US011997021B1

12 United States Patent

Gunuputi Alluri Venka et al.

US 11,997,021 B1
May 28, 2024

(10) Patent No.:
45) Date of Patent:

(54) AUTOMATED PROVISIONING (56) References Cited
TECHNIQUES FOR DISTRIBUTED N
APPLICATIONS WITH INDEPENDENT u.5. PALENT DOCUMENIS
RESOURCE MANAGEMENT AT _
8,706,852 B2 4/2014 Kunze et al.
CONSTITUENT SERVICES 8.997.107 B2  3/2015 Jain
9,412,075 B2 8/2016 Padala et al.
(71) Applicant: Amazon Technologies, Inc., Seattle, 10,223,109 B2 3/2019 Lepcha et al.
WA (US) 10,230,600 B2 3/2019 Bha.SII.l et al.
10,749,762 B2  8/2020 Bellini, III et al.
10,956,849 B2 3/2021 Wu et al.
(72) Inventors: Satya Naga Satis Kumar Gunuputi 2018/0254996 Al 9/2018 Kairal et al.
Allurf Venka, Sammamish, WA (US): 5050000001 A1 32020 padaneial
1 ddadla ClL dl.
John Baker, Bellevue, WA (US): 2021/0105317 Al*  4/2021 Kona .......oo...... HO4L, 43/0876
Shahab Shekari, Seattle, WA (US):; 2021/0392185 Al  12/2021 Einkauf et al.
Kartik Natarajan, Shoreline, WA (US); 2023/0020330 Al* 1/2023 Schwerin .............. GO6F 16/256
Ruhaab Markas, The Colonyj 1TX 2023/0300086 Al* 9/2023 Ivanov ................ HO4L 47/762
(US); Ganesh Kumar Gella, Redmond, 709/226
WA (US); Santosh Kumar Ameti, * cited by examiner
Bellevue, WA (US)
Primary Examiner — Mohamed A. Wasel
(73) Assignee: Amazon Technologies, Inc., Seattle, Assistant Examiner — Jihad K Boustany
WA (US) (74) Attorney, Agent, or Firm — Robert C. Kowert;
Kowert, Hood, Munyon, Rankin & Goetzel, P.C.
(*) Notice: Subject‘ to any disclaimer_,‘ the term of this (57) ABSTRACT
patent 1s extended or adjusted under 35 . _ _ .
U.S.C. 154(b) by 0 days. Based on apalysm of a m{orkload associated leth a throttling
key of a client request directed to a first service, a scale-out
requirement of the throttling key 1s obtained at respective
(21) Appl. No.: 18/193,502 re(s:lource managers ol a pluraglity B;f other services whpi’ch are
_ utilized by the first service to respond to client requests. The
(22)  Filed: Mar. 30, 2023 resource managers imtiate, asynchronously with respect to
one another, resource provisioning tasks at each of the other
(51) Int. CL services to tulfill the scale-out requirement. A throttling limait
HO4L 47/762 (2022.01) associated with the throttling key 1s updated to a second
(52) U.S. CL throttling key after the resource provisioning tasks are
CPC oo HO4L 47/762 (2013.01)  completed by the resource managers, and the updated limit
(58) Field of Classification Search 1s used to determine whether to accept another client request
o I HO4L 47/762  associated with the throttling key.

See application file for complete search history. 20 Claims, 10 Drawing Sheets

Distributed computing environment 102

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

High-ievel service (HS) 103 implemented using service-oriented architecture (SOA)

----‘

Request fulfillment

HS request '
167 coordination service Lower-level constituent
End user b . i1 service (Co) 110A
(client) 166 HS Request fulfiiment } [ ———] | Resource manager
response coordinator (RFC) o (RM) 1224
169 155

» Example message graph 152
+ for one client request

‘HH‘ﬁﬂﬂﬂ###ﬂﬁ‘ﬂﬁﬁ#ﬁﬂﬂﬂ‘ﬂﬂﬂﬁHﬂﬂﬂﬁﬂﬂﬂﬂﬂﬂ#-‘ﬁ#'

, Control plane servers
Scafing orchestrator (SO1152 | ... (CPSs) 153

Legend
-  CS-evel reguest

Scaling management
service {SMS) 156

_____ » 3-level response

System 100



00} Walshs L ‘O]
'}

asuodsal |9ns|-§) w———-—-—

]sanbai [9A8-)  E——
pusabay

US 11,997,021 Bl

9G1 (SNS) doInuss €61 (58dD)

uswebeuew Bulleog | sienss sueld jonuo) | 251 (0S) Jojensayoio buleds

%
}sanhai Jus||d SUO IO} ¢

L 91
1sanbal SH

9JIAJSS UONBUIPIO0D
Juswjjiing 1senbay

JUSNMISUOD [9AD]-ISMOT

(YOS) a1moasjiyole pajuaLio-adiaias Buisn pajuswsajdwi 0T (SH) 921n18S [aAsl-ybiH

s
m m ¢S ydeib abessow ojdwex3 ¢
= : "
o ’ '
~— ’ ’
> ' :
& ’ '
e » :
9 ) s
. .
. '
’ '
: § "
m "
e . uw " ™ o - "
5 “ "
’
- : GGl 691
> m 57T () (74Y) J0}eUIPI00D asuodsa.
“ jebeuew aoinosay | |- —— -] [JUBWIILINY 1S3NDSY SH
m YOIT (S9) @91nues 11 ’ | -
.
|
’
’
’
-_l

‘ﬂﬂﬂﬂﬂﬂﬂ

¢01 JuswuoJiAus Bunndwod pajnquisi(y

U.S. Patent

90] (uaifo)

J3sn pu3




US 11,997,021 Bl

Sheet 2 of 10

May 28, 2024

U.S. Patent

J77 SI0]1ea19/S18umo 10qieyD

b

)

¢ 9l

96z (SNS) 991u8s Juswabeuew buiesg " " 7Ge (0S) Jojensayoio buless

9/¢

J01¢ 59

dole SO
Juswiabeuews

JedUE O/NIN

SJOJRUIPJo0d
Juswidojonsp

JOGIEYD

[Buipueisiepun
abenbue| |esnieN

401¢ SO
Juswabreuew

elepejaw
RN 3)e)s 1senbay

(10D
JauMO 100Jey9)

V81¢ 100Jeyd

(20D) (10D)
‘e D81¢ a81¢
JogieyD Jogieyod

ﬂ“““ﬂ‘ﬂﬂﬂﬂﬂ“‘ﬂ“ﬂ“‘“ﬂﬂﬂ'

/

[1%4
99IAI8S UOLBUIPJO0I

Juswyjiyng 1senbay

g01¢ SO _ V0l¢ N

juswabeuew | SO (4SY) uonubooss
JOBJILE YS 42990s pajewony

76¢ 1sanbal co_yso.mxm Juaju

07 (SIWYQ) 991n18s Juswisbieuew uonealjdde uaalp-boeIq

‘“"““‘

R6¢ 90INISS

uonejusws|dwi Jus)uf

Z0¢ ddomjau Japiaosd pnojn

69¢

asuodsal

vad

19¢
15enba:

vad

997 Jasn
uonesljdde

UDALID
-BoeIq




U.S. Patent May 28, 2024 Sheet 3 of 10 US 11,997,021 B1

Chatbot dialog responses

DDA user dialog input 310 350 Status 367 for “order
o pizza” intent

“Food-app, I'd like 361
to order a pizza’ ‘Sure. What size

311 pizza would you
- like?” 314

Customer=C1, !

Intent = “order-pizza”,

param values = null

-
o™

cendnn,

‘Medium - about

14 inches” 317 “Got that, medium

pizza. What type

3 -

of crustwould you |~.. 3 Customer = C1, :
ike?” 320 ‘s Intent = “order-pizza”,i

' ' parami, valuel =}

' {size, medium}

B o b a6 65 G G5 S5 65 G W 4 & W W ’

“Thin® 32

“OK, thin crust it
| is. WWhat toppings
would you like?”

326

Customer = C1,
Intent = “order-pizza’,
param1, value1 =
{size, medium},
param2, valueZ =
{crust, thin}

d-"
i"
"
*ﬂ
"
L B B N R N

“Cheese and

mushrooms.” 329 “‘Got that. You

wantcheeseand] eecee=ee I.{ .....
mushrooms.| F Customer = C1,
have the
information |

need’ 331

3

!
;
Intent = “order-pizza’, $
parami, valuel=
{size, medium}, s

’

paramZ, valueZ = s
s

’

'

i

s

)

|

’

’

fcrust, thin},
param3, value3 =
{cheese,
mushrooms}

I S ——

beowveoseosesveoesswe

Invoke execution program(s) 380~
—— —
‘orderPizza(params)’ l

“Your pizza has been ordered.

You should getit in
approximately T minutes.” 310

FIG. 3



U.S. Patent May 28, 2024 Sheet 4 of 10 US 11,997,021 B1

Per-throttling key, per-CS
scale-out workflow 416

. Compute CS-specific ; o
: resource requirements ;
417

Initiate provisioning

Admin-submitted i tasks 418 | e
scaleout | 1 l """""""""""" - il,_.“

request 444

Wait for provisioning
i tasks to complete 419 |

1) . Update CS scale-out
& '] i fulfilment status 420

Throttled
request

queue
..

Scale-out

request DB
412

n 401 i Record and wait 406 Customer
ayvl r................-.-...-.I------------------! fequeSt
------------------------------------- records DB

Compute proposed | }./

: scaled-out throttiing limit 413

407
R P
. i Publish scale-out
Throttling : requirement message .
limit DB e, 48 i )8 I Message bus
402 e Lo, 414

i Wait until all CSRMs
i complete resource

isioning tasks 409 @/
i provisioning tasks 409 -

AN N B A N S N SR BN N CEE S SN S SR N N T N N N W e el e A

Per-throttling key SO scale-out
workflow 405

FIG. 4



U.S. Patent May 28, 2024 Sheet 5 of 10 US 11,997,021 B1

Per-throttling key, per-CS
scale-in workflow 516

'-.ﬂ- ---------------------------------

Admin-submitted ... TEeINg 1asks 210
scale-in request ,[,
244

T R OO O bl o ok i |

Wait for resources 1o
i befreed 519

—_— 10l Update CS scale-in
Throttling limits /} i fulfilment status 520 i
global re- e ———— '

assessment inttiator Y

203 ) Scaling orchestrator 4 11 Scale-in
(SO) 504 " " X request DB —
; 272
(2 o~
) <>
T Reod 506 Custorrer
aJJ""’“""‘ request
Computs throting imits § |5 /7] records DB
. for multiple throtting | 2L
_— kevié.ol
Throttling i Update throttiing limits
limit DB : 510
502 ' ‘l Message bus
N . 514

i Publish scale-in

i requirements 512

i‘"'"“"""'""'""'"M"““““““'“"i

: Wait until RMs complete -

resource freeing tasks ’ 12\;————
: 513 : ~

Multi-throttling key SO scale-in
workflow 505

FIG. 5



U.S. Patent May 28, 2024 Sheet 6 of 10 US 11,997,021 B1

Throttling key generation parameters 602

Distributed computing environment
account ID 606 (e.qg., of provider

network account of chatbot owner/
creator)

CAl ID 608 (e.g., chatbot ID)

Analysis artifact category 610 (e.g.,
locale/language used for
communicating with chatbot)

Request interaction modality 612 (e.qg.,
voice vs. text for interaction with
chatbots)

End user group ID 614
Geographical origin 616 of end-user
request
End- user request type complexity 618

Throttling key Throttling limit 652A (e.g., maximum # of in-
050A progress connections)

Throttling key e
A50R Throttling limit 6528

FIG. 6



U.S. Patent May 28, 2024 Sheet 7 of 10 US 11,997,021 B1

Scale-out parameters 702

Throttling key definition 704

Scale-out triggering criteria 706 (e.q.,
rejection of end user request due to
throttling limit being reached, average
response time...)

Time period 707 for peak workload
estimation

Throttling limit delta 710

Customer classification/category 712

Resource oversubscription factor 714

Constituent-service-specific
parameters 716 (e.g., average dialog

audio duration for a given throttling
key)

FIG. 7



U.S. Patent May 28, 2024 Sheet 8 of 10 US 11,997,021 B1

Receive, e.g., by an SMS control plane server via programmatic interfaces of the SMS, from an
administrator of a high-level service (HS1) implemented using SOA, parameters to be used for scaling
out or scaling in resources used at various auxiliary or constituent services (CSs) of HS1, e.qg.,
throttling key definitions, a list or graph of the CSs, ID of a request fulfillment coordinator (RFC), scale-
out workflow friggering conditions, scale-in workflow triggering conditions, network addresses of data
stores (e.g., used for storing throttling limits, records of end-user request submissions, efc.), workload
measurement intervals for determining changes to peak workloads, customer classification
information, formulas for computing throttling limit changes etc. 802

messages sent via a message bus) for communication with resource managers (RMs) of CSs 806

Verify that connectivity has been established between RFC and SO1, and that CS RMs are able to
communicate asynchronously with SO1 810

Start automated resource provisioning for HS1 based on the parameters; SO1 starts scale-out and
scale-in workflows (similar to workflows shown in FIG. 4 and FIG. 5) as needed based on the
parameters; changed throttling limits resulting from the workflows are applied by the RFC 814

Collect meftrics associated with scale-out and scale-in 818

Present metrics to HS1 administrators or other authorized users, adjust meta-parameters as needed
822

FIG. 8



US 11,997,021 Bl

Sheet 9 of 10

May 28, 2024

U.S. Patent

‘_‘i“‘l‘il"#

¢

176
siwaad Aued-pay |

"l"l'l"l“

'----------------------------‘
_‘--------_'-_-‘---‘-"-ﬂ"'-‘

'
3 s

‘_‘I"“““"

' 4

' 4

V4o

(SO3) do1n8s
JUan)iIsuo9

[BUI)XT]

VY¥¥6 (SH3)
99INISS |OAD)

-ybiy jeusaix |

"----------'--.'-------_"'

'
'

0p6 asiwaid Juai)

&

“"_""'I“"'Il"“"‘"“"‘

"ﬂ""‘-ﬂ‘ﬂﬂﬂ'ﬂ"ﬂ"_'ﬂ'-"“"“_"‘-“"‘_"ﬂﬂ‘ﬂ.‘ﬂﬂ'ﬂﬂ"'ﬂ‘_‘"“‘

’

Dl

%

'i‘l‘l‘l!ll!“l“‘l'_II'!“I""‘"l'_l“""“""l"""‘!""""“'!"“'l"l“‘

a [ o ‘l".“""l".'.l".l."l-""

(SJ001eYD “6°8) ¢G5 (SIYD) Svoue)su
uoneaiidde 8]qiIsSa99e-JaWO0ISNI Y (]

_‘E‘l_“‘I‘_‘“““l“““!“i"_“!“!‘l‘

W
4

86 (SOS) __
S10)8.)S8Y 210 9E6 (55dO)

bulleag

SJ9AIS aue|d [0JJu0N 056

sJjobeuew uonnsaxs vaa

/€6 CER siojoweed ul

6F6 Stebeuew
$9ssn( abesso)) -9|e9s pue Jn0-9jeds

Juswdojanap yad

176 (SWyQ) 831n8s
Justuabeuew uonealdde uaaup-bojei

‘lll‘l"ll‘ll“l"II"IIII"‘

€€6 (SNS)
80IAISS Juswiabeuew buless uonealdde payngulsi(

!ll“l“lllll‘llll'l'l“ll“l“lllll“

'““““‘_ﬂ“ﬂﬂﬂﬂﬂﬁﬂ‘“‘ﬂﬂ
LR CWER RO W gy W g g
'-----------------------‘
‘ﬂ‘ﬂﬂﬂ‘“ﬂﬂﬂﬂﬂﬂ‘ﬂ“ﬂ‘ﬂﬂ“"

4

#

®

asc6 SS JSC6 SS

V56 (SS)

&

%06 2506
Janias bunndwo) Janas bunndwo)

4506 V506

Jan18s bunndwon JAAIBS bunndwon

an
LO
N
)
)
D

lanas abelo)s

. ¥ T E R X E T X E TR E R T YT RR R N Y
'ﬂﬂﬂﬂﬂﬂﬂﬂ‘ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ““
‘nnnnnnnnnnnnnnnnnnnnnnnnnnn#'

T7h 90IA9S abelols/aseqele(] ; 06 (SOA) 921n8s Bunndwod pazieniip

L P Y Y Y T I Y I I T I Y Y Y YN Y YT Y T T Y YT YT Y Y Y . LEET F ¥ F ¥R XY N XE NSRS NEN N ENSERYNRFNYRE NN NN N RN N

106 Y0Mm}au JapIAOI4

‘-..-.'-'l"ll.-'l.'ll'-‘."ll'lII.II'II."."-.I..Il'."'l‘l_I_.-_ll-l"l'l'l.'l.‘.l‘l.‘"

&

4
[ 4

&

“----------------------------------"----------------------------_-'



U.S. Patent May 28, 2024 Sheet 10 of 10 US 11,997,021 B1

Computing device
9000

Processor
9010n

Processor Processor

9010a 9010b

/O interface 9030

System memory 9020 Network interface
Code Data 2040
9025 9026

Other device(s)
9060

FIG. 10



US 11,997,021 Bl

1

AUTOMATED PROVISIONING
TECHNIQUES FOR DISTRIBUTED

APPLICATIONS WITH INDEPENDENT
RESOURCE MANAGEMENT AT
CONSTITUENT SERVICES

BACKGROUND

Programming and administering distributed applications
and services 1s challenging, especially in scenarios 1n which
a service-oriented architecture 1s employed. For a given
distributed service, numerous auxiliary or lower-level ser-
vices can be utilized in combination to fulfill a given type of
customer request directed to the distributed service. In some
cases, provisioning and administration of resources at a
given lower-level service may be performed independently
of similar tasks at other lower-level services.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 illustrates an example system environment in
which scaling orchestrators may be employed to manage
automated provisioning at numerous constituent services of
a higher-level service at a distributed computing environ-
ment, according to at least some embodiments.

