entering
transaction indicates that it 1s anticipated that fulfilling the
entering transaction will (e.g., will likely) require at least
one of three actions. Determining which action of the three
actions 1s to be taken can be determined in response to
determining where and how the address memory (e.g.,
indicated by the entering transaction) i1s cached.

The following actions (e.g., i1f performed) would require
a query to a memory (e.g., tag RAM, or other cache
management memory), so that prediction of the eventual
action taken cannot be determined by the time (e.g., by the
end of the present pipe cycle) this transaction 1s advanced
from the S2 Arbitration (e.g., RAU stage 2) pipe stage to the
next pipe stage (e.g., pipe stage P0). As a first potential
action, a snoop LL1D would be performed 1f the line had been
already cached i L1D. Such a state can be determined by
a cache hit 1n the shadow copy of the L1D TAGS. As a
second potential action, a cache inquiry would indicate that
the line 1s a miss. As a third potential action, a 1.2 victim
transaction would be performed if the line 1s a miss, and a
space for the L2 Victim would be allocated, and the line
from the cache that 1s being replaced would be marked as
dirty.

The SE coherent and cacheable read transaction will “win’
arbitration and advance to the next pipe stage if and only 1f
the following reservation counters are greater than 0O:

if (CREDIT A > 0) and (CREDIT_C > 0) (1

and (CREDIT G > 0) then proceed

Reservation credit actions in RAU stage 2 include:

Consume credit CREDIT G (Decrement CREDIT G counter) (2)

for a potential snoop read to DMC,

Consume credit CREDIT A (Decrement CREDIT A counter) (3)

for a potential Read Miss to MSMC, and

Consume credit CREDIT C (Decrement CREDIT C counter) 4)

for a potential 1.2 victim to MSMC transaction. Accordingly,
the reservation credits for FIFO[G], FIFO[A], and FIFO[C]

US 12,001,351 B2

37

have all been decremented. In the example, the credit
counters A, C, and GG are reservation credit counters and the
credits consumed (or released) are reservation credits.

Table 9 shows example results of the SE coherent and
cacheable read transactions at pipe stage 3 (e.g., hit/miss 5

control 671) that can result as a function of the tag hit/miss
results.

38

pipe at a same time as the second banked transaction
requests are processed by the second banked pipe.

The first banked pipe can include a first banked blocking
arbiter that 1s arranged to temporarily block and reorder the
first banked transaction requests 1n the first banked pipe, and
the second banked pipe can include a second banked block-

TABLE 9
L1
Shadow L2 Cache
TAGS TAGS Action Results
Hit — Release CREDIT__A and Snoop will be generated, and
CREDIT_C Cache Miss will NOT be
2. No change to CREDIT G generated
Miss Hit Release CREDIT__A, No Snoop or Cache Miss will

CREDIT_C and CREDIT__G be generated

Miss Miss - existing Release CREDIT__C, and No Snoop will be generated.

line 1s NOT CREDIT_G Cache Miss will be generated,
Dirty but L2 Victim will not be
generated
Miss Miss - Existing Release CREDIT_G No Snoop will be generated.
line 1s Dirty Cache Miss and L2 Victim

will be generated

Depending on the outcomes of the hit/miss check at pipe =

stage P3, one of the exit FIFOs will receive a generated
transaction. If the Transaction requires a snoop, the snoop
command 1s generated and pushed ito FIFO_G, and
COUNTER_G 1s not updated (yet). If the Transaction ,,
requires a cache miss, that miss command 1s generated and
pushed mto FIFO_A and COUNTER_A 1s not updated (yet).

