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ASSIGNING PROCESSING THREADS FOR
MATRIX-MATRIX MULTIPLICATION

BACKGROUND

A given computer system may contain a specialized math
library that provides programs to support arithmetic opera-
tions 1n a wide variety of engineering, data mining, numeric
processing, data analytics and machine learning applica-
tions. One such program may implement a version of a
generalized matrix-matrix multiplication (GEMM) algo-
rithm for purposes of performing matrix-matrix multiplica-
tion. For some applications, the matrices involved with the
matrix-matrix multiplications may be relatively large (e.g., a
given matrix may have thousands or hundreds of thousands
of rows and columns, 1f not more), resulting 1n a relatively
large number of floating point multiplication operations for
cach matrix-matrix multiplication.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a schematic diagram of a computer system
according to an example implementation.

FIG. 2 1s a flow diagram depicting a process used by a
thread decomposition engine and a contention mitigation
engine of the computer system of FIG. 1 according to an
example implementation.

FIG. 3 1s an illustration of nested processing loops of a
generalized matrix-matrix multiplication (GEMM) algo-
rithm according to an example implementation.

FIG. 4 1s an 1illustration of matrix-matrix multiplication
processing by a K group of processing threads according to
an example implementation.

FIGS. 5A and 5B 1llustrate a flow diagram of a process to
perform adaptive K dimension threading according to an
example implementation.

FIG. 6 1s a flow diagram depicting a process to determine
sub-block sizes for processing thread sub-cycling according
to an example implementation.

FI1G. 7 1s a flow diagram depicting a process to determine
whether or not to recommend use of a local temporary bufler
to mitigate processing thread contention according to an
example implementation.

FIG. 8 1s an 1llustration of a non-transitory storage
medium storing machine-executable instructions that, when
executed by the machine, cause the machine to provide data
representing a decomposition for processing thread assign-
ment according to an example implementation.

FIG. 9 1s a schematic diagram of an apparatus that
includes a processor to provide data representing block sizes
for threading by a multiplication algorithm according to an
example implementation.

FIG. 10 1s a flow diagram depicting a process to multiply
matrices according to an example implementation.

DETAILED DESCRIPTION

The multiplication of two matrices (called “matrix-matrix
multiplication” or “matrix multiplication” herein) may be
performed 1n a computer system that has one or multiple
multicore central processing unit (CPU) semiconductor
packages (or “chips”). The CPU semiconductor package
may contain multiple CPU processing cores that have access
to local on-chip memory. Moreover, the CPU semiconductor
package may employ a non-uniform memory access
(NUMA) architecture. In general, a NUMA architecture
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local memories than to non-local memories. Accordingly, 1n
a NUMA architecture, the processing cores may be grouped
according to NUMA domains, such as the processing cores
of each NUMA domain perform most of their computations
using local memory accesses. The NUMA domain may have
one or multiple cache levels so that access to the local
on-chip memory may be made more eflicient by storing
more recently accessed data in faster cache memory.

For matrix-matrix computations, the computer system
may employ a generalized matrix-matrix multiplication
(GEMM) algonthm that relies on different processing
threads (on corresponding NUMA nodes and sockets) for
performing different parts of the multiplication. Matrix-
matrix multiplication may mvolve multiplying considerably
large matrices, which contain thousands, if not hundreds of
thousands (if not more) of rows and columns.

For purposes of accommodating such computationally
extensive operations, a process called “threading” may be
used to distribute the different parts of the matrix-matrix
multiplication processing workload among processing
threads of the computer system. In this context, a “process-
ing thread” (or “thread”) refers to a unit of machine execut-
able structions that 1s assigned to a processing core of the
computer system. The processing threads may be executed
in parallel (1.e., at the same time) by the processing cores that
are assigned to the processing threads.

In the context of this disclosure, “threading” refers to
assigning the processing workload of matrix-matrix multi-
plication to different processing threads of the computer
system. The threading may, for example, partition the 1nput
matrices mvolved 1in the matrix-matrix multiplication and
assign the resulting partitions to corresponding processing
threads.

One type of threading 1s “M/N” threading, in which the
matrix partitioning 1s performed along the M and N dimen-
sions to form corresponding MxN sub-matrices, or blocks,
which are assigned to diflerent processing threads. Here, the
“M dimension” refers to a row dimension of an mput matrix
A, and the “N dimension” refers to a column dimension of
an 1nput matrix B of a matrix-matrix multiplication defined
as follows: AxB=C, where “C” represents the output matrix,
or the result of the matrix-matrix multiplication. Accord-
ingly, the output matrix C has a dimension of MxN, or M
rows by N columns. The input matrix A and the mput matrix
B share a common dimension, which 1s referred to as the “K
dimension” herein. More specifically, the K dimension 1s the
column dimension of the mput matrix A and the row
dimension of the input matrix B.

A challenge with M/N threading is that the resulting units
of data that correspond to the sub-matrices may be too small
to eflectively utilize the cache (e.g., cache line boundaries of
a last level cache (LLC) of the CPU). Accordingly, due to
cache underutilization, there may not be enough data cached
to amortize the cost of data movement from main system
memory, resulting 1n slower processing of the matrix-matrix
multiplication.

In accordance with example implementations that are
described herein, threading 1s performed over the K dimen-
sion, 1.€., the dimension shared 1 common by the input
matrices. More specifically, in accordance with example
implementations, a thread decomposition with adaptive K
dimension blocking engine (called a “thread decomposition
engine’” herein) provides processing thread assignments to a
GEMM algorithm. The corresponding sub-matrices, or sub-
blocks, are sized to enhance cache memory utilization and in
general, decrease processing times for matrix-matrix multi-
plication. The thread decomposition engine, 1n accordance
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with example implementations, assigns processing threads
to sub-matrices, or blocks, based on a two-dimensional
matrix partitioming, where one dimension 1s the K dimension
and the other dimension 1s etther the M dimension or the N
dimension.

The K dimension-based threading that 1s described herein
may be 1 one of two forms: “M/K threading,” which refers
to a threading in which processing threads are assigned to
respective matrix blocks that are derived by partitioning,
along the M and K dimensions; and “N/K threading,” which
refers to a threading 1n which the processing threads are
assigned to matrix blocks that are derived by matrix parti-
tioming along the N and K dimensions. The M/K or N/K
processing thread assignment results 1n block sizes that are
closer to or correspond to optimal cache block sizes, 1.e.,
block sizes that result 1n more cache hits and better utiliza-
tion of cache memory when performing the matrix-matrix
multiplication, as compared to M/N threading. Moreover, in
accordance with example implementations, the thread
decomposition engine performs the partitioning along the K
dimension 1n an adaptive manner that takes into account
optimal cache block sizes.

As also described herein, 1n accordance with example
implementations, a contention mitigation engine provides
turther information to the GEMM algorithm, which reduces,
i not eliminates memory contention among processing
threads when processing the matrix-matrix multiplication.
More specifically, 1n accordance with example implemen-
tations, the contention mitigation engine further sub-divides,
or partitions, along the M and/or N dimensions to create
sub-blocks of each MxN block of the output matrix C. Each
processing thread may “sub-cycle” over the corresponding
sub-blocks. As a result of the sub-blocks and sub-cycling,
memory resource contention among a “K group” of pro-
cessing threads may be reduced. In this context, a “K group”
ol processing threads refers to all of the processing threads
that contribute to a given MxN block of the output matrix C.