FIG. 2 1llustrates an example use of scaling orchestrators
at a dialog-driven application management service of a
cloud provider network, according to at least some embodi-
ments.

FIG. 3 illustrates an example set of interactions between
and end user of a bot and a dialog-driven application
management service, according to at least some embodi-
ments.

FIG. 4 illustrates example operations which may be
performed to scale out resources which are acquired inde-
pendently by respective resource managers of numerous
constituent services of a higher-level service, according to at
least some embodiments.

FIG. § illustrates example operations which may be
performed to scale in resources which are freed indepen-
dently by respective resource managers of numerous con-
stituent services ol a higher-level service, according to at
least some embodiments.

FIG. 6 illustrates example parameters which may be used
to generate throttling keys used for resource management at
a distributed service, according to at least some embodi-
ments.

FIG. 7 illustrates example scale-out parameters for dis-
tributed services comprising numerous constituent services,
according to at least some embodiments.

FIG. 8 1s a flow diagram illustrating aspects of operations
which may be performed to scale out and scale 1n distributed
applications and services utilizing service-oriented architec-
tures, according to at least some embodiments.

FIG. 9 1llustrates an example provider network at which
a scaling management service may be implemented, accord-
ing to at least some embodiments.

FIG. 10 1s a block diagram illustrating an example com-
puting device that may be used in at least some embodi-
ments.

While embodiments are described herein by way of
example for several embodiments and illustrative drawings,
those skilled 1n the art will recognize that embodiments are
not limited to the embodiments or drawings described. It
should be understood, that the drawings and detailed
description thereto are not intended to limit embodiments to
the particular form disclosed, but on the contrary, the inten-

10

15

20

25

30

35

40

45

50

55

60

65

2

tion 1s to cover all modifications, equivalents and alterna-
tives falling within the spirit and scope as defined by the

appended claims. The headings used herein are for organi-
zational purposes only and are not meant to be used to limait
the scope of the description or the claims. As used through-
out this application, the word “may” 1s used 1n a permissive
sense (1.e., meaning having the potential to), rather than the
mandatory sense (1.e., meaning must). Similarly, the words
“include,” “including,” and “includes” mean including, but
not limited to. When used 1n the claims, the term “or” 1s used
as an inclusive or and not as an exclusive or. For example,
the phrase “at least one of X, y, or z” means any one of X, v,
and z, as well as any combination thereof. Unless otherwise
explicitly stated, articles such as “a” or “an” should gener-
ally be interpreted to include one or more described 1tems
throughout this application. Accordingly, phrases such as “a
device configured to” are intended to include one or more
recited devices. Such one or more recited devices can also
be collectively configured to carry out the stated recitations.
For example, “a processor configured to carry out recitations
A, B and C” can include a first processor configured to carry
out recitation A working in conjunction with a second
processor configured to carry out recitations B and C. Unless
otherwise explicitly stated, the terms “set” and “collection”
should generally be interpreted to include one or more
described items throughout this application. Accordingly,
phrases such as “a set of devices configured to” or “a
collection of devices configured to” are intended to include
one or more recited devices. Such one or more recited
devices can also be collectively configured to carry out the
stated recitations. For example, “a set of servers configured
to carry out recitations A, B and C” can include a first server
configured to carry out recitation A working in conjunction

with a second server configured to carry out recitations B
and C.

DETAILED DESCRIPTION

The present disclosure relates to methods and apparatus
for automating resource provisioning and scaling for certain
types of distributed applications which utilize multiple,
often independently-managed, auxiliary or lower-level ser-
vices. Distributed applications, including many applications
and higher-level network-accessible services executed using
resources ol cloud computing environments, are often
implemented using a service-oriented architecture (SOA), 1n
which the functionality of the application as a whole 1s
divided among numerous asynchronously interacting and
independently managed subcomponents referred to as net-
work-accessible constituent services (CSs), auxiliary ser-
vices (ASs), or micro-services of the applications. This
approach has many benefits such as enabling small agile
teams of software engineers to focus on enhancing features
of the mdividual CSs, making updates more manageable,
reducing the risks and impacts of individual failures, making
debugging easier, and so on. To complete a given unit of
work on behalf of a client or end user of the distributed
application, a request fulfillment coordinator (RFC), which
receives the client’s work request, may send corresponding
internal requests to various CSs (often via network messages
corresponding to respective application programming inter-
face (API) calls) and obtain responses to those internal
requests. Some CSs 1n turn may send their own internal
requests to other CSs. In some cases, hundreds or thousands
ol constituent services may be involved. The resources (e.g.,
virtual or physical computing resources, storage resources
and the like) used for individual CSs may be managed




US 11,997,021 Bl

3

(provisioned/acquired, monitored and/or released/ifreed) by
respective resource managers (RMs) of the CSs. The RM of
one CS may operate mdependently of the RMs of other
CSs—e.g., resources may be acquired or released by one
CS’s RM without coordination or synchronization with RMs

of other CSs.

In some cases, the distributed application or high-level
service (HS) may 1n eflect have at least two levels of
customers. In one example scenario, an HS may be a
dialog-driven application management service (DAMS),
which can be used by one level of customers to develop,
build and host chatbots or other kinds of dialog-driven
applications or bots. Individual chatbots, which represent an
example of customer-accessible application 1nstances
(CAls) that can be hosted at an HS, may then be accessed by
a second level of customer of the DAMS: end users that
interact with the individual chatbots via voice, text, or other
interaction modalities. Multi-tenant resources may 1n some
cases be used for hosting CAls of numerous customers. In
order to ensure that different customers are able to obtain
service responses with desired performance levels (e.g.,
latencies within desired limits with respect to chatbot
responses to end user input), the RFCs may impose throt-
tling limits on customer requests at selected granularities in
various embodiments. In one simple example, the total
number of outstanding network connections established for
end users to communicate with a particular chatbot instance
hosted at a DAMS within a time interval T may be kept
below a connection throttling limit L1, so that 1if more than
.1 requests for new connections are received during the
time interval, the requests that would have led to exceeding
the L1 limit may be rejected by the RFC. Throttling limits
may be applied at granularities determined by keys referred
to as throttling keys 1n various embodiments: for example,
in the above example scenario i which the number of
end-user connections of a given chatbot mstance of a given
chatbot owner 1s being throttled, the throttling key may be
generated from the combination of the identifiers of the
chatbot owner and the chatbot instance.

If the workload of end user requests (also referred to as
client requests) directed at a given set of CAls of an HS
increases steadily, additional resources may need to be
acquired at the CSs of that HS 1n order to accommodate at
least some of the increased demand (e.g., by increasing
throttling limits for at least some throttling keys whose
workload 1s increasing) without rejecting more and more
end user requests over time. Recall that the acquisition of
resources at the CSs may be performed by independently-
acting and asynchronously-operating RMs 1n at least some
cases, which can complicate the problem of scaling up the
HS’s resources as a whole.

In some embodiments, one or more scalability orchestra-
tors (SOs), each comprising some combination of software
and hardware of one or more computing devices, may be
implemented at distributed computing environments (e.g.,
within a scaling management service (SMS)) to help coor-
dinate the scale-out tasks required from different CSs of an
HS 1n a customizable manner. The terms “scale-out” or

“scale-up” may be used herein to refer to provisioning

additional resource capacity to accommodate antici-
pated or actual increases 1n workload, while the terms
“scale-1n” or “scale-down” may be used to refer to
freeing up resource capacity in view of anticipated or
actual decreases 1n workload. Scale-out and scale-in
operations may collectively be referred to as scaling
operations.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

Any of a number of criteria may be utilized in different
embodiments to determine when and 11 an SO should 1nitiate
scale-out analysis tasks for a given throttling key. For
example, 1n some embodiments, 1 more than N end user
requests associated with a given throttling key are rejected
during a given time 1nterval (e.g., a minute) by an RFC, the
scale-out analysis may be mitiated at an SO as a result of a
message received from the RFC. The scale-out analysis
tasks may include, for example, computing the peak work-
load level of the HS with respect to a given throttling key (or
a set of related throttling keys) over a longer time interval
(e.g., a number of hours or days). If the peak computed peak
workload satisfies a condition, a scale-out requirement for
the throttling key(s) (e.g., indicating a proposed increase in
a throttling limit) may be generated by the SO and made
available via one or more communications to various RMs
whose CSs are used for the end user requests associated with
the throttling key.

The RMs may independently obtain the scale-out require-
ments, asynchronously with respect to one another, perform
their own CS-specific computations (which may for example
comprise applying formulas/transformations to the
requested 1increase in throttling limit) to determine the
particular set of resources needed at each CS, and 1nitiate the
acquisition or provisioning of that set of resources. As and
when the acquisition of the required additional resources 1s
completed at a given CS, the RM of that CS may notily the
SO that the scale-out tasks at that CS have been completed.
When the scale-out tasks for all the CSs are completed, the
SO may mform the RFC of the HS that the proposed
increased 1n throttling limit for the throttling key(s) under
consideration can be made eflective or “official”’. The RFC
may then start using the new, higher throttling limit when
deciding whether to accept or reject additional end user
requests associated with the throttling key(s). For some
complex distributed applications or HSs, hundreds or even
thousands of CSs may be employed, so substantial amount
of communication/coordination may be required to ensure
that suflicient resources have been acquired by all the CSs
before increasing throttling limats.

Any of a variety of communication techniques may be
employed for conveying scale-out related information
between RFCs, SOs and RMs 1n different embodiments. For
example, message busses implementing a publish/subscribe
interface may be used to provide scale-out requirements to
RMs from SOs, a scale-out analysis request queue may be
used to send requests for scale-out analysis from RFCs to
SOs, and so on. In some embodiments, resources of a cloud
provider network (such as virtual machines of a virtualized
computing service (VCS)) may be used to implement SOs,
RFCs and RMs.

In addition to coordinating scale-out or resource acquisi-
tion operations, SOs may also coordinate scale-in tasks
(freeing up or releasing of resources of CSs) 1 some
embodiments. Scale-in (comprising determining whether
the throttling limits should be reduced for one or more
throttling keys, reducing the limits for any such keys, and
releasing resources that are therefore no longer required)
may be performed iteratively i some embodiments, e.g.,
with a new scale-1n iteration being mnitiated once every H
hours. Note that triggering conditions for scale-in 1terations,
other than the time elapsed since the last iteration, may be
employed 1n some embodiments: for example, a scale-n
iteration may be started 11 the average CPU utilization at a
set ol computing resources being used for a given HS falls
below a threshold during a selected time interval. The peak
workload levels associated with various throttling keys over

"y




US 11,997,021 Bl

S

selected recent time 1ntervals may be determined by an SO
in a given scale-in 1iteration. If the peak workload levels
associated with one or more of the throttling keys are below
a predetermined threshold, scale-1n requirements or requests
indicating a reduction in throttling limits may be provided to
CS RMs. In some embodiments, the reductions in the
throttling limits may be made eflective immediately, e.g.,
even before resources are freed at the CSSs; in other
embodiments, the reductions 1n the throttling limits may not
be applied until the resources have been freed. The RMs may
obtain the scale-in requests and perform corresponding
resource release tasks. Releasing unneeded resources may
help improve (e.g., increase) average utilization levels at
various resources used for the CSs. Various metrics pertain-
ing to the throttling limits may be made available via
programmatic mnterfaces of an SMS 1n some embodiments,
¢.g., to administrators of the HSs.

As one skilled 1n the art will appreciate i light of this
disclosure, certain embodiments may be capable of achiev-
ing various advantages, including some or all of the follow-
ing: (a) increasing the probability that preferred performance
levels and request acceptance levels are obtained for various
kind of end-user requests directed to distributed applications
and services, (b) improving the resource utilization levels of
resources employed for distributed applications and/or (c)
improving the user experience ol admimstrators of distrib-
uted applications that utilize multiple auxiliary services
and/or are designed 1n accordance with a service-oriented
architecture (SOA).

According to some embodiments, a system may include
one or more computing devices. The computing devices may
include 1nstructions that upon execution at the computing
devices receive a particular client request (e.g., a request
from an end user of a customer-accessible application
instance or CAI) at an RFC of a particular service of a
distributed computing environment such as a cloud comput-
ing environment or provider network. In accordance with a
service-oriented architecture the particular service may uti-
lize a plurality of auxiliary services to fulfill client requests,
including a first auxihiary service and a second auxiliary
service. In at least some embodiments, resources of indi-
vidual ones of the auxiliary services may be managed
independently and asynchronously by respective RMs. In
various embodiments, the RFC may determine, e.g., using a
first throttling limit associated with a throttling key of the
particular client request, that a scale-out analysis criterion
has been satisfied. For example, the client request may
comprise an API call for a new connection to be established,
and the RFC may use the first throttling limit to determine
whether the client request should be accepted and a new
connection should be established. I the RFC discovers that
the establishment of a new connection would cause the
throttling limit to be violated, the request may be rejected in
such an embodiment. The scale-out analysis criterion may
indicate that scale-out analysis should be mitiated 1if some
number (e.g., one) such connection establishment request 1s
rejected within a given time interval 1n one embodiment.

In response to determining that the scale-out analysis
criterion has been met, the RFC may cause a corresponding
scale-out analysis request associated with the throttling key
to be obtamned at a scaling orchestrator (SO) 1n some
embodiments. One or more such scale-out analyses requests
may be queued for the SO at any given time—e.g., one
scale-out analysis request may be queued for throttling key
TK1, another may be queued for a different throttling key
TK2, and so on. The SO may consume queued scale-out
analysis requests 1n the order in which they were queued 1n

10

15

20

25

30

35

40

45

50

55

60

65

6

some embodiments. In other embodiments, the SO may
process multiple scale-out analysis requests 1n parallel.