If the Transaction requires an L2 victim, the victim com-

mand 1s generated and pushed into FIFO_C and COUN-
TER_C 1s not updated (yet). 35

Because the pipe stage 3 1s non-blocking, the transaction
1s advanced to pipe stage P4 for further processing. If the
transaction advanced to the P4 stage requires a snoop to be
generated AND the P4 stage 1s able to advance the transac-
tion to the stage “master ARB for DMC transaction™ pipe 40
stage, the credit COUNTER_G 1s released (incremented). It
the transaction advanced to the P4 stage requires a cache
miss to be generated AND the P4 stage 1s able to advance the
transaction to the stage “master ARB for MDMA transac-
tion” pipe stage, the credit COUNTER_A 1s released (incre- 45
mented). If the transaction requires a L2 Victim to be
generated AND the P4 stage 1s able to advance the transac-
tion to the stage “master ARB for MDMA presentation” pipe
stage, the credit COUNTER_C 1s released (incremented). At
the end of the processing at stage P4, the reservation credit 50
counters G, A, and C have all been incremented, so that each
of the reservation credits previously consumed 1n RAU stage
2 have been released and the values of the respective
counters have been restored to their respective starting
values. 55

In a first example, a system comprises: a cache that
includes: a local memory that includes a set of cache lines
to store data; and a multi-banked pipeline coupled to access
the set of cache lines of the local memory, wherein the
multi-banked pipeline includes: a first banked pipe config- 60
ured to receive first banked transaction requests from a first
requestor for access to the local memory; and a second
banked pipe configured to receive second banked transaction
requests from a second requestor for access to the local
memory, wherein the second requestor is heterogeneous 65
with respect to the first requestor, and wherein the first
banked transaction requests are processed by the first banked

ing arbiter that 1s arranged to temporarily block and reorder
the second banked transaction requests in the second banked
pipe.

The first banked blocking arbiter can be arranged to award
priority to non-blocking transactions, so that in response to
the awarded priority, a blocking first transaction 1s held at a
blocking stage of the first banked pipe and a first non-
blocking transaction 1s passed to a stage following the
blocking stage without being held at the blocking stage.

The first banked blocking arbiter can be arranged to award
priority in response to a value of a pool of reservation credits
available to process a type of one of the first banked
transaction requests, wherein the reservation credits of the
pool of reservation credits mitially indicate an amount of
reservation stations of the first banked pipe to process the
one of the first banked transaction requests.

The system can further comprise a counter arranged to
change the value of the pool of reservation credits 1n
response to a reservation credit awarded by the first banked
blocking arbiter to one of the first banked transaction
requests. The counter can be arranged to restore the value of
the pool of reservation credits 1n response to a release of the
reservation credit. The reservation credit can indicate an
availability of a reservation station. The reservation station
can be a slot 1n an exit FIFO of the multi-banked pipeline.

The cache can be a second level cache, the local memory
can be a second level memory, and the set of cache lines can
be a second level set of cache lines, and the system can
turther comprise: a central processing unit (CPU) coupled to
the second level cache and arranged to execute program

instructions to manipulate data; and a first level cache that
includes a local memory that includes a set of cache lines to
store data.

The one of the first banked transaction requests can
includes a first requestor selected from one of an LIP
(level-1 program cache), an L1D (level-1 data cache), a
MSMC (multicore shared memory controller), a MMU
(memory map unit), and an SE (streaming engine), and
where one of the second banked transaction requests can
include a second requestor that 1s different from the first
requestor.

US 12,001,351 B2

39

The one of the first banked transaction requests can
include a first transaction type selected from one of a first
level cache fetch, a first level cache load and/or store, an [.3
(level-3) DMA (direct memory access) to the second level
cache or the first level cache, an L3 snoop, an L3
CacheWarm, a page translation, streaming data from at least
two ports, and cache coherency/maintenance operations, and
where one of the second banked transaction requests can
include a second transaction type that i1s different from the
first transaction type.

The one of the first banked transaction requests can
include a first destination selected from one of a include L2
(level-2) SRAM (static RAM), L1D (Level-1 data cache)
SRAM, L2 (level-2) Cache, MSMC (multicore shared
memory controller) SRAM, L3 (level-3) Cache, and
memory addressable by the CPU that 1s other than L1, L2,
and L3 cache memory, and where one of the second banked
transaction requests can 1mclude a second destination that 1s
different from the first destination.

The first level cache and the second level cache can be
kept coherent 1n response to one of the first banked trans-
action requests including a first transaction type of a cache
maintenance operation. The first banked pipe can further
include an ECC (electronic correction code) unit that is
coupled between a first structure of the first banked pipe and
a second structure of the first banked pipe.

