USO011989122B2

a2 United States Patent (10) Patent No.: US 11,989,122 B2
Tateishi 45) Date of Patent: May 21, 2024

(54) HANDLING MOCK OBJECTS THAT ARE (56) References Cited
WRITTEN IN THE FORM OF MULTIPLE U.S. PATENT DOCUMENTS
ASSIGNMENT INSTRUCTIONS e -~

. _ _ _ 8,799,875 B2* 8/2014 Ziegler GO6F 11/3696
(71) Applicant: International Business Machines 717/135

Corporation, Armonk, NY (US) 2007/0033443 Al 2/2007 Tillmann et al.
2012/0084754 Al 4/2012 Ziegler et al.

(72) Inventor: Takaaki Tateishi, Yamato (JP)
FOREIGN PATENT DOCUMENTS

(73) Assignee: International Busi Corporation ess

Machines, Armonk, NY (US) CN 105335281 B 3/2018

(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS

patent 1s extended or adjusted under 35 Github, Inc., “Rspec/Rspec-Mocks,” https://github.com/rspec/rspec-
U.S.C. 154(b) by 45 days. mocks, 2021, pp. 1-12.

Continued
(21) Appl. No.: 17/853,179 (Continued)

Primary Examiner — Thuy Dao

(74) Attorney, Agent, or Firm — Shackeliord, Bowen,
McKinley & Norton, LLP; Robert A. Voigt, Ir.

(22) Filed: Jun. 29, 2022

(65) Prior Publication Data

US 2024/0004784 A1 Jan. 4, 2024 (57) ABSTRACT
A computer-implemented method, system and computer
(51) Imt. CL program product for effectively handling mock objects writ-
GO6F 9/14 (2018.01) ten in the form of multiple assignment instructions. A
GO6F 8/41 (2018.01) program to test software 1s mstrumented so as to obtain an
GO6F 9/455 (2018.01) instrumented program having one or more mock objects.
GOGF 11/34 (2006.01) The mstrumented program 1s parsed to identify one or more
GOGF 11/36 (2006.01) multiple assignment instructions each corresponding to a
o mock object. A function 1s then mserted in the instrumented
(52) US. Cl. program for each of the identified multiple assignment
CPC ... GOOF 11/3688 (2013.01); GOGF 11/3664 instructions corresponding to a mock object, where the

(2013.01) function returns a tuple of the first “n” elements of the mock
(58) Field of Classification Search object. The instrumented program (after inserting the func-

CPC GO6F 11/3688; GO6F 11/3664; GO6F &/20; tion(s) discussed above) is outputted to perform software
GO6F 11/3684; GOOF 11/3447; GOOGF testing, such as dynamic program analysis. In this manner,
11/30; GO6F 9/455; GO6F 11/3696; GO6F by inserting such function(s) in the instrumented program,

11/362; GO6F 11/3636; GOOF 9/454; the mock objects will be able to be executed without causing,
GO6F 9/54; GO6F 3/0484: GO6F 9/44521; a failure.

GO6F 9/451; HO4L 43/00
See application file for complete search history. 20 Claims, 4 Drawing Sheets

201~ INSTRUMENTATION 207

PARSER

MODULE

209 CODE 204
COUNTER VODULE

205 TESTING

ENGINE

US 11,989,122 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Python, “Unittest. Mock—Mock Object Library,” https://docs.python.

org/3/library/unittest. mock.html, 2021, pp. 1-45.

Lockwood et al., “Mockingbird: A Framework for Enabling Tar-
geted Dynamic Analysis of Java Programs,” https://1eeexplore.icee.
org/document/8802746, ICSE’19, May 2019, pp. 1-4.

Jens Nordahl, “EasyMock: Capturing Arguments from Multiple
Cells,” https://blog.jayway.com/2009/03/25/easymock-capturing-
arguments-from-multiple-calls, Mar. 25, 2009, pp. 1-23.

Matthew Bauer, “Mock Python Function with Multiple Return
Values,” https://stackoverflow.com/questions/35774094/mock-python-
function-with-multiple-return-values/35774229, Mar. 2016, pp. 1-3.
Trey Hunner, “Multiple Assignment and Tuple Unpacking Improve
Python Code Readability,” https://treyhunner.com/2018/03/tuple-
unpacking-improves-python-code-readability, Mar. 7, 2018, pp. 1-10.
Takaaki Tateishi, “Semantic Data Science,” https://developer.ibm.
com/apis/catalog/automatedal-IBM-research-semantic-data-science/
api/APIl-automatedai--IBM-research-semantic-data-science/

#get202185299, Apr. 2, 2022, pp. 1-5, Grace Period Disclosure.

* cited by examiner

US 11,989,122 B2

Sheet 1 of 4

May 21, 2024

U.S. Patent

40)!

NILOAS
IN4NaO 13A4d

JavMLA0S

Q0|

I

NILSAS
140)’ ONILSAL

20!

J

FOIAJQ ONILNNOD

d
FOIAJQ ONILNNOD

v
FOIAZQ ONILNGNOI

10|

dlol

Y10\

US 11,989,122 B2

Sheet 2 of 4

May 21, 2024

U.S. Patent

1404

<0<

F1NAON
1009

a35dvd

¢ Ol

ANIONS
ONILSAL

a3.INM0Y

F1NAON

NOILY INJAN&LON

2017

«0¢

LlOC

US 11,989,122 B2

Sheet 3 of 4

May 21, 2024

U.S. Patent

d31av(
SNOILYIINT

NEOMLAN

140!

& Ol4
0%
M31dvay
D) ¥SIC vy H0SST00d
/0% 90% GOG
' NALSAS
> ONILYH3dO
Q0¢

NOILY Il ladv

0%

0%

0%

U.S. Patent May 21, 2024 Sheet 4 of 4 US 11,989,122 B2

400
§ INSTRUMENT A PROGRAM TO OBTAIN AN 40
INSTRUMENTED PROGRAM HAVING ONE OR
MORE MOCK OBJECTS
PARSE THE INSTRUMENTED PROGRAM TO IDENTIFY 407
ONE OR MORE MULTIPLE ASSIGNMENT INSTRUCTIONS

FACH CORRESPONDING TO A MOCK OBJECT

PARSE THE INSTRUMENTED PROGRAM TO IDENTIFY
EACH LOOP INSTRUCTION CONTAINING ONE OR MORE 405
OF THE IDENTIFIED MULTIPLE ASSIGNMENT INSTRUCTIONS
CORRESPONDING TO A MOCK OBJECT(S)

COUNT THE NUMBER OF VARIABLES IN EACH OF THE
[DENTIFIED MULTIPLE ASSIGNMENT INSTRUCTIONS
CORRESPONDING TO A MOCK OBJECT

404

INSERT A FIRST FUNCTION IN THE INSTRUMENTED
PROGRAM FOR EACH OF THE IDENTIFIED MULTIPLE
ASSIGNMENT INSTRUCTIONS CORRESPONDING TO
THE MOCK OBJECT, WHERE THE FIRST FUNCTION
RETURNS A TUPLE OF A FIRST N ELEMENTS OF
THE MOCK OBJECT, WHERE N CORRESPONDS
10 THE COUNTED NUMBER OF VARIABLES

405

INSERT A SECOND FUNCTION IN EACH IDENTIFIED

L
LOOP INSTRUCTION OF THE INSTRUMENTED PROGRAM, 406

WHERE THE SECOND FUNCTION RETURNS OF LIST OF THE
FIRST FUNCTIONS THAT WERE INSERTED IN THE LOOP
INSTRUCTION

OUTPUT THE INSTRUMENTED PROGRAM TO 407
PERFORM SOFTWARE TESTING

FlG. 4

US 11,989,122 B2

1

HANDLING MOCK OBJECTS THAT ARE
WRITTEN IN THE FORM OF MULTIPLE
ASSIGNMENT INSTRUCTIONS

STATEMENT REGARDING PRIOR
DISCLOSURES BY THE INVENTOR OR JOINT
INVENTOR

The following disclosure(s) are submitted under 335
U.S.C. 102(b)(1)(A):

TAKAAKI TATEISHI, “Semantic Data Science,” Apr. 2,
2022, pp. 1-5.