In response to obtaining the scale-out analysis request, the
SO may obtain a peak workload metric (or some other
workload statistic/metric) associated with the corresponding
throttling key in various embodiments. For example, in
some embodiments, the number of client requests associated
with the throttling key over a selected time 1nterval, includ-
ing both accepted and rejected client requests, may be
obtained by analyzing logs of client requests. The SO may
then compare the peak workload level (comprising both
accepted and rejected requests) with the current throttling
limit of the throttling key, and determine whether a scale-out
requirement for the throttling key should be provided to
RMs of various CSs 1n various embodiments. In one imple-
mentation, the scale-out requirement may indicate a pro-
posed increase 1n the throttling limit of the throttling key.
Other parameters, e.g., parameters characterizing the kinds
of operations that typically have to be performed on behalf
of client requests associated with the throttling key, may also
be included 1n the scale-out requirement 1n one embodiment.
In some embodiments, workload metrics other than peak
workload may be computed and used—e.g., average work-
load may be used, temporal trends (e.g., a rate of increase)
in workload may be used, etc.

The different RMs of the CSs used may each obtain the
scale-out requirement for the throttling key, and 1nitiate their
own CS-specific scale-out workflows 1n some embodiments.
A set of resource provisioning tasks may be performed as
part of such workflows, such as computing the specific
number and types of resources that should be added to the
resources ol a given CS (which may differ from one CS to
another for the same scale-out requirement) to increase the
request processing capacity of the CS, submitting requests
for that number of resources to the appropriate resource
providers, veritying that the requested resources have been
obtained/allocated for the CS, and so on. For example, 1n a
scenario in which the resources to be provisioned comprise
virtual machines or compute 1nstances, the resource provider
may comprise a virtualized computing service or VCS of a
provider network. In some cases, the resource provider may
take some time (e.g., a few minutes) to configure the
requested resources; during such time intervals, the RMs
may start provisioning tasks for other throttling keys if
scale-out requests or requirements generated by an SO for
other throttling keys happen to be pending. The resource
provisioning tasks may be initiated and completed by one
RM of one CS asynchronously and independently of the
resource provisioning tasks of another RM of another CS in
various embodiments. In at least some embodiments, a given
CS may be used by several HSs, and scale-out operations
may be performed at the CS for throttling keys of several
different HSs at least partly in parallel. In one embodiment,
an RM of a given CS may perform a scale-in workflow (in
which resources are released for some throttling key K1) at
about the same time as the RM performs a scale-out work-
flow for another throttling key K2, so some of the resources
that had been acquired earlier to meet K1°s throttling limit
may be redirected or re-used for K2.

In at least some embodiments, the scaling requirement
messages/requests generated by an SO may include one or
more parameters pertaining to the HS requests submitted by
the end users associated with a given throttling key, and such
parameters may be used at the RMs of different CS to
determine the amount of additional capacity (and therefore
the number of resources of different types) needed for
scale-out. For example, in one embodiment, a scale-out




US 11,997,021 Bl

7

requirement SOR1 prepared by an SO may indicate (a) that
a proposed increase 1n the number of outstanding connec-
tions that are to be permitted with a particular chatbot 1s N1
for end user 1nteractions associated with a given throttling
key K1 and (b) that in the previous X hours, the utterances
of end users with key K1 have lasted on average S1 seconds,
and (c) that in the previous X hours, the average number of
end user utterances per session (1.€., the number of times that
a response has to be prepared for the end user and presented
to the end user) 1s Ul. Given the parameters N1, S1 and U1,
an RM RMI1 of one CS CS1 which starts a scale-out
worktlow may use a CS1-specific function f1(N1, S1, Ul) to
compute the number and types of resources needed to be
provisioned at CS1 for the scale-out requirement of K1.

Another RM RM2 of a second CS CS2 may use a different
(CS2-specific) function 12(N1, S1, Ul) to compute the
number and types of resources needed to be provisioned at
CS2 for the same key K1. The numbers and/or types of
resources provisioned at respective CSs for the same scale-
out requirement message may thus in general differ 1n at
least some embodiments. In some embodiments, the admin-
istrator of an HS (or an administrator of one or more CSs of
an HS) may provide, e.g., via programmatic interfaces of an
SMS at the time that an SO 1s being configured for an HS,
an indication of the kinds of parameters whose values should
be included in scale-out requirements by an SO, and the
sources (e.g., log files maintained by RFCs) from which
such values can be obtained by the SO. In some cases, RMs
of different CSs may use respective subsets of the param-
cters—e.g., 1 the above example, RM1 of CS1 may use a
function 11(N1, S1), while RM2 may use 12(N1, U1).

The SO may be informed by each of the RMs (using any
of a variety ol communication mechanisms) as and when
that RM’s resource provisioning tasks have been completed
in various embodiments. After determiming that all the RMs
of all the CSs beimng used have completed their resource
provisioning tasks associated with a throttling key for which
a scale-out requirement had been generated by the SO, the
SO may update the throttling limit for that key (e.g., the
throttling limit may be increased to the proposed value that
was 1ndicated in the scale-out requirement). The RFC may
obtain an 1indication of this change 1n throttling limit, and use
the new throttling limit when determining whether to accept
(or reject) an additional client request associated with the
throttling request going forward.

Scale-outs for CSs used for a variety of distributed
high-level services, which provide respective types of cus-
tomer-accessible application mstances (CAls), may be orga-
nized and coordinated as described above by an SO in
different embodiments. For example, the high-level service
may comprise a dialog-driven application management ser-
vice (DAMS) in one embodiment, and the CAls may com-
prise respective chatbot instances. In another example, the
high-level service may comprise a data storage service, and
the CAls may comprise respective data stores. In some
cases, the high-level service may implement multi-layer web
applications (e.g., with a webserver layer, an application
server layer and a database layer), with each CAI comprising
one instance of a particular multi-layer web application.

Resources may be scaled out at a vaniety of CSs of an HS
in different embodiments. In the DAMS example, the CSs
may include, among others, an automated speech recogni-
tion (ASR) service, a natural language understanding (NLU)
service, a text-to-speech service, a request state information
storage service, or a machine learning artifact selection
service.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

Throttling keys may be defined at various granularities in
different embodiments, depending on the nature of the HS
and the kinds of tasks performed there on behalf of end
users. In one embodiment, 1dentity information of the HS
customer (such as a chatbot owner 1n the case of a DAMS)
on whose behalf a CAl 1s created and hosted may be used to
generate a throttling key, without taking individual CAI
identifiers into account. The HS may store identity infor-
mation of the owners of various CAls hosted by the HS in
such an embodiment; some CAI owners may own multiple
CAls, while others may own a single CAI. In one embodi-
ment 1n which 1dentity information of the CAI owner 1s used
for the throttling key, end user request rates or the number
ol in-progress end-user requests associated with all of the
CAls (e.g., multiple chatbots) of that customer may be
summed and taken into consideration when making accep-
tance decisions regarding new end user requests directed to
any one of the CAls. If accepting a new client request would
cause the sum of mn-progress client requests of all the CAls
of the owner to exceed the throttling limit 1n eflect, the
request may be rejected, regardless of the distribution of the
in-progress requests among the different CAls in such an
embodiment. In other embodiments, throttling keys may be
generated at a slightly finer granularity, and may take both
the CAI owner 1dent1ty and the CAI identity ito account. In
the latter scenario, only those client requests that are directed
to the specific CAI indicated 1n the throttling key may be
taken into consideration when making acceptance/rejection
decisions for new client requests to that particular CAI—
¢.g., 1n one 1mplementation, if the number of in-progress
client requests directed to that CAI would exceed the
throttling limit for the key if a new client request were
accepted, the new client request would be rejected, regard-
less of in-progress requests at other CAls of the same owner
or diflerent owners.

According to some embodiments, 1n which the HS 1s used
for hosting various CAls, the CAI owners may be classified
according to any combination of several dimensions, and
respective class-dependent scale-out (and/or scale-in)
parameters (such as the changes to throttling limits which
should be proposed and applied for scale-out and/or scale-
in) may be used for each class of CAI owner. The CAI
owners may be categorized, for example, based on one or
more of: (a) a measure of complexity of client requests
directed to theiwr CAls, (b) an arrival rate of client requests
for therr CAls, (¢) a temporal distribution of the client
requests, (d) a geographical distribution of client requests or
(¢) a language used for client requests. Class-dependent
computations, i which the class of the CAI owner 1is
provided as a parameter to a function, may be used to select
new throttling limits 1n such embodiments. Diflerent deltas
in throttling limits may thereby be chosen for the client
requests directed to the CAls of respective classes of CAl
owners. By using class-dependent computations, the HS
may be able to provide customized levels of service to the
different categories of high-level services, and thereby sup-
port the desired levels of performance for end users of the
CAls of each CAI owner.

Scale-in operations for an HS may be performed itera-
tively 1n various embodiments. Scale-in 1terations may be
initiated based on a schedule 1n some embodiments, e.g.,
once every H hours. A given scale-in iteration may also
involve the SO and the RMs. In the scale-in iteration, in
some embodiments, a set of throttling keys may be identified
as candidates for throttling limit reduction, e.g., based on
computations of their respective peak workloads during
selected time intervals. For individual ones of such candi-




US 11,997,021 Bl

9

date throttling keys, respective lowered throttling limits may
be determined, and the RMs may perform the corresponding
set of resource Ireeing or releasing tasks (since fewer
resources may be required for lower throttling limaits) at each
of the CSs mdependently and asynchronously with respect
to one another.

A variety of metrics associated with scale-out, scale-1n,
and throttling, may be collected and provided via program-
matic interfaces (e.g., web-based consoles, graphical user
interfaces, APIs, or command line tools) to clients of an
SMS 1n some embodiments. Such metrics may, for example,
indicate the changes to throttling limits for various throttling
keys over time, the total measured client request rates over
various time intervals, measured client request rejection
rates as a function of time, elapsed times between determi-
nation that a scale-out analysis criterion has been met and
the corresponding “oflicial” update of a throttling limit (the
time at which the new throttling limit takes effect for
acceptance/rejection decisions for new end user requests),
clapsed times between generation of scale-out requirements
and the corresponding oflicial updates of the throttling
limits, and so on.

FIG. 1 illustrates an example system environment in
which scaling orchestrators may be employed to manage
automated resource provisioning at numerous constituent
services of a higher-level service at a distributed computing
environment, according to at least some embodiments. As
shown, system 100 may include subcomponents of a high-
level service (HS) 103 implemented according to a service-
oriented architecture (SOA) at a distributed computing envi-
ronment 102 such as a cloud provider network, as well as a
scaling management service (SMS) 156. In accordance with
SOA, the HS may be organized as a collection of auxiliary
or lower-level services, referred to as constituent services
(CSs), such as CS 110A, CS 110B, CS 110C, CS 110D and
CS 110E, along with a request fulfillment coordination
service 111. The request tulfillment coordination service 111
may comprise one or more request fulfillment coordinators
(RFCs) such as RFC 155 which are responsible for receiving
HS requests 167 from clients or end users 166 of HS,
causing the operations/tasks required to fulfill the HS
requests to be performed at various CSs 110, and 1n at least
some cases providing HS responses 169 to the end users. In
at least one embodiment, an RFC may also implement a
portion of the business logic of the HS—that 1s, some of the
computations needed to fulfill end user requests may be
performed at the RFC, while other computations may be
performed at the CSs.

For respective types of HS requests sent by clients,
corresponding groups of internal messages may be trans-
mitted among the subcomponents of HS 103 to perform the
needed tasks. Example message graph 152 shows a set of

messages transmitted for a particular HS request. In this
graph, an RFC 155 may send a CS-level request to CS 110A.
CS 110A may 1n turn send a CS-level request to CS 110B.
A CS-level response from CS 110B may be received at CS
110A, and used to send a CS-level response to the RFC. RFC
155 may also send CS-level requests to CS 110C and CS
110D, and obtain corresponding CS-level responses. Before
sending the CS-level response to the RFC, CS 110D may
send 1ts own CS-level request to CS 110E and obtain a
corresponding CS-level response from CS 110E. In some
cases, CS-level requests may be sent 1n parallel rather than
sequentially: for example, the RFC may send CS-level
requests to CS 110C and CS 110D without waiting for
responses from any of the CSs. Diflerent message graphs

may be utilized for some client requests than for other client

10

15

20

25

30

35

40

45

50

55

60

65

10

requests—e.g., for some classes of client requests, RFC 155
may not need to send a CS-level request to CS 110C, but
may only send CS-level requests to CS 110A and CS 110D.

Note that in some embodiments a given CS may be used by
or for several different HSs. In one embodiment, a CS used
by one HS may 1tself send requests to a second HS to
complete 1ts portion of work, and that HS may 1n utilize 1ts
own set of CSs; as such CSs may not necessarily be
considered as entities at a lower level of a service hierarchy
than HSs.

Individual ones of the CSs may be implemented using a
respective set ol resources (such as physical or virtualized
computing devices, storage devices, and the like) and arti-
tacts (such as machine learning models, scripts, or parameter
files) 1n the depicted embodiment. The resources may be

provisioned or acquired for a given CS by a respective
resource manager (RM), such as RM 122A of CS 110A, RM
122B of CS 110B, RM 122C of CS 110C, RM 122D of CS
110D and RM 122E of CS 110E. The resources needed at a
grven CS may be obtained from a variety of resource sources
by the RMs—e.g., virtualized computing resources may be
obtained from a virtualized computing service of a cloud
provider network by submitting programmatic requests for
virtual machines, storage space may be obtained from a
storage service of a cloud provider network by submitting,
programmatic requests, and so on. The RMs of the different
CSs may operate independently and asynchronously with
respect to one another in various embodiments—that 1s, a
given RM may make decisions regarding resource acquisi-
tion and/or resource release (freeing up resources) at its CS
without coordinating those decisions with RMS at other
CSs, and also implement those decisions independently of
other CSs. Each RM may, for example, have its own
heuristics or rules to determine the amount of request
processing capacity (e.g., the number of virtualized CPUs
needed) that 1s required to perform various types of tasks at
its CS corresponding to corresponding rates of CS-level
requests.

For various HS requests 167 received at the RFC, a
respective throttling key may be determined by the RFC 1n
the depicted embodiment, and used to determine whether the
request should be accepted (that 1s, whether CS-level
requests to complete the tasks required for fulfilling the HS
request should be sent to selected CSs) or rejected. The
throttling keys may be used to subdivide the overall work-
load of the HS so that different groups of end-users can be
treated fairly with respect to one another 1n various embodi-
ments. A variety of techniques and factors may be used to
determine or generate the throttling keys in different
embodiments as discussed below in further detail. For
example, 1n one embodiment, each client request may be
directed to a particular customer-accessible application
instance (CAI) (such as a respective chatbot or database
instance) implemented at the HS on behalf of various CAI
owners, and the throttling key may be computed based on
the CAI’s identifier and/or the 1dentifier of the owner. For a
given throttling key, a corresponding dynamically modifi-
able resource throttling limit may be stored at the HS 1n
various embodiments. In one implementation, for example,
the resource throttling limits may indicate the maximum
number of outstanding network connections established for
client requests associated with respective throttling keys.
For example, for a throttling key K1, a resource throttling
limit L1 connections may be used, while for a throttling key
K2 a resource throttling limit .2 connections may be used
(where L2 may differ from L1 at a given point in time).




