12 United States Patent
Zhang et al.

US011997192B2

US 11,997,192 B2
May 28, 2024

(10) Patent No.:
45) Date of Patent:

(54) TECHNOLOGIES FOR ESTABLISHING
DEVICE LOCALITY

(71) Applicant: Intel Corporation, Santa Clara, CA
(US)

(72) Inventors: Bo Zhang, Raleigh, NC (US);
Siddhartha Chhabra, Portland, OR
(US); William A. Stevens, Folsom, CA
(US); Reshma Lal, Hillsboro, OR (US)

(73) Assignee: INTEL CORPORATION, Santa Clara,
CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 31 days.

(21) Appl. No.: 17/033,135
(22) Filed: Sep. 25, 2020

(65) Prior Publication Data
US 2021/0126776 Al Apr. 29, 2021

Related U.S. Application Data

(63) Continuation of application No. 15/856,568, filed on
Dec. 28, 2017, now Pat. No. 10,826,690.

(51) Int. CL

HO4L 9/08 (2006.01)
GO6F 21/85 (2013.01)
(Continued)

(52) U.S. CL
CPC oo, HO4L 9/0825 (2013.01); GO6F 21/85
(2013.01); HO4L 9/0631 (2013.01); HO4L
9/0637 (2013.01); HO4L 9/0861 (2013.01);
HO4L 9/3271 (2013.01); HO4L 63/04
(2013.01); HO4L 63/18 (2013.01); GO6F
2221/2107 (2013.01); GOGF 2221/2111
(2013.01)

Y

(38) Field of Classification Search
CPC GO6F 21/85; GO6F 2221/2107; GO6F
2221/2111; HO4L 63/04; HO4L 63/18;
HO4L 9/0631; HO4L 9/0637; HO4L
9/0825; HO4L 9/0861; HO4L 9/3271
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,778,071 A * 7/1998 Caputo HO4L 9/3271
380/30
5872917 A * 2/1999 Hellman GO6F 21/31
709/229

(Continued)

OTHER PUBLICATTIONS

Search Query Report from IP.com (performed May 20, 2022) (Year:
2022).*

(Continued)

Primary Examiner — Sharon S Lynch

(74) Attorney, Agent, or Firm — JAFFERY WATSON
MENDONSA & HAMILTON LLP

(57) ABSTRACT

Technologies for establishing device locality are disclosed.
A processor 1n a computing device generates an 1dentifier
distinct to the computing device. The processor transmits the
identifier to a management controller via a hardware bus 1n
the computing device. The processor generates a key and
encrypts the key with the identifier to generate a wrapped
key. The processor transmits the wrapped key to the man-
agement controller. In turn, the management controller
unwraps the key using the identifier. Other embodiments are
described and claimed.

16 Claims, 5 Drawing Sheets

rawa

: PROOF KEY

' GENERATE LOCALITY CHALLENGE

: ENCRYPT THE LOCALITY CHALLENGE USING LOCALITY :

TRANSMIT LOCALITY CHALLENGE TOQ THE CSWME

438
o

RETURMN ERROR

F

RECEIVE ENCRYPTED LOCALITY CHALLENGE FROM CSME

440

SEND CHALLENGE RESPONSE TO CSME

DECRYPT THE LOCALITY CHALLENGE USING THE LOCALITY
PROOF KEY
r 442

INITIATE SECURE SESSION WITH CSME

b4

US 11,997,192 B2

Page 2
(51) Int. CL 2009/0259838 Al* 10/2000 Lin .oooevveeeovvveiii, HO41. 9/3215
HO4L 9/06 (2006.01)) 713/150
H04L 9/32 (20060) 2010/0115625 Al 5/2010 Proudler ***************** GOﬁl‘;;é?;;
HO4L 9/40 (2022.01) 2011/0161650 ALl* 6/2011 Paksoy ... HO4W 12/03
713/2
_ 2011/0162082 Al* 6/2011 Paksoy HO4W 12/48
(56) References Cited 796/26
. 2012/0144457 Al* 6/2012 Counterman HO041, 9/3247
U.S. PATENT DOCUMENTS 796/5
2013/0061056 Al* 3/2013 Proudlero.co..... GO6F 21/57
6,973,217 B2* 12/2005 Boliekccvov...... HO4N 19/70 T13/176
382/233 2014/0098671 Al* 4/2014 Raleigh H04M 15/75
6,988,250 B1* 1/2006 Proudler GO6F 21/445 370/235
713/160 2014/0108786 Al* 4/2014 Kreft ..ccooovvvvevvniii GO6F 21/335
8,037.295 B2* 10/2011 Lin ..ocoovvvevena., H041, 9/3215 713/194
| 713/150 2014/0109786 Al 4/2014 Kreft
8,230,486 B2* 7/2012 Voicecceiu. HO41L. 63/083 2014/0189118 Al* 7/2014 Hunter H041, 67/306
726/5 709/225
8,391,489 B2* 3/2013 Paksoy ... HO04W 12/03 2014/0189355 Al* 7/2014 Hunter HO041. 63/0428
380/278 713/171
8,631,247 B2* 1/2014 O’Loughlin GO6F 21/73 2015/0143514 Al* 5/2015 Paksoy HO4W 12/06
726/28 726/20
8,850,543 B2* 9/2014 Von Bokern HO4L 63/102 2015/0317481 Al* 11/2015 Gardnerooouvn... GO6F 21/57
726/1 726/2
9,071,446 B2* 6/2015 Kreft HO4L 63/0428 2016/0085995 Al* 3/2016 Poornachandran GO6F 21/55
9,292,692 B2* 3/2016 Wallrabenstein GO6F 21/57 776/34
9,294.478 B2* 3/2016 Von Bokern GO6F 16/2255 2016/0247002 Al* 872016 Grieco ... GO6F 21/86
9,563,758 B2* 2/2017 Lehmann ... GO6F 21/31 2016/0323264 Al* 11/2016 Nayshtut HO41. 63/061
9,589,155 B2* 3/2017 Poornachandran GO6F 21/73 2017/0075699 Al* 3/2017 Narayanan HO41L. 9/0877
9,602,500 B2* 3/2017 Nayshtut HOAL 63/06 2017/0078922 Al* 3/2017 Raleigh HO41. 69/18
10,108,789 B2* 10/2018 Lehmann GO6F 21/604 2017/0187695 Al* 6/2017 Narayanan HO41. 9/3234
2004/0064457 Al* 4/2004 Zimmer GO6L 21/575 2017/0201373 Al* 7/2017 Vijayakumar GOG6F 11/1433
2004/0120585 Al* 6/2004 Schwartz G11B 27/036 2017/0221055 Al* 872017 Carlsson ... GO6Q 20/40
| 382/233 2018/0337782 Al* 11/2018 WU ..cooeorvivieriinne, HO4L 9/006
2005/0144449 A1* 6/2005 VoICE .ovviviviinnnnnn, HO041. 9/3234 20180367317 Al* 12/2018 Forler ... GO6F 21/57
713/169 2019/0116040 A1* 4/2019 Ozzie ..ooovvviiv.. GO6F 21/6209
2005/0144499 Al 6/2005 Voice
2006/0095970 Al* 5/2006 Raj | GO6F 21/577
Jagopd s OTHER PUBLICATIONS
2006/0129848 Al* 6/2006 PaksOV .oovvevivviii.. GO6F 21/35
il 713/193 Search Query Report from IP.com (performed Nov. 28, 2022) (Year:
2007/0033419 Al* 2/2007 Kocher ... G11B 20/00086 2022) .7
713/193 Search Query Report from IP.com (performed Mar. 11, 2020).
2007/0053513 Al1* 3/2007 Hoftberg GO6V 40/103 Google search history for performing non-patent literature searches
3R0/201 (obtained Oct. 3, 2019).
2008/0019517 Al* 1/2008 Munguia HO4N 21/4623
348/E7.063 * cited by examiner