Moreover, 1n accordance with example implementations,
as a further measure to reduce memory resource contention,
the contention mitigation engine recommends whether or
not a K group of processing threads should each use a local
temporary buller (1.e., a “scratchpad” bufler) to determine
results for a corresponding MxN block of the output matrix
C. If the K group of processing threads use local temporary
butlers, then each processing thread of the K group uses the
local temporary bufler to determine a contribution to the
MxN block of the output matrix C, and the contributions
from the local temporary builers may then be transferred via
additive updates to the final output bufler for the output
matrix C.

Referring to FIG. 1, as a more specific example, in
accordance with some implementations, a computer system
100 may include a GEMM engine 110. In this context, the
“GEMM engine 110 represents a software-driven engine 1n
which multiple parallel processing threads 112 collectively
apply a GEMM algorithm to perform matrix-matrix multi-
plication. Referring to FIG. 2 in conjunction with FIG. 1, for
example 1mplementations that are described herein, the
matrix-matrix multiplication refers to the multiplication of
an mput matrix A 210 and an mput matrix B 214 to
determine an output matrix C 220. In other words, the
GEMM engine 110 determines the product described by the
following matrix-matrix multiplication: AxB=C.

The mput matrix A 210 has rows along a row dimension
M (1.e., M rows that are indexed by an M index) and
columns along a K dimension (1.e., K columns that are
indexed by a K index). The input matrix B 214 has rows
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along the K dimension (1.e., K rows that are indexed by the
K index) and columns along the N dimension (i1.e., N
columns that are indexed by an N 1ndex). As such, the mnput
matrix A 210 and the mnput matrix B 214 share a common
dimension K. The output matrix C 220 has rows along the
M dimension (1.e., M rows that are indexed by the M 1ndex)
and columns along the N dimension (1.e., N columns that are

indexed by the N 1ndex).

To configure the GEMM engine 110 (FIG. 1) to perform
the matrix-matrix multiplication, the GEMM engine 110
receives data 250, which, in accordance with example
implementations, represents assign processing thread
assignments and may represent other parameters to further
enhance the matrix-matrix multiplication processing, as
turther described herein. In accordance with example imple-
mentations, at least part of the data 250 1s provided by a
thread decomposition engine with adaptive K threading
engine 114 (called a *“thread decomposition engine 114”
herein). The thread decomposition engine 114 analyzes the
row and column sizes of the matrices 210, 214 and 220 using
certain criteria, as described herein, to provide parameters
(called “BSM,” BSN” and “BSK” herein) that represent a
matrix partitioning for the assignment of processing threads
112. In accordance with example implementations, the par-
titioning 1s performed along the K dimension and along
either the N or M dimension.

The BSM parameter (called a “BSM block size™ herein)
represents a number of rows 1n the M dimension for each
matrix partition, or block. The BSN parameter (called a
“BSN block size” herein) represents a number of columns
along the N dimension for each matrix block. The BSK
parameter (called a “BSK block size” herein) represents a
number ol rows/columns (depending on whether for the
input matrix A 210 or the input matrix B 214) along the K
dimension for a matrix partition, or block.

In accordance with example implementations, for a given
matrix-matrix multiplication, the thread decomposition
engine 114 performs either M/K threading (corresponding to
matrix partitioning along the M and K dimensions) or N/K
threading (corresponding to matrix partitioning along the N
and K dimensions) to determine the matrix blocks that are
assigned to the processing threads 112. For N/K threading,
the thread decomposition engine 114 partitions the input
matrix B 214 into blocks of size BSKxBSN (1.e., each block
has a size of BSK rows by BSN columns); and each
BSKxBSN block of the mput matrix B 214 1s assigned to a
different corresponding processing thread 112. More spe-
cifically, the thread decomposition engine 114 provides the
following block sizes as a result of the N/K threading: a BSN
block size that represents the number of columns along the
N dimension per matrix block; a BSK block size that
represents a number of rows/columns along the K dimension
per matrix block; and the default BSM block size because
partitioning for work sharing does not occur in the M
dimension for N/K threading. Each processing thread 112
processes operations of the matrix-matrix multiplication
pertaining to 1ts assigned BSKxBSN block of the input
matrix B 214 to derive a corresponding BSMxBSN block of
the output matrix 220.

For M/K threading, the thread decomposition engine 114
partitions the mput matrix A 210 into blocks, and each
BSMxBSK block of the input matrix A 210 1s assigned to a
different corresponding processing thread 112. More spe-
cifically, the thread decomposition engine 114 provides the
tollowing block sizes for M/K threading: a BSM block size
that represents the number of rows along the M dimension
per matrix block; a BSK block size that represents a number
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of rows/columns along the K dimension per matrix block;
and the default BSN block size because partitioning for
work sharing does not occur 1n the N dimension for M/K
threading. Each processing thread 112 processes operations
of the matrix-matrix multiplication pertaining to its assigned
BSMxBSK block of the mput matrix A 210 to derive a
corresponding BSMxBSN block of the output matrix 220.

As a more specific example, the thread decomposition
engine 114 may apply N/K threading to determine assign-
ments for sixteen processing threads 112. For this example,
the matrices may have the following dimensions: input
matrix A 210 may have 96 rows along the M dimension and
3,840 columns along the K dimension, represented by the
MxK dimensions of “(96x3.,840)”; the mput matrix B 214
may have KxN dimensions of (3,840x192); and the output
matrix C 220 may have the corresponding MxN dimensions
of (96x192). The thread decomposition engine 114 may
evaluate these dimensions, as further described herein, and
determine that the BSM, BSN and BSK block sizes are 96,
48 and 960, respectively. As such, the sixteen processing
threads 112 for this example are assigned to the sixteen
48x960 blocks of the mnput matrix B.

Referring to FIG. 3 1 conjunction with FIG. 1, in
accordance with some implementations, the processing of
the matrix-matrix multiplication by the GEMM engine 110
follows nested processing loops. In this regard, FIG. 3
depicts an outer m_. loop 304, which refers to the processing
in the M dimension. For M/K threading, a given processing
thread 112 process operations for its assigned BSMxBSK
block as the processing thread 112 indexes over the K
dimension and N dimension in the inner corresponding k
loop 308 and mmner n_ loop 312, respectively. For N/K
threading, a given processing thread 112 process operations
for 1ts assigned BSNxBSK block as the processing thread
112 indexes over the M dimension and the K dimension 1n
the corresponding m . loop 304 and k . loop 308, respectively.