US 11,997,021 Bl

11

In various embodiments, 1n accordance with the appli-
cable throttling limit, the RFC may accept a given client
request under the assumption that suflicient resources are
available at the different CSs to fulfill the request with a
targeted performance level (e.g., within a desired time limat).
As such, 1n at least some embodiments, additional resources
may have to be provisioned at some or all of the CSs in order
to accommodate an 1ncrease 1n a throttling limit for a given
throttling key. However, the number of additional resources
needed for a given delta 1n a throttling limit, and/or the types
ol additional resources needed for a given delta in a throt-
tling limit, may differ from one CS to another 1n various
embodiments; the RM of each CS may have to make the
determination as to how much additional request processing
capacity should be acquired, and the numbers and types of
additional resources that should be acquired. In the depicted
embodiment, increasing the throttling limit for a given
throttling key may be referred to as scaling out or scaling up
the HS for that throttling key, while decreasing the throttling,
limit for a given throttling key may be referred to as scaling
in or scaling down the HS for that throttling key. Diflerent
RMs may add different amounts of capacﬂy to their CSs for
a given scale-out requirement for a given throttling key 1n
various embodiments.

In the embodiment depicted 1n FIG. 1, a scaling orches-
trator (SO) 152 of SMS 156 may be configured to (a)
perform an analysis, based on various types of triggering,
events, to determine whether a throttling limit for a given
throttling key should be increased (or decreased) at the HS
and (b) coordinate the acquisition or freeing of resources at
he different CSs if and when a decision to change a
hrottling limit 1s made. The SMS may comprise a plurality
1 SOs, each of which may be assigned for managing scaling
f respective HSs, e.g., by control plane servers (CPSs) 153
f the SMS. The CPSs may also perform other administra-
tive tasks of the SMS such as provisioning resources for the
SOs, monitoring the health status and responsiveness of the
SOs, and so on 1n various embodiments. In some embodi-
ments SOs, RFCs, RMs and CPSs may all be implemented
using some combination of software and hardware at one or
more computing devices.

The RFC 155 may cause the SO 152 to initiate a scale-out
analysis (the analysis as to whether a throttling limit should
be increased) 1n some embodiments. When a client request
such as HS request 167 1s received, the RFC may determine
the throttling key associated with that request, and the
current throttling limit for that key. In one embodiment, 1f
accepting the client request would cause the current throt-
tling limit to be exceeded (and the client request therefore
has to be rejected), the RFC may determine that a scale-out
analysis criterion has been satisfied, and cause a scale-out
analysis request for the throttling key to be obtained at the
SO 152 via a selected communication channel. In other
embodiments, 1n addition to just determining whether a
single newly-received request 1s rejected based on the cur-
rent throttling limit, other factors may also be taken into
account to determine whether a scale-out analysis should be
initiated—e.g., the RFC may determine whether the total
number of rejected requests for the same key over a selected
time 1nterval exceeds a threshold, whether a scale-out analy-
S1S Was performed carlier for the same key and 11 so whether
the time since that previous scale-out analysis exceeds a
threshold, and so on.

The SO 152 may receive or obtain the scale-out analysis
request for the throttling key, and determine a peak workload
metric associated with the throttling key 1n the depicted
embodiment. The peak workload metric may be determined

F—F

p—

. O O O

10

15

20

25

30

35

40

45

50

55

60

65

12

in some 1mplementations by computing a sum of (a) the rate
ol accepted requests associated with the throttling key over
a selected time 1nterval and (b) the rate of rejected requests
associated with the throttling key over the selected time
interval. In some embodiments, the time interval over which
the peak workload 1s computed may begin when the SO
starts 1ts scale-out analysis; 1n other embodiments, the time
interval may include some amount of time before the
scale-out analysis 1s mitiated. The duration of the measure-
ment interval for computing the peak workload may be a
tunable parameter of the system in various embodiments.

Depending at least 1in part on analysis of the peak work-
load metric (and 1n some cases on other factors such as a
customer category associated with the throttling key), in
some embodiments the SO may determine that a scale-out
request 1s to be generated and caused to be obtained at
various RMs of the CSs used at the HS. The scale-out
request may, for example, indicate the throttling key, the
current throttling limit for that throttling key, a proposed
new throttling limit (which exceeds the current throttling
limit), and/or various other parameters such as properties of
the client requests associated with the throttling key. The
scale-out request may be provided to the RMs using any of
a variety of commumnication channels or techniques in dii-
ferent embodiments—1{or example, 1n one embodiment a
message bus which supports a publish/subscribe model for
messages may be used, in other embodiments a message
queuelng service of a provider network may be used, and so
on.

Individual ones of the RMs 122 may obtain the scale-out
requests 1n the depicted embodiment, e.g., at times of their
choice. For example, RM 122A may obtain the scale-out
request a time T1, RM 122B may obtain the scale-out
request at a later time (12 +deltal ), RM 122C may obtain the
scale-out request at a time (T1+deltal-delta2), Rm 122D
may obtain the scale-out request at a time (T1+deltal+
delta3), and so on. Each RM may determine the particular
set of resources that would be required to fulfill the scale-out
request at 1its CS (e.g., to enable the CS to handle the
increased throttling limit for that throttling key while main-
taining desired performance levels for client requests asso-
ciated with all throttling keys). The RM may then 1nitiate a
corresponding set of resource provisioning tasks to add the
required request processing capacity to fulfill the scale-out
request, and inform the SO when the resources have been

provisioned. For example, based on a scale-out request
SOR1, RM 122A may determine that N1 additional virtual

CPUs should be provisioned at CS 110A, RM 122B may
determine that N2 additional virtual CPUs and N3 additional
gigabytes of storage should be provisioned at CS 110B, RM
122C may determine that N3 additional virtual CPUs and
N4 additional gigabytes of storage should be provisioned at
CS 110C, and so on.

After the SO 152 determines that all the RMs have
completed their respective resource provisioning tasks, the
current throttling limit for the throttling key for which the
scale-out request was generated may be increased, e.g., to
the proposed throttling limit indicated i the scale-out
request 1n the depicted embodiment. The RFC 135 may
obtain an indication of the change to the throttling limait, and
the new throttling limit may be used by the RFC going
forward to determine whether to accept or reject additional
client requests.

In at least some embodiments, 1t may sometimes be the
case that the current throttling limit 1n use for a particular
throttling key 1s higher than the workload level of that
throttling key requires. To avoid wasting resources at the




US 11,997,021 Bl

13

CSs, a scale-in procedure may be implemented in some
embodiments. In such a scale-in procedure, the SO may
perform a scale-in analysis, in which peak workload levels
(or other workload metrics) are 1dentified for various throt-
tling keys, and scale-in requests indicating reductions in
throttling limits for one or more throttling keys are made
available to the RMs. The RMs may then initiate resource
freeing tasks, reducing the request processing capacity in
line with the reduced throttling limits 1n the depicted
embodiment. The SO may be informed by the RMs when
they have freed up the resources. In at least some embodi-
ments, the reduced throttling limits may be indicated to the
RFC by the SO even before the resources have been freed at
the CSs, and the RFC may start using the reduced throttling
limits for making acceptance/rejection decisions for client
requests as soon as the RFC obtains the reduced throttling
limits. In other embodiments, the SO may inform the RFC
about the reduction in a throttling limit for a given throttling
key only after the resource capacity has been reduced based
on the reduction at various CSs.

FI1G. 2 illustrates an example use of scaling orchestrators
at a dialog-driven application management service of a
cloud provider network, according to at least some embodi-
ments. DAMS 203 of cloud provider network 202 may
implement a service oriented architecture and represent a
concrete example of the kind of high-level service (HS)
discussed 1n the context of FIG. 1. DAMS 203 may be used.,
¢.g., by a set of chatbot owners/creators 277 to generate and
host a collection of chatbots 1n the depicted embodiment.
Such chatbots may be employed, for example, to implement
customer support tasks of an organization, to enable end
users to order items from an e-retailer using voice com-
mands, to provide answers to queries expressed 1 a con-
versational manner, and so on. The DAMS may implement
a set of programmatic interfaces for simplifying the task of
creating chatbots. Such interfaces may enable chatbot own-
ers to specily a set of intents associated with tasks performed
using a given chatbot, provide example utterances and
parameter slots for various intents, and so on. The process of
generating and storing various versions of chatbots may be
orchestrated at the DAMS by a set of chatbot development
managers 276 which may receive the mput regarding
intents/utterances/parameters from the chatbot owners/cre-
ators 277 and use the provided nput to create the chatbots.
Examples of utterances and associated parameters are shown
in FIG. 3 and discussed below. Chatbot repository 217 may
be used to store representations (e.g., executable programs)
of the different chatbots, such as chatbots 218A and 218B of
chatbot owner CO1, chatbot 218C of chatbot owner CO2,
and so on. The chatbots 218 may represent one example of
customer-accessible application instances (CAls) which
may be hosted and/or implemented at high-level services
such as the DAMS 1n various embodiments. Other examples
of CAls may include data store instances, web application
imstances, and so on 1n different embodiments.

In the embodiment depicted in FIG. 2, a dialog-driven
application user 266 may submit a dialog-driven application
(DDA) request 267 wvia programmatic interfaces of the
DAMS. The user’s request may be directed to a particular
chatbot, to which access may be provided via a Domain
Name Service (DNS) name or IP (Internet Protocol) address.
A message containing the DDA request may be received at
an RFC of RFC service 211 of the DAMS. If the DDA
request 1s accepted (which may be determined based on
throttling limits associated with the targeted chatbot or the
owner ol the targeted chatbot), the RFC may cause respec-
tive messages to be obtained at several CSs of the DAMS to

10

15

20

25

30

35

40

45

50

55

60

65

14

perform the requested tasks. The CSs used for chatbot
requests may, for example, include an automated speech
recognition (ASR) CS 210A, a speech recognition (SR)
artifact management CS 210B, a natural language under-
standing/generation (NLU/G) CS 210C, an NLU/G artifact
management CS 210D and a request state metadata man-
agement CS 210F 1n the example depicted in FIG. 2. The SR
artifact management service may, for example, be respon-
sible for providing the ASR CS access to a variety of speech
recognition tools or machine learning models, while the
NLU artifact management CS may be responsible for pro-
viding the NLU/G CS access to a variety of machine
learning models used for interpreting or understanding the
semantics of text generated from dialog utterances by the
ASR CS. In some embodiments the NLU/G CS may also be
used to generate utterances to be transmitted to the DDA
user as part ol a two-way dialog. The request state metadata
management CS may store state information pertaining to
various intents being fulfilled via dialog interactions 1n the
depicted embodiment, and to provide input data for analytics
tools that can be used to tune various parameters of the
DAMS or of individual chatbots to improve end user expe-
rience.

After all the parameters needed to 1nitiate a set of tasks for
a given intent of a DDA user have been obtained (which may
take several rounds of verbal, text and/or other types of
interactions with the DDA user), the RFC may cause the
tasks to be initiated 1n some cases by sending an intent
execution request 297 to an intent implementation service
299 or some entity external to the DAMS 1itself. For
example, 1f the chatbot 1n question 1s used for ordering food
from a restaurant, after all the parameters of a given order
have been determined at the DAMS, a request to prepare,
package and transport the ordered set of food may be sent to
a service which informs the relevant stail of the restaurant
about the order. The RFC may also send one or more DDA
responses 269 to the DDA user 266, ¢.g., to indicate that the
requested tasks of the DDA request are underway or have
been completed.

Throttling keys may for example be created for individual
ones of the chatbots 218 in some embodiments, and for
individual chatbot owners in other embodiments. For
example, 1f throttling keys and associated throttling limits
are associated with individual chatbots, an RFC imple-
mented at request fulfillment coordination service may take
only the requests directed at a single chatbot into account
when making decisions as to whether a new DDA request
directed at that chatbot (e.g., a request to establish a con-
nection which would be used to convey intents of the end
user) should be accepted or rejected. In contrast, 1f throttling,
keys that cover all the chatbots of a given chatbot owner are
used, the requests directed at both chatbot 218 A and chatbot
218B (which are both hosted for chatbot owner CO1) may
be taken 1nto consideration when making such decisions.

In the embodiment depicted 1n FIG. 2, the cloud provider
network 202 may include an SMS 256. An SO 252 of the
SMS may obtain an indication, e.g., from an RFC imple-
mented at request fulfillment coordination service 211, to
initiate a scale-out analysis with respect to one or more
throttling keys. Using logic similar to that discussed 1n the
context of FIG. 1, the SO may determine a peak workload

metric associated with the throttling key(s) and use the peak
workload metric to determine whether scale-out of resources
at the CSs of the DAMS 1s warranted or not. If the SO
decides that scale-out 1s to be performed, the SO may cause
RMs of various CSs (such as ASR CS 210A, SR artifact
management CS 210B, NLU/G CS 210C, NLU/G artifact




US 11,997,021 Bl

15

management CS 210D, and request state metadata manage-
ment CS 210E) to obtain scale-out requests for the throttling,
key (which may indicate an increase in the throttling limit
for the key). The RMs, which may operate autonomously
and asynchronously with respect to one another, may obtain
the scale-out request, determine the respective set of
resources needed to accommodate the proposed increase in
the throttling limit, imtiate resource provisioning tasks, and
inform the SO when the resource provisioning tasks are
complete. After all the RMs have finished their provisioning
tasks, the SO may update the throttling limit for the key from
its current value to the proposed value, and inform the RFC
about the new throttling limit. The RFC may then start using
the new throttling limit for making decisions as to accept or
reject additional DDA requests. A scale-in procedure similar

to that discussed in the context of FIG. 1 may also be
conducted collectively by the SO, the RMs and the RFC 1n

some embodiments.

FIG. 3 illustrates an example set of interactions between
and end user of a bot and a dialog-driven application
management service, according to at least some embodi-
ments. In the depicted embodiment, an end user or customer
verbally interacts with a meal ordering chatbot, which has
been developed and deployed using a DAMS similar in
functionality to DAMS 203 of FIG. 2, to order a pizza.
Examples of the customer’s verbal statements are shown 1n
the lett part of FIG. 3, labeled “DDA user dialog input 310”.
Examples of the chatbot’s responses corresponding to the
end user input are shown under the label “Chatbot dialog
responses 350”. As the interactions proceed, the chatbot in
cllect fills out, with the help of various CSs of the kind
shown 1 FIG. 2, a data structure with intent parameter
values, shown 1n the rightmost part of FIG. 3 under the label
“Intent status 367 for “order pizza™ intent”.

The user may try to imitiate a conversation or dialog with
the chatbot with the utterance “Food-app, I’d like to order a
pi1zza” 311 1n the depicted example. An RFC of the DAMS
may decide, based on a current throttling key associated with
the food-ordering chatbot, that the user’s request should be
accepted 1n the depicted example scenario, and a connection
may be established for the end user to provide mput about
theirr request. In some embodiments, a request for the
connection may be sent, e.g., by a client-side component of
the DAMS running at a cell phone or similar user device,
betore the user submits the first utterance; that 1s, utterances
may be 1mtiated only after the connection request 1s
accepted. The mtroductory term “Food-app” may be con-
sidered a “wake word” or a “wake phrase” 1n some embodi-
ments—a signal to distinguish the interaction with the
meal-ordering chatbot from other conversations that may be
detected by the audio sensor(s) or microphone(s) being used
for the interactions with the chatbot. ASR/NLU CSs may be
used at the DAMS to identity the words spoken by the
customer, and to ascertain that a pizza 1s to be ordered. A
conversational response “Sure. What size pizza would you
like?” 314 may be generated as part of the chatbot’s dialog-
flow (e.g., using a natural language generation CS) and
provided to the user via a speaker component of the end user
device being used. In addition, the DAMS may 1nstantiate an
intent called “order-pi1zza”, store an indication of the identity
of the user, and an indication that no parameter values have
yet been determined for the intent (as indicated by “param
values=null”) 1n 1ntent status 381. The owner of the chatbot
may have indicated, via the programmatic interfaces used
for creating the chatbot at the DAMS, that among the
parameters associated with the intent, the first one whose

5

10

15

20

25

30

35

40

45

50

55

60

65

16

value should be ascertained 1s “size’; as a result, the phrase
“what size pi1zza would you like” may be included 1in the
response 314.