U.S. Patent May 28, 2024 Sheet 1 of 5 US 11,997,192 B2

100
COMPUTING DEVICE

120
PROCESSOR
122
131
DATA PORT
CRYPTO 124
ENGINE
126
CE ISA 130
MEMORY
128

136

CID FILTER
142 I

SECURE
FABRIC 120
DATA STORAGE
144
CSME COMM. 134
CIRCUITRY
/0

138 110 138
CONTROLLER CONTROLLER

140
/O DEVICE(S)

140
/O DEVICE(S)

i

FIG. 1

U.S. Patent May 28, 2024 Sheet 2 of 5 US 11,997,192 B2

200 100

COMPUTING DEVICE
120 144

PROCESSOR CSME

202 210
GENERATION ENGINE
204 212
COMMUNICATION ENGINE

206
CRYPTO ENGINE

SERVICE ENGINE

FIG. 2

U.S. Patent May 28, 2024 Sheet 3 of 5 US 11,997,192 B2

120 302
305 310

r CORE
307

rLBcSmTT(312
PROCESSOR | POMAINID | REMOTE COMPUTING DEVICE
322
144

312
| DOMAIN ID |

CSME

FIG. 3

U.S. Patent May 28, 2024 Sheet 4 of 5 US 11,997,192 B2

BOOT PLATFORM
- 402
GENERATE LOCALITY DOMAIN 1D

TRANSMIT THE LOCALITY DOMAIN ID TO THE CSME AND 404
PROCESSORS VIA LOCAL HARDWARE BUS

' TRANSMIT LOCALITY DOMAIN ID TO THE CSME AND
| PROCESSORS VIA SIDEBAND NETWORK :

- 408

| ENTER, BY THE PROCESSOR, PLATFORM SERVICES ¢ ™
i ENCLAVE (PSE) i

' 410
GENERATE RANDOM LOCALITY PROOF KEY

TRANSMIT LOCALITY PROOF KEY TO CSME 412
= m e — e — 414
! EXECUTE INSTRUCTION TO ENCRYPT THE LOCALITY
: PROOF KEY USING THE LOCALITY DOMAIN ID |
mm I
| \WRAP THE LOCALITY PROOF KEY USING LOCALITY | J1e
: DOMAIN ID
 TRANSMIT THE WRAPPED LOCALITY PROOF KEY TO THE V&
CSME
= —————————————— ' 11 420

i TRANSMIT THE LOCALITY PROOF KEY VIA TO THE I
; CSME VIA THE SIDEBAND NETWORK !

|
: UNWRAP, BY THE CSME, THE LOCALITY PROOF KEY USING {\/
: THE LOCALITY DOMAIN 1D §

FIG. 4

U.S. Patent May 28, 2024 Sheet 5 of 5 US 11,997,192 B2

G A

TRANSMIT LOCALITY CHALLENGE TO THE CSME 524
O
| 1 4426
; GENERATE LOCALITY CHALLENGE
D e e e e i
o e e
! ENCRYPT THE LOCALITY CHALLENGE USING LOCALITY e Vi
: PROOF KEY :
- —— -~ —— " . o - - I
L 1430
: SEND THE LOCALITY CHALLENGE TO CSME '
D e e e e e e |

~ 432

RECEIVE LOCALITY CHALLENGE RESPONSE FROM CSME

436
434

NO

RETURN ERROR

VALID RESPONSE?

YES
438

RECEIVE ENCRYPTED LOCALITY CHALLENGE FROM CSME

440
DECRYPT THE LOCALITY CHALLENGE USING THE LOCALITY
PROOF KEY
- - 442
SEND CHALLENGE RESPONSE TO CSME
444
NO
- e 446

YES

INITIATE SECURE SESSION WITH CSME

FIG. 5

US 11,997,192 B2

1

TECHNOLOGIES FOR ESTABLISHING
DEVICE LOCALITY

CROSS-REFERENCE TO RELATED
APPLICATION

The present application 1s a continuation application of
U.S. application Ser. No. 15/856,568, enfitled “TECH-

NOLOGIES FOR ESTABLISHING DEVICE LOCAL-
ITY,” which was filed on Dec. 28, 2017.

BACKGROUND

Current processors may provide support for a trusted
execution environment such as a secure enclave. Secure
enclaves include segments of memory (including code and/
or data) protected by the processor from unauthorized access
including unauthorized reads and writes. In particular, cer-
tain processors may include Intel® Software Guard Exten-
s1ons (SGX) to provide secure enclave support. In particular,
SGX provides confidentiality, mtegrity, and replay-protec-
tion to the secure enclave data for a given computing device
while the data 1s resident 1n the platform memory and thus
provides protection against both software and hardware
attacks. The on-chip boundary forms a natural security
boundary, where data and code may be stored 1n plaintext
and assumed to be secure. Intel® SGX does not protect I/O
data that moves across the on-chip boundary.

SGX may further be used to protect a platform services
enclave (PSE). The PSE may provide security-related ser-
vices to the platform, such as monotonic counters, trusted
time services, and remote attestation services. Further, the
PSE may establish secure communication sessions with
other hardware components in a computing device, includ-
ing management controllers (e.g., a converged security and
manageability engine (CSME)) having modules configured

to perform cryptographic functions external to an operation
system ol the computing device.

BRIEF DESCRIPTION OF THE DRAWINGS

The concepts described herein are illustrated by way of
example and not by way of limitation in the accompanying
figures. For simplicity and clarity of illustration, elements
illustrated 1n the figures are not necessarily drawn to scale.
Where considered appropriate, reference labels have been
repeated among the figures to indicate corresponding or
analogous elements.

FIG. 1 1s a simplified block diagram of at least one
embodiment of a computing device for establishing device
locality therein;

FIG. 2 1s a simplified block diagram of at least one
embodiment of an environment of the computing device of
FIG. 1;

FIG. 3 1s a simplified block diagram of an example
embodiment of providing a locality domain identifier
between a processor and a converged security and manage-
ability engine (CSME);

FIG. 4 1s a simplified flow diagram of at least one
embodiment of a method for exchanging a locality domain
identifier between a processor and a CSME;

FIG. 5 1s a simplified flow diagram of at least one
embodiment of a method for performing challenges between

a processor and a CSME to establish device locality.

DETAILED DESCRIPTION OF THE DRAWINGS

While the concepts of the present disclosure are suscep-
tible to various modifications and alternative forms, specific

10

15

20

25

30

35

40

45

50

55

60

65

2

embodiments thereof have been shown by way of example
in the drawings and will be described herein 1n detail. It
should be understood, however, that there 1s no intent to
limit the concepts of the present disclosure to the particular
forms disclosed, but on the contrary, the intention 1s to cover
all modifications, equivalents, and alternatives consistent
with the present disclosure and the appended claims.

References 1n the specification to “one embodiment,” “an
embodiment,” “an illustrative embodiment,” etc., indicate
that the embodiment described may include a particular
feature, structure, or characteristic, but every embodiment
may or may not necessarily include that particular feature,
structure, or characteristic. Moreover, such phrases are not
necessarily referring to the same embodiment. Further, when
a particular feature, structure, or characteristic 1s described
1n connection with an embodiment, 1t 1s submitted that 1t 1s
within the knowledge of one skilled 1n the art to effect such
feature, structure, or characteristic 1n connection with other
embodiments whether or not explicitly described. Addition-
ally, 1t should be appreciated that items included 1n a list 1n
the form of *“at least one A, B, and C” can mean (A); (B);
(C); (A and B); (A and C); (B and C); or (A, B, and C).
Similarly, 1tems listed 1n the form of “at least one of A, B,
or C” can mean (A); (B); (C); (A and B); (A and C); (B and
C); or (A, B, and C).