TECHNICAL FIELD

The present disclosure relates generally to software test-
ing, and more particularly to handling mock objects that are
written 1n the form of multiple assignment instructions in a
program for testing software.

BACKGROUND

Soltware testing 1s the act of examining the artifacts and
the behavior of the software under test by validation and
verification. Software testing can also provide an objective,
independent view of the software to allow the business to
appreciate and understand the risks of software implemen-
tation. Software testing can provide objective, independent
information about the quality of the software and the risk of
its failure to users or sponsors.

SUMMARY

In one embodiment of the present disclosure, a computer-
implemented method for handling mock objects written 1n a
form of multiple assignment 1nstructions comprises instru-
menting a program to obtain an instrumented program
having one or more mock objects, where the one or more
mock objects are simulated objects that mimic a behavior of
real objects. The method further comprises parsing the
istrumented program to identily one or more multiple
assignment instructions each corresponding to a mock
object. The method additionally comprises inserting a {first
function 1n the mstrumented program for each of the one or
more 1dentified multiple assignment instructions, where the
first function returns a tuple of a first n elements of the mock
object, where the n 1s a positive mteger number. Further-
more, the method comprises outputting the nstrumented
program to perform solftware testing after iserting the first
function 1n the instrumented program for each of the one or
more 1dentified multiple assignment 1nstructions.

Other forms of the embodiment of the computer-imple-
mented method described above are 1 a system and 1n a
computer program product.

The foregoing has outlined rather generally the features
and technical advantages of one or more embodiments of the
present disclosure in order that the detailed description of
the present disclosure that follows may be better understood.
Additional features and advantages of the present disclosure
will be described hereimnaiter which may form the subject of
the claims of the present disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present disclosure can be
obtained when the following detailed description 1s consid-
ered 1n conjunction with the following drawings, in which:

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 1 1illustrates a communication system for practicing
the principles of the present disclosure 1n accordance with an

embodiment of the present disclosure;

FIG. 2 1s a diagram of the software components used by
the testing system to handle mock objects written 1n the form
of multiple assignment instructions i1n programs to test
soltware, such as by performing dynamic program analysis,
in accordance with an embodiment of the present disclosure;

FIG. 3 illustrates an embodiment of the present disclosure
of the hardware configuration of the testing system which 1s
representative of a hardware environment for practicing the
present disclosure; and

FIG. 4 1s a flowchart of a method for handling mock
objects written 1n the form of multiple assignment nstruc-
tions, such as i1n programs to test soltware by performing
dynamic program analysis, 1n accordance with an embodi-
ment of the present disclosure.

DETAILED DESCRIPTION

As stated 1n the Background section, software testing 1s
the act of examiming the artifacts and the behavior of the
software under test by validation and verification. Software
testing can also provide an objective, independent view of
the software to allow the business to appreciate and under-
stand the risks of software implementation. Software testing,
can provide objective, independent information about the
quality of the software and the risk of its failure to users or
SPONSOrs.

One example of software testing 1s dynamic program
analysis. Dynamic program analysis 1s the analysis of com-
puter software that 1s performed by executing programs on
a real or virtual processor. For dynamic program analysis to
be eflective, the target program needs to be executed with
suilicient test inputs to cover almost all possible outputs. Use
ol software testing measures, such as code coverage, help
ensure that an adequate slice of the program’s set of possible
behaviors has been observed.

In dynamic program analysis, mock objects may be
utilized to test the software. In object-oriented program-
ming, a mock object 1s a simulated object that mimics the
behavior of the smallest testable parts of an application in
controlled ways, most often as part ol a software testing
initiative, such as dynamic program analysis. A programmer
typically creates a mock object to test the behavior of some
other object 1n much the same way that a car designer uses
a crash test dummy to simulate the dynamic behavior of a
human 1n vehicle impacts.

Mock objects have the same interface as the real objects
they mimic thereby allowing a client object to remain
unaware of whether 1t 1s using a real object or a mock object.
Many available mock object frameworks allow the program-
mer to specily which, and in what order, methods will be
invoked on a mock object and what parameters will be
passed to them as well as what values will be returned. Thus,
the behavior of a complex object, such as a network socket,
can be mimicked by a mock object, allowing the program-
mer to discover whether the object being tested responds
approprately to the wide variety of states such mock objects
may be 1n.

Many programming scripting languages, such as Python®
and Ruby®, can return multiple values, such as from a
method. For example, the os.path.splito method may return
multiple wvalues. For 1nstance, the statement dir,
file=os.path.split(“/foo/bar.txt”) in the Python® programing
language returns multiple values. Such statements may be
referred to as “multiple assignment™ mstructions. A multiple

US 11,989,122 B2

3

assignment instruction 1s an assignment statement 1n which
one or more values are given to two or more variables.

Mock objects may be written 1n the form of such multiple
assignment instructions. A method call of such mock objects
though may not return multiple values because the method
call does not have any information about how many items
should be returned. As a result, a multiple assignment
instruction 1n scripting languages, such as Python® and
Ruby®, results 1n a failure. For example, the multiple
assignment instruction dir, file=mocko.split(*/foo/bar.text”)
would result 1n a failure.

However, the use of mock objects written 1n the form of
multiple assignment instructions in such scripting languages
1s essential 1n order to perform a dynamic program analysis.

As a result, attempts have been made to avoid such
failures by manually defining the default return values at the
time of the creation of the mock object, such as wia
Python®’s unittest. mock package. However, such an
approach requires having knowledge of the number of
values each method returns, which 1s infeasible.

An alternative approach to avoid such failures is to
modily the implementation of an existing scripting language
to support built-in mock objects and/or to reveal the neces-
sary information. However, moditying the implementation
of the scripting language to support built-in mock objects
and/or to reveal the necessary implementation 1s time-
consuming and difficult.

Unfortunately, there 1s not currently a means for eflec-
tively handling mock objects written 1n the form of multiple
assignment 1nstructions 1n scripting programming lan-
guages, such as Python® and Ruby®, such as in programs
to test software by performing dynamic program analysis.

The embodiments of the present disclosure provide a
means for effectively handling mock objects written 1n the
form of multiple assignment instructions in programs to test
soltware, such as by performing dynamic program analysis,
by instrumenting the program and mserting a function in the
instrumented program for each identified multiple assign-
ment 1nstruction that was written as a mock object, where
the function returns a tuple of the first “n” elements of the
mock object, where “n” corresponds to a counted number of
variables 1n the multiple assignment instruction. By insert-
ing such a function in the mstrumented program, the mock
objects will be able to be executed without causing a failure
as discussed in further detail below.