The end user may respond with the statement “Medium—
about 14 inches” 317 1n the depicted example. Note that the
“about 14 inches” portion of the statement 317 may be
atypical and may not be part of the dialog expected by the
chatbot (e.g., 11 the chatbot 1s designed with three pi1zza size
indicators “large”, “medium”™ and “small” expected to be
used 1n the dialog). However, the NLU algorithms used for
the chatbot may be able to determine, based on analyzing the
statement 317, that (a) a “medium”™ pi1zza 1s desired by the
user, and (b) the user believes that the medium pizza 1s about
14 inches in diameter. Assuming that the diameter of the
medium pizza 1s 1 fact supposed to be approximately 14
inches, the size parameter of the intent may be filled with the
value “medium”, as indicated 1n status 382. It 1s noted that
in various embodiments, the chatbot may be designed to
respond appropriately to ambiguous or incorrect statements
made by the end user. For example, consider a scenario in
which the expected set of choices “large”,

, “medium” and
“small” for pizza sizes correspond to diameters 18 inches, 14
inches and 10 inches respectively. It the end user responds
to the question about desired pizza size by saying
“Medium—about 20 inches”, “Medium—about 10 inches”,
or even “Medium—about 16 inches”, the chatbot may
respond (with the help of ASR and NLU/G CSs) with a
clanifying follow-up response roughly equivalent to the
following 1n some embodiments—“I’m sorry, I didn’t quite
understand. Our medium pizzas are approximately 14 inches
in diameter, our large pizzas are about 18 inches, and our
small pizzas are about 10 inches. Which size would you
prefer?” The management of at least some ambiguous/
incorrect end user statements may also be handled without
requiring the chatbot owner to provide source code to the
DAMS 1 some embodiments—ior example, the word
strings corresponding to the clarifying follow-up response
may be provided by the owner, and the conditions under
which the clarifying follow-up response 1s to be generated
may be indicated by the owner via the programmatic inter-
faces of the DAMS.

The chatbot owner may have indicated, at build time, that
alter a value for the pizza size has been determined, the next
two parameters for which values are to be obtained from the
end user are crust type and toppings. Accordingly, the
application may generate the response 320, comprising “Got
that, medium pizza. What type of crust would you like?” The
end user may respond with a single-word answer “Thin”
323, which would enable the crust parameter value to be set
as 1ndicated 1n intent status 383. After the crust choice has
been determined, the application may request the customer
to specily toppings, e.g., using the conversational response
326: “OK, thin crust it 1s. What toppings would you like?”
The customer may respond with a list of toppings 329,
cnabling the toppings parameter values to be set, as indi-
cated 1n status 383.

After values for all the required parameters have been
ascertained, the chatbot may indicate that no more input 1s
needed, e.g., by causing a statement “Got that. You want
cheese and mushrooms. I have the information I need” 331
to be generated based on status 384. (The example assumes
that payment information i1s not required—ior example, a
credit card that the end user has registered with the appli-
cation may be used by default.) A fulfillment program
(“orderPizza(params)”) may be invoked by the chatbot to
initiate the task corresponding to the intent whose param-
eters have ben populated, as indicated by arrow 380. After




US 11,997,021 Bl

17

the fulfillment program 1s successfully invoked, in some
embodiments a final statement confirming the task imitiation
may be generated for the end user.

As more and more orders for food are directed to the food
ordering chatbot, the request processing capacity needed at
the various CSs used for processing the orders may have to
be increased (assuming that the chatbot owner wishes to
accept the increased workload). In embodiments 1n which
the CSs each have respective RMs operating independently
of one another, an SO may be used to coordinate the process
of scaling out (or scaling in) resources at all the CSs
involved 1n processing end user requests directed to the
chatbot, using techniques similar to those discussed above.

FIG. 4 illustrates example operations which may be
performed to scale out resources which are acquired inde-
pendently by respective resource managers ol numerous
constituent services of a higher-level service, according to at
least some embodiments. An RFC of the higher-level service
(HS), similar in features and functionality to the RFC 135
shown 1n FIG. 1, may receive a request from an end user of
the HS, as indicated by the arrow labeled 1. The RFC 401
may construct or determine a throttling key K1 correspond-
ing to the request, and look up a current value of a throttling
limit L1 for that throttling key K1 within a throttling limat
database (DB) 402, as indicated by the arrow labeled 2.

If the RFC determines, based on the current throttling
limit L1, that the newly-received request should be rejected,
a record 1ndicating that the request has been rejected may be
added to a throttled request queue 403 in the depicted
embodiment (indicated by the arrow labeled 3). Such a
record may serve as a scale-out analysis request of the kind
discussed earlier. As indicated by the arrow labeled 4, a
scaling orchestrator (SO) 404 assigned to the HS may
retrieve the record of the rejection from the throttled request
queue, and start implementation (indicated by the arrow
labeled 5) of a per-throttling key SO scale-out workflow 4035
for key K1 1n the depicted embodiment.

In a first stage of the worktlow 403, labeled “Record and
wait” 406, the SO 404 may cause a record, indicating that a
scale-out request 1s to be generated for the throttling key K1,
to be stored (as indicated by the arrow labeled 6) within a
scale-out request database 412 in the depicted embodiment.
The SOS may then wait for a pre-determined amount of time
T1 to compute a peak workload metric of requests with key
K1. During this time interval, additional end user requests
associated with K1 may be received at the RFC and recorded
within customer request records database 413, and 1t may
sometimes be the case that existing connections used for
user request with key K1 are closed (e.g., due to completion
of tasks requested by an end user at the HS). Some of the
additional end user requests may be rejected, while others
may be accepted. An additional request may be rejected 1t
accepting 1t would cause the current throttling limit L1 to be
exceeded, while an additional request may be accepted 1f
accepting the new request would not cause L1 to be
exceeded. A peak workload metric for end user requests
associated with K1 may be computed by the SO based at
least 1n part on a sum of (a) the number or rate of accepted
requests for K1 during the selected time interval T1 (ob-
tained from customer request DB 413 as indicated by the
arrow labeled 7) and (b) the number or rate of rejected
requests for K1 during the selected time interval T1 (e.g.,
also obtained from customer request DB) 1n the depicted
embodiment. The SO 404 may use the peak workload metric
as an mput to a formula used to compute a proposed
scaled-out throttling limit 407 for K1 in the depicted
embodiment. The proposed scaled-out throttling limit may

10

15

20

25

30

35

40

45

50

55

60

65

18

be based on factors (1n addition to the peak workload metric)
such as a customer category to which the end-user request 1s
mapped, oversubscription parameters used for the HS for
certain types of resources, and so on 1n some embodiments.

The SOS may publish a scale-out requirement message
408 (which may also be referred to as a scale-out request) to
message bus 414 1n the depicted embodiment, as indicated
by the arrow labeled 8. The scale-out requirement message
may indicate the key K1, the current throttling limit L1, a
proposed increased or scaled-out throttling limit .2 and/or
other parameters (such as one or more properties of the end
user requests associated with the throttling key, which may
be usetul for some RMs to translate the throttling limit 1.2
into specific per-CS capacity requirements increases). In an
embodiment 1n which the HS 1s a DAMS at which chatbots
of the kind introduced 1n the context of FIG. 2 are hosted,
statistics of the duration of end user uftterances may be
included 1n the scale-out requirement message or request, for
example; such duration information may be required for
some ASR or NLU/G CS RMs to decide how much addi-
tional resource capacity should be added. The message bus
414 may support an asynchronous publish/subscribe model
for message transmission—e.g., messages may be published
on the bus by registered publishers such as the SO, and the
published messages may be read by registered subscribers at
times chosen by the subscribers. The RMs 415 of various
CSs used at the HS to fulfill end user requests for at least the
throttling key K1 may subscribe to the message bus. After
publishing the scale-out requirement to the message bus, the
SO may wait until all CS RMs complete resource provi-
sioning tasks for the scale-out requirement to be fulfilled 1n
the depicted embodiment, as shown in element 409.

The CS RMs 415 may access the scale-out requirement
message published by the SO (as indicated by the arrow
labeled 9), e.g., asynchronously with respect to one another,
in the depicted embodiment. When a given CS RM 415
retrieves the scale-out requirement message, the RM may
initiate a per-throttling key, per-CS scale-out worktlow 416
in the depicted embodiment (as indicated by the arrow
labeled 10). In a first stage of this per-CS worktlow, the RM
may compute CS-specific resource requirements 417 based
at least 1n part on the contents of the scale-out requirements
message. Diflerent amounts of additional resource capacity
may be needed at respective CSs to accommodate a given
increase 1n throttling limit for K1 1n some embodiments, and
the RMs may be responsible for computing the additional
resource capacity needs for their CSs, as well as for trans-
lating the delta 1n additional resource capacity into a count
of additional resources. For example, one RM may deter-
mine that for its CS, 8 additional virtual CPUs are needed,
and that two compute instances (each providing 4 virtual
CPUs) of a cloud provider network’s virtualized computing
service should be provisioned. Another RM may determine
that for 1ts CS, 10 additional virtual CPUs are needed, and
that this may 1n turn require three compute instances (each
providing 4 virtual CPUs). Each RM may imitiate provision-
ing tasks 418 for 1ts CS to be able to fulfill the scale-out
requirement, and wait for the provisioning tasks to be
completed 419 (e.g., wait for a virtualized computing ser-
vice to indicate that the requested number of compute
instances have been set up and successiully activated). The
RM may then update the CS scale-out fulfillment status 420,
¢.g., by sending a message to the SO 404 1n the depicted
embodiment. The SO may modity the record of the scale-out
request 1n database 412 to indicate that a particular RM has
added capacity needed for the scale-out request, as indicated
by the arrow labeled 12.




US 11,997,021 Bl

19

Eventually, all the RMs may complete their respective
provisioming tasks, and an indication that this has occurred
may be stored 1n the scale-out request database 412 by the
SO (arrow 13). The throttling limit L1 for K1 may then be
updated to the proposed value L2 (element 410) and the new
value may be stored in throttling limit database 402 1n the
depicted embodiment, as indicated by arrow 14. The RFC
401 may then start using the new throttling limit L2 for
making decisions regarding acceptance/rejection of addi-
tional end user requests. Metrics associated with the scale-
out, such as the old and new throttling limits and the time 1t
took to complete the scale-out may be stored, e.g., 1n a
metadata store of the HS or the SMS 1n various embodi-
ments, as indicated by element 411 of workilow 405. In
some embodiments, an administrator of the HS may submit
a scale-out request 444 (indicating, for example, a key and
a proposed 1ncrease to the throttling limit for that key) to an
SO, as indicated by arrow 99. The SO may then perform
portions of the worktlow 405 (e.g., starting with publishing
a scale-out requirement message corresponding to the
administrator-submitted request), and the RMs may perform
the corresponding per-CS scale-out workilows 416. In some
embodiments, aspects of the scale-out related operations
performed by SOs, RMs and RFCs may differ from those
shown 1 FIG. 4. For example, a communication channel
other than a publish/subscribe message bus may be used 1n
one embodiment.

FIG. 5 illustrates example operations which may be
performed to scale in resources which are freed indepen-
dently by respective resource managers of numerous con-
stituent services of a higher-level service, according to at
least some embodiments. In the scale-out example shown 1n
FIG. 4, a scale-out assessment request was triggered by the
arrival ol a new end user request associated with a particular
throttling key. In contrast, for scale in, global re-assessments
(unrelated to the arrival of any specific end user request)
may be conducted for throttling limits associated with
various throttling keys 1 use at an HS in the depicted
embodiment. A throttling limits global re-assessment 1nitia-
tor 503 may send a message to an SO 504 to start a scale-in
iteration, as indicated by the arrow labeled 1 1 FIG. 5. The
global re-assessment may be mitiated, for example, every H
hours or every M minutes 1n some embodiments, 1n accor-
dance with a schedule determined at an SMS of the kind
described above (or obtained at the SMS from an adminis-
trator of an HS for which automated scale-1n 1s desired). As
part of a given scale-in iteration, the SO may initiate a
multi-throttling key SO scale-in workflow 505 1n response to
the message, as indicated by the arrow labeled 2. A set of
throttling keys whose workload level 1s to be analyzed to
determine 11 some resources should be freed may be 1den-
tified as candidates for scale-in or throttling limit reduction
by the SO 1n various embodiments. In some embodiments,
the analysis may be performed for all the throttling keys in
use at the HS (that 1s, all the throttling keys, rather than a
subset, may be 1dentified as candidates for throttling limait
reduction).

As part of worktlow 505, the SO may store a record 506
of a global scale-1n request 1n a scale-in request database 572
in the depicted embodiment, as indicated by the arrow
labeled 3. This record may list all the candidate throttling
keys being considered for scale-in 1n some embodiments. In
other embodiments, records of respective scale-1n requests
for each throttling key may be generated and stored in the
scale-1n request database. In one embodiment, 11 a scale-out
request for a given key 1s currently being processed (as may
be detected by the SO from the scale-out request database

10

15

20

25

30

35

40

45

50

55

60

65

20

412 of FIG. 4) scale-in operations for that key may not be
performed—that 1s, concurrent or temporally overlapping
scale-1n and scale-out worktlows for the same throttling key
may be prohibited.

The SO may access a throttling limit database 502 to
determine the current throttling limits for various keys, as
indicated by the arrow labeled 4. Based on analysis of
records of customer requests in customer requests database
573 (as indicated by arrow 3), new (lowered) throttling
limits may be computed by the SO for one or more throttling
keys (as indicated in element 507 of the workilow). In one
embodiment, a new throttling limit may be obtained using a
formula to which the peak workload level over a selected
time 1nterval (e.g., a time interval starting M minutes before
the start of the workflow 505, and ending at the time that the
worktlow started) for a given key 1s provided as input. Note
that one or more of the throttling keys for which the analysis
1s conducted may not satisiy a condition for reducing/freeing
resources, as their peak arrival rates may be close to their
current throttling limaits.

If the analysis of the workload reveals that at least some
throttling limits can be reduced (e.g., because the peak
workloads of the corresponding keys did not exceed, or
come close to exceeding, the current throttling limits), the
amount by which the throttling limits should be decreased
may be computed by the SO, and the throttling limits may
be updated accordingly (element 310). The updated reduced
throttling limits may be stored 1n the throttling limit database
as mdicated by arrow 6. The RFC (not shown 1n FIG. 5) of
the HS may start using the updated limits immediately in
some embodiments, as there may be no need to wait for the
resources to be freed to match the updated limits. In other
embodiments, a different approach may be employed, 1n
which the updated throttling limits may not be stored 1n the
database 502 until the SO has confirmed that the resources
have been freed based on the proposed reduction in the
throttling limut.

Various types of metrics pertaining to the scale-in work-
flow (such as the old and updated throttling limits, the peak
workloads which were used for the decision to reduce the
throttling limait, etc.) may be stored in the depicted embodi-
ment, as indicated 1n element 511. One or more scale-in
requirements messages (comprising the old and new throt-
tling limits and/or various other parameters similar to those
discussed 1n the context of scale-out requirements messages
of FIG. 4) may be published (element 512) to a message bus
514 to which the RMs of the CSs used at the HS have
registered as subscribers 1n the depicted embodiment, as
indicated by the arrow labeled 7.