FIG. 3 also depicts the following three nested innermost
loops, which are part of the macro kernel of the GEMM
engine 110: anm  loop 324, ann, loop 328 and a k. loop 332.
In the loops 324, 328 and 332, the processing thread 112
iterates over the M, N and K dimensions, respectively, for a
given BSMxBSN block of the output matrnix C 220 (FIG. 2).
Sub-cycling introduces two processing loops outside of the
macro kernel of the GEMM engine 110: an m_sub loop 316,
which corresponds to the sub-cycling over the M dimension
and an n_sub loop 320, which corresponds to the sub-
cycling over the N dimension. More specifically, referring to
FIG. 2 1n conmjunction with FIG. 1, in accordance with
example implementations, a contention mitigation engine
118 of the computer system 100 subdivides the BSM and

BSN block sizes mnto corresponding sub-matrices, or sub-
blocks, with dimensions of BSM_ , and BSN_ ., respec-

sub subs
tively. The GEMM engine 110 includes the following nested
loops to perform the sub-cycling: an m_sub loop 316 to
sub-cycle over the BSM _ , -sized sub-blocks of each matrix
block, and an n_sub loop 320 to sub-cycle over the BSN_ , -
s1zed sub-blocks of each matrix block. In accordance with
example 1mplementations, BSM_ , and BSN_ , could be
BSMR and BSNR, respectively. As described further herein,
in accordance with example implementations, this sub-
cycling may prevent memory contention by a K group of
processing threads 112 when the processing threads 112
collectively process a BSMxBSN block of the output matrix
C 220.

In addition to providing the BSM_ ., and BSN_ . sizes as
part of the data 250, the contention mitigation engine 118
may, 1n accordance with example implementations, provide
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a recommendation to the GEMM engine 110 regarding
whether to use a temporary local output builer. In this
context, the “temporary output bufler” refers to a “scratch-
pad” bufler that may be used by each processing thread of
a K group of processing threads that collectively process a
particular BSMxBSN block of the output matrix C 220.
Instead of each processing thread 112 of the K group of
processing threads 112 making its updates for the BSMx
BSN block 1n a final result bufler, the processing thread 112
instead updates the temporary output bufler. Moreover, 1n
accordance with example implementations, the temporary
local output bufler 1s optimally aligned with cache bound-
aries. When the K group of processing threads 112 have
fimshed processing of the BSMxBSN block of the output
matrix C 220 and the temporary local output bufler stores the
complete result for the sub-block of the output matrix, then
the content of the temporary buller may be transferred (e.g.,
via an update routine of the GEMM engine 110 and additive
updates) to a final output bufler for the matric C 220.

Referring back to FIG. 1, the GEMM engine 110, the
thread decomposition engine 114 and the contention miti-
gation engine 118 may be provided by any of a number of
different computer architectures, in accordance with the
many possible implementations. For the example implemen-
tation of FIG. 1, the computer system 100 includes one or
multiple central processing units (CPUs) 102 (e.g., CPU
semiconductor packages, or “chips”), with each CPU 102
including a set of processing cores 101. In accordance with
some 1implementations, a number of processing cores 101 on
a given CPU 102 may form a corresponding NUMA
domain; and there may be multiple NUMA domains per
CPU 102.

In accordance with further example implementations,
processing cores other than CPU processing cores may be
used. In this manner, 1n accordance with further implemen-
tations, the processing core 101 may a graphics processing
unmit (GPU) core, a field programmable gate array (FPGA),
a node accelerator core, and so forth.

In accordance with example implementations, the com-
puter system 100 may be formed from one or multiple
physical machines, where each physical machine 1s made, or
formed from, actual software and actual hardware. In this
manner, in accordance with example implementations, each
physical machine may include one or multiple CPUs 102
and a memory. Collectively, the memories of the physical
machine(s) are represented 1 FIG. 2 by a memory 106. As
an example, the memory 106 may store machine executable
instructions 108 that, when executed by the CPU(s) 102,
form one or multiple software components that are described
herein, such as the GEMM engine 110, the thread decom-
position engine 114 and the contention mitigation engine
118.

In accordance with example 1mplementations, the
memory 106 may store data, such as, as examples, data
representing an input matrix A; data representing an input
matrix B; data representing intermediate and final results of
an output matrix C; data representing temporary local output
buflers; data representing parameters that are described
herein, such as block sizes, sub-block sizes and so forth; data
representing block assignments for the processing threads
112; and so forth.

The memory 106, 1n general, 1s a non-transitory storage
medium that may be formed from semiconductor storage
devices, memristor-based storage devices, magnetic storage
devices, phase change memory devices, a combination of
storage devices corresponding to one or more of these
storage technologies, and so forth. Moreover, the memory
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106 may be a volatile memory, a non-volatile memory, or a
combination of different storage types, such as a volatile
memory and/or a non-volatile memory.

The physical machine(s) of the computer system 100 may
take on many diflerent forms, such as one or multiple
rack-mounted modules, one or multiple server blades, a
desktop computer, a laptop computer, a tablet computer, a
smartphone, a wearable computer, and so forth. Depending
on the particular implementation, the GEMM engine 110,
thread decomposition engine 114 and contention mitigation
engine 118 may be formed from an entire physical machine,
multiple physical machines, or portion(s) thereof. Moreover,
in accordance with some implementations, the GEMM
engine 110, thread decomposition engine 114 and contention
mitigation engine 118 may include and/or correspond to one
or multiple virtual components or one or multiple virtual
environments ol an actual physical machine, such as one or
multiple virtual machines, one or multiple containers, and so
forth.

In accordance with example implementations, the thread
decomposition engine 114 performs a process 300, which 1s

depicted 1n FIGS. 5A and 5B, for purposes of determining
either the BSM and BSK block sizes (for M/K threading) or

the BSN and BSK block sizes (for N/K threading). In
general, the determination of the block sizes has two parts:
a first part 1n which the thread decomposition engine 114
determines candidate matrix decompositions (block 502)
and the BSK block size (block 504); and a second part (i.e.,
the remaiming part of the process 500) in which the thread
decomposition engine 114 performs an iterative process,
which evaluates the candidate matrix decompositions for
purposes of determining the remaining BSM block size (for
M/K threading) or the BSN block size (for N/K threading).

Turning now to specific example, in accordance with
some 1mplementations, thread decomposition engine 114
may determine the BSK block size (pursuant to block 504 of
FIG. 5A) as follows. First, the thread decomposition engine
114 1mitially defines the BSM, BSN and BSK block sizes as

tollows (where the “imnit” subscript denotes the 1nitial state):

BSM,,;,~min(BSM,,,, M), Eq. 1
BSN,;min(BSN__.N), and Eq. 2
BSK,;~min(BSK ,,,K). Eq. 3
In these equations, “BSM__..,” “BSN,_,,” and “BSK_ .~

represent optimal values for the BSM, BSN and BSK block
s1zes, respectively; and “min( )” represents the minimum
function, 1.e., a function that selects the minimum value of
a tuple of multiple values. In this context, an optimal block
s1ze refers to a number of rows or columns that corresponds
to a unit of data that 1s aligned with or nearly aligned with
cache line boundaries. Therefore, 1n accordance with
example implementations, the optimal block size may, for
example, be a function of the cache architecture (e.g., an
architecture of a last level cache (LLC) and the sizes of the
matrix entries.

For M/K threading, the thread decomposition engine 114
may determine several parameters that are used in the
derivation of the BSK block size. These parameters include
a number (called “nblk™) of BSN-sized blocks in the N
dimension; the number called “mblk _max” of BSMR-sized
blocks in the M dimension, where “BSMR” represents the
smallest possible sub-block size (1.e., M rows) of the output
matrix C; a re-determined BSM block size:; and a number

(called “mblk™) of BSM-sized blocks 1n the M dimension:
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nblk=ceil(N/BSN), Eq. 4
mblk_max=ceill (M/BSMR), Eq. 5
BSM=min(BSM, .. ceil(mblk_max/div_m)*BSMR),

and Eq. 6
mblk=cell(M/BSM). Eq. 7

In these equations, “ceil( ) represents the application of a
ceiling, or limiting function; “div_m” represents the number
of threads 1n the M dimension; “N” represents the number of
columns of the input matrix B; and “M” represents the
number of rows of the input matrix A.