In some embodiments of the present disclosure, the pres-
ent disclosure comprises a computer-implemented method,
system and computer program product for handling mock
objects written in the form of multiple assignment instruc-
tions. In one embodiment of the present disclosure, a pro-
gram to test soltware 1s instrumented so as to obtain an
instrumented program having one or more mock objects.
“Instrumentation,” as used herein, refers to the measure of a
software product’s performance, to diagnose errors, and to
write trace information. In one embodiment, such an 1nstru-
mented program contains one or more mock objects. A
“mock object,” as used herein, refers to a simulated object
that mimics the behavior of the smallest testable parts of an
application in controlled ways, most often as part of a
soltware testing mitiative, such as dynamic program analy-
s1s. For example, a mock object may be created to test the
behavior of another object. The nstrumented program 1s
parsed to 1dentily one or more multiple assignment nstruc-
tions each corresponding to a mock object. A “multiple
assignment instruction,” as used herein, 1s an assignment
statement 1n which one or more values are given to two or
more variables.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

A “multiple assignment instruction corresponding to a
mock object,” as used herein, refers to a mock object written
in the form of a multiple assignment instruction. A function
1s then inserted in the mstrumented program for each of the
identified multiple assignment instructions corresponding to
a mock object, where the function returns a tuple of the first
“n” elements of the mock object. The mstrumented program
(after mserting the function(s) discussed above) 1s outputted
to perform software testing, such as dynamic program
analysis. In this manner, by mserting such function(s) in the
instrumented program, the mock object(s) will be able to be
executed without causing a failure.

In the following description, numerous specific details are
set forth to provide a thorough understanding of the present
disclosure. However, it will be apparent to those skilled 1n
the art that the present disclosure may be practiced without
such specific details. In other instances, well-known circuits
have been shown in block diagram form in order not to
obscure the present disclosure in unnecessary detail. For the
most part, details considering timing considerations and the
like have been omitted 1nasmuch as such details are not
necessary to obtain a complete understanding of the present
disclosure and are within the skills of persons of ordinary
skill 1n the relevant art.

Referring now to the Figures in detail, FIG. 1 illustrates
an embodiment of the present disclosure of a communica-
tion system 100 for practicing the principles of the present
disclosure. Communication system 100 includes computing
devices 101 A-101C (adentified as “Computing Device A,”
“Computing Device B,” and “Computing Device C,” respec-
tively, in FIG. 1) connected to a software development
system 102 via a network 103. Computing devices 101 A-
101C may collectively or individually be referred to as
computing devices 101 or computing device 101, respec-
tively.

Computing device 101 may be any type of computing
device (e.g., portable computing unit, Personal Digital
Assistant (PDA), laptop computer, mobile device, tablet
personal computer, smartphone, mobile phone, navigation
device, gaming unit, desktop computer system, workstation,
Internet appliance and the like) configured with the capa-
bility of connecting to network 103 and consequently com-
municating with other computing devices 101 and software
development system 102. It 1s noted that both computing
device 101 and the user of computing device 101 may be
identified with element number 101.

Software development system 102 1s a system utilized,
such as by software developers (e.g., users of computing
devices 101), in the process of creating, designing, deploy-
ing and supporting solitware. Examples of such software
development systems include, but not limited to, RAD
Studio®, Embold®, Collaborator®, Studio 3T®, Net-
Beans®, Zend Studio®, Microsoft® Expression Studio, etc.

Network 103 may be, for example, a local area network,
a wide area network, a wireless wide area network, a
circuit-switched telephone network, a Global System {for
Mobile Communications (GSM) network, a Wireless Appli-
cation Protocol (WAP) network, a WikF1 network, an IEEE
802.11 standards network, various combinations thereof,
ctc. Other networks, whose descriptions are omitted here for
brevity, may also be used 1n conjunction with system 100 of
FIG. 1 without departing from the scope of the present
disclosure.

System 100 further includes a testing system 104 inter-
connected with computing devices 101 and software devel-
opment system 102 via network 103. In one embodiment,
testing system 104 1s configured to test soitware applica-

US 11,989,122 B2

S

tions, such as by using dynamic program analysis. As
previously discussed, dynamic program analysis 1s the
analysis of computer software that 1s performed by execut-
ing programs on a real or virtual processor. For dynamic
program analysis to be eflective, the target program needs to
be executed with suflicient test mputs to cover almost all
possible outputs. Use of software testing measures, such as
code coverage, help ensure that an adequate slice of the
program’s set of possible behaviors has been observed.

In dynamic program analysis, mock objects may be
utilized to test the software. In object-oriented program-
ming, a mock object 1s a simulated object that mimics the
behavior of the smallest testable parts of an application in
controlled ways, most often as part of a software testing
initiative, such as dynamic program analysis.

In one embodiment, such mock objects are written 1n the
form of multiple assignment instructions. However, a
method call of such mock objects though may not return
multiple values because the method call does not have any
information about how many items should be returned. As a
result, a multiple assignment instruction 1n scripting lan-
guages, such as Python® and Ruby®, results in a failure.

In one embodiment, testing system 104 1s configured to
handle mock objects written 1n the form of multiple assign-
ment 1nstructions i programs to test software, such as by
performing dynamic program analysis, by instrumenting the
program and inserting a function in the instrumented pro-
gram for each 1dentified multiple assignment mstruction that
was written as a mock object, where the function returns a
tuple of the first “n” elements of the mock object, where “n”
corresponds to the counted number of variables in the
multiple assignment instruction and where “n” 1s a positive
integer number. By serting such function(s) in the instru-
mented program, the mock object(s) will be able to be
executed without causing a failure as discussed in further
detail below.

Furthermore, in one embodiment, testing system 104
inserts a second function in each identified loop instruction
of the instrumented program, where the second function
returns a list of the functions (discussed 1n the prior para-
graph) that were inserted 1n the loop instruction.

Additionally, im one embodiment, testing system
104 outputs the instrumented program with the inserted
function(s) to perform soitware testing, such as dynamic
program analysis. By mserting such function(s) in the instru-
mented program, the mock object(s) will be able to be
executed without causing a failure.

A description of the solftware components of testing
system 104 used for handling mock objects written 1n the
form of multiple assignment instructions in programs to test
software, such as by performing dynamic program analysis,
1s provided below 1n connection with FIG. 2. A description
of the hardware configuration of testing system 104 1is
provided further below 1n connection with FIG. 3.

System 100 1s not to be limited 1n scope to any one
particular network architecture. System 100 may include
any number of computing devices 101, software develop-
ment systems 102, networks 103 and testing systems 104.

A discussion regarding the software components used by
testing system 104 to handle mock objects written 1n the
form of multiple assignment instructions in programs to test
soltware, such as by performing dynamic program analysis,
1s provided below 1n connection with FIG. 2

FIG. 2 1s a diagram of the software components used by
testing system 104 (FIG. 1) to handle mock objects written
in the form of multiple assignment nstructions 1n programs

10

15

20

25

30

35

40

45

50

55

60

65

6

to test soltware, such as by performing dynamic program
analysis, 1n accordance with an embodiment of the present
disclosure.

Referring to FIG. 2, 1n conjunction with FIG. 1, testing
system 104 includes an instrumentation module 201 config-
ured to instrument a program (program to test software, such

as by performing dynamic program analysis). In one
embodiment, instrumentation module 201 creates one or
more mock objects thereby forming an instrumented pro-
gram having one or more mock objects. “Instrumentation,”
as used herein, refers to the measure of a software product’s
performance, to diagnose errors, and to write trace informa-
tion. In one embodiment, such instrumentation 1s a source
instrumentation. In one embodiment, such instrumentation
1s a binary instrumentation.