In a second example, an apparatus comprises: a central
processing unit (CPU) arranged to execute program instruc-
tions to manipulate data; a first level cache coupled to the
CPU to temporarily store data in first level cache lines for
manipulation by the CPU, where the first level cache
includes a first level local memory addressable by the CPU;
and a second level cache coupled to the first level cache to
temporarily store data i second level cache lines for
manipulation by the CPU, wherein the second level cache
includes a second level local memory addressable by the
CPU, wherein the second level cache includes a multi-
banked pipeline that includes a first banked pipe configured
to receive first banked transaction requests from a first
requestor for access to the second level local memory,
wherein the second level cache includes a multi-banked
pipeline that includes a second banked pipe configured to
receive second banked transaction requests from a second
requestor for access to the second level local memory,
wherein the first banked pipe includes a first banked block-
ing arbiter that 1s arranged to temporarily block and reorder
the first banked transaction requests 1n the first banked pipe,
and wherein the second banked pipe includes a second
banked blocking arbiter that 1s arranged to temporarily block
and reorder the second banked transaction requests 1n the
second banked pipe, wherein the first banked blocking
arbiter 1s arranged to award priority in response to reserva-
tion credits available to process a type of one of the first
banked transaction requests, and wherein the reservation
credits 1nitially indicate an amount of reservation stations to
process the one of the first banked transaction requests. The
apparatus of can further comprise a counter arranged to
change 1n response to a first banked pipe clock a reservation
credit of the one of the first banked transaction requests.

The second requestor can be heterogeneous with respect
to the first requestor, and wherein the first banked transaction
requests are processed by the first banked pipe at a same
time as the second banked transaction requests are processed
by the second banked pipe.

In a third example, a method, comprises: receiving, at a
first banked pipe of a multi-banked pipe that includes a
second banked pipe coupled 1n parallel to the first banked

10

15

20

25

30

35

40

45

50

55

60

65

40

pipe, a first transaction request from a first requestor for
access to a local memory that includes a set of cache lines
to store data; and recerving, at the first banked pipe of the
multi-banked pipe, a second transaction request from a
second requestor for access to the local memory that
includes the set of cache lines to store data, wherein the
second requestor 1s heterogeneous with respect to the first
requestor, wherein the first banked transaction request 1s a
first type of transaction request that 1s different from a
second type of the second transaction request, and wherein
the first and second transaction requests are processed by the
first banked pipe at a same time. The method can further
comprise blocking by a first banked blocking arbiter the first
transaction and awarding, by the first banked blocking
arbiter, priority to the second transaction, wherein the
awarding priority 1s granted in response to a comparison of
a type of the first requester against a type of the second
requester. The method can further comprise blocking by a
first banked blocking arbiter the first transaction and award-
ing, by the first banked blocking arbiter, priornity to the
second transaction, wherein the awarding priority 1s granted
in response to a comparison of the type of the first transac-
tion against the type of the second transaction.

Modifications are possible 1n the described embodiments,
and other embodiments are possible, within the scope of the
claims.

What 1s claimed 1s:

1. A device comprising:

a set of requestors configured to provide a set of memory

transaction requests;
a first set of arbitration umts that includes a respective
arbitration unit coupled to each requestor of the set of
requestors;
a cache memory that includes a set of memory banks; and
a pipeline circuit coupled between the first set of arbitra-
tion units and the cache memory that includes a set of
parallel pipelines that includes a respective pipeline
associated with each memory bank of the set of
memory banks, wherein:
cach pipeline of the set of parallel pipelines includes a
respective arbitration unit of a second set of arbitra-
tion units; and

the first set of arbitration units and the second set of
arbitration units are coupled to perform, on each
memory transaction request of the set of memory
transaction requests, a first arbitration using the first
set of arbitration units and a second arbitration using
the second set of arbitration units.

2. The device of claim 1, wherein:

the first arbitration 1s among a first subset of the set of
memory transaction requests associated with a
requestor of the set of requestors; and

the second arbitration 1s among a second subset of the set
of memory transaction requests associated with a
memory bank of the set of memory banks.

3. The device of claim 1, wherein the first arbitration 1s
based on whether a request of the set of memory transaction
requests 1s blocking or non-blocking.