In accordance with example implementations, there 1s a
preference for the number of M blocks to be an integer
multiple of the number of threads in the M dimension; and
in accordance with this preference, the thread decomposition
engine 114 evaluates the following equality:

1f(mblk>div_m)mblk=ceil(mblk/div_m)*div_m.

Then the thread decomposition engine determines the cor-
responding number (called “div_k” herein) of threads in the
K dimension as follows:

div_A=maxth/div_m, Eq. 8

where “maxth” represents the total number of the processing,
threads.

For N/K threading, in accordance with example 1imple-
mentations, the thread decomposition engine 114 determines
the mblk number as follows:

mblk=cell(M/BSM). Eq. 9

il

Moreover, 1n accordance with example implementations, for
N/K threading, the thread decomposition engine 114 deter-
mines the number (called “nblk_max™ herein) of BSNR-s1ze
blocks 1n the N dimension, where “BSNR” represents the
smallest possible sub-block size along the N dimension of
the output matrix C; the BSN block size; and the number

(called “nblk™ herein) of BSN-sized blocks in the N dimen-
sion as follows:

nblk_max=ceill(N/BSNR), Eqg. 10
ASN=min(hSN,, _..ceill(nblk_max/div_n)*5SNR, and Eqg. 11
nblk=ce1ll(N/BSN). Eg. 12

In accordance with example implementations, there 1s a
preference for the number of N blocks to be an integer
multiple of a number of threads in the N dimension; and
accordingly, 1n accordance with example implementations,
the thread decomposition engine 114 evaluates the following
equality:

[{(nblk>div_s)ublk=ceil(zblk/div_z)*div_.

Then, 1n accordance with example implementations, the
thread decomposition engine 114 determines the div_k num-
ber of threads in the K dimension as follows:

div_k=maxth/div_z. Eqg. 13

In accordance with example implementations, regardless
of whether M/K or N/K threading 1s used, the thread
decomposition engine 114 dynamically adjusts the value of
the BSK block size for purposes of optimizing efliciency.
For an out-of-place/copy GEMM kemnel (1.e., a GEMM
kernel, which copies the input matrices A and B into bullers
for contiguous memory access), the thread decomposition
engine 114 determines an optimal resident size of the
packing buflers for the input matrices A and B as follows:

Packing Bufter Size=BSK ,*(BSM,,+BSN ).

oF? op

Fg. 14
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Using the optimal resident size of the packing buflers, the
thread decomposition engine 114 may determine the maxi-
mum possible BSK block size as follows:

BSK=BSK ,*(BSM ,+BSN,, ) (BSM+BSN), Eq. 15
BSK=cell(BSK/BSKR)*BSKR, Eq. 16
BSK=min(55K,K), and Eq. 17
kblk=ceill(K/BSK), Eq. 18

where “BSKR” represents the unroll factor of the innermost
K loop 324 (FIG. 3) 1n the macro-kernel. Unrolling 1s a loop
transformation technique to improve performance by com-
pleting multiple iterations per loop trip, and the “unroll
factor” refers to the number of iterations per loop trip.

In accordance with example implementations, the thread
decomposition engine 114 may then adjusts the BSK block
s1ze as follows. For M/K threading, the thread decomposi-
tion engine 114 evaluates the following equality:

if(div_k>kblk) AND if(zblk*kblk % div_k!=0)
kblk=div

If the above equality 1s TRUE, then, 1n accordance with
example implementations, the thread decomposition engine
114 uses the optimal BSK, determined as set forth above,
because there are enough N blocks for equal work distribu-
tion.

For N/K threading, determines the following equality:

If(div_k>kblk) AND if(mbli*kblk % div_k!=0)
kblk=div_k.

If the equality 1s TRUE, then the thread decomposition
engine 114 calculates another BSK block size, as set forth
below. Otherwise, the optimal BSK block size may be used
because there are enough M blocks for equal work distri-
bution.

If the thread decomposition engine 114 determines that
the optimal BSK block size cannot be used, then, in accor-
dance with example implementations, the thread decompo-
sition engine 114 recomputes the BSK block size as follows:

BSK=min(BSK,ceil (ceil(K/BSKR)/kblk)*BSKR). Eq. 19

The thread decomposition engine 114 may then determine
the number of threads 1n the K dimension as follows:

kblk=ceil (K/BSK). Eq. 20

Still referring to FIG. SA, in accordance with example
implementations, the thread decomposition engine 114
determines (block 502) candidate matrix decompositions
using all possible divisors of the number of threads divided
between the M and K dimensions (for M/K threading) or in
the N and K dimensions (for N/K threading). The thread
decomposition engine 114 determines (block 508) condition
values for each candidate matrix decomposition based on the
BSM, BSN and BSK block sizes. It 1s noted that, in
accordance with example implementations, 1 the M/K
threading 1s used, the default BSN block size 1s used; and 11
N/K threading 1s used, then the default BSM block size 1s
used.

Pursuant to block 512, the thread decomposition engine
114 normalizes the condition values. In this context, to
“normalize” a particular condition value refers to determin-
ing a maximum ol the condition value for each of the
candidate matrix decompositions and normalizing the con-
dition values based on the maximum. This, 1n turn, effec-
tively, weights the condition values for a particular condition
value category. The thread decomposition engine 114 then
determines the fitness value for each candidate matrix
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decomposition based on the normalized condition values
(e.g., the thread decomposition engine 114 adds the normal-
ized condition values together), pursuant to block 516.

Referring to FIG. 5B, in accordance with example imple-
mentations, the thread decomposition engine 114 sorts, or
ranks (block 520), the candidate matrix decompositions
based on their corresponding individual fitness values. For
example, 1n accordance with some implementations, the
thread decomposition engine 114 orders the candidate
matrix decompositions according to their fitness values in
ascending order so that the candidate matrix decomposition
that has the lowest corresponding fitness value 1s at the top
of the ranking, 1.e., 1s the highest ranked candidate matrix
decomposition.

The thread decomposition engine 114 then, using the
ranked candidate matrix decompositions, performs an 1tera-
tive process (e.g., the iterative process set forth in blocks 524
and 528) for purposes of selecting the particular candidate
matrix decomposition based on the ranking. More specifi-
cally, 1n accordance with example implementations, the
thread decomposition engine 114 selects (block 524) the
next candidate matrix decomposition based on the ranking.
For example, for the mnitial selection, the thread decompo-
sition engine 114 selects the top ranked candidate matrix
decomposition. The thread decomposition engine 114 then
determines (decision block 3528) whether this candidate
matrix decomposition 1s acceptable based on one or multiple
selection criteria, as further described herein. If the candi-
date matrix decomposition 1s not acceptable, then, 1n accor-
dance with example implementations, the thread decompo-
sition engine 114 returns to block 524 to select the next
candidate matrix decomposition that 1s next highest ranked
(relative to the last selection) matrix decomposition and
proceeds to decision block 528 to determine whether this
candidate matrix decomposition 1s acceptable.