In one embodiment, instrumentation of a program
involves profiling. “Profiling,” as used herein, refers to
measuring dynamic program behaviors during a training run
with a representative mput. In another embodiment, instru-
mentation of a program involves inserting timers into func-
tions. In another embodiment, instrumentation of a program
involves logging major events, such as crashes.

In one embodiment, such an mstrumented program con-
tains one or more mock objects. A “mock object,” as used
herein, refers to a sitmulated object that mimics the behavior
of the smallest testable parts of an application in controlled
ways, most oiten as part of a software testing initiative, such
as dynamic program analysis. For example, a mock object
may be created to test the behavior of another object, such
as a real object.

In one embodiment, mock objects have the same interface
as the real objects they mimic thereby allowing a client
object to remain unaware of whether 1t 1s using a real object
or a mock object.

In one embodiment, such mock objects are written 1n the
form of a multiple assignment instruction. A “multiple
assignment instruction,” as used herein, 1s an assignment
statement 1n which one or more values are given to two or
more variables.

Examples of features and techniques utilized by instru-
mentation module 201 to mstrument a program to obtain an
instrumented program having one or more mock objects
include, but not limited to, hooking (range of techniques
used to alter or augment the behavior of the program either
by 1tercepting function calls or messages or events passed
between soltware components), instruction set simulator
(stmulation of mnstructions at machine code level to provide
instrumentation), runtime 1ntelligence (technologies, man-
aged services and practices for the collection, integration,
analysis, and presentation of application usage levels, pat-
terns and practices), software performance analysis (tech-
niques to monitor code performance, including nstrumen-
tation), a hardware performance counter, a dynamic tracing,
framework for troublesome kernel and application problems
on production systems, an application response measure-
ment (standardized instrumentation application program-
ming interface), and dynamic recompilation (feature of
some emulators and virtual machines where the system may
recompile a program during execution).

Examples of software tools used by mnstrumentation mod-
ule 201 to mstrument a program to obtain an nstrumented
program having one or more mock objects include, but not
limited to, Dynatrace®, SolarWinds® Server & Application
Monitor, ManageEngine® Applications Manager, Solar-
Winds® AppOptics Application Monitoring, AppDynam-
ics®, Splunk® IT Service Intelligence, AppEnsure, etc.

US 11,989,122 B2

7

Furthermore, 1n one embodiment, examples of software
tools used by imstrumentation module 201 to create mock
objects during the mstrumentation of a program include, but
not limited to, EasyMock, Mockito, JMockit, etc.

An example of a mock object created in the instrumented
program by instrumentation module 201 1s illustrated 1n the
code snippets shown below. For istance, the original code
smppet 1n Python® prior to instrumentation 1s shown below:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test=train_test_split (train_X,

train_y, test_size=0.2, stratify=train_y)

Upon mstrumenting the above code by instrumentation
module 201, instrumentation module 201 creates a mock
object 1n the mstrumented code as shown below:

from sklearn.model_selection import train_test_split

train_test_split=instrument(train_test_split)

X_train, X_test, y_train, y_test=train_test_split (train_X,

train_y, test_size=0.2, stratify=train_y)

In the example shown above, instrumentation module 201
inserted the “instrument” function to create a mock object
(instrument(train_test _split) representing the “train_
test_split” function.

Furthermore, testing system 104 includes a parser 202
configured to parse the instrumented program to identify one
or more multiple assignment instructions each correspond-
ing to a mock object. Additionally, parser 202 1s configured
to parse the instrumented program to identily each loop
instruction contaiming the identified multiple assignment
istruction(s) corresponding to the mock object(s).

In one embodiment, parser 202 breaks the mstrumented
program 1nto parts (e.g., nouns (objects), verbs (methods)
and their attributes or options) that can be managed by other
programming (e.g., components mn a compiler). In one
embodiment, the multiple assignment instructions are 1den-
tified by identifying the syntax for creating tuples. For
example, the syntax (x, y)=(10, 20) 1n a line of code involves
creating a tuple of 10, 20 and then looping over that tuple
and taking each of the two items obtained from looping and
assigning them to x and y 1n order.

In another embodiment, multiple assignment nstructions
use an iterable, such as a list or string, 1n which the multiple
assignment instruction loops over the list or string. As a
result, parser 202 1s configured to identify the syntax for
looping over lists and strings thereby 1dentifying a multiple
assignment istruction.

Upon 1dentifying multiple assignment instructions, such
instructions are i1dentified as corresponding to mock objects
based on 1dentifying various types of mock objects written
as the multiple assignment instructions. An example of a
type of mock object includes a dummy (a class that you pass
into something when one does not care how it 1s used, such
as a “niceMock™ 1n EasyMock or a “mock” 1n JMock).

Another example of a type of mock object 1s a stub (a
class that returns a valid answer but always the same one).
For example, 1n the EasyMock language, a stub 1s a mock
with an expectation recorded, such as shown in the follow-
ing line of code:

(expect(mock.authorize(anyString(), anyString())). and-

StubReturn(true))

Another example of a type of mock object 1s a spy. In
EasyMock, the spy type of mock object means stubbing is
not occurring anymore. A precise call 1s recorded as shown
in the following line of code:

(expect(mock.authorize(anyString(),

andReturn(true))

anyString())).

10

15

20

25

30

35

40

45

50

55

60

65

8

and then the call 1s verified that it actually occurred as shown
in the following line of code:

(verity(mock))

In Mockito, the call 1s stubbed and the call 1s verified that
it occurred as shown in the following line of code:

(verify(authornizer).authorize(any(), any()))

A further example of a type of mock 1s a “true mock.” A
“true mock”™ 1s a mock that knows how to verty itself. For
example, EasyMock and Mockito mocks are true mocks. As
a result, their implementations of a true mock 1s the same as
for the spy.

Another example of a type of mock 1s a “fake.” A fake has
business behavior. Furthermore, a fake can be driven to
behave 1n different ways by giving 1t different data. For
instance, a fake may be used for integration testing to
stimulate parts of a system.

Examples of software tools utilized by parser 202 to
identily multiple assignment instructions as corresponding
to mock objects based on 1dentifying various types ol mock
objects associated with the multiple assignment instructions
include, but not limited to, MockExtractor.

In an alternative embodiment, parser 202 1dentifies mul-
tiple assignment instructions as corresponding to mock
objects based on 1dentifying certain terms (“mock(),”
“Mockito.mock()’), such as in API calls, method calls, etc.,
in the multiple assignment instructions of the mstrumented
program. In one embodiment, such terms may be 1dentified
by parser 202 using natural language processing. For
example, such terms may be stored 1n a data structure (e.g.,
table) which are used by parser 202 to identify such terms in
the multiple assignment instruction(s) using natural lan-
guage processing. In one embodiment, the data structure 1s
stored 1n a storage device (e.g., memory, disk drive) of
testing system 104.

As previously discussed, parser 202 1s further configured
to parse the instrumented program to identify each loop
instruction containing the identified multiple assignment
istruction(s) corresponding to a mock object(s). Examples
of software tools utilized by parser 202 to 1dentity such loop
instructions containing the identified multiple assignment
istruction(s) include, but not limited to, LoopProf.

In an alternative embodiment, parser 202 identifies loop
instructions containing the identified multiple assignment
instruction(s) corresponding to a mock object(s) based on
identifying certain terms (“while,” do-while,” “for,” etc.) 1n
the instrumented program near the identified multiple
assignment mstruction(s) corresponding to a mock object(s).
In one embodiment, such terms may be i1dentified by parser
202 using natural language processing. For example, such
terms may be stored 1n a data structure (e.g., table) which are
used by parser 202 to 1identily such terms 1n the instrumented
program near the i1dentified multiple assignment
istruction(s) using natural language processing. In one
embodiment, the data structure 1s stored 1n a storage device
(e.g., memory, disk drive) of testing system 104.