The CS RMs 3515 of the HS may obtain the scale-in
requirement messages (arrow 8) asynchronously with
respect to each other 1n the depicted embodiment. Each RM
may then 1itiate a per-throttling key, per-CS scale-in work-
flow 516 for each throttling key for which scale-in 1s
required (arrow 9). In the workflow 316, CS-specific
resource requirements may be computed based on the infor-
mation included in the scale-in request (element 517), and
resource Ireeing tasks corresponding to the reduction in the
throttling limit may be conducted (element 518). After the
resources have been successtully freed, as indicated in
clement 519, the scale-1n fulfillment status for the throttling
key may be updated (element 520), e.g., by sending a
message to the SO (indicated by the arrow labeled 10) 1n the
depicted embodiment. As the messages indicating resource
reduction at each CS for each key are obtained, the SO may
update the status of the scale-in request in database 572 (as

indicated by the arrow labeled 11). After all the RMs have




US 11,997,021 Bl

21

completed their resource freeing tasks for all the throttling
keys (as determined 1n element 513), an indication that the
scale-1n operations corresponding to the current global re-
assessment 1teration have succeeded may be stored in the
scale-1n request database, as indicated by the arrow labeled
12. In some embodiments, an administrator-submitted scale-

in request 544 may be received by the SO (indicated by the
arrow labeled 99), and this may trigger the execution of the
workiflows 505 and 516. In some embodiments, aspects of
the scale-1n related operations performed by SOs, RMs and
RFCs may difler from those shown i FIG. 5. In one
embodiment, for example, scale-1n operations may be 1niti-
ated separately for individual throttling keys, instead of
performing analysis with respect to multiple throttling keys
in scale-in 1terations as shown in FIG. 5. Such a per-
throttling key workflow may, for example, be mnitiated based
on a determination that a total request rate for the throttling
key over a recent time interval 1s below a selected fraction
ol the current throttling limait for the throttling key, based on
resource utilization data of the various CSs, and/or based on
other factors.

FI1G. 6 1llustrates example parameters which may be used
to generate throttling keys used for resource management at
a distributed service, according to at least some embodi-
ments. Throttling key generation parameters 602 may
include, among others, a distributed computing environment
account ID 606 in some embodiments. For example, 1n
scenario 1n which the distributed high-level service (such as
a DAMS of the kind shown in FIG. 2) 1s implemented at a
cloud provider network, the account identifier of the owner/
developer on whose behalf the chatbot to which an end user
request 1s directed may be use as one ol the elements
contributing to the throttling key.

In at least some embodiments 1n which the HS 1s used to
host numerous customer-accessible application instances
(such as chatbots 218 of FIG. 2), the identifier of the
particular CAI to which an end user request 1s directed may
be used as a parameter when generating the throttling key.
Consider a scenario in which a chatbot owner CO1 uses a
DAMS similar to DAMS 203 to host 2 chatbots CB1 and
CB2. Identity information (e.g., a customer account ID such
as “Cust12123”) of the chatbot owners, as well as 1dentifiers
of the chatbots themselves (e.g., user-triendly names such as
“Chatbot-A” and “Chatbot-B”, which may have been
selected by the chatbot owners) may be stored at the DAMS.
I1 the throttling key definition takes only chatbot owners (or
more generally, CAI owners) into account, a single throttling,
key (e.g., “key.Cust12123”) may apply to end user requests
directed to both CB1 and CB2. In contrast, 1f the throttling
key definition takes the identifiers of the CAI owners and the
identifiers of the CAls 1nto account, a respective throttling
key (e.g., “key.Cust]12123.CB1” or “key.Cust12123.CB2”)
may be applied to end user requests directed to each of the
chatbots CB1 and CB2, thereby achieving a finer granularity
ol control with respect to scale-out and scale-1n operations.

In some cases, the end user requests for which throttling
keys are generated may be classified based on the types of
analysis artifacts (such as machine learning models) that are
used to fulfill the requests, and the analysis artifact category
610 may be used to generate a throttling key. For example,
in the DAMS chatbot example, the locale or language used
for interactions with the chatbot may drive the analysis
artifacts used for fulfilling the end user requests (e.g.,
interactions 1 German may require the use of a different
NLU or ASR model than interactions in English), and the
different types of analysis artifacts may 1n turn have respec-

5

10

15

20

25

30

35

40

45

50

55

60

65

22

tive resource requirements. The throttling key may be gen-
crated based at least 1n part on the analysis artifact category
in such embodiments.

In some embodiments, 1interactions between end users and
the HS may utilize any of several modalities: for example,
interactions with a chatbot may be done via voice, text
and/or DTMF (dual-tone multi-frequency) signals. The par-
ticular request interaction modality 612 being used may
influence the amount of processing capacity required (e.g.,
it may take fewer CPU cycles to analyze a text communi-
cation than a voiced utterance), so throttling keys may take
the modality mto account 1n such embodiments.

According to some embodiments, the end users of an HS
may be classified mto groups based on a variety of factors
(e.g., how frequently the end user interacts with the HS, the
kinds of tasks the end user usually requests, and so on), and
end user group IDs 614 may be used to generate the
throttling key associated with a given end user request. In
one embodiment, the geographical origin 616 of the end-
user request may be used to determine the throttling key—
¢.g., because respective sets of computing resources may be
set aside at CSs to serve requests from respective geographi-
cal regions. In some embodiments, an estimate of the
end-user request type complexity 618 may be generated and
utilized to generate a throttling key. In some implementa-
tions, each of the factors that are to be used 1n combination
for generating the throttling key (such as throttling keys
650A or 650B) corresponding to a given end-user request
submitted to an HS may be converted to a digital represen-
tation or format, and the various digital representations may
be concatenated (or transformed using a multi-parameter
hash function or similar transformation function) to generate
the throttling key. For each throttling key, a respective
throttling limit may be in eflect at any given point in time in
various embodiments—e.g., throttling limit 652A (indicat-
ing a maximum number of in-progress connections for client
requests) may be in eflect for throttling key 6350A, while
throttling limit 6528 may be 1n effect for throttling ley 650B.
One or more of the parameters shown 1 FIG. 6 may not be
used to generate throttling keys 1n some embodiments, and
at least some parameters other than those shown 1n FIG. 6
may be employed in one embodiment.

FIG. 7 illustrates example scale-out parameters for dis-
tributed services comprising numerous constituent services,
according to at least some embodiments. Values for param-
cters such as those shown i FIG. 7 may be selected by
administrators of the distributed high-level services, and/or
by customers of the services, and used by RFCs, SOs, and
RMs to perform their scale-out related tasks in various
embodiments. Values of a subset of the parameters may, for
example, be provided via programmatic interfaces to the HS
and/or to an SMS. Scale-out parameters 702 may include a
throttling key definition 704, which determines the granu-
larity at which scale-out tasks are performed. The throttling
key definition 704 may in eflect indicate which specific
combination of throttling key generation parameters such as
those shown in FIG. 6 should be used to determine or
compute a throttling key.

Any of a variety of scale-out triggering criteria 706 may
be employed in different embodiments. In some embodi-
ments, as indicated in FIG. 4, a rejection of an end user
request due to reaching the current throttling limit may
trigger a scale-out analysis (and potentially a corresponding,
set of worktlows of the SO and the RMs) for the corre-
sponding throttling key. In other embodiments, istead of
triggering a scale-out analysis based on a single rejection, a
threshold number of rejections (associated with the same




US 11,997,021 Bl

23

throttling key) within a selected duration (where the duration
itself 1s another scale-out parameter) may be required to
initiate scale-out analysis. In one embodiment, the average
response time for end user requests associated with a throt-
tling key over some time interval may be computed, and
scale-out analysis may be mnitiated 11 the average increases
beyond a threshold. Other types of criteria, some of which
may utilize additional lower-level scale-out parameters, may
be used 1n different embodiments.

The time period 707 over which workload 1s to be
measured to determine the peak workload level associated
with a given throttling key may represent another scale-out
parameter 1n the depicted embodiment. The throttling limit
delta 710 (the amount by which the throttling limit should be
increased 11 the peak workload satisfies a criterion) may also
be a scale-out parameter in at least one embodiment. As
discussed earlier, the customers of the HS may be classified
into groups, and the customer classification/category 712
may influence values of other scale-out parameters in some
embodiments. For example, for two classes of customers
Class-A and Class-B, respective time periods 707, respective
throttling limit deltas 710, respective scale-out triggering,
criteria 706, and/or respective resource oversubscription
factors 714 may be employed in one embodiment. The
resource oversubscription factor 714 refers to the extent to
which the HSs and the CSs may rely on the assumption that
not all the end user requests corresponding to the throttling
limits of various throttling keys are likely to be processed
concurrently, so 1t may be possible to provision fewer
resources that would be required to handle the sum of the
throttling limits of all the keys. If a resource oversubscrip-
tion factor of 0.9 1s used, for example, this means that 90%
of the request processing capacity that would be needed to
tulfill the sum of the throttling limits should be provisioned
at any given CS. Accordingly, when computing the number
of resources that should actually be added for a proposed
increase in throttling limit for any given throttling key, a
reduction of 10% to the number that may be needed if all the
end user requests corresponding to the new throttling limat
may be applied.

In some embodiments, constituent-service-specific
parameters 716 may also be used for scale-out workflows.
For example, the amount of processing power needed at a
CS that implements ASR and/or NLU may be dependent on
the average dialog audio duration (how long an end user
whose request 1s associated with a given throttling key
speaks on average during each interaction), so an indication
of such an average may be taken into account when com-
puting scale-out resource needs. In at least some embodi-
ments, parameters other than those shown 1n FIG. 7 may be
used when implementing scale-out analysis and scale-out
workiflows of the kind described earlier. In at least some
embodiments, analogous parameters to those shown 1n FIG.
7 may be used for scale-in operations as well—e.g., a
throttling limit delta parameter may be used to reduce a
throttling limit, a time period parameter may be used to
determine the peak workload associated with various throt-
tling keys, and so on. In one embodiment, programmatic
interfaces may be provided by an SMS and/or an HS to
allow administrators or other authorized users to view and/or
modily one or more of the scale-out or scale-in parameters
such as those shown 1n FIG. 7.

FIG. 8 1s a flow diagram illustrating aspects of operations
which may be performed to scale out and scale 1n distributed
applications and services utilizing service-oriented architec-
tures, according to at least some embodiments. As shown in
clement 802, various parameters to be used for scaling out

10

15

20

25

30

35

40

45

50

55

60

65

24

or scaling 1n resources at CSs of a high-level service HS1
may be obtained/received, e.g., from an administrator of
HS1 via programmatic interfaces of an SMS similar 1n
features and functionality to SMS 1356 of FIG. 1. The
parameters may include, among others, throttling key defi-
nitions, a list or graph of the CSs, an ID (such as a network
address) of a request fulfillment coordinator (RFC) of HS1,
scale-out worktlow triggering conditions, scale-in workilow
triggering conditions, network addresses of data stores (e.g.,
used for storing throttling limaits, records of end user request
submissions, etc.), workload measurement intervals for
determining changes to peak workloads, customer classifi-
cation information, formulas for computing throttling limait
changes, and so on. The parameters may be received at a
control plane server of the SMS 1n some embodiments. In
some embodiments, the specific set of end user request
characteristics (e.g., 1 the case of DAMS scale-out, the
average end user utterance duration, the language used, etc.)
which should be indicated as parameters 1n scale-out
requirement messages by an SO, i addition to proposed
throttling limit changes, may be indicated via programmatic
interfaces by the HS1 adminmistrator during this stage of
operations.

A scaling orchestrator SO1 may be 1dentified or config-
ured at the SMS in the depicted embodiment for HSI
(element 806). In some embodiments, the SMS may main-
tain a pool of SOs (e.g., with a given SO comprising a set
of processes or threads of execution running at one or more
virtualized or physical servers), and one of the SOs of the
pool may be assigned to HS1. In other embodiments, a new
SO process or set of processes/threads may be launched for
HS1. Communication channels and protocols to be used for
communication between SO1 and the RFC, as well as for
communication between SO1 and RMs of HS1’s CSs, may
be selected by the SMS control plane, e.g., based on pref-
erences 1ndicated by the HS1 admimstrator. For example, 1n
one i1mplementation, a decision may be made that the
scale-out and scale-1n requirements are to be expressed as
JSON (JavaScript Object Notation) files, and that a message
bus oflering a publish/subscribe set of interfaces i1s to be
used for communication between SO1 and the RMs. In some
embodiments, such a message bus may be set up by the
SMS, e.g., using a provider network service.

The SMS control plane server may verily that connectiv-
ity has been established between the RFC and SO1, and that
the CS RMs of HS1 are able to communicate asynchro-
nously (e.g., that the RMs have subscribed to obtain mes-
sages published to a message bus) 1n the depicted embodi-
ment (element 810). Such verification may, for example,
comprise requesting the entities involved (SO1, the RFC and
the RMs) to send messages to each other via the selected
channels and to acknowledge receipt of such messages.

Automated resource provisioning for HS1 may then be
initiated 1n the depicted embodiment (element 814) based on
the parameters that were obtained. Initial throttling limaits
may be assigned to various throttling keys. SO1 may start its
scale-out and scale-1n workflows of the kind shown 1n FIG.
4 and FIG. 5 m response to triggering conditions indicated
in the parameters, and the RMs may start implementing their
respective CS-level scale-out and scale-in parameters asyn-
chronously with respect to one another. The changes to
throttling keys resulting from the scale-out and scale-in
workilows may be applied by the RFC to end user requests.
Metrics associated with the scale-out and scale-in operations
may be collected by the control plane server of the SMS 1n
vartous embodiments (element 818). The metrics may be
presented to HS1 administrators and/or other authorized




US 11,997,021 Bl

25

users, and the parameters used for scale-out or scale-in may
be adjusted as needed by the SMS control plane server in the
depicted embodiment (element 822), e.g., based on analysis
ol the metrics and/or based on feedback or input received
programmatically from the admimstrators or authorized
users. It 1s noted that 1n various embodiments, some of the
operations shown 1n the flow diagram of FIG. 8 (and/or the
scale-out or scale-in workilows 1llustrated earlier) may be
implemented 1n a different order than that shown, or may be
performed in parallel rather than sequentially. Additionally,
some of the operations shown in FIG. 8 and/or the scale-out
and scale-1n workflows may not be required in one or more
implementations.

In some embodiments, as mentioned earlier, automated
provisioning techniques using scaling orchestrators of the
kind introduced herein may be implemented at a cloud
provider network or cloud computing environment. FIG. 9
illustrates an example provider network at which a scaling
management service may be implemented, according to at
least some embodiments. In the depicted embodiment, pro-
vider network 901 may comprise resources used to 1mple-
ment a plurality of network-accessible services, including
for example a virtualized computing service (VCS) 903, a
database/storage service 923, a DAMS 971 (similar 1n
features and functionality to DAMS 203 of FIG. 2) as well
as an SMS 933. The SMS 933, similar in features and
functionality to SMS 156 of FIG. 1, may include CPSs 936
and SOs 938. Scale-out and scale-1n parameters 935 may be
stored for various other high-level services (including for
example the DAMS) for which automated provisioning 1s to
be implemented with the help of the SOs 1n the depicted
embodiment. The CPSs may configure the SOs and a set of
message busses 937 1n the depicted embodiment which can
be utilized for asynchronous communications between the
SOs and the resource managers ol constituent services of the
kind described above.

The DAMS 971 may include DDA (dialog-driven appli-
cation) development managers 949, which coordinate the
process of creation and deployment of DDA customer-
accessible application mstances (CAls) 952 such as chat-
bots. The DAMS may also include DDA execution manag-
ers 950 which coordinate the tasks needed for executing the
CAls 1n response to end user requests i the depicted
embodiment. The DDA execution managers may, for
example, comprise one or more RFCs of the kind described
carlier.

In some cases, other distributed high-level services (HSs)
for which resource provisioning 1s to be automated with the
help of SOs may be run using provider network resources.
For example, some of the business logic of an HS (and/or the
CSs of the HS) may be run at computing servers 905 of the
VS, such as computing server 905A, 90358, 905C or 903D.
Data being accessed as part of the HS may be stored at
storage servers ol the database/storage service 923, such as
SS 925A, 9258, 925C or 925D. In at least one embodiment,,
resources external to the provider network may be used to
run portions (or all) of the HSs. For example, external
high-level service (EHS) 944 A may be run at least in part at
a client premise 940 (e.g., a data center of a customer of the
provider network). EHS 944 A may utilize external constitu-
ent service (ECS) 945A 1n the depicted embodiment. EHS
944B may be run at least 1n part at a third-party premise 941
(a premise which 1s not part of the provider network, and 1s
not owned by the SMS customer on whose behalf resource
provisioning 1s to be automated for EHS 944B). EHS 944B
may utilize ECS 945B in the depicted embodiment. In some
cases, the HSs for which SOs are used to automate resource

10

15

20

25

30

35

40

45

50

55

60

65

26

provisioning may include some CSs implemented within the
provider network and other CSs implemented outside at one
or more premises outside the provider network.

Components of a given service of a provider network may
utilize components of other services 1n the depicted embodi-
ment—e.g., virtual machines or compute nstances 1mple-
mented at computing servers such as 905A-905D of the
virtualized computing service 903 may be used for imple-
menting CPSs 936, SOs 938 and the like, log records and/or
event records generated during scale-in and scale-out work-
flows coordinated by SOs may be database/storage service
923, and so on.

Individual ones of the services shown in FIG. 9 may
implement a respective set of programmatic interfaces 977
which can be used by external and/or internal clients (where
the internal clients may comprise components of other
services) 1n the depicted embodiment. In at least some
embodiments, resources of a cloud provider network may
not be required for the kinds of automated resource provi-
sioning techniques introduced above; nstead, for example,
a standalone set of servers may be used.

A provider network 901 can be formed as a number of
regions 1n some embodiments, where a region 1s a separate
geographical area 1n which the cloud provider clusters data
centers. Such a region may also be referred to as a provider
network-defined region, as its boundaries may not necessar-
1ly coincide with those of countries, states, etc. Each region
can 1nclude two or more availability zones connected to one
another via a private high speed network, for example a fiber
communication connection. An availability zone (also
known as an availability domain, or simply a “zone”) refers
to an 1solated failure domain including one or more data
center facilities with separate power, separate networking,
and separate cooling from those in another availability zone.
A data center refers to a physical building or enclosure that
houses and provides power and cooling to servers of the
cloud provider network. Preferably, availability zones
within a region are positioned far enough away from one
other that the same natural disaster should not take more
than one availability zone oflline at the same time. Custom-
ers can connect to availability zones of the cloud provider
network via a publicly accessible network (e.g., the Internet,
a cellular communication network) by way of a transit center
(TC). TCs can be considered as the primary backbone
locations linking customers to the cloud provider network,
and may be collocated at other network provider facilities
(e.g., Internet service providers, telecommunications pro-
viders) and securely connected (e.g. via a VPN (virtual
private network) or direct connection) to the availability
zones. Each region can operate two or more TCs for redun-
dancy. Regions are connected to a global network connect-
ing each region to at least one other region. The cloud
provider network may deliver content from points of pres-
ence outside of, but networked with, these regions by way of
edge locations and regional edge cache servers (points of
presence, or PoPs). This compartmentalization and geo-
graphic distribution of computing hardware enables the
cloud provider network to provide low-latency resource
access to customers on a global scale with a high degree of
fault tolerance and stability.

In some embodiments, an SMS may be implemented at
least 1n part using an edge location of the provider network
instead of or 1n addition to regional data centers. An edge
location (or “edge zone™), as referred to herein, can be
structured 1n several ways. In some implementations, an
edge location can be an extension of the cloud provider
network substrate including a limited quantity of capacity




US 11,997,021 Bl

27

provided outside of an availability zone (e.g., 1n a small data
center or other facility of the cloud provider that is located
close to a customer workload and that may be distant from
any availability zones). Such edge locations may be referred
to as local zones (due to being more local or proximate to a
group of users than traditional availability zones). A local
zone may be connected 1 various ways to a publicly
accessible network such as the Internet, for example directly,
via another network, or via a private connection to a region.
In some implementations, an edge location may be an
extension of the cloud provider network substrate formed by
one or more servers located on-premise 1 a customer or
partner facility, wherein such server(s) communicate over a
network (e.g., a publicly-accessible network such as the
Internet) with a nearby availability zone or region of the
cloud provider network. This type of substrate extension
located outside of cloud provider network data centers can
be referred to as an “outpost” of the cloud provider network.

The cloud provider network may implement various com-
puting resources or services, which may include an SMS, a
VS, data processing service(s) (e.g., map reduce, data tlow,
and/or other large scale data processing techmiques), data
storage services (e.g., object storage services, block-based
storage services, or data warehouse storage services) and/or
any other type of network based services (which may
include various other types of storage, processing, analysis,
communication, event handling, visualization, and security
services). The resources required to support the operations
of such services (e.g., compute and storage resources) may
be provisioned in an account associated with the cloud
provider, 1n contrast to resources requested by users of the
cloud provider network, which may be provisioned in user
accounts.

A VCS 903 of the cloud provider network may offer
virtual compute instances (also referred to as wvirtual
machines, or simply “instances”) with varying computa-
tional and/or memory resources 1n various embodiments. In
one embodiment, each of the virtual compute instances may
correspond to one of several 1nstance types or families, and
instances of any of several families may be employed for the
web information extraction model preparation and execution
worktlow. An instance type may be characterized by its
hardware type, computational resources (e.g., number, type,
and configuration of central processing units [CPUs] or CPU
cores, hardware accelerators for various tasks), memory
resources (e.g., capacity, type, and configuration of local
memory), storage resources (e.g., capacity, type, and con-
figuration of locally accessible storage), network resources
(e.g., characteristics of 1ts network interface and/or network
capabilities), and/or other suitable descriptive characteristics
(such as being a “burstable” instance type that has a baseline
performance guarantee and the ability to periodically burst
above that baseline, a non-burstable or dedicated instance
type that 1s allotted and guaranteed a fixed quantity of
resources, or an instance type optimized for radio-based
applications). Each instance type can have a specific ratio of
processing, local storage, memory, and networking
resources, and different instance families may have differing
types ol these resources as well. Multiple sizes of these
resource configurations can be available within a given
instance type. Using 1nstance type selection functionality, an
instance type may be selected for a customer, e.g., based (at
least 1 part) on mput from the customer. For example, a
customer may choose an 1stance type from a predefined set
of instance types. As another example, a customer may
specily the desired resources of an instance type and/or
requirements of a workload that the mnstance will run, and

10

15

20

25

30

35

40

45

50

55

60

65

28

the instance type selection functionality may select an
instance type based on such a specification. A suitable host
for the requested 1nstance type can be selected based at least
partly on factors such as collected network performance
metrics, resource utilization levels at diflerent available
hosts, and so on.

The computing services of a provider network can also

include a container orchestration and management service
(referred to 1n various implementations as a container ser-
vice, cloud container service, container engine, or container
cloud service). A container represents a logical packaging of
a soltware application that abstracts the application from the
computing environment in which the application 1s
executed. For example, a containerized version of a software
application includes the software code and any dependencies
used by the code such that the application can be executed
consistently on any infrastructure hosting a suitable con-
tainer engine (e.g., the Docker® or Kubernetes® container
engine). Compared to virtual machines (VMs), which emu-
late an entire computer system, containers virtualize at the
operating system level and thus typically represent a more
lightweight package for running an application on a host
computing system. Existing software applications can be
“containerized” by packaging the software application 1n an
appropriate manner and generating other artifacts (e.g., a
container 1mage, container file, or other configurations) used
to enable the application to run in a container engine. A
container engine can run on a virtual machine instance in
some 1mplementations, with the virtual machine instance
selected based at least partly on the described network
performance metrics. Various components of an SMS, as
well as components of the high-level services and constitu-
ent services whose resources are managed with the help of
the SMS, may be run using containers 1 at least some
embodiments.
The traflic and operations of the cloud provider network,
and 1ndividual services such as the SMS, may broadly be
subdivided into two categories in various embodiments:
control plane operations carried over a logical control plane
and data plane operations carried over a logical data plane.
While the data plane represents the movement of user data
through the distributed computing system, the control plane
represents the movement of control signals through the
distributed computing system. The control plane generally
includes one or more control plane components distributed
across and implemented by one or more control plane
servers. Control plane traflic generally includes administra-
tive operations, such as system configuration and manage-
ment (e.g., resource placement, hardware capacity manage-
ment, diagnostic monitoring, or system state information
management). The data plane includes customer resources
that are implemented on the cloud provider network (e.g.,
computing instances, containers, block storage volumes,
databases, or file storage). Data plane trailic generally
includes non-administrative operations such as transferring
customer data to and from the customer resources. Certain
control plane components (e.g., tier one control plane com-
ponents such as the control plane for a virtualized computing
service) are typically implemented on a separate set of
servers from the data plane servers, while other control plane
components (e.g., tier two control plane components of
services such as the SMS) may share the virtualized servers
with the data plane. Control plane traflic and data plane
traflic may be sent over separate/distinct networks 1n some
cases

In at least some embodiments, a server that implements
the types of techmiques described herein (e.g., including




US 11,997,021 Bl

29

functions of an SMS and/or other services of a cloud
provider network) may include a general-purpose computer
system that includes or 1s configured to access one or more
computer-accessible media. FIG. 10 illustrates such a gen-
cral-purpose computing device 9000. In the illustrated
embodiment, computing device 9000 includes one or more
processors 9010 coupled to a system memory 9020 (which
may comprise both non-volatile and volatile memory mod-
ules) via an input/output (I/0) interface 9030. Computing,
device 9000 further includes a network interface 9040
coupled to I/O imtertace 9030.

In various embodiments, computing device 9000 may be
a uniprocessor system including one processor 9010, or a
multiprocessor system including several processors 9010
(e.g., two, four, eight, or another suitable number). Proces-
sors 9010 may be any suitable processors capable of execut-
ing instructions. For example, in various embodiments,
processors 9010 may be general-purpose or embedded pro-
cessors 1implementing any of a variety of instruction set
architectures (ISAs), such as the x86, PowerPC, SPARC,
ARM, or MIPS ISAs, or any other suitable ISA. In multi-
processor systems, each of processors 9010 may commonly,
but not necessarily, implement the same ISA. In some
implementations, graphics processing unmts (GPUs) and or
field-programmable gate arrays (FPGAs) may be used
instead of, or 1n addition to, conventional processors.

System memory 9020 may be configured to store instruc-
tions and data accessible by processor(s) 9010. In at least
some embodiments, the system memory 9020 may comprise
both volatile and non-volatile portions; 1n other embodi-
ments, only volatile memory may be used. In various
embodiments, the volatile portion of system memory 9020
may be implemented using any suitable memory technology,
such as static random access memory (SRAM), synchronous
dynamic RAM or any other type of memory. For the
non-volatile portion of system memory (which may com-
prisc one or more NVDIMMs, for example), in some
embodiments flash-based memory devices, 1ncluding
NAND-flash devices, may be used. In at least some embodi-
ments, the non-volatile portion of the system memory may
include a power source, such as a supercapacitor or other
power storage device (e.g., a battery). In various embodi-
ments, memristor based resistive random access memory
(ReRAM), three-dimensional NAND technologies, Ferro-
clectric RAM, magnetoresistive RAM (MRAM), or any of
various types of phase change memory (PCM) may be used
at least for the non-volatile portion of system memory. In the
illustrated embodiment, program instructions and data
implementing one or more desired functions, such as those
methods, techniques, and data described above, are shown
stored within system memory 9020 as code 9025 and data
9026.

In one embodiment, I/O mnterface 9030 may be configured
to coordinate I/O traflic between processor 9010, system
memory 9020, and any peripheral devices in the device,
including network interface 9040 or other peripheral inter-
faces such as various types of persistent and/or volatile
storage devices. In some embodiments, I/O interface 9030
may perform any necessary protocol, timing or other data
transformations to convert data signals from one component
(e.g., system memory 9020) into a format suitable for use by
another component (e.g., processor 9010). In some embodi-
ments, I/O mterface 9030 may include support for devices
attached through various types of peripheral buses (includ-
ing hardware accelerators of various kinds), such as a variant
of the Peripheral Component Interconnect (PCI) bus stan-

dard or the Universal Serial Bus (USB) standard, for

10

15

20

25

30

35

40

45

50

55

60

65

30

example. In some embodiments, the function of I/O inter-
face 9030 may be split into two or more separate compo-

nents, such as a north bridge and a south bridge, for example.
Also, 1n some embodiments some or all of the functionality
of I/O itertace 9030, such as an interface to system memory
9020, may be 1mcorporated directly into processor 9010.

Network interface 9040 may be configured to allow data
to be exchanged between computing device 9000 and other
devices 9060 attached to a network or networks 9050, such
as other computer systems or devices as illustrated in FIG.
1 through FIG. 9, for example. In various embodiments,
network interface 9040 may support communication via any
suitable wired or wireless general data networks, such as
types ol Ethernet network, for example. Additionally, net-
work interface 9040 may support communication via tele-
communications/telephony networks such as analog voice
networks or digital fiber communications networks, via
storage area networks such as Fibre Channel SANs, or via
any other suitable type of network and/or protocol.

In some embodiments, system memory 9020 may repre-
sent one embodiment of a computer-accessible medium
configured to store at least a subset of program instructions
and data used for implementing the methods and apparatus
discussed in the context of FIG. 1 through FIG. 9. However,
in other embodiments, program instructions and/or data may
be received, sent or stored upon different types of computer-
accessible media. Generally speaking, a computer-acces-
sible medium may include non-transitory storage media or
memory media such as magnetic or optical media, e.g., disk
or DVD/CD coupled to computing device 9000 via I/O
interface 9030. A non-transitory computer-accessible stor-

age medium may also include any volatile or non-volatile
media such as RAM (e.g., SDRAM, DDR SDRAM,

RDRAM, SRAM, etc.), ROM, etc., that may be included 1n
some embodiments of computing device 9000 as system
memory 9020 or another type of memory. In some embodi-
ments, a plurality of non-transitory computer-readable stor-
age media may collectively store program instructions that
when executed on or across one or more processors 1mple-
ment at least a subset of the methods and techniques
described above. A computer-accessible medium may fur-
ther include transmission media or signals such as electrical,
clectromagnetic, or digital signals, conveyed via a commu-
nication medium such as a network and/or a wireless link,
such as may be implemented via network interface 9040.
Portions or all of multiple computing devices such as that
illustrated 1n FIG. 10 may be used to implement the
described {functionality in various embodiments; {for
example, software components running on a variety of
different devices and servers may collaborate to provide the
functionality. In some embodiments, portions of the
described functionality may be implemented using storage
devices, network devices, or special-purpose computer sys-
tems, 1n addition to or instead of being implemented using
general-purpose computer systems. The term “computing
device”, as used herein, refers to at least all these types of
devices, and 1s not limited to these types of devices.

CONCLUSION

Various embodiments may further include receiving,
sending or storing instructions and/or data implemented 1n
accordance with the foregoing description upon a computer-
accessible medium. Generally speaking, a computer-acces-
sible medium may include storage media or memory media
such as magnetic or optical media, e.g., disk or DVD/CD-
ROM, volatile or non-volatile media such as RAM (e.g.,



US 11,997,021 Bl

31

SDRAM, DDR, RDRAM, SRAM, etc.), ROM, etc., as well
as transmission media or signals such as electrical, electro-
magnetic, or digital signals, conveyed via a communication
medium such as network and/or a wireless link.

The various methods as illustrated i1n the Figures and
described herein represent exemplary embodiments of meth-
ods. The methods may be implemented in software, hard-
ware, or a combination thereof. The order of method may be
changed, and various elements may be added, reordered,
combined, omitted, modified, etc.