Based on the selection criterion or criteria, the thread
decomposition engine 114 eventually selects a particular
candidate matrix decomposition that 1s acceptable and then,
pursuant to block 532, communicates data representing the
block sizes of the selected matrix decomposition to the

GEMM engine 110.

As examples of condition values that the thread decom-
position engine 114 may use to determine the corresponding
fitness values (pursuant to blocks 508, 512 and 516 of FIG.
5A), 1n accordance with example implementations, for M/K
threading, the thread decomposition engine 114 may deter-
mine one or multiple (or all) of the following seven condi-
tion values for a candidate matrix decomposition for pur-
poses of determining the fitness value:

Condition Value One: absolute difference between num-
ber of subblocks in K dimension and the minimum such
value (prefer to use number of blocks, as set by BSK).

Condition Value Two: absolute diflerence between BSN
and BSK block sizes.

Condition Value Three: normalized ceiling calculation of
ratio of number of threads 1n M dimension and maxi-
mum number of decomposable blocks of mnput matrix
B available for shared packing.

Condition Value Four: remainder of local size n M
dimension divided by BSM block size.

Condition Value Five: difference between the BSM, , and
BSM block sizes.

Condition Value Six: difference between the BSM and
BSM. .. block sizes, if the BSM block size is strictly

IF2t I

less than the BSM. .. block size.
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Condition Value Seven: add one to if the BSK block value
1s not equal to the BSKIM block size and also add one
if the BSM block size 1s not equal to the BSM, .. block
s1ze (strict inequality).

In accordance with example implementations, for N/K
threading, the thread decomposition engine 114 may deter-
mine one or multiple (or all) of the following eight condition
values for a candidate matrix decomposition for purposes of
determining the fitness value:

Condition Value One: absolute difference between num-
ber of subblocks 1n N dimension and the minimum such
value (prefer to use number of blocks, as set by BSN).

Condition Value Two: absolute difference between the
BSN and BSK block sizes.

Condition Value Three: zero 1f number of threads in N
dimension 1s integer multiple of the number of pro-
cessing cores per NUMA node, otherwise one.

Condition Value Four: zero 1f number of threads in N
dimension 1s less than or equal to number of processing
cores per NUMA node, otherwise one.

Condition Value Five: absolute difference between the
number of threads in the N dimension and the number
ol processing cores per LLC.

Condition Value Six: normalized ceiling calculation of
ratio of number of threads in N dimension and maxi-
mum number of decomposable blocks of mput matrix
A available for shared packing.

Condition Value Seven: difference between the BSN and
BSN. . block sizes, if the diflerence 1s strictly less than
the BSN, . block size.

Condition Value Eight: add one 11 the BSK block size not
equal to the BSK, . block size, and also add one i1 the
BSN block size 1s not equal to the the BSN. . block size
(strict mnequality).

In accordance with example implementations, the thread
decomposition engine 114 subsequently normalizes (with
respect to the largest value) each condition value across all
possible candidate matrix decompositions to provide corre-
sponding weighted contributions; and then, 1n accordance
with example implementations, the thread decomposition
engine 114 sums the condition values for each candidate
matrix decomposition to determine a corresponding single
fitness value for the candidate matrix decomposition. Next,
the thread decomposition engine 114 sorts, or ranks, the
candidate matrix decompositions in ascending order (e.g.,
ranks pursuant to block 520 of FIG. 3B) and selects the
candidate matrix decomposition that has the minimum cor-
responding fitness value 1t the following conditions are
satisfied.

In accordance with example implementations, for M/K
threading, the thread decomposition engine 114 determines
whether a particular candidate decomposition (which 1s
identified by the ranking) 1s acceptable (e.g., performs
decision block 528 of FIG. 3B) based on whether both of the
following conditions are satisfied:

Condition One: number of threads in K dimension>1; and

Condition Two: the BSK block size 1s less than or equal
to the BSM block size, or ce1ll(BSN/BSNR) 1s less than
total number of threads.

In accordance with example implementations, for N/K

threading, the thread decomposition engine 114 selects the

candidate matrix decomposition (1dentified by the ranking)
1s acceptable (e.g., performs decision block 528 of FIG. 5B)
if both of the following condition values are satisfied:
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Condition One: number of threads in K dimension>1; and

Condition Value Two: the BSK block size 1s less than or
equal to the BSN block size, or cell(BSM/BSMR) 1s
less than total number of threads.

I condition values are not satisfied for a given candidate
matrix decomposition identified by the ranking, then the
next highest candidate matrix decomposition 1s selected and
the corresponding condition values are then re-evaluated, as
discussed above in connection with FIGS. SA and 5B.

FIG. 4 1s an example illustration 400 of M/K threading
and 1n particular, illustrates the partitioning of the nput
matrix A 210 into corresponding blocks 410, where each
block BSMxBSK 410 1s assigned to a particular processing
thread 112 (FIG. 1). It 1s noted that although the example
illustration 400 depicts the BSN block size as being equal to
N (1.e., the number of columns of the input matrix B 214 and
the number of columns of the output matrix C 220), in
accordance with further example implementations, the BSN
block size may be less than N. It 1s noted that although the
block 410 1s depicted 1n FIG. 4 as being square, the block
410 may be rectangular, as the BSM and BSK block sizes
may be diflerent. A particular K group of processing threads
112 (such as a K group of processing threads, which
corresponds to the blocks 410 of a row 412 of blocks 410 1n
FIG. 4) collectively determines a corresponding BSMxBSN
block 420 of the output matrix C 220. In other words, the
processing thread that corresponds to each block 410 of the
row 412 calculates part of the BSMxBSN block 420 of the
output matrix C 220. For example, the processing thread 112
that 1s assigned to, for example, the block 410-1 of the row
412 performs matrix multiplication operations based on the
block 410-1 and a block 414-1 of the mput matrix B 214 to
produce a corresponding contribution to the block 420 of the
output matrix C 220. As another example, the processing
thread 112 that 1s assigned to block 410-2 performs matrix
multiplication operations based on the block 410-2 and a
block 414-2 of the mput matrix B 214 to produce another
contribution to the block 420 of the output matrix C 220.
Because the processing threads 112 mm a given K group
update the same shared BSMxBSN block of the output
matrix C, there may be possible memory resource conten-
tion by these processing threads 112.

In accordance with example implementations, the con-
tention mitigation engine 118 (FIG. 1) determines an opti-
mal decomposition of the blocks of the output matrix 220 in
the M and/or N dimensions i a way that allows the
processing threads 112 in a given K group to perform
matrix-matrix multiplication operations more ethiciently by
accessing smaller blocks of data. The further subdivision
along the M and/or N dimensions allows each processing
thread 112 to “sub-cycle” over the corresponding sub-
blocks. Thus, as part of the sub-cycling, each processing
thread 112 processes 1ts associated sub-blocks one at a time
in accordance with the loops 316 and 320 of FIG. 3.