Furthermore, testing system 104 includes a counter 203
configured to count the number of variables 1n each of the
identified multiple assignment instructions corresponding to
a mock object. A “vaniable,” as used herein, refers to the
symbolic name for (or reference to) information. In one
embodiment, the counted variables correspond to the vari-
ables located 1n the left-hand side of the multiple assignment
istruction.

In one embodiment, a counter variable 1s used by counter
203 to count the number of variables 1n each of the 1dentified
multiple assignment 1nstructions corresponding to a mock
object. In one embodiment, such variables are identified

US 11,989,122 B2

9

based on 1dentitying the different types of variables in the
instrumented program, such as constants, global variables,
class variables, instance variables and local variables. In one
embodiment, such variables are i1dentified by counter 203
based on 1dentifying a special character at the start of the
variable name, such as in Ruby®. In one embodiment, the
number of such varnables that are counted in each of the
identified multiple assignment instructions 1s stored 1n a data
structure (e.g., table) residing 1n a storage device (e.g.,
memory, disk drive) of testing system 104. In one embodi-
ment, the number of variables that are counted in an i1den-
tified multiple assignment instruction (identified as corre-
sponding to a mock object) 1s associated with the 1dentified
multiple assignment instruction in the data structure dis-
cussed above.

In one embodiment, counter 203 counts the number of
variables, such as via a counter variable, in each of the
identified multiple assignment instructions corresponding to
a mock object based on identifying the “=" symbol in the
identified multiple assignment instruction and counting the
number of parameters on the left side of the “=" symbol in
the multiple assignment instruction. In one embodiment,
such counts are stored mn a data structure (e.g., table)
residing 1n a storage device (e.g., memory, disk drive) of
testing system 104.

In one embodiment, counter variables are set to an 1nitial
value (e.g., 0) from which to begin counting. After setting
the counter variable to the 1nitial value, counter 203 utilizes
an increment operator (e.g., ++) to increase the value of the
counter variable upon identifying a varniable (e.g., constant,
global varniable, class variable, instance variable, local vari-
able, etc.) 1n the 1dentified multiple assignment instruction as
discussed above.

Additionally, testing system 104 includes a code module
204 configured to insert a function in the mstrumented
program for each of the identified multiple assignment
instructions corresponding to a mock object, where the
function returns a tuple of the first “n” elements of the mock
object, where “n” corresponds to the counted number of
variables 1n the multiple assignment instruction obtained
from counter 203 and where “n” 1s a positive integer
number. In one embodiment, the function “mk_tuple(e,n)” 1s
inserted in the instrumented program for each of the i1den-
tified multiple assignment instructions corresponding to a
mock object, where the function “mk_tuple(e,n)” returns a
tuple of (e[0], . . ., e[n-1]), where e 1s a mock object.

For example, referring to the above example of the
Python® code smippet, the function “mk_tuple” 1s iserted
in the mstrumented program as shown below:

from sklearn.model_selection import train_test_split

train_test_split=instrument(train_test_split)

X _tramn, X_test, y_train, vy_test=mk tuple (train_
test_split (train_X, train_y, test_si1ze=0.2,
stratity=train_v), 4)

As shown above, the function “mk_tuple” returns a tuple
of the first n elements of the mock object, which in this
example corresponds to the number 4.

In one embodiment, code module 204 inserts such a
function 1n the mstrumented program via a soltware devel-
opment tool (e.g., Atom, GitHub®, Chrome® DevTools,
BuddyBoss®, Azure®, Vim, etc.).

In one embodiment, code module 204 1s further config-
ured to 1nsert a function 1n each 1dentified loop mstruction of
the instrumented program, where such a function returns of
list of the functions (“mk_tuple”) that were nserted in the
loop mstruction. In one embodiment, the function “mk_tu-

ple_list (z, n)” 1s a function that returns a list of mk_taple

10

15

20

25

30

35

40

45

50

55

60

65

10
(z[0], n), . .., mk_tuple (zlm-1], n) 1f *2” 1s a mock object,
where z[0], . . ., Z[m-1] are the elements of “z” and “m™ 1s
a pre-defined integer value.

In one embodiment, code module 204 1inserts such a
function 1n the mstrumented program via a soltware devel-
opment tool (e.g., Atom, GitHub®, Chrome® DevTools,
BuddyBoss®, Azure®, Vim, etc.).

Furthermore, testing system 104 includes a testing engine
205 configured to output the mnstrumented program (after
inserting the function(s) discussed above) to perform sofit-
ware testing, such as dynamic program analysis. By insert-
ing such function(s) 1n the mnstrumented program, the mock
objects will be able to be executed without causing a failure.

In one embodiment, testing engine 205 outputs the instru-
mented program to perform soiftware testing using a soft-
ware testing tool, such as, but not limited to, TestRail®,
PractiTest®, Testpad®, Testmo®, Spiralest®, Loadrun-
ner®, JIRA®, Mantishub, Telerik® Studio, etc.

A Tfurther description of these and other functions is
provided below in connection with the discussion of the
method for handling mock objects written in the form of
multiple assignment instructions in scripting programming
languages, such as Python® and Ruby®, such as in pro-
grams 1o test software by performing dynamic program
analysis.

Prior to the discussion of the method for handling mock
objects written 1n the form of multiple assignment instruc-
tions 1n scripting programming languages, such as Python®
and Ruby®, such as in programs to test soitware by per-
forming dynamic program analysis, a description of the
hardware configuration of testing system 104 (FIG. 1) 1s
provided below 1n connection with FIG. 3.

Referring now to FIG. 3, FIG. 3 illustrates an embodiment
of the present disclosure of the hardware configuration of
testing system 104 (FIG. 1) which 1s representative of a
hardware environment for practicing the present disclosure.

Testing system 104 has a processor 301 connected to
various other components by system bus 302. An operating
system 303 runs on processor 301 and provides control and
coordinates the functions of the various components of FIG.
3. An application 304 1n accordance with the principles of
the present disclosure runs in conjunction with operating
system 303 and provides calls to operating system 303
where the calls implement the various functions or services
to be performed by application 304. Application 304 may

include, for example, mstrumentation module 201 (FIG. 2),
parser 202 (FIG. 2), counter 203 (FIG. 2), code module 204

(FIG. 2) and testing engine 205 (FIG. 2). Furthermore,
application 304 may include, for example, a program for
handling mock objects written 1n the form of multiple
assignment instructions, such as in programs to test software
by performing dynamic program analysis, as discussed
turther below 1n connection with FIG. 4.

Referring again to FIG. 3, read-only memory (“ROM”)
305 1s connected to system bus 302 and includes a basic
input/output system (“BIOS”) that controls certain basic
functions of testing system 104. Random access memory
(“RAM”) 306 and disk adapter 307 are also connected to
system bus 302. It should be noted that software components
including operating system 303 and application 304 may be
loaded mto RAM 306, which may be testing system’s 104
main memory for execution. Disk adapter 307 may be an
integrated drive electronics (“IDE”) adapter that communi-
cates with a disk unit 308, e.g., disk drive. It is noted that the
program for handling mock objects written 1n the form of
multiple assignment instructions, such as in programs to test
software by performing dynamic program analysis, as dis-

US 11,989,122 B2

11

cussed further below 1n connection with FIG. 4, may reside
in disk unit 308 or 1n application 304.