The disclosed embodiments may be implemented, 1n
some cases, 1n hardware, firmware, software, or any com-
bination thereof. The disclosed embodiments may also be
implemented as instructions carried by or stored on a
transitory or non-transitory machine-readable (e.g., com-
puter-readable) storage medium, which may be read and
executed by one or more processors. A machine-readable
storage medium may be embodied as any storage device,
mechanism, or other physical structure for storing or trans-
mitting information 1n a form readable by a machine (e.g.,
a volatile or non-volatile memory, a media disc, or other
media device).

In the drawings, some structural or method features may
be shown 1n specific arrangements and/or orderings. How-
ever, 1t should be appreciated that such specific arrange-
ments and/or orderings may not be required. Rather, in some
embodiments, such features may be arranged 1n a difierent
manner and/or order than shown 1n the illustrative figures.
Additionally, the inclusion of a structural or method feature
in a particular figure 1s not meant to imply that such feature
1s required 1n all embodiments and, in some embodiments,
may not be included or may be combined with other
features.

Referring now to FIG. 1, an 1llustrative computing device
100 for establishing device locality 1s shown. In use, as
turther described herein, the computing device 100 provides
a processor 120 that generates a locality domain 1dentifier
(LDID) distinct to the computing device 100 that 1s shared
with other components on a hardware platform of the
computing device 100. The LDID 1s transmitted via local
channels, such as a hardware bus of the computing device
100, to ensure that only local hardware components have
possession of the LDID. As a result, the processor (or other
hardware components 1n the computing device 100) may use
the LDID as proof of locality to other local components on
the computing device 100. For example, the processor 120
may securely provision a management controller (e.g., a
CSME 144) with the LDID, and perform a challenge-
response handshake using the LDID to subsequently estab-
lish a secure communication session between the processor
120 and the CSME 144. Advantageously, using a local

identifier to establish that hardware components are on the

US 11,997,192 B2

3

same system ensures that secure communication sessions are
established within the same physical device and not with a
remote system. Thus, embodiments presented herein pro-
vide an approach for preventing malicious attacks, such as
remote pairing attacks, on the computing device 100.

The computing device 100 may be embodied as any type
of device capable of performing the functions described
heremn. For example, the computing device 100 may be
embodied as, without limitation, a computer, a laptop com-
puter, a tablet computer, a notebook computer, a mobile
computing device, a smartphone, a wearable computing
device, a multiprocessor system, a server, a workstation,
and/or a consumer electronic device. As shown 1n FIG. 1, the
illustrative computing device 100 includes a processor 120,
an I/O subsystem 128, a memory 130, a data port 131, a data
storage device 132, a CID filter 136, one or more 1I/O
controllers 138, and a security management controller (e.g.,
a converged security and manageability engine (CSME))
144. Additionally, 1n some embodiments, one or more of the
illustrative components may be incorporated 1n, or otherwise
form a portion of, another component. For example, the
memory 130, or portions thereof, may be incorporated in the
processor 120 1n some embodiments.

The processor 120 may be embodied as any type of
processor capable of performing the functions described
herein. For example, the processor 120 may be embodied as
a single or multi-core processor(s), digital signal processor,
microcontroller, or other processor or processing/controlling
circuit. As shown, the processor 120 illustratively includes
secure enclave support 122, a cryptographic engine 124, and
a cryptographic engine instruction set architecture (ISA)
126. The secure enclave support 122 allows the processor
120 to establish a trusted execution environment known as
a secure enclave, 1n which executing code may be measured,
verified, and/or otherwise determined to be authentic. Addi-
tionally, code and data included 1n the secure enclave may
be encrypted or otherwise protected from being accessed by
code executing outside of the secure enclave. For example,
code and data included 1n the secure enclave may be
protected by hardware protection mechanisms of the pro-
cessor 120 while being executed or while being stored 1n
certain protected cache memory of the processor 120. The
code and data included i1n the secure enclave may be
encrypted when stored in a shared cache or the main
memory 130. Further, the secure enclave support 122 may
create a platform services enclave (PSE), which 1s a trusted
execution environment that provides access to services
provided by the CSME 144, including monotonic counters,
trusted time services, remote attestation services, and others.
The PSE may communicate with other hardware compo-
nents (e.g., the I/O subsystem 128, the CSME 144, other
processors 120, etc.) and secure enclaves 1n the computing,
device 100 via one or more secure communication sessions.
The secure enclave support 122 may be embodied as a set of
processor 1nstruction extensions that allows the processor
120 to establish one or more secure enclaves 1in the memory
130. For example, the secure enclave support 122 may be
embodied as Intel® Software Guard Extensions (SGX)
technology.

The cryptographic engine 124 may be embodied as one or
more hardware functional blocks (IP blocks), microcode, or
other resources of the processor 120 that allows the proces-
sor 120 to perform trusted I/O (T10) functions. For example,
as described further below, the cryptographic engine 124
may perform TIO functions such as encrypting and/or
decrypting DMA 1/0 data input from and/or output to one or
more I/O devices 140. In particular, 1n some embodiments,

10

15

20

25

30

35

40

45

50

55

60

65

4

plaintext I/O data may be stored mn a TIO Processor
Reserved Memory (11O PRM) region that 1s not accessible
to software of the computing device 100, and the crypto-
graphic engine 124 may be used to encrypt the plaintext
DMA I/0 data and copy the encrypted data to an ordinary
kernel 1/0 butler. The processor 120 may also include one or
more range registers or other features to protect the TIO
PRM from unauthorized access.

The cryptographic engine ISA 126 may be embodied as
one or more processor instructions, model-specific registers,
or other processor features that allows software executed by
the processor 120 to securely program and otherwise use the
cryptographic engine 124 and a corresponding CID filter
136, described further below. For example, the crypto-
graphic engine ISA 126 may include processor features to
bind programming instructions to the cryptographic engine
124 and/or the CID filter 136, unwrap bound programming
instructions, securely clean the TIO PRM region of the
memory 130, and/or securely copy and encrypt data from the
TIO PRM region to a kernel 1/O bufler. Additionally o
alternatively, although illustrated as including trusted I/O
capabilities, 1n some embodiments the computing device
100 may not include one or more components related to
trusted I/0. For example, in some embodiments, the com-
puting device 100 may not include the CID filter 136, the
cryptographic engine 124, and/or the cryptographic engine
ISA 126.

The CSME 144 may be embodied as a hardware platform
controller that includes logic to perform operations relating
to security on the computing device 100 and management of
access to hardware resources. For instance, the CSME 144
performs various cryptographic functions (e.g., encryption
and decryption of data) for the computing device 100 that
are external from the processor 120 and operating system of
the computing device 100. The CSME 144 may also provide
security-related services such as monotonic counters, trusted
time services, and other services.

The memory 130 may be embodied as any type of volatile
or non-volatile memory or data storage capable of perform-
ing the functions described herein. In operation, the memory
130 may store various data and software used during opera-
tion of the computing device 100 such as operating systems,
applications, programs, libraries, and drivers. Further, the
memory 130 may also include the TIO PRM region. Further,
the memory 130 may be connected with one or more data
ports 131 to send and receive data from the processor 120
and the I/O subsystem 128. In other embodiments, the
memory 130 1s communicatively coupled to the processor
120 via the I/O subsystem 128. The I/O subsystem 128,
which may be embodied as circuitry and/or components to
tacilitate input/output operations with the processor 120, the
memory 130, and other components of the computing device
100. For example, the I/O subsystem 128 may be embodied
as, or otherwise include, memory controller hubs, mput/
output control hubs, sensor hubs, host controllers, firmware
devices, communication links (1.e., point-to-point links, bus
links, wires, cables, light guides, printed circuit board traces,
etc.) and/or other components and subsystems to facilitate
the input/output operations. In some embodiments, the
memory 130 may be directly coupled to the processor 120,
for example via an integrated memory controller hub. The
I/O subsystem 128 may further include a secure fabric 142.
The secure fabric 142 provides secure routing support,
which may include hardware support to ensure 1/O data
cannot be misrouted in the I/O subsystem 128 under the
influence of rogue software. The secure fabric 142 may be
used with the CID filter 136 to provide cryptographic

US 11,997,192 B2

S

protection of I/O data. Additionally, in some embodiments,
the I/0 subsystem 128 may form a portion of a system-on-
a-chip (SoC) and be incorporated, along with the processor
120, the memory 130, and other components of the com-
puting device 100, on a single integrated circuit chip.
Additionally or alternatively, in some embodiments the
processor 120 may include an itegrated memory controller
and a system agent, which may be embodied as a logic block
in which data traflic from processor cores and I/O devices
converges before being sent to the memory 130.

The data storage device 132 may be embodied as any type
of device or devices configured for short-term or long-term
storage ol data such as, for example, memory devices and
circuits, memory cards, hard disk drives, solid-state drives,
non-volatile flash memory, or other data storage devices.
The computing device 100 may also mclude a communica-
tions subsystem 134, which may be embodied as any com-
munication circuit, device, or collection thereot, capable of
enabling communications between the computing device
100 and other remote devices over a computer network (not
shown). The communications subsystem 134 may be con-
figured to use any one or more communication technology
(e.g., wired or wireless communications) and associated
protocols (e.g., Ethernet, Bluetooth®, Wi-F1i®, WiMAX,
3G, 4G LTE, etc.) to eflect such communication.

The CID filter 136 may be embodied as any hardware
component, functional block, logic, or other circuit that
performs CID filtering function(s), including filtering I/0O
transactions based on CIDs inserted by the I/O controllers
138. For example, the CID filter 136 may observe DMA
transactions inline, perform test(s) based on the CID and
memory address included 1n the transaction, and drop trans-
actions that fail the test(s). In the illustrative embodiment,
the CID filter 136 1s incorporated in the I/O subsystem 128.
In other embodiments, the CID filter 136 may be included 1n
one or more other components and/or in an SoC with the
processor 120 and I/O subsystem 128 as separate compo-
nents.

Each of the I/O controllers 138 may be embodied as any
embedded controller, microcontroller, microprocessor, func-
tional block, logic, or other circuit or collection of circuits
capable of performing the functions described herein. In
some embodiments, one or more of the I/O controllers 138
may be embedded in another component of the computing
device 100 such as the I/O subsystem 128 and/or the
processor 120. Additionally or alternatively, one or more of
the I/0O controllers 138 may be connected to the I/O sub-
system 128 and/or the processor 120 via an expansion bus
such as PCI Express (PCle) or other I/O connection. As
described above, the I/O controllers 138 communicate with
one or more 1/0 devices 140, for example over a peripheral
communications bus (e.g., USB, Bluetooth, etc.). The I/O
devices 140 may be embodied as any I/O device, such as
human interface devices, keyboards, mice, touch screens,
microphones, cameras, and other input devices, as well as
displays and other output devices. As described above, the
I/0O controllers 138 and associated DMA channels are
uniquely 1dentified using 1dentifiers called channel i1dentifi-
ers (CDs). Each I/O controller 138 may assert an appropriate
CID with every DMA transaction, for example as part of a
transaction layer packet (TLP) prefix, to uniquely identify
the source of the DMA transaction and provide liveness
protections. The CID also enables the 1solation of I/O from
different devices 140.

Referring now to FIG. 2, 1 an illustrative embodiment,
the computing device 100 establishes an environment 200

during operation. Illustratively, the environment 200 pro-

10

15

20

25

30

35

40

45

50

55

60

65

6

vides a generation engine 202, a communication engine 204,
a crypto engine 206, a service engine 208, a communication
engine 210, and a crypto engine 212. The various compo-
nents of the environment 200 may be embodied as hardware,
firmware, software, or a combination thereof. As such, in
some embodiments, one or more of the components of the
environment 200 may be embodied as circuitry or collection
of electrical devices (e.g., generation engine circuitry 202,
communication engine 204 circuitry 204, crypto engine
circuitry 206, service engine circuitry 208, communication
engine circuitry 210, and/or crypto engine circuitry 212). It
should be appreciated that, in such embodiments, one or
more of the generation engine 202, communication engine
204, crypto engine 206, service engine 208, communication
engine 210, and/or crypto engine 212 may form a portion of
the processor 120, the I/O subsystem 128, the CSME 144,
and/or other components of the computing device 100. In
particular, as shown in FIG. 2, the generation engine 202,
communication engine 204, crypto engine 206, and service
engine 208 may be embodied as digital logic, microcode, or
other resources of the processor 120. Further, as shown 1n
FIG. 2, the communication engine 210 and crypto engine
212 may be embodied as digital logic, microcode, or other
resources of the CSME 144. Additionally, in some embodi-
ments, one or more of the illustrative components may form
a portion ol another component and/or one or more of the
illustrative components may be independent of one another.

The generation engine 202 1s configured to create a
locality identifier (LDID) that 1s distinct to the computing
device 100. For example, the generation engine 202 may
compute the LDID from a variety of characteristics, such as
a serial number of the processor 120, a randomly generated
number, and a timestamp of when the LDID was produced.

The communication engine 204 1s configured to transmit
data to and receive data from other components in the
hardware platform of the computing device 100. The com-
munication engine 204 may transmit the data over a hard-
ware bus (e.g., a Peripheral Component Interconnect
Express (PCle) bus, a Direct Media Interface (DMI) bus,
etc.). Further, the communication engine 204 may transmit
data over a sideband network of the hardware platform. The
sideband network electrically connects the processor 120
with other hardware components in the computing device
100. In one embodiment, the communication engine 204
may transmit the LDID to other hardware components in the
computing device 100, such as the CSME 144. In addition,
the communication engine 204 may receive requests to
establish a secure communication session with the hardware
components, such as the CSME 144. The communication
engine 204 may transmit additional data to components on
the hardware platiorm (e.g., challenge-response messages,
cryptographic keys, and the like) to establish the secure
communication session.

The crypto engine 206 1s configured to perform various
cryptographic algorithms to encrypt or decrypt data. For
example, the crypto engine 206 may perform Advanced
Encryption Standard (AES), Galois/Counter Mode (GCM),
AES-GCM, and the like. The crypto engme 206 1s config-
ured to wrap a locality proof key using the LDID. The
wrapped locality proof key may be used to establish that a
hardware component (e.g., the CSME 144) 1s 1in possession
of the LDID. More specifically, the crypto engine 206 may
wrap the locality proof key, such that a hardware component
must use the LDID to recover the locality proof key.

The service engine 208 1s configured to generate the
locality proot key (LPK). The locality proof key may be
used to establish that a hardware component (e.g., the CSME

US 11,997,192 B2

7

144) 1s 1n possession of the LDID. More specifically, as
described above, the crypto engine 206 may wrap the
locality proof key using the LDID, such that a hardware
component must use the LDID to recover the locality proof
key. The service engine 208 1s also configured to generate
challenge-response messages, €.g., for use 1n authenticating
the processor 120 and another device 1n establishing a secure
session. The service engine 208 may be configured to load
a platform services enclave (PSE) to perform those opera-
tions.

The communication engine 210 1s configured to transmit
data to and receive data from other components in the
hardware platiorm of the computing device 100, such as the
processor 120. The communication engine 210 may transmit
the data over a hardware bus (e.g., a Peripheral Component
Interconnect Express (PCle) bus, a Direct Media Interface
(DMI) bus, etc.). Further, the communication engine 210
may transmit data over a sideband network of the hardware
plattorm. The sideband network electrically connects the
CSME 144 with other hardware components 1n the comput-
ing device 100. In one embodiment, the communication
engine 210 may recerve the LDID from the processor 120.
Further, the communication engine 210 may also receive a
wrapped locality proof key from the processor 120.

The crypto engine 212 1s configured to perform various
cryptographic algorithms to encrypt or decrypt data. For
example, the crypto engine 206 may perform AES-GCM
and other types of algorithms. In context of the present
disclosure, the crypto engine 206 may encrypt messages
(c.g., challenge-response messages) using an encryption
key. The crypto engine 212 is also configured to unwrap data
using decryption methods. For example, the crypto engine
212 may decrypt messages (e.g., challenge-response mes-
sages, messages containing identifier information) using an
encryption key. More particularly, the crypto engine 212
may use the LDID as part of a decryption algorithm to
recover a wrapped locality proof key obtained from the
processor 120 via the communication engine 210.