FIG. 6 1illustrates a process 600 used by the contention
mitigation engine 118 to further decompose the M and/or N
dimensions 1n accordance with example implementations.
Referring to FIG. 6 in conjunction with FIG. 1, 1n accor-
dance with example implementations, the contention miti-
gation engine 118 determines (block 630) candidate sub-
matrix decompositions by considering all divisors of the
number of threads 1n a given K group. More specifically, in
accordance with example implementations, the contention
mitigation engine 118 may determine (block 634) a set of
condition values for each candidate sub-matrix decomposi-
tion and determine a fitness value for each set of condition
values. For example, 1n accordance with example imple-
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mentations, the contention mitigation engine 118 may deter-
mine a fitness value for each candidate sub-matrix decom-
position based on the following condition values:

Condition Value One: add one if the BSM_ . sub-block
size 1s greater than or equal to the BSN_ . block size
(1.e., there 1s a preference for the M dimension to be
larger than the N dimension).

Condition Value Two: add one 1f the BSN_ . sub-block
size 1s equal to the BSN_ . block size (i.e., there 1s a
preference to use the optimal cache block size for the
N dimension).

The contention mitigation engine 118 may sort, or rank,
the candidate sub-matrix decompositions based on the asso-
ciated condition values, pursuant to block 638 (e.g., rank the
sub-matrix decompositions based on fitness values deter-
mined from the condition values). The contention mitigation
engine 118 may then select (block 642) the sub-matrix
decomposition based on the ranking. For example, 1n accor-
dance with some implementations, the contention mitigation
engine 118 may rank the candidate sub-matrix decomposi-
tions based on their corresponding fitness values in descend-
ing order, and the contention mitigation engine 118 may then
select the candidate sub-matrix decomposition that has the
largest corresponding fitness value, as determined from the
two condition values above.

The contention mitigation engine 118 may then determine
(decision block 650) whether the particular matrix decom-
position threads only 1n the K dimension and if so, makes a
determination (decision block 634) whether M/K threading
1s used. For M/K threading (i.e., the “Yes” prong of decision
block 654), the contention mitigation engine 118 commu-
nicates (block 662) data to the GEMM engine 110 repre-
senting to sub-cycle only 1n the M dimension with the M
dimension being subdivided according to an M dimension
sub-block size (BSM_ ,) that 1s equal to the BSMR block
s1ze. Otherwise, 1f threading occurs only in the K dimension
and N/K threading 1s used (the “No” prong of decision block
662), then, pursuant to block 656, the contention mitigation
engine 118 communicates data to the GEMM engine 110
representing to sub-cycle only 1n the N dimension, with the

N dimension according to an N dimension sub-block size
(BSN_ .) that 1s equal to the BSNR block size. If threading

sith

occurs 1n a dimension other than the K dimension (the “No”
prong of decision block 650), then, pursuant to the process
600, the contention mitigation engine 118 communicates
(block 668) data to the GEMM engine 110 representing the
BSN_ , and BSM_ , values.

In accordance with some implementations, the contention
mitigation engine 118 may make a recommendation of
whether each K processing thread group is to use a tempo-
rary local bufler to derive the corresponding BSMxBSN
block of the output matrix C, such that when the processing,
thread K group completes the processing for this block, the
content of the temporary local builer may be transferred to
the output builer for the output matrix C. In accordance with
some 1implementations, the local temporary builer 1s aligned
with cache boundaries, and updates to the temporary local
bufler are additive in nature.

The contention mitigation engine 118 may perform a
process 700 that 1s depicted in FIG. 7 for purposes of
determining whether or not to recommend the use of the
temporary local output bufler. In accordance with example
implementations, the process 700 mvolves the contention
mitigation engine 118 recommending the use of the tempo-
rary local output builer 1f two prongs of a two-prong test are
satisfied. Otherwise, the contention mitigation engine 118
does not recommend use of the temporary local output
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bufler. Referring to FIG. 7 in conjunction with FIG. 1, in
accordance with example implementations, for the first

prong, the contention mitigation engine 118 determines
whether any of the BSM block size (decision block 704),
BSN block size (decision block 708) or BSK block size

(decision block 712) 1s equal to or greater than the optimal
block sizes BSM___, BSN___and BSK__ ., respectively. If so,

opi? opr opi?
then the first prong has been satisfied, and the contention

mitigation engine 118, for the second prong, determines
(decision block 720) whether the number of threads 1n the K
dimension 1s less than a predetermined threshold number
(c.g., a threshold number of “8”). If the number of threads

in the K dimension 1s greater than this predetermined
threshold, then, in accordance with example implementa-
tions, both prongs have been satisfied, and the contention
mitigation engine 118 recommends the use of the local
temporary buller and communicates data (block 724) with
this recommendation. Otherwise, 1f either prong 1s not
satisfied, then, in accordance with example 1mplementa-
tions, the contention mitigation engine 118 communicates
data to the GEMM engine 110 representing to not use a local
temporary output bufler, as depicted in block 716.

Referring back to FIG. 1, i accordance with some
implementations, the GEMM engine 110 may have one or
more of the following load balancing features. The GEMM
engine 110 adjusts the number of threads cooperatively
packing a shared block of either matrix A and/or B by means
of a fair sharing principle to help improve group synchro-
nization. If using a local temporary output bufler with
sub-cycling, then the GEMM engine 110 computes the
GEMM solution for the specified sub-block and uses a
non-blocking loop over the update function. If the GEMM
engine 110 uses a local temporary output bufller without
sub-cycling, then the GEMM engine 110 computes the
GEMM solution and then immediately calls the update
function for the specified sub-block. If the GEMM engine
110 uses sub-cycling without a local temporary output
bufler, then, within a loop, the GEMM engine 110 locally
packs the mnput matrix A or B and waits for a lock to compute
the GEMM solution that updates the output matrix C. If the
GEMM engine 110 neither using sub- Cychng nor a local
temporary output buller, then the GEMM engine 110 waits
for a lock to compute the GEMM solution that updates the
output matrix C.

As a specific example of outputs for the thread decom-
position engine 114 and contention mitigation engine 118,
for sixteen processing threads 112, the engines 114 and 118
may determine block sizes, sub-block sizes and other param-
cters for the following matrices: matrix A (192x3,840),
matrix B (3,840x96), and matrix C (192x96). It 1s assumed
for this example that the CPU 102 that has sixty-four
processing cores, four NUMA domains and four processing
cores sharing a last level cache (LLC). It 1s also assumed for
this example that N/K threading 1s used.

For this example, the thread decomposition engine 114
evaluates the following MxNxK candidate decompositions:
IxIx16, 1x2x8, 1x4x4, 1x8x2 and 1x16x1, although
1x16x1 1s mvalid (because there 1s no partitioning in the N
dimension). Given the selection criteria, the thread decom-
position engine 114 selects the 1x1x16 decomposition, so
threading will only be over the K dimension. The thread
decomposition engine 114 selects the BSM, BSN and BSK
block sizes for this example to be 192/96/240.

For this example, the contention mitigation engine 118
determines to sub-cycle over the M dimension with BSMR -
s1ze blocks. Moreover, for this example, the contention
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mitigation engine 118 determines to not recommend the use
ol a local temporary output bufler.

As another example, for the above-described example
computer system, the thread decomposition engine 114 and
contention mitigation engine 118 may process the following
matrices: matrix A (96x3,840), matrix B (3,840x192), and
matrix C (96x192). It 1s assumed for this example that N/K
threading 1s used.