Testing system 104 may further include a communica-
tions adapter 309 connected to bus 302. Communications
adapter 309 interconnects bus 302 with an outside network
(e.g., network 103 of FIG. 1) to communicate with other
devices, such as computing devices 101 and software devel-
opment system 102 of FIG. 1.

In one embodiment, application 304 of testing system 104
includes the software components of mstrumentation mod-
ule 201, parser 202, counter 203, code module 204 and
testing engine 205. In one embodiment, such components
may be implemented in hardware, where such hardware
components would be connected to bus 302. The functions
discussed above performed by such components are not
generic computer functions. As a result, testing system 104
1s a particular machine that i1s the result of implementing
specific, non-generic computer functions.

In one embodiment, the functionality of such software
components (e.g., instrumentation module 201, parser 202,
counter 203, code module 204 and testing engine 205) of
testing system 104, including the functionality for handling
mock objects written in the form of multiple assignment
instructions, such as in programs to test software by per-
forming dynamic program analysis, may be embodied 1n an
application specific integrated circuat.

The present invention may be a system, a method, and/or
a computer program product at any possible technical detail
level of integration. The computer program product may
include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium 1ncludes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or

10

15

20

25

30

35

40

45

50

55

60

65

12

network interface 1 each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine 1nstructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or either source code
or object code written 1n any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++, or the like, and
procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, 1n order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart 1llustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart 1llustrations and/or block diagrams, can be 1imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a computer, or other program-
mable data processing apparatus to produce a machine, such
that the mstructions, which execute via the processor of the
computer or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the tlowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series ol operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer 1mple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified 1n the tlow-
chart and/or block diagram block or blocks.

US 11,989,122 B2

13

The flowchart and block diagrams 1n the Figures 1llustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion ol instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted 1n the Figures. For example, two blocks shown in
succession may, in fact, be accomplished as one step,
executed concurrently, substantially concurrently, 1n a par-
tially or wholly temporally overlapping manner, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality mvolved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks 1in the block dia-
grams and/or flowchart i1llustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

As stated above, mn dynamic program analysis, mock
objects may be utilized to test the software. In object-
oriented programming, a mock object 1s a simulated object
that mimics the behavior of the smallest testable parts of an
application 1n controlled ways, most often as part of a
soltware testing mitiative, such as dynamic program analy-
s1s. A programmer typically creates a mock object to test the
behavior of some other object in much the same way that a
car designer uses a crash test dummy to simulate the
dynamic behavior of a human in vehicle impacts. Mock
objects have the same interface as the real objects they
mimic thereby allowing a client object to remain unaware of
whether 1t 1s using a real object or a mock object. Many
available mock object frameworks allow the programmer to
specily which, and in what order, methods will be invoked
on a mock object and what parameters will be passed to
them as well as what values will be returned. Thus, the
behavior of a complex object, such as a network socket, can
be mimicked by a mock object, allowing the programmer to
discover whether the object being tested responds appropri-
ately to the wide variety of states such mock objects may be
in. Many programming scripting languages, such as
Python® and Ruby®, can return multiple values, such as
from a method. For example, the os.path.splito method may
return multiple values. For instance, the statement dir,
file=os.path.split(“/foo/bar.txt””) 1n the Python® programing
language returns multiple values. Such statements may be
referred to as “multiple assignment™ instructions. A multiple
assignment 1nstruction 1s an assignment statement in which
one or more values are given to two or more variables. Mock
objects may be written 1n the form of such multiple assign-
ment istructions. A method call of such mock objects
though may not return multiple values because the method
call does not have any information about how many items
should be returned. As a result, a multiple assignment
instruction i scripting languages, such as Python® and
Ruby®, results 1n a failure. For example, the multiple
assignment instruction dir, file=mocko.split(*/foo/bar.text’)
would result 1n a failure. However, the use of mock objects
written 1n the form of multiple assignment instructions in
such scripting languages 1s essential 1 order to perform a
dynamic program analysis. As a result, attempts have been
made to avoid such failures by manually defining the default
return values at the time of the creation of the mock object,
such as via Python®’s unittest. mock package. However,

10

15

20

25

30

35

40

45

50

55

60

65

14

such an approach requires having knowledge of the number
of values each method returns, which 1s i1nfeasible. An
alternative approach to avoid such failures 1s to modity the
implementation of an existing scripting language to support
built-in mock objects and/or to reveal the necessary infor-
mation. However, moditying the implementation of the
scripting language to support built-in mock objects and/or to
reveal the necessary implementation 1s time-consuming and
difficult. Unfortunately, there 1s not currently a means for
cllectively handling mock objects written 1n the form of
multiple assignment instructions 1n scripting programming
languages, such as Python® and Ruby®, such as in pro-
grams 1o test software by performing dynamic program
analysis.

The embodiments of the present disclosure provide a
means for eflectively handling mock objects written 1n the
form of multiple assignment instructions 1n programs to test
soltware, such as by performing dynamic program analysis,
by 1nstrumenting the program and inserting a function in the
instrumented program for each identified multiple assign-
ment 1nstruction that was written as a mock object, where
the function returns a tuple of the first “n” elements of the
mock object, where “n” corresponds to the counted number
of varniables 1n the multiple assignment instruction, as dis-
cussed below 1n connection with FIG. 4.

FIG. 4 1s a flowchart of a method 400 for handling mock

objects written 1n the form of multiple assignment instruc-
tions, such as i1n programs to test soltware by performing
dynamic program analysis, 1n accordance with an embodi-

ment of the present disclosure.

Retferring to FIG. 4, 1n conjunction with FIGS. 1-3, 1n
operation 401, mstrumentation module 201 of testing system
104 instruments a program (e.g., program to test software,
such as by performing dynamic program analysis) to obtain
an mstrumented program having one or more mock objects.

As discussed above, 1n one embodiment, instrumentation
module 201 creates one or more mock objects thereby
forming an mstrumented program having one or more mock
objects. “Instrumentation,” as used herein, refers to the
measure ol a software product’s performance, to diagnose
errors, and to write trace information. In one embodiment,
such 1nstrumentation 1s a source instrumentation. In one
embodiment, such mstrumentation 1s a binary mstrumenta-
tion

In one embodiment, instrumentation of a program
involves profiling. “Profiling,” as used herein, refers to
measuring dynamic program behaviors during a training run
with a representative iput. In another embodiment, nstru-
mentation of a program nvolves inserting timers 1nto func-
tions. In another embodiment, instrumentation of a program
involves logging major events, such as crashes.

In one embodiment, such an mstrumented program con-
tains one or more mock objects. A “mock object,” as used
herein, refers to a simulated object that mimics the behavior
of the smallest testable parts of an application in controlled
ways, most oiten as part of a software testing initiative, such
as dynamic program analysis. For example, a mock object
may be created to test the behavior of another object, such
as a real object.

In one embodiment, mock objects have the same interface
as the real objects they mimic thereby allowing a client
object to remain unaware of whether 1t 1s using a real object
or a mock object.

In one embodiment, such mock objects are written 1n the
form of a multiple assignment instruction. A “multiple

US 11,989,122 B2

15

assignment instruction,” as used herein, 1s an assignment
statement 1n which one or more values are given to two or
more variables.