Various modifications and changes may be made as would
be obvious to a person skilled in the art having the benefit
of this disclosure. It 1s intended to embrace all such modi-
fications and changes and, accordingly, the above descrip-
tion to be regarded 1n an 1llustrative rather than a restrictive
sense.

What 1s claimed 1s:

1. A system, comprising:

one or more computing devices;

wherein the one or more computing devices include

instructions that upon execution on or across the one or

more computing devices:

receive a particular client request at a request fulfill-
ment coordinator of a particular service of a distrib-
uted computing environment, wherein 1n accordance
with a service-oriented architecture the particular
service utilizes a plurality of auxiliary services to
tulfill client requests, including a first auxihiary ser-
vice and a second auxiliary service, and wherein
resources of individual ones of the auxiliary services
are managed by respective resource managers;

in response to determining, by the request fulfillment
coordinator, using a {first throttling limit associated
with a throttling key of the particular client request,
that a scale-out analysis criterion has been satisfied,
cause, by the request fulfillment coordinator, a scale-
out analysis request associated with the throttling
key to be obtained at a scaling orchestrator;

determine, by the scaling orchestrator, a peak workload
metric associated with the throttling key;

based at least 1n part on analysis of the peak workload
metric, cause, by the scaling orchestrator, a scale-out
requirement associated with the throttling key to be
obtained at a plurality of resource managers, includ-
ing a first resource manager ol the first auxihiary
service and a second resource manager of the second
auxiliary service;

initiate, by the first resource manager, a first set of
resource provisioning tasks to fulfill the scale-out
requirement associated with the throttling key,
wherein the first set of resource provisioning tasks
comprises adding a first amount of request process-
ing capacity to the first auxiliary service;

initiate, by the second resource manager, asynchro-
nously with respect to the first set of resource pro-
visioning tasks, a second set of resource provisioning
tasks to fulfill the scale-out requirement associated
with the throttling key, wherein the second set of
resource provisioning tasks comprises adding a sec-
ond amount of request processing capacity to the
second auxiliary service; and

update, by the scaling orchestrator in response to deter-
mining that the first set of resource provisioning
tasks and the second set of resource provisioning
tasks have been completed, the first throttling limait to
a second throttling limit which exceeds the first
throttling limit; and

5

10

15

20

25

30

35

40

45

50

55

60

65

32

utilize, by the request fulfillment coordinator, the sec-
ond throttling limit to determine whether to accept an
additional client request associated with the throt-
tling key.

2. The system as recited 1n claim 1, wherein the one or
more computing devices include further instructions that
upon execution on or across the one or more computing
devices:

reject, by the request fulfillment coordinator, the particu-

lar client request based at least 1n part on a determina-
tion that accepting the particular client request would
violate the first throttling limit, wherein determining
that the scale-out analysis criterion has been satisfied 1s
based at least in part on determining that the particular
client request 1s rejected.

3. The system as recited 1n claim 1, wherein the one or
more computing devices include further instructions that
upon execution on or across the one or more computing
devices:

categorize owners of customer-accessible application

instances hosted at the particular service into a plurality
of classes based on one or more of: (a) a measure of
complexity of client requests associated with individual
ones of the customer-accessible application instances,
(b) an arrival rate of client requests associated with
individual ones of the customer-accessible application
instances, (¢) a temporal distribution of client requests
associated with individual ones of the customer-acces-
sible application instances, (d) a geographical distribu-
tion of client requests associated with individual ones
of the customer-accessible application nstances or (¢)
a language used for client requests associated with
individual ones of the customer-accessible application
instances, wherein the throttling key 1s associated with
an owner of a particular customer-accessible applica-
tion 1nstance; and

compute the second throttling limit using a class-depen-

dent computation, wherein a parameter of the class-
dependent computation indicates a particular class of
the owner of the particular customer-accessible appli-
cation 1nstance.

4. The system as recited 1n claim 1, wherein the one or
more computing devices include further instructions that
upon execution on or across the one or more computing
devices:

initiate, 1n accordance with a schedule, a scale-1n 1teration,

wherein the scale-in iteration comprises:

based at least in part on analysis of respective client
request workloads associated with individual ones of
a set of candidate throttling keys for throttling limait
reduction, reducing a particular throttling limit asso-
ciated with a particular candidate throttling key;

initiating, by the first resource manager, a first set of
resource releasing tasks at the first auxiliary service
in accordance with a reduction in the particular
throttling limait; and

initiating, by the second resource manager, asynchro-
nously with respect to the first set of resource releas-
ing tasks, a second set of resource releasing tasks at
the second auxiliary service 1n accordance with the
reduction 1n the particular throttling limiat.

5. The system as recited 1n claim 1, wherein the one or
more computing devices include further instructions that
upon execution on or across the one or more computing
devices:

cause to be presented, via one or more programmatic

interfaces, a set of metrics associated with the throttling



US 11,997,021 Bl

33

key, including one or more of: (a) the first throttling
limit, (b) the second throttling limit, (¢) a total mea-
sured client request rate during a time interval, (d) a
measured client request rejection rate during a time
interval, or (e) an elapsed time between determination
that the scale-out analysis criterion has been satisfied,

and an update of the first throttling limit to the second
throttling limit.
6. A computer-implemented method, comprising:
one or more computing devices;
wherein the one or more computing devices include
instructions that upon execution on or across the one or
more computing devices:
based at least 1n part on an analysis of workload
associated with a first throttling key of a first client
request directed to a first network-accessible service,
causing a first scale-out requirement associated with
the first throttling key to be obtained at a plurality of
resource managers, including a first resource man-
ager of a second network-accessible service utilized
by the first network-accessible service to respond to
at least some client requests, and a second resource
manager of a third network-accessible service uti-
lized by the first network-accessible service to
respond to at least some client requests;
iitiating, by the first resource manager, a first set of
resource provisioning tasks at the second network-
accessible service to fulfill the first scale-out require-
ment;
initiating, by the second resource manager, asynchro-
nously with respect to the first set of resource pro-
visioning tasks, a second set of resource provisioning
tasks at the third network-accessible service to fuliill
the first scale-out requirement;
updating, in response to determining that the first set of
resource provisioning tasks and the second set of
resource provisioning tasks have been completed, a
first throttling limit associated with the first throttling
key to a second throttling limit; and
utilizing the second throttling limit to determine
whether to accept, at the first network-accessible
service, an additional client request associated with
the first throttling key.
7. The computer-implemented method as recited in claim
6, wherein the first client request 1s directed to a first
customer-accessible application instance of a plurality of
customer-accessible application instances hosted at the first
network-accessible service, wherein the first customer-ac-
cessible application instance implements one or more of: (a)
a particular bot of a plurality of dialog-driven bots of the first
network-accessible service, (b) a particular data store of a
plurality of data stores of the first network-accessible ser-
vice, or (¢) a particular multi-layer web application of a
plurality of multi-layer web applications of the first network-
accessible service.
8. The computer-implemented method as recited 1n claim
6, wherein the first client request comprises a request to
establish a network connection with an 1nstance of a dialog-
driven application implemented at the first network-acces-
sible service, wherein the second network-accessible service
comprises one or more of: (a) an automated speech recog-
nition (ASR) service, (b) a natural language understanding,
(NLU) service, (¢) a request state information storage ser-
vice, or (d) a machine learning artifact management service.
9. The computer-implemented method as recited in claim
6, wherein the first client request 1s directed to a first

10

15

20

25

30

35

40

45

50

55

60

65

34

customer-accessible application instance hosted at the first
network-accessible service, the computer-implemented
method further comprising;

storing, at the first network-accessible service, identity

information of an owner of the first customer-acces-
sible application instance, on whose behall the first
customer-accessible application instance 1s hosted at
the first network-accessible service, wherein a second
customer-accessible application instance 1s hosted at
the first network-accessible service on behalf of the
OWNET;
determiming the first throttling key based at least in part on
the 1dentity information of the owner, wherein utilizing
the second throttling limit to determine whether to
accept the additional client request comprises:
computing a sum of (a) a first number of m-progress
client requests directed to the first customer-acces-
sible application instance and (b) a second number of
in-progress client requests directed to the second
customer-accessible application instance; and
determining whether the sum exceeds the second throt-
tling limat.

10. The computer-implemented method as recited in
claim 6, wherein the first client request 1s directed to a first
customer-accessible application instance hosted at the first
network-accessible service, the computer-implemented
method further comprising;

storing, at the first network-accessible service, identity

information of an owner of the first customer-acces-
sible application instance; and

determining the first throttling key based at least 1n part on

the 1dentity information of the owner, wherein utilizing
the second throttling limit to determine whether to
accept the additional client request comprises deter-
mining whether a number of imn-progress client requests
directed to the first customer-accessible application
instance exceeds the second throttling limat.

11. The computer-implemented method as recited 1n claim
6, further comprising:

receirving the first client request at the first network-

accessible service;

rejecting the first client request by the first network-

accessible service based at least 1n part on a determi-
nation that accepting the first client request would
violate the first throttling limat; and

causing, based at least 1n part on determining that the first

client request was rejected, the first scale-out require-
ment associated with the first throttling key 1s to be
generated.

12. The computer-implemented method as recited in
claim 6, further comprising:

categorizing owners ol customer-accessible application

instances hosted at the first network-accessible service
into a plurality of classes based on one or more of: (a)
a measure of complexity of client requests associated
with 1individual ones of the customer-accessible appli-
cation instances, (b) an arrival rate of client requests
associated with individual ones of the customer-acces-
sible application instances, (¢) a temporal distribution
of client requests associated with individual ones of the
customer-accessible application instances, (d) a geo-
graphical distribution of client requests associated with
individual ones of the customer-accessible application
istances or (e) a language used for client requests
associated with individual ones of the customer-acces-
sible application instances, wherein the first throttling



US 11,997,021 Bl

35

key 1s associated with an owner of a particular cus-
tomer-accessible application instance; and

computing the second throttling limit using a class-de-

pendent computation, wherein a parameter of the class-
dependent computation indicates a particular class of
the owner of the particular customer-accessible appli-
cation instance.

13. The computer-implemented method as recited 1n
claim 6, further comprising:

initiating, 1n accordance with a schedule, a scale-1n 1tera-

tion, wherein the scale-1n 1teration comprises:
identifying a set of candidate throttling keys for throt-
tling limit reduction;
based at least in part on analysis of respective client
request workloads associated with individual ones of
the candidate throttling keys, reducing a particular
throttling limit associated with a particular candidate
throttling key;
initiating, by the first resource manager, a first set of
resource releasing tasks at the second network-ac-
cessible service 1n accordance with a reduction 1n the
particular throttling limit; and
initiating, by the second resource manager, asynchro-
nously with respect to the first set of resource releas-
ing tasks, a second set of resource releasing tasks at
the third network-accessible service i accordance
with the reduction in the particular throttling limat.

14. The computer-implemented method as recited 1n
claim 6, further comprising:

performing the analysis of the workload associated with

the first throttling key, wherein said performing com-

Prises:

determining, based at least 1n part on a portion of the
first throttling key, a time period over which work-
load associated with the first throttling key 1s to be
monitored; and

determining a peak rate of client requests associated
with the first throttling key during the time period,
including a rate of client requests that were accepted
at the first network-accessible service, and a rate of
client requests that were rejected at the first network-
accessible service.

15. The computer-implemented method as recited 1n
claim 6, further comprising:

causing to be presented, via one or more programmatic

interfaces, a set of metrics associated with the first
throttling key, including one or more of: (a) the first
throttling limit, (b) the second throttling limit, (c¢) a
total measured client request rate during a time nterval,
(d) a measured client request rejection rate during a
time interval, (e) an elapsed time between generation of
the first scale-out requirement and an update of the first
throttling limit to the second throttling limiat.

16. One or more non-transitory computer-accessible stor-
age media storing program instructions that when executed
On Or across one Or more pProcessors:

based at least 1n part on an analysis of workload associ-

ated with a first throttling key of a first client request
directed to a first network-accessible service, cause a
first scale-out requirement associated with the first
throttling key to be obtained at a plurality of resource
managers, including a first resource manager of a
second network-accessible service utilized by the first
network-accessible service to respond to at least some
client requests, and a second resource manager of a

5

10

15

20

25

30

35

40

45

50

55

60

65

36

third network-accessible service utilized by the first
network-accessible service to respond to at least some
client requests;

imitiate, by the first resource manager, a first set of
resource provisioning tasks at the second network-
accessible service to fulfill the first scale-out require-
ment,

imitiate, by the second resource manager, asynchronously
with respect to the first set of resource provisioning

tasks, a second set of resource provisioning tasks at the
third network-accessible service to fulfill the first scale-
out requirement;

update, 1 response to determining that the first set of

resource provisioning tasks and the second set of
resource provisioning tasks have been completed, a
first throttling limit associated with the first throttling
key to a second throttling limait; and

utilize the second throttling limit to determine whether to

accept, at the first network-accessible service, an addi-
tional client request associated with the first throttling
key.

17. The one or more non-transitory computer-accessible
storage media as recited 1n claim 16, storing further program
instructions that when executed on or across the one or more
ProCessors:

reject the first client request based at least 1n part on a

determination that accepting the first client request
would violate the first throttling limit, wherein analysis
of the workload associated with the first throttling key
1s 1itiated based at least 1n part on determining that the
first client request 1s rejected.

18. The one or more non-transitory computer-accessible
storage media as recited 1n claim 16, storing further program
instructions that when executed on or across the one or more
ProCessors:

categorize owners ol customer-accessible application

instances hosted at the first network-accessible service
into a plurality of classes based on one or more of: (a)
a measure of complexity of client requests associated
with 1individual ones of the customer-accessible appli-
cation instances, (b) an arrival rate of client requests
associated with individual ones of the customer-acces-
sible application 1nstances, (¢) a temporal distribution
of client requests associated with individual ones of the
customer-accessible application instances, (d) a geo-
graphical distribution of client requests associated with
individual ones of the customer-accessible application
istances or (e) a language used for client requests
associated with individual ones of the customer-acces-
sible application instances, wherein the first throttling
key 1s associated with an owner of a particular cus-
tomer-accessible application instance; and

compute the second throttling limit using a class-depen-

dent computation, wherein a parameter of the class-
dependent computation indicates a particular class of
the owner of the particular customer-accessible appli-
cation 1nstance.

19. The one or more non-transitory computer-accessible
storage media as recited 1n claim 16, storing further program
instructions that when executed on or across the one or more
ProCessors:

initiate a scale-in workflow, wherein the scale-in work-

flow comprises:

based at least in part on analysis of respective client
request workloads associated with individual ones of
one or more candidate throttling keys for throttling



US 11,997,021 Bl
37

limit reduction, reducing a particular throttling limit
associated with a particular candidate throttling key;

initiating, by the first resource manager, a first set of
resource releasing tasks at the second network-ac-
cessible service 1n accordance with a reduction in the 5
particular throttling limit; and

initiating, by the second resource manager, asynchro-
nously with respect to the first set of resource releas-
ing tasks, a second set of resource releasing tasks at
the third network-accessible service 1n accordance 10
with the reduction 1n the particular throttling limit.

20. The one or more non-transitory computer-accessible
storage media as recited 1n claim 16, storing further program
instructions that when executed on or across the one or more
Processors: 15

perform the analysis of the workload associated with the

first throttling key, wherein the analysis of the workload
comprises computing a sum of (a) a rate of client
requests, associated with the first throttling key, that
were accepted at the first network-accessible service 20
during a time interval and (b) a rate of client requests,
associated with the first throttling key, that were
rejected at the first network-accessible service during
the time interval.

¥ ¥ # ¥ ¥ 25



	Front Page
	Drawings
	Specification
	Claims