For this example, the thread decomposition engine 114
evaluates the following candidate MxNxK decompositions:
Ix1x16, 1x2x8, 1x4x4, 1x8x2 and 1x16x1, although
1x16x1 1s mvalid (due to no threading or decomposition
occurring along the N dimension). Based on the selection
criteria, the thread decomposition engine 114 selects the
1 x4x4 decomposition, so that threading will be over the N
and K dimensions. For this example, the thread decompo-

sition engine 114 selects the BSM/BSN/BSK blocks to be
96/48/960.

For this second example, the contention mitigation engine
118 sub-cycles over the M and N dimensions. Moreover, for
this second example, the contention mitigation engine 118
recommends to use a local temporary output bufler to
improve efliciency.

Referring to FIG. 8, in accordance with example imple-
mentations, a non-transitory storage medium 800 stores
machine-readable mstructions 804 that, when executed by a
machine, cause the machine to access data representing a
first dimension of a first matrix, a second dimension of a
second matrix, and a third dimension shared by the first
matrix and the second matrix. The instructions 804, when
executed by the machine, further cause the machine to
determine a plurality of candidate decompositions for the
first matrix, where the candidate decompositions vary 1n size
with respect to each other along the first dimension and the
third dimension. The mnstructions 804, when executed by the
machine, further cause the machine to determine an associ-
ated fitness value for each candidate decomposition of the
plurality of candidate decompositions; and select a candidate
decomposition of the plurality of candidate decompositions
based on the fitness values to provide a selected candidate
decomposition. The instructions 804, when executed by the
machine, further cause the machine to provide data repre-
senting the selected candidate decomposition to cause the
assignment of processing threads to sub-matrices of the first
matrix. The processing threads determine a third matrix
based on a multiplication of the first matrix and the second
matrix.

Referring to FIG. 9, in accordance with example imple-
mentations, an apparatus 900 includes a processor 910 and
a memory 904 to store instructions 908. The instructions
908, when executed by the processor 910, cause the pro-
cessor 910 to perform threading of a first matrix along a first
dimension of the first matrix and a second dimension of the
matrix. The threading represents block sizes of the first
matrix to assign to process threads of a multiplication
algorithm to determine a third matrix that represents a
product of the first matrix and a second matrix. The block
s1zes 1nclude a first block size along the first dimension and
a second block size along the second dimension. The second
matrix shares the second dimension with the first matrix.
The mstructions 908, when executed by the processor 910,
cause the processor 910 to provide data to the multiplication
algorithm, which represents the first block size and the
second block size.

Referring to FIG. 10, in accordance with example imple-
mentations, a technique 1000 includes at least one hardware
processor, accessing (block 1002) data, which represents a
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first matrix, a second matrix, a first block size and a second
block size. The first block size represents a sub-matrix
decomposition size of the first matrix along a first dimen-
sion; and the second block size represents a sub-matrix
decomposition size of the first matrix along the second
dimension. The second matrix and the {irst matrix share the
second dimension 1n common. The technique 1000 includes
the hardware processor(s) multiplying (block 1004) the first
matrix and the second matrix to determine a third matrix.
The multiplication 1includes assigning processing threads to
sub-matrices of the first matrix based on the first block size
and the second block size.

In accordance with example implementations, a block
size for the plurality of candidate decompositions 1s deter-
mined along the third dimension such that the plurality of
candidate decompositions each are decomposed along the
third dimension according to the block size. A particular
advantage 1s that processing efliciency of matrix-matrix
multiplication may be enhanced.

In accordance with example implementations, the block
s1ze may be determined based on a characteristic of a cache
memory that 1s used by the processing threads to determine
the third matrix. A particular advantage 1s that processing
elliciency of matrix-matrix multiplication may be enhanced.

In accordance with example implementations, for each
fitness value, a plurality of conditions for the associated
candidate decomposition 1s determined; and each fitness
value 1s determined based on the plurality of conditions. A
particular advantage 1s that processing efliciency of matrix-
matrix multiplication may be enhanced.

In accordance with example implementations, for each
fitness value, each condition of the plurality of conditions 1s
normalized to provide a plurality of normalized condition
values. The plurality of normalized condition values are
combined to determine the fitness value. A particular advan-
tage 1s that processing efliciency of matrix-matrix multipli-
cation may be enhanced.

In accordance with example implementations, the fitness
values are ranked to provide a corresponding ranking of the
plurality of candidate decompositions. The selected candi-
date decomposition 1s selected based on the ranking. A
particular advantage 1s that processing efliciency of matrix-
matrix multiplication may be enhanced.

In accordance with example implementations, a first can-
didate decomposition 1s selected based on the ranking; and
a determination 1s made that the first candidate decomposi-
tion does not satisiy a selection criterion. A second candidate
decomposition other than the first candidate decomposition
1s selected based on the ranking; and a determination 1s made
that the second candidate decomposition satisfies the selec-
tion criterion. The second candidate decomposition 1s deter-
mined to be the selected candidate decomposition. A par-
ticular advantage 1s that processing efliciency of matrix-
matrix multiplication may be enhanced.

In accordance with example implementations, the
selected candidate decomposition corresponds to the third
matrix being sub-divided into a plurality of sub-matrices.
Each sub-matrix 1s associated with a group of processes and
a determination 1s made of a sub-matrix decomposition for
the plurality of sub-matrices. Data representing the sub-
matrix decomposition 1s provided to cause each processing
thread to sub-cycle based on the sub-matrix decomposition.
A particular advantage 1s that processing efliciency of
matrix-matrix multiplication may be enhanced.

In accordance with example implementations, a determi-
nation 1s made, based on the characteristic(s) of the selected
candidate decomposition, whether to recommend the use of
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a bufler to store preliminary results of the multiplication. A
routine updates the third matrix using additive updates from
content that 1s stored 1n the bufler. A particular advantage 1s
that processing efliciency of matrix-matrix multiplication
may be enhanced.

While the present disclosure has been described with
respect to a limited number of implementations, those
skilled 1n the art, having the benefit of this disclosure, will
appreciate numerous modifications and variations there-
from. It 1s intended that the appended claims cover all such
modifications and variations.

What 1s claimed 1s:

1. A non-transitory storage medium that stores machine-
readable instructions that, when executed by a machine,
cause the machine to:

access data representing a first dimension of a first matrix,

a second dimension of a second matrix and a third
dimension shared by the first matrix and the second
matrix,

determine a plurality of candidate decompositions for the

first matrix, wherein the candidate decompositions vary
in s1ze with respect to each other along the first dimen-
sion and the third dimension;

determine an associated fitness value for each candidate

decomposition of the plurality of candidate decompo-
sitions;

select a candidate decomposition of the plurality of can-

didate decompositions based on the fitness values to
provide a selected candidate decomposition; and
provide data representing the selected candidate decom-
position to cause the assignment of processing threads
to sub-matrices of the first matrix, wherein the process-
ing threads determine a third matrix based on a multi-
plication of the first matrix and the second matrix.

2. The storage medium of claim 1, wherein the nstruc-
tions, when executed by the machine, further cause the
machine to determine a block size for the plurality of
candidate decompositions such that each candidate decom-
position of the plurality of candidate decompositions 1s
decomposed along the third dimension according to the
block size.