Examples of features and techniques utilized by instru-
mentation module 201 to mstrument a program to obtain an
instrumented program having one or more mock objects
include, but not limited to, hooking (range of techniques
used to alter or augment the behavior of the program either
by intercepting function calls or messages or events passed
between soltware components), instruction set simulator
(stmulation of 1nstructions at machine code level to provide
instrumentation), runtime intelligence (technologies, man-
aged services and practices for the collection, itegration,
analysis, and presentation of application usage levels, pat-
terns and practices), software performance analysis (tech-
niques to monitor code performance, including instrumen-
tation), a hardware performance counter, a dynamic tracing
framework for troublesome kernel and application problems
on production systems, an application response measure-
ment (standardized instrumentation application program-
ming interface), and dynamic recompilation (feature of
some emulators and virtual machines where the system may
recompile a program during execution).

Examples of software tools used by mstrumentation mod-
ule 201 to mstrument a program to obtain an nstrumented
program having one or more mock objects include, but not
limited to, Dynatrace®, SolarWinds® Server & Application
Monitor, ManageEngine® Applications Manager, Solar-
Winds® AppOptics Application Monitoring, AppDynam-
ics®, Splunk®IT Service Intelligence, AppEnsure, etc.

Furthermore, in one embodiment, examples of software
tools used by imstrumentation module 201 to create mock
objects during the mstrumentation of a program include, but
not limited to, EasyMock, Mockito, JMockit, etc.

An example of a mock object created 1n the instrumented
program by instrumentation module 201 1s illustrated 1n the
code snippets shown below. For instance, the original code
smppet 1n Python® prior to mstrumentation 1s shown below:

from sklearn.model_selection import train_test_split

X _tramn, X_test, y_train, v_test=train_test_split (train_X,

train_vy, test_size=0.2, stratify=train_vy)

Upon mstrumenting the above code by instrumentation
module 201, instrumentation module 201 creates a mock
object 1n the mnstrumented code as shown below:

from sklearn.model_selection import train_test_split

train_test_split=instrument(train_test_split)

X_train, X_test, y_train, y_test=train_test_split (train_X,

train_y, test_size=0.2, stratify=train_y)

In the example shown above, instrumentation module 201
inserted the “instrument” function to create a mock object
(instrument(train_test _split) representing the “train_
test_split” function.

In operation 402, parser 202 of testing system 104 parses
the instrumented program to identify one or more multiple
assignment instructions each corresponding to a mock
object.

As stated above, 1n one embodiment, parser 202 breaks
the instrumented program into parts (e.g., nouns (objects),
verbs (methods) and their attributes or options) that can be
managed by other programming (e.g., components 1 a
compiler). In one embodiment, the multiple assignment
instructions are 1dentified by identifying the syntax for
creating tuples. For example, the syntax (x, y)=(10, 20) in a
line of code mvolves creating a tuple of 10, 20 and then
looping over that tuple and taking each of the two items
obtained from looping and assigning them to x and y 1n
order.

b

10

15

20

25

30

35

40

45

50

55

60

65

16

In another embodiment, multiple assignment instructions
use an iterable, such as a list or string, 1n which the multiple
assignment instruction loops over the list or string. As a
result, parser 202 1s configured to identily the syntax for
looping over lists and strings thereby 1dentifying a multiple
assignment istruction.

Upon 1dentifying multiple assignment instructions, such
instructions are 1dentified as corresponding to mock objects
based on 1dentifying various types of mock objects written
as the multiple assignment instructions. An example of a
type of mock object includes a dummy (a class that you pass
into something when one does not care how 1t 1s used, such
as a “niceMock” 1mn EasyMock or a “mock”™ 1 JMock).

Another example of a type of mock object 1s a stub (a
class that returns a valid answer but always the same one).
For example, in the EasyMock language, a stub 1s a mock
with an expectation recorded, such as shown 1n the follow-
ing line of code:

(expect(mock.authornize(anyString(), anyString())). and-

StubReturn(true))

Another example of a type of mock object 1s a spy. In
EasyMock, the spy type of mock object means stubbing 1s
not occurring anymore. A precise call 1s recorded as shown
in the following line of code:

(expect(mock.authorize(anyString(),

andReturn(true))
and then the call 1s verified that i1t actually occurred as shown
in the following line of code:

(verily(mock))

In Mockito, the call 1s stubbed and the call 1s verified that
it occurred as shown in the following line of code: (verity
(authorizer).authorize(any(), any()))

A Turther example of a type of mock 1s a “true mock.” A
“true mock™ 1s a mock that knows how to verify itself. For
example, EasyMock and Mockito mocks are true mocks. As
a result, their implementations of a true mock 1s the same as
for the spy.

Another example of a type of mock 1s a “fake.” A fake has
business behavior.

Furthermore, a fake can be driven to behave in different
ways by giving it diflerent data. For instance, a fake may be
used for integration testing to stimulate parts of a system.

Examples of software tools utilized by parser 202 to
identily multiple assignment instructions as corresponding
to mock objects based on 1dentifying various types of mock
objects associated with the multiple assignment instructions
include, but not limited to, MockExtractor.

In an alternative embodiment, parser 202 identifies mul-
tiple assignment instructions as corresponding to mock
objects based on 1dentifying certain terms (“mock(),”
“Mockito.mock()), such as in API calls, method calls, etc.,
in the multiple assignment instructions of the mstrumented
program. In one embodiment, such terms may be 1dentified
by parser 202 using natural language processing. For
example, such terms may be stored 1n a data structure (e.g.,
table) which are used by parser 202 to 1dentity such terms in
the multiple assignment instruction(s) using natural lan-
guage processing. In one embodiment, the data structure 1s
stored 1n a storage device (e.g., memory 305, disk drive 308)
ol testing system 104.

In operation 403, parser 202 of testing system 104 parses
the mstrumented program to i1dentify each loop instruction
containing one or more of the identified multiple assignment
istructions corresponding to a mock object(s).

anyString())).

e

US 11,989,122 B2

17

As discussed above, examples of software tools utilized
by parser 202 to 1dentify such loop instructions containing
the 1dentified multiple assignment 1nstruction(s) include, but
not limited to, LoopProf.

In an alternative embodiment, parser 202 1dentifies loop
instructions containing the identified multiple assignment
istruction(s) corresponding to a mock object(s) based on
identifying certain terms (“while,” do-while,” “for,” etc.) 1n
the mstrumented program near the identified multiple
assignment 1mstruction(s) corresponding to a mock object(s).
In one embodiment, such terms may be i1dentified by parser
202 using natural language processing. For example, such
terms may be stored 1n a data structure (e.g., table) which are
used by parser 202 to identily such terms in the mstrumented
program near the 1dentified multiple assignment
instruction(s) using natural language processing. In one
embodiment, the data structure 1s stored 1n a storage device
(e.g., memory 305, disk drive 308) of testing system 104.

In operation 404, counter 203 of testing system 104
counts the number of vanables 1n each of the identified
multiple assignment 1nstructions corresponding to a mock
object.

As stated above, a “variable,” as used herein, refers to the
symbolic name for (or reference to) information. In one
embodiment, the counted variables correspond to the vari-
ables located 1n the left-hand side of the multiple assignment
istruction.

In one embodiment, a counter variable 1s used by counter
203 to count the number of variables 1n each of the identified
multiple assignment 1nstructions corresponding to a mock
object.