Referring now to FIG. 3, diagram 300 illustrates an
example of providing a locality domain identifier (LDID)
between the processor 120 and the CSME 144. The diagram
300 depicts the processor 120 and the CSME 144 as being
interconnected with a hardware bus 322 (e.g., a PCle hard-
ware bus, Direct Media Interface (DMI) hardware bus, host
embedded controller iterface (HECI) bus, sideband net-
work, secure fabric 142, etc.). As shown, the processor 120
includes cores 305, 310, which are representative of pro-
cessing units that read and execute program instructions.
[llustratively, the core 3035 establishes a platform services
enclave (PSE) 307. The PSE 307 may communicate with the
CSME 144 via the hardware bus 322.

Although secure communication sessions ensure that
communications between hardware components locally
residing in the computing device 100 remain secure, having,
a secure communication channel between the components
may not guarantee that a given processor 120 and the CSME
144 reside on the same physical platform. Thus, without any
safeguards 1n place, an adversary may potentially attack the
computing device 100 from a remote system. For example,
an adversary may attempt to establish a secure communi-
cation session between a CSME 144 of a remote computing
device 302 and components in the computing device 100,
such as the PSE 307 (as depicted with the double-arrowed
line between the processor 120 and the remote computing
device 302). If established, the remote CSME 144 could
compromise various hardware components and secure
enclaves 1n the computing device 100. For example, the

5

10

15

20

25

30

35

40

45

50

55

60

65

8

remote CSME 144 may be compromised to generate mono-
tonic counter values to replay encrypted messages protected
using monotonic counter values from the PSE 307.

Embodiments presented herein disclose techmiques for
establishing locality of hardware components in the com-
puting device 100. In one embodiment, the processor 120
generates a LDID 312. The LDID 312 corresponds to an
identifier that 1s generated per-boot of the computing device
100. Further, the LDID 312 1s a value that 1s unique to the
computing device 100. For example, the processor 120 may
generate the LDID 312 as a function of the PSE 307, a
timestamp of when the LDID 312 was produced, and/or a
randomly generated number. Further still, the processor 120
may store the LDID 312 in an area accessible to the
processor 120, such as a reserved area of memory for the
processor 120, a special register 1n the processor 120, efc.

Further, as further described herein, the processor 120
may share the LDID 312 with other hardware components
residing 1n the computing device 100, such as the CSME
144. Doing so allows the PSE 307 to establish locality with
the other hardware components. To ensure that hardware
components that do not share the same hardware platform as
the PSE 307 do not have access to the LDID 312, the
processor 120 may transmit the LDID to the CSME 144 and
other processors 1 the computing device 100 via the hard-
ware bus 322. In practice, the processor 120 may do so
during boot of the hardware platform.

Further still, the processor 120 may generate a locality
proof key (LPK). The LPK 1s a randomly generated cryp-
tography key that the PSE 307 uses to determine the locality
of a given hardware component. For instance, the PSE 307
does so when establishing a secure communication session
with the CSME 144. Once generated, the processor 120
wraps the LPK using the LDID. For example, the processor
120 may invoke an EBIND 1nstruction to wrap the LPK. The
processor 120 may then send the wrapped LPK to the CSME
144. The LPK allows the processor 120 to establish locality
with the CSME 144 during 1nitiation of a secure session with
the CSME 144. Doing so allows the processor 120 to
determine that the CSME 144 1s 1n possession of the LDID
transmitted to the CSME 144 at boot time.

Retferring now to FIG. 4, on boot of the hardware plat-
form, the computing device 100 may execute a method 400
for establishing device locality. In some embodiments, the
operations of the method 400 may be performed by one or
more components of the environment 200 of the computing
device 100. As shown, the method 400 begins 1n block 402,
in which the processor 120 generates a LDID. For example,
the processor 120 may generate a numeric value represen-
tative of the LDID from various attributes, e.g., a serial
number of the processor 120, a timestamp indicative of
when the processor 120 mitiated generation of the LDID, a
nonce, etc. Once generated, the processor 120 may store the
LDID, e.g., 1n a register of the processor 120, processor
reserved memory, efc.

In block 404, the processor 120 transmits the LDID to the
CSME (and/or other processors in the computing device
100) via a local hardware bus, e.g., bus 322. Doing so via the
local hardware bus ensures that the hardware components
receiving the LDID are located on the hardware platform of
the computing device 100 and not located on a remote
device. In some embodiments, in block 406, the processor
120 transmuits the LDID to the CSME (and other processors)
via a local sideband network of the hardware platform. The
sideband network electrically connects the processor 120
with other hardware components 1n the computing device
100. The processor 120, via the sideband network, may

US 11,997,192 B2

9

transmit signals indicative of the LDID to the CSME 144.
Data transmitted over the sideband network 1s not routable
to remote devices.

In block 408, the processor 120 may enter the PSE. For
example, the processor 120 may execute an enter instruction
to do so. The PSE 1s an 1solated, trusted execution environ-
ment, protected from unauthorized access by the secure
enclave support 122 of the processor 120. In turn, in block
410, the processor 120 generates a random LPK to distribute
to the CSME 144. The processor 120 may use a variety of
key generation techniques to do so, e.g., AES (Advanced
Encryption Standard), Galois/Counter Mode (GCM), etc.

In block 412, the processor 120 transmits the locality
proof key to the CSME 144. In block 414, the processor 120
executes an 1nstruction to encrypt the LPK using the LDID.
Doing so ensures that recipients not in possession of the
LDID cannot obtain the LPK. In block 416, the processor
120 wraps the LPK using the LDID. In particular, the
platform services enclave may mvoke an EBIND 1nstruction
with a BIND_STRUCT object, causing the processor 120 to
wrap the BIND_STRUCT object. A BIND_STRUCT 1s a
data structure that 1s partially populated by software and
partially populated by hardware. One potential embodiment

of BIND STRUCT 1s described 1n Table 1:

TABLE 1
BIND_STRUCT
Name of Oflset Size
Offset (Bytes) (Bytes) Description
VERSION 0 4 BIND__STRUCT version, must be 1
for first instantiation
RSVD 4 12 Reserved, must be zero
MAC 16 16 MAC on BTENCDATA, BTDATA,
BTID, BTSVN, NONCE, SEQID
BTID 32 4 Target device
BTSVN 36 4 Target Security version number
NONCE 40 8 Nonce for Authenticated Responses
SEQID 48 8 Seed for generating Initialization
Vector (IV)
RSVD 56 8 Reserved, must be zero
BTDATA 64 128 Target specific data
BTENCDATA 192 48 Target specific encrypted data, must
be a multiple of 16
BTUPDATA 240 16 Target specific data that is not

encrypted nor integrity protected

The BIND_STRUCT object created by the processor 120
may 1nclude a BTID field with a value that 1s indicative of
the CSME, e.g., BTID=0x1 (LDID_HOLDER). Further, the
PSE sets the BTENCDATA field to the generated LPK. The
processor 120 then performs an algorithm to encrypt the
BIND_STRUCT object. For example, the processor 120
may perform an AES-GCM algorithm to wrap the
BIND_STRUCT object. The processor 120 writes the
encrypted LPK to the BIND_STRUCT object. In block 418,
the processor 120 transmits the wrapped LPK to the CSME
144. To do so, the processor 120 may send the wrapped
BIND_STRUCT object containing the LPK wvia the local
hardware bus. As another example, in block 420, the pro-
cessor 120 transmits the BIND_STRUCT object to the
CSME 144 wvia the sideband network. The wrapped
BIND_STRUCT object may be delivered to the CSME 144

using any appropriate technique. For example, the wrapped
BIND_STRUCT object may be delivered in response to the

processor 120 executing an UNWRAP 1nstruction.

The CSME 144 receives the wrapped LPK from the
processor 120. More particularly, the CSME 144 receives
the BIND_STRUCT object having the encrypted LPK from

5

10

15

20

25

30

35

40

45

50

55

60

65

10

the processor 120. In block 422, the CSME 144 unwraps the
BIND_STRUCT object using the LDID. For example, the
CSME 144 may decrypt the wrapped LPK, use the LDID as

the decryption key. Once unwrapped, the CSME 144 may
store the LPK 1n a reserved area of memory, such as a
volatile or non-volatile memory and/or memory range dedi-
cated to the CSME 144.

As stated, the processor 120 may establish a secure
communication session with the CSME 144 (or other com-
ponents 1n the hardware platform of the computing device
100. For example, the CSME 144 may send a request to the
processor 120 to establish a secure communication session,
and the processor 120 receives the request. To ensure that the
CSME 144 resides on the same platform as the processor
120, the processor 120 may 1ssue a locality challenge to the
CSME 144 (and vice versa) prior to establishing (or during
establishment of) the secure communication session. Refer-
ring now to FIG. 5, 1n block 424, the processor 120 transmits
a locality challenge to the CSME 144 corresponding to
Proot,, ., . =PRF, .(Challenge .,,.). In particular, 1n
block 426, the processor 120 may generate the locality
challenge. The locality challenge may be a message, such as
a randomly generated sequence or number. In block 428, the
processor 120 signs the locality challenge using the LPK.
The processor 120 may retrieve the LPK from storage and
use the LPK as part of an encryption algorithm on the
locality challenge. In block 430, the processor 120 transmits
the encrypted locality challenge to the CSME 144. For
example, the processor 120 may do so via the local hardware
bus or the sideband network of the computing device 100.

The CSME 144 receives the wrapped locality challenge
from the processor 120. The CSME 144 may invoke a
cryptographic algorithm on the wrapped locality challenge
to decrypt the locality challenge. The CSME 144 may
generate a response to the locality challenge that matches an
expected response for the locality challenge. Further, the
CSME 144 may wrap the response using the LPK and send
the response to the processor 120.

In block 432, the processor 120 receives the locality
challenge response from the CSME 144. In block 434, the
processor 120 validates the response to ensure a match to the

expected response. If invalid, the processor 120 may return

an error to the CSMFE 144 1n block 436, after which the
method 400 ends. Otherwise, if the response 1s valid, then
the processor 120 may process a locality challenge from the
CSME 144. Particularly, the CSME 144 generates a locality
challenge and signs the locality challenge using the LPK
(e.g., using similar techmiques as described above). The
CSME 144 sends the encrypted locality challenge to the
processor 120. In block 438, the processor 120 receives the
locality challenge from the CSME 144.

In block 440, the processor 120 decrypts the locality
challenge using the LPK. The processor 120 may then
generate a locality challenge response. In block 442, the
processor 120 sends the locality challenge response to the
CSME 144, which, 1n turn, validates the response and sends
an acknowledgement to the CSME 144. In block 444, the
processor 120 determines whether the acknowledgement 1s
indicative that the response was successiul. IT not (e.g., if the
CSME 144 returns an error to the processor 120), then the
method 400 advances to block 436, 1n which the processor
120 returns an error. Otherwise, in block 446, the processor
120 establishes a secure communication session with the
CSME 144. After establishing the secure communication

session, the processor 120 has ensured that the CSME 144

US 11,997,192 B2

11

1s located in the same physical computing device 100, and
thus the processor 120 may communicate securely with the

CSME 144.

It should be appreciated that, 1n some embodiments, the
method 400 may be embodied as various instructions stored
on a computer-readable media, which may be executed by

the processor 120, the I/O subsystem 128, the CSME 144
and/or other components of the computing device 100 to
cause the computing device 100 to perform the method 400.
The computer-readable media may be embodied as any type
of media capable of being read by the computing device 100
including, but not limited to, the memory 130, the data
storage device 132, firmware devices, other memory or data
storage devices of the computing device 100, portable media
readable by a peripheral device 140 of the computing device
100, and/or other media.

EXAMPLES

[lustrative examples of the technologies disclosed herein
are provided below. An embodiment of the technologies may
include any one or more, and any combination of, the
examples described below.

Example 1 includes a computing device for establishing
device locality, the computing device comprising: a
processor comprising: a generation engine to generate
an 1dentifier, wherein the identifier 1s distinct to the
computing device, a communication engine to transmit
the 1dentifier to a management controller via a hard-
ware bus 1n the computing device, a service engine to
generate the key, and a crypto engine to encrypt the key
with the identifier to generate a wrapped key in
response to generation of the key, wherein the service
engine 1s further to transmit the wrapped key to the
management controller.

Example 2 includes the subject matter of Example 1, and
wherein the management controller comprises a crypto
engine to: decrypt the wrapped key with the 1dentifier
to recover the key in response to transmission of the
wrapped key.

Example 3 includes the subject matter of any of Examples
1 and 2, and wherein: the service engine 1s further to:
receive a request to establish secure communication
with the management controller; and send a first local-
ity prool challenge to the management controller,
wherein the first locality proof challenge 1s signed with
the key.

Example 4 includes the subject matter of any of Examples
1-3, and wherein the management controller comprises:
a communication engine to generate a response to the
first locality proof challenge, and a crypto engine to
sign the response using the key.

Example 5 includes the subject matter of any of Examples
1-4, and wherein the service engine 1s further to:
receive a response to the first locality proof challenge
from the management controller, and to validate the
response using the key.

Example 6 includes the subject matter of any of Examples
1-5, and wherein the service engine 1s further to:
receive a second locality proof challenge from the
management controller, generate a response to the
second locality proof challenge, sign the response using
the key, and send the signed response to the manage-
ment controller.

Example 7 includes the subject matter of any of Examples
1-6, and wherein the service engine 1s further to estab-

10

15

20

25

30

35

40

45

50

55

60

65

12

lish the secure communication with the management
controller in response to validation of the response.

Example 8 includes the subject matter of any of Examples
1-7, and wherein the service engine 1s further to return
an error in response to a determination that the response
to the first locality proof challenge 1s not valid.

Example 9 includes the subject matter of any of Examples
1-8, and wherein the management controller comprises
a converged security and manageability engine.

Example 10 includes the subject matter of any of

Examples 1-9, and wherein to transmit the identifier to
the management controller via the hardware bus com-
prises to: transmit the identifier to the management
controller via a sideband network.

Example 11 includes the subject matter of any of

Examples 1-10, and wherein: the service engine 1s

further to execute a first mstruction by the processor 1n
response to generation of the key, to encrypt the key
comprises to encrypt the key using the identifier in
response to execution of the first istruction by the
processor, and to transmit the wrapped key comprises
to transmit the wrapped key to the management con-
troller via a sideband network.

Example 12 1includes the subject matter of any of

Examples 1-11, and wherein the first instruction com-
prises an EBIND instruction.

Example 13 includes the subject matter of any of

Examples 1-12, and wherein to transmit the key com-
prises to: transmit the key 1n response to execution of
a second 1nstruction by the processor.

Example 14 includes the subject matter of any of

Examples 1-13, and wherein the second instruction
comprises an UNWRAP struction.

Example 15 includes the subject matter of any of

Examples 1-14, and wherein the communication engine
1s further to: send the identifier to one or more second
processors of the computing device via the hardware
bus.

Example 16 includes the subject matter of any of

Examples 1-15, and wherein: the service engine 1s

turther to load a platform services enclave using secure
enclave support of the processor, to generate the key
comprises to generate the key by the platform services
enclave, and to transmit the wrapped key to the man-
agement controller comprises to transmit the wrapped
key to the management controller by the platform
services enclave.

Example 17 includes the subject matter of any of

Examples 1-16, and wherein to generate the identifier
comprises to generate the identifier 1n response to a
reset of the computing device.

Example 18 includes a method for establishing device
locality, the method comprising: generating, by a pro-
cessor 1n a computing device, an identifier distinct to
the computing device; transmitting, by the processor,
the 1dentifier to a management controller via a hard-
ware bus in the computing device; generating, by the
processor, a key; encrypting, by the processor, the key
with the identifier to generate a wrapped key in
response to generation of the key; and transmitting, by
the processor, the wrapped key to the management
controller.

Example 19 includes the subject matter of Example 18,
and further comprising: decrypting, by the management
controller, the wrapped key with the identifier to
recover the key 1n response to transmitting the wrapped
key.

US 11,997,192 B2

13

Example 20 includes the subject matter of any of
Examples 18 and 19, and further comprising: receiving
a request to establish secure communication with the
management controller; sending, by the processor, 1n
response to the request, a first locality proof challenge
to the management controller, wherein the first locality
prool challenge 1s signed with the key.
Example 21 includes the subject matter of any of
Examples 18-20, and further comprising: generating,
by the management controller, a response to the first
locality proof challenge; and signing, by the manage-
ment controller, the response using the key.
Example 22 includes the subject matter of any of
Examples 18-21, and further comprising: receiving, by
the processor, a response to the first locality proof
challenge from the management controller; and vali-
dating, by the processor, the response using the key.
Example 23 includes the subject matter of any of
Examples 18-22, and further comprising: receiving a
second locality proof challenge from the management
controller; generating a response to the second locality
prool challenge; signing the response using the key;
and sending the signed response to the management
controller.
Example 24 includes the subject matter of any of
Examples 18-23, and further comprising: establishing
the secure communication with the management con-
troller 1n response to validating the response.
Example 25 includes the subject matter of any of
Examples 18-24, and further comprising: returning an
error 1n response to determining that the response to the
first locality prootf challenge 1s not valid.
Example 26 includes the subject matter of any of
Examples 18-23, and wherein the management control-
ler 1s a converged security and manageability engine.
Example 27 includes the subject matter of any of
Examples 18-26, and wherein transmitting the identi-
fier to the management controller via the hardware bus
comprises: transmitting the identifier to the manage-
ment controller via a sideband network.
Example 28 includes the subject matter of any of
Examples 18-27, and further comprising: executing a
first 1nstruction by the processor in response to gener-
ating the key, wheremn encrypting the key comprises
encrypting the key using the identifier in response to
executing the first instruction by the processor, and
transmitting the wrapped key comprises transmitting
the wrapped key to the management controller via a
stdeband network.
Example 29 includes the subject matter of any of
Examples 18-28, and wherein executing the {irst
istruction comprises executing an EBIND instruction.
Example 30 includes the subject matter of any of
Examples 18-29, and wherein transmitting the key
comprises: transmitting the key in response to execut-
ing a second instruction by the processor.
Example 31 includes the subject matter of any of
Examples 18-30, and wherein executing the second
istruction comprises executing an UNWRAP 1nstruc-
tion.
Example 32 includes the subject matter of any of
Examples 18-31, and further comprising: sending, by
the processor, the identifier to one or more second
processors of the computing device via the hardware
bus.
Example 33 includes the subject matter of any of
Examples 18-32, and further comprising: loading, by

5

10

15

20

25

30

35

40

45

50

55

60

65

14

the computing device, a platform services enclave
using secure enclave support of the processor, wherein
generating the key comprises generating the key by the
platiorm services enclave, and wherein transmitting the
wrapped key to the management controller comprises
transmitting the wrapped key to the management con-
troller by the platform services enclave.

Example 34 includes the subject matter of any of

Examples 18-33, and wherein generating the identifier
comprises generating the identifier 1n response to a
reset of the computing device.

Example 35 includes a computing device comprising: a
processor; and a memory having stored therein a plu-
rality of istructions that when executed by the pro-
cessor cause the computing device to perform the
method of any of Examples 18-34.

Example 36 includes one or more non-transitory, com-
puter readable storage media comprising a plurality of
instructions stored thereon that in response to being
executed result in a computing device performing the
method of any of Examples 18-34.

Example 37 includes a computing device comprising
means for performing the method of any of Examples
18-34.

Example 38 includes a computing device for establishing
device locality, the computing device comprising:
means for generating, by a processor in the computing
device, an identifier distinct to the computing device;
means for transmitting, by the processor, the identifier
to a management controller via a hardware bus 1n the
computing device; means for generating, by the pro-
cessor, a key; means for encrypting, by the processor,
the key with the identifier to generate a wrapped key 1n
response to generation of the key; and means for
transmitting, by the processor, the wrapped key to the
management controller.

Example 39 includes the subject matter of Example 38,
and further comprising: means for decrypting, by the
management controller, the wrapped key with the 1den-
tifier to recover the key in response to transmitting the
wrapped key.

Example 40 includes the subject matter of any of

Examples 38 and 39, and further comprising: means for
receiving a request to establish secure communication
with the management controller; means for sending, by
the processor, 1n response to the request, a first locality
proof challenge to the management controller, wherein
the first locality proof challenge 1s signed with the key.

Example 41 includes the subject matter of any of

Examples 38-40, and further comprising: means for
generating, by the management controller, a response
to the first locality proof challenge; and means for
signing, by the management controller, the response
using the key.

Example 42 includes the subject matter of any of

Examples 38-41, and further comprising: means for
receiving, by the processor, a response to the first
locality proof challenge from the management control-
ler; and means for validating, by the processor, the
response using the key.

Example 43 includes the subject matter of any of

Examples 38-42, and further comprising: means for

receiving a second locality proof challenge from the

management controller; means for generating a

response to the second locality proot challenge; means

US 11,997,192 B2

15

for signing the response using the key; and means for
sending the signed response to the management con-
troller.

Example 44 includes the subject matter of any of

Examples 38-43, and further comprising: means for >
establishing the secure communication with the man-
agement controller 1 response to validating the
response.

Example 45 includes the subject matter of any of

Examples 38-44, and further comprising: means for
returning an error in response to determining that the
response to the first locality proof challenge 1s not
valid.

Example 46 includes the subject matter of any of |

Examples 38-45, and wherein the management control-

ler 1s a converged security and manageability engine.

Example 47 includes the subject matter of any of

Examples 38-46, and wherein the means for transmuit-
ting the 1dentifier to the management controller via the
hardware bus comprises: means for transmitting the
identifier to the management controller via a sideband
network.

Example 48 includes the subject matter of any of

Examples 38-47, and further comprising: means for
executing a {irst istruction by the processor 1n
response to generating the key, wherein the means for
encrypting the key comprises means for encrypting the
key using the identifier 1n response to executing the first
istruction by the processor, and the means for trans-
mitting the wrapped key comprises means for trans-
mitting the wrapped key to the management controller
via a sideband network.

Example 49 1ncludes the subject matter of any of |

Examples 38-48, and wherein the means for executing

the first mstruction comprises means for executing an

EBIND instruction.

Example 30 includes the subject matter of any of
Examples 38-49, and wherein the means for transmit- 4
ting the key comprises: means for transmitting the key
in response to executing a second instruction by the

ProCcessor.
Example 351 includes the subject matter of any of
Examples 38-50, and wherein the means for executing 45
the second 1nstruction comprises means for executing
an UNWRAP 1nstruction.
Example 32 includes the subject matter of any of
Examples 38-31, and further comprising: means for
sending, by the processor, the 1dentifier to one or more
second processors ol the computing device via the
hardware bus.
Example 33 includes the subject matter of any of
Examples 38-52, and further comprising: means for
loading, by the computing device, a platform services
enclave using secure enclave support of the processor,
wherein the means for generating the key comprises
means for generating the key by the platform services
enclave, and wherein the means for transmitting the
wrapped key to the management controller comprises
means for transmitting the wrapped key to the man-
agement controller by the platform services enclave.

Example 34 includes the subject matter of any of
Examples 38-33, and wherein the means for generating 65
the identifier comprises means for generating the iden-
tifier 1n response to a reset of the computing device.

10

S

20

25

30

5

50

55

60

16

The mnvention claimed 1s:

1. A computing device comprising:

processor circuitry coupled to a memory, the processor

circuitry comprising;

generation circuitry to generate an identifier represent-
ing a device locality associated with the computing
device and associate the identifier with one or more
hardware components of the computing device such
that the one or more hardware components share the
identifier, wherein the identifier i1s distinct to the
computing device and generated in response to a
reset of the computing device, wherein the one or
more hardware components comprise:

service circuitry to generate a key associated with the
identifier using a platform services enclave;

crypto circuitry to encrypt the key using the identifier
to generate a wrapped key 1n response to generation
of the key, wherein the wrapped key 1s encrypted and
transmitted to a management controller via a net-
work, wherein the crypto circuitry decrypts the
wrapped key to recover the key in response to
transmission of the wrapped key; and

communication circuitry to generate a response to a
first locality proof challenge, wherein the response 1s
signed with the key by the crypto circuitry and
validated by the service circuitry using the key,
wherein 1n response to validation of the response to
the first locality proof challenge, a secure commu-
nication 1s established with the management control-
ler by the communication circuitry, while an error 1s
returned 11 the validation of the response fails.

2. The computing device of claim 1, wherein the com-
munication circuitry 1s further to transmait the identifier to the
management controller via a hardware bus 1n the computing
device, and

wherein the service circuitry 1s further to receive a request

to establish secure commumnication with the manage-
ment controller, and send the first locality proot chal-
lenge to the management controller.

3. The computing device of claim 2, wherein the service
circuitry 1s further to receive a response to the first locality
prool challenge from the management controller.

4. The computing device of claim 2, wherein the service
circuitry 1s further to receive a second locality prootf chal-
lenge from the management controller;

generate a response to the second locality proof challenge;

sign the response to the second locality proof challenge

using the key; and
send the signed response to the management controller.
5. The computing device of claim 2, wherein:
the service circuitry 1s further to execute a first instruction
by the processor 1n response to generation of the key,

wherein to encrypt the key comprises to encrypt the key
using the identifier 1n response to execution of the first
istruction by the processor, and

wherein to transmit the wrapped key comprises to trans-

mit the wrapped key to the management controller via
the network including a sideband network, and in
response to execution of a second instruction by the
Processor.

6. The computing device of claim 2, wherein:

the service circuitry 1s further to load the platform ser-
vices enclave using secure enclave support of the
processor, and

US 11,997,192 B2

17

wherein to transmit the wrapped key to the management
controller comprises to transmit the wrapped key to the
management controller by the platform services
enclave.

7. A method comprising:

generating, by a processor of a computing device, an
identifier representing a device locality associated with
the computing device and associate the 1identifier with
one or more hardware components of the computing

device such that the one or more hardware components
share the 1dentifier, wherein the identifier i1s distinct to
the computing device and generated 1n response to a
reset of the computing device, wherein the method
further comprises:
generating, by service circuitry as facilitated by the
processor, a key associated with the i1dentifier using
a platform services enclave;
encrypting, by crypto circuitry as facilitated by the
processor, the key using the identifier to generate a
wrapped key 1n response to generation of the key,
wherein the wrapped key 1s encrypted and transmiut-
ted to a management controller via a network, and
decrypting the wrapped key to recover the key 1n
response to transmission ol the wrapped key; and
generating, by communication circuitry as facilitated
by the processor, a response to a first locality proof
challenge, wherein the response 1s signed with the
key by the crypto circuitry and validated by the
service circuitry using the key, wherein 1n response
to validation of the response to the first locality proof
challenge, a secure communication 1s established
with the management controller by the communica-
tion circuitry, while an error 1s returned i1 the vali-
dation of the response fails.
8. The method of claim 7, turther comprising;:
transmitting the identifier to the management controller
via a hardware bus 1n the computing device;
receiving a request to establish secure communication
with the management controller; and
sending the first locality proof challenge to the manage-
ment controller.
9. The method of claim 8, further comprising:
receiving a response to the first locality proof challenge
from the management controller;
receiving a second locality proof challenge from the
management controller;
generating a response to the second locality proof chal-
lenge;
signing the response to the second locality proof chal-
lenge using the key;
sending the signed response to the management control-
ler; and
establishing the secure communication with the manage-
ment controller in response to validation of the
response to the first locality prootf challenge, and
returning an error in response to a determination that
the response to the first locality proof challenge 1s not
valid.
10. The method of claim 8, further comprising;:
executing a first instruction by the processor 1n response
to generation of the key;
encrypting the key comprises encrypting the key using the
identifier 1n response to execution of the first mstruc-
tion by the processor; and
transmitting the wrapped key comprises transmitting the
wrapped key to the management controller via the

10

15

20

25

30

35

40

45

50

55

60

65

18

network including a sideband network, and 1n response
to execution of a second 1nstruction by the processor.

11. The method of claim 8, further comprising:

loading the platform services enclave using secure
enclave support of the processor; and

transmitting the wrapped key to the management control-
ler comprises transmitting the wrapped key to the
management controller by the platform services
enclave.

12. A non-transitory computer-readable medium having

stored thereon instructions which, when executed, cause a
computing device to perform operations comprising;:

generating an 1dentifier and associate the 1dentifier repre-
senting a device locality associated with the computing,
device and associate the identifier with one or more
hardware components of the computing device such
that the one or more hardware components share the
identifier, wherein the identifier 1s distinct to the com-
puting device and generated 1n response to a reset of the
computing device, wherein the operations further com-
prise:

generating, by service circuitry of the computing device,
a key associated with the identifier using a platform
services enclave;

encrypting, by crypto circuitry of the computing device,
the key using the identifier to generate a wrapped key
in response to generation ol the key, wherein the
wrapped key 1s encrypted and transmitted to a man-
agement controller via a network, and decrypting the
wrapped key to recover the key 1n response to trans-
mission of the wrapped key; and

generating by communication circuitry of the computing
device, a response to a first locality proof challenge,
wherein the response 1s signed with the key by the
crypto circuitry and validated by the service circuitry
using the key, wherein 1n response to validation of the
response to the first locality proof challenge, a secure
communication i1s established with the management
controller by the communication circuitry, while an
error 1s returned if the validation of the response fails.

13. The non-transitory computer-readable medium of

claim 12, wherein the operations further comprise:

transmitting the identifier to the management controller
via a hardware bus 1n the computing device;

recerving a request to establish secure communication
with the management controller; and

sending the first locality proof challenge to the manage-
ment controller.

14. The non-transitory computer-readable medium of

claim 12, wherein the operations further comprise:

recerving a response to the first locality proof challenge
from the management controller;

recetving a second locality proof challenge from the
management controller;

generating a response to the second locality proof chal-
lenge;

signing the response to the second locality proof chal-
lenge using the key;

sending the signed response to the management control-
ler; and

establishing the secure communication with the manage-
ment controller 1 response to validation of the
response to the first locality proof challenge, and
returning an error in response to a determination that
the response to the first locality prootf challenge 1s not
valid.

US 11,997,192 B2
19

15. The non-transitory computer-readable medium of
claim 12, wherein the operations further comprise:
executing a first istruction by the processor 1n response
to generation of the key;
encrypting the key comprises encrypting the key using the 5
identifier 1n response to execution of the first mstruc-
tion by the processor; and
transmitting the wrapped key comprises transmitting the
wrapped key to the management controller via the
network including a sideband network, and 1n response 10
to execution of a second 1nstruction by the processor.
16. The non-transitory computer-readable medium of
claim 12, wherein the operations further comprise:
loading the platform services enclave using secure
enclave support of the processor; and 15
transmitting the wrapped key to the management control-
ler comprises transmitting the wrapped key to the
management controller by the platform services
enclave.

20

	Front Page
	Drawings
	Specification
	Claims