3. The storage medium of claim 2, wherein the 1nstruc-
tions, when executed by the machine, further cause the
machine to determine the block size based on a character-
1stic ol a cache memory used by the processing threads in the
determination of the third matrix.

4. The storage medium of claim 1, wherein the mnstruc-
tions, when executed by the machine, further cause the
machine to:

for each fitness value of the fitness values:

determine a plurality of conditions for the associated
candidate decomposition; and

determine the each fitness value based on the plurality
ol conditions.

5. The storage medium of claim 4, wherein the 1nstruc-
tions, when executed by the machine, further cause the
machine to:

for the each fitness value:

normalize each condition of the plurality of conditions
to provide a plurality of normalized condition values;
and

combine plurality of normalized condition values to
determine the each fitness value.

6. The storage medium of claim 1, wherein the instruc-
tions, when executed by the machine, further cause the
machine to:
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rank the fitness values to provide a corresponding ranking
of the plurality of candidate decompositions; and

select the selected candidate decomposition based on the
ranking.

7. The storage medium of claim 6, wherein the instruc-
tions, when executed by the machine, further cause the
machine to:

select a first candidate decomposition based on the rank-

Ing;

determine that the first candidate decomposition does not

satisly a selection criterion;

select a second candidate decomposition other than the

first candidate decomposition based on the ranking;
determine that the second candidate decomposition satis-
fles the selection criterion; and

determine the second candidate decomposition to be the

selected candidate decomposition.

8. The storage medium of claim 1, wherein the selected
candidate decomposition corresponds to the third matrix
being sub-divided into a plurality of sub-matrices, wherein
cach sub-matrix of the plurality of sub-matrices 1s associated
with a group of processes of the plurality of processes, and
the instructions, when executed by the machine, further
cause the machine to:

determine a plurality of candidate sub-matrix decompo-

sitions, wherein the candidate sub-matrix decomposi-
tions vary in size with respect to each other along the
first dimension and the second dimension;

determine an associated second fitness value for each

candidate sub-matrix decomposition of the plurality of
candidate sub-matrix decompositions;

select a candidate sub-matrix decomposition of the plu-

rality of candidate sub-matrix decompositions based on
the second fitness values to provide a selected candi-
date sub-matrix decomposition; and

provide data representing the selected candidate sub-

matrix decomposition to cause each processing thread
of the processing threads to sub-cycle based on the
selected sub-matrix decomposition.

9. The storage medium of claim 1, wherein the selected
candidate decomposition corresponds to the third matrix
being sub-divided into a plurality of sub-matrices, wherein
cach sub-matrix of the plurality of sub-matrices 1s associated
with a group of processes of the plurality of processes, and
the instructions, when executed by the machine, further
cause the machine to:

determine a sub-matrix decomposition for the plurality of

sub-matrices; and

provide data representing the sub-matrix decomposition

to cause each processing thread of the processing
threads to sub-cycle based on the sub-matrix decom-
position.

10. The storage medium of claim 1, wherein the nstruc-
tions, when executed by the machine, further cause the
machine to determine, based on at least one characteristic of
the selected candidate decomposition, whether to recom-
mend use of a bufller to store preliminary results of the
multiplication, wherein a routine updates the third matrix
using additive updates from content stored in the bufler.

11. The storage medium of claim 10, wherein the mnstruc-
tions, when executed by the machine, further cause the
machine to determine whether to recommend the use of the
bufler based on at least one of the following: a comparison
of a first block size of the candidate decomposition along the
first dimension to a first cache optimum block size along the
first dimension, a comparison of a second block size of the
candidate decomposition along the second dimension to a
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second cache optimum block size along the second dimen-
s1on, or a comparison of a third block size of the candidate
decomposition along the third dimension to a third cache
optimum block size along the third dimension.
12. The storage medium of claim 1, wherein:
the first matrix comprises an MxK matrix, the second
matrix comprises a KxIN matrix;
the first dimension corresponds to an M dimension of the
MxK matrix;
the second dimension corresponds to a N dimension of the
KxN matrix;
the third dimension corresponds to the K dimension of the
MxK matrix and the K dimension of the KxN matrix;
the multiplication comprises a (MxK)(KxN) matrix mul-
tiplication; and
determining the plurality of candidate decompositions for
the first matrix comprises M/K threading.
13. The storage medium of claim 1, wherein:
the second matrix comprises an MxK matrix, the first
matrix comprises a KxN matrix;
the first dimension corresponds to an N dimension of the
KxN matrix;
the second dimension corresponds to an M dimension of
the MxK matrix:
the third dimension corresponds to the K dimension of the
MxK matrix and the K dimension of the KxN matrix;
the multiplication comprises a (MxK)(KxN) matrix mul-
tiplication; and
determining the plurality of candidate decompositions for
the first matrix comprises N/K threading.
14. An apparatus comprising:
a processor; and
a memory to store 1nstructions that, when executed by the
processor, cause the processor to:
perform threading of a first matrix along a first dimen-
s1on of the first matrix and a second dimension of the
matrix, wherein the threading represents block sizes
of the first matrix to assign to process threads of a
multiplication algorithm to determine a third matrix
representing a product of the first matrix and a
second matrix, the block sizes comprise a first block
s1ze along the first dimension and a second block size
along the second dimension, and the second matrix
shares the second dimension with the first matrix:
and

provide data to the multiplication algorithm represent-
ing the first block size and the second block size.
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15. The apparatus of claim 14, wherein the multiplication
algorithm comprises a generalized matrix-matrix multipli-

cation (GEMM) algorithm.

16. The apparatus of claim 14, wherein the instructions,
when executed by the processor, further cause the processor
to:

determine the second block size; and

evaluate candidate matrix decompositions that are each

decomposed along the second dimension according to
the second block size, wherein the evaluation 1s used to
determine the second block size.

17. The apparatus of claim 14, wherein the threading
corresponds to the third matrix being sub-divided into a
plurality of sub-matrices, wherein each sub-matrix of the
plurality of sub-matrices 1s associated with a group of
threads of the plurality of threads, and the instructions, when
executed by the processor, further cause the processor to:

determine a sub-matrix decomposition for the plurality of

sub-matrices; and

provide data representing the sub-matrix decomposition

to cause each thread of the plurality of threads to
sub-cycle based on the sub-matrix decomposition.

18. The apparatus of claim 14, wherein the instructions,
when executed by the processor, further cause the processor
to determine, based on at least one of the block sizes,
whether to recommend use of a buller to store preliminary
results of the multiplication, wherein a routine updates the
third matrix using additive updates from content stored in
the builer.

19. A method comprising:

at least one hardware processor, accessing data represent-

ing a first matrix, a second matrix, a first block size and
a second block size, wherein the first block size rep-
resents a sub-matrix decomposition size of the first
matrix along a first dimension, the second block size
represents a sub-matrix decomposition size of the first
matrix along the second dimension, and the second
matrix and the first matrix share the second dimension
1n common; and

the at least one hardware processor multiplying the first

matrix and the second matrix to determine a third
matrix, wherein the multiplying comprises assigning
processing threads to sub-matrices of the first matrix
based on the first block size and the second block size.

20. The method of claim 19, wherein the multiplying
comprises each processing thread of the processing threads
sub-cycling over sub-blocks of the sub-matrix assigned to

the processing thread.
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