In one embodiment, such variables are 1dentified based on
identifying the different types ol variables in the instru-
mented program, such as constants, global variables, class
variables, instance variables and local variables. In one
embodiment, such vanables are i1dentified by counter 203
based on 1dentifying a special character at the start of the
variable name, such as in Ruby®. In one embodiment, the
number of such variables that are counted in each of the
identified multiple assignment instructions 1s stored 1n a data
structure (e.g., table) residing 1n a storage device (e.g.,
memory 305, disk drive 308) of testing system 104. In one
embodiment, the number of variables that are counted 1n an
identified multiple assignment 1nstruction (identified as cor-
responding to a mock object) 1s associated with the i1denti-
fied multiple assignment instruction 1n the data structure
discussed above.

In one embodiment, counter 203 counts the number of
variables, such as via a counter variable, in each of the
identified multiple assignment instructions corresponding to
a mock object based on identifying the “=" symbol in the
identified multiple assignment instruction and counting the
number of parameters on the left side of the *“=" symbol in
the multiple assignment 1nstruction.

In one embodiment, such counts are stored in a data
structure (e.g., table) residing 1n a storage device (e.g.,
memory 305, disk drive 308) of testing system 104.

In one embodiment, counter variables are set to an 1nitial
value (e.g., 0) from which to begin counting. After setting
the counter variable to the 1nitial value, counter 203 utilizes
an icrement operator (e.g., ++) to increase the value of the
counter variable upon identifying a varnable (e.g., constant,
global varniable, class variable, instance variable, local vari-
able, etc.) 1n the 1dentified multiple assignment instruction as
discussed above.

In operation 405, code module 204 of testing system 104

inserts a first function 1n the instrumented program for each

10

15

20

25

30

35

40

45

50

55

60

65

18

of the identified multiple assignment instructions corre-
sponding to a mock object, where the first function returns
a tuple of the first “n” elements of the mock object, where
“n” corresponds to the counted number of vanables 1n the
multiple assignment instruction obtained from counter 203
and where “n” 1s a positive integer number.

As discussed above, 1n one embodiment, the function
“mk_tuple(e,n)” 1s mserted 1n the mstrumented program for
cach of the identified multiple assignment instructions cor-
responding to a mock object, where the function “mk_tuple
(e,n)” returns a tuple of (e[0], . . ., e[n-1]), where e 1s a mock
object.

For example, referring to the above example of the
Python® code snippet, the function “mk_tuple” 1s nserted
in the instrumented program as shown below:

from sklearn.model_selection import train_test_split

train_test_split=instrument(train_test_split)

X _tramn, X_test, vy _tramn, v_test=mk tuple (train_
test_split (train_X, train_y, test_s1ze=0.2,
stratify=train_y), 4)

As shown above, the function “mk_tuple” returns a tuple
of the first n elements of the mock object, which 1n this
example corresponds to the number 4.

In one embodiment, code module 204 inserts such a

function 1n the mstrumented program via a solftware devel-
opment tool (e.g., Atom, GitHub®, Chrome® DevTools,
BuddyBoss®, Azure®, Vim, etc.).

In operation 406, code module 204 of testing system 104
inserts a second function in each identified loop 1nstruction
of the instrumented program, where the second function
returns of list of the first functions that were inserted in the
loop 1struction.

As stated above, 1n one embodiment, code module 204 1s
turther configured to 1nsert a function 1n each i1dentified loop
instruction of the instrumented program, where such a
function returns of list of the functions (“mk_tuple™) that
were 1inserted in the loop struction. In one embodiment, the
function “mk_tuple_list (z, n)” 1s a function that returns a list
of mk_tuple (z[0], n), . . ., mk tuple (z[m-1], n) 1f “z” 1s a
mock object, where z[0], . . ., zlm-1] are the elements of “z”
and “m” 1s a pre-defined mteger value.

In one embodiment, code module 204 1inserts such a
function 1n the instrumented program via a software devel-
opment tool (e.g., Atom, GitHub®, Chrome® DevTools,
BuddyBoss®, Azure®, Vim, etc.).

In operation 407, testing engine 205 of testing system 104
outputs the mstrumented program to perform software test-
ing.

As discussed above, testing engine 2035 1s configured to
output the instrumented program (after inserting the
function(s) discussed above) to perform soltware testing,
such as dynamic program analysis. By mserting such func-
tion(s) 1n the instrumented program, the mock objects will
be able to be executed without causing a failure.

In one embodiment, testing engine 205 outputs the instru-
mented program to perform soiftware testing using a soft-
ware testing tool, such as, but not limited to, TestRail®,
PractiTest®, Testpad®, Testmo®, Spiralest®, Loadrun-
ner®, JIRA®, Mantishub, Telerik® Studio, etc.

In one embodiment, the instrumented program 1s output-
ted by testing system 104 to be utilized by the users of
computing devices 101 to test the software under develop-
ment (e.g., software developed using software development
system 102), such as by performing dynamic program
analysis.

In this manner, the principles of the present disclosure
provide the means for effectively handling mock objects in

US 11,989,122 B2

19

the form of multiple assignment instructions in programs to
test software, such as by performing dynamic program
analysis, by mstrumenting the program to obtain an instru-
mented program having one or more mock objects and
iserting a function in the instrumented program for each
identified multiple assignment instruction that was written as
a mock object The 1nserted function returns a tuple of the
first “n” elements of the mock object, where “n” corresponds
to the counted number of variables 1n the multiple assign-
ment 1nstruction, such as the number of variables located 1n
the left-hand side of the multiple assignment 1nstruction. By
iserting such a function in the instrumented program, the
mock objects will be able to be executed without causing a
failure.

Furthermore, the principles of the present disclosure
improve the technology or technical field involving software
testing.

As discussed above, in dynamic program analysis, mock
objects may be utilized to test the software. In object-
oriented programming, a mock object 1s a simulated object
that mimics the behavior of the smallest testable parts of an
application in controlled ways, most often as part of a
software testing mitiative, such as dynamic program analy-
s1s. A programmer typically creates a mock object to test the
behavior of some other object in much the same way that a
car designer uses a crash test dummy to simulate the
dynamic behavior of a human in vehicle impacts. Mock
objects have the same interface as the real objects they
mimic thereby allowing a client object to remain unaware of
whether 1t 1s using a real object or a mock object. Many
available mock object frameworks allow the programmer to
specily which, and in what order, methods will be invoked
on a mock object and what parameters will be passed to
them as well as what values will be returned. Thus, the
behavior of a complex object, such as a network socket, can
be mimicked by a mock object, allowing the programmer to
discover whether the object being tested responds appropri-
ately to the wide variety of states such mock objects may be
in. Many programming scripting languages, such as
Python® and Ruby®, can return multiple values, such as
from a method. For example, the os.path.splito method may
return multiple values. For instance, the statement dir,
file=os.path.split(*/foo/bar.txt””) 1n the Python® programing
language returns multiple values. Such statements may be
referred to as “multiple assignment™ 1nstructions. A multiple
assignment 1struction 1s an assignment statement 1n which
one or more values are given to two or more variables. Mock
objects may be written 1n the form of such multiple assign-
ment instructions. A method call of such mock objects
though may not return multiple values because the method
call does not have any information about how many items
should be returned. As a result, a multiple assignment
istruction 1n scripting languages, such as Python® and
Ruby®, results in a failure. For example, the multiple
assignment instruction dir, file=mocko.split(*/foo/bar.text”)
would result 1n a failure. However, the use of mock objects
written 1n the form of multiple assignment instructions in
such scripting languages 1s essential in order to perform a
dynamic program analysis. As a result, attempts have been
made to avoid such failures by manually defining the default
return values at the time of the creation of the mock object,
such as via Python®’s unittest.mock package. However,
such an approach requires having knowledge of the number
of values each method returns