4. The device of claim 1, wherein the second arbitration
1s based on at least one of: address hazard avoidance;:
structural hazard avoidance; pipeline hazard avoidance; or
reservation credit count.

5. The device of claim 1, wherein each pipeline of the set
of parallel pipelines includes a respective arbitration unit of
a third set of arbitration units coupled between the respective
arbitration unit of the second set of arbitration units and the
respective memory bank of the set of memory banks.

US 12,001,351 B2

41

6. The device of claim 5 further comprising a set of
registers configured to store a set of priorities, wherein the
third set of arbitration units 1s configured to perform a third
arbitration on each memory transaction request of the set of
memory transaction requests based on the set of priorities.

7. The device of claim 6, wherein each priority of the set
ol priorities 1s associated with a respective requestor of the
set ol requestors.

8. The device of claim 1 further comprising a set of first-in
first-out (FIFO) buflers coupled between the set of request-
ors and the first set of arbitration units, wherein each FIFO
bufler of the set of FIFO builers 1s associated with a
transaction type.

9. The device of claim 1, wherein the set of requestors
includes at least one of: a program memory controller, a data
memory controller, a vector memory controller, a multi-core
shared memory controller, or a memory management unit.

10. The device of claim 1, wherein the cache memory 1s
a level two (L2) cache memory.

11. A device comprising:

a set of cores;

a set of level one (LL1) caches coupled to the set of cores;

a set of requestors that includes a set of memory control-

lers coupled to the set of L1 caches;

a level two (L2) cache controller coupled to the set of

requestors; and

an L2 memory coupled to the L2 cache controller that

includes a set of banks, wherein the 1.2 cache controller

includes:

a first set of arbitration umits that includes a respective
arbitration unit coupled to each requestor of the set
ol requestors; and

a pipeline circuit coupled to the first set of arbitration
units that includes a set of parallel pipelines that
includes a respective pipeline associated with each
memory bank of the set of memory banks, wherein
cach pipeline of the set of parallel pipelines includes
a respective arbitration unit of a second set of
arbitration units.

12. The device of claim 11, wherein:

the first set of arbitration units 1s configured to perform a

first arbitration among a {first subset of the set of

memory transaction requests associated with a

requestor of the set of requestors; and

the second set of arbitration units 1s configured to perform

a second arbitration among a second subset of the set of

5

10

15

20

25

30

35

40

45

42

memory transaction requests associated with a memory
bank of the set of memory banks.
13. The device of claim 11, wherein each pipeline of the
set of parallel pipelines includes a respective arbitration unit
of a third set of arbitration units coupled between the
respective arbitration unit of the second set of arbitration
units and the respective memory bank of the set of memory
banks.
14. A method comprising:
receiving a set of memory transaction requests from a set
of requestors, wherein the set of memory transaction
requests are directed to a cache memory that includes
a set of memory banks;

performing, by a first set of arbitration umts, a {first
arbitration on the set of memory transaction requests
among subsets of the set of memory transaction
requests each associated with a respective requestor of
the set of requestors;

performing, by a second set of arbitration units, a second

arbitration on the set of memory transaction requests
among subsets of the set of memory transaction
requests each associated with a respective memory
bank of the set of memory banks; and

thereafter, servicing the set of memory transaction

requests using the cache memory.

15. The method of claim 14, wherein the first arbitration
1s based on whether a request of the set of memory trans-
action requests 1s blocking or non-blocking.

16. The method of claim 14, wherein the second arbitra-
tion 1s based on at least one of: address hazard avoidance;
structural hazard avoidance; pipeline hazard avoidance; or
reservation credit count.

17. The method of claim 14 further comprising, after the
performing of the second arbitration and prior to the servic-
ing of the set of memory transaction requests, performing,
by a third set of arbitration units, a third arbitration on the
set of memory transaction requests.

18. The method of claim 17 further comprising receiving
a set of priorities, wherein the third arbitration i1s based on
the set of priorities.

19. The method of claim 18, wherein each priority of the
set of priorities 1s associated with a respective requestor of
the set of requestors.

20. The method of claim 14, wherein the cache memory
1s a level two (L2) cache memory.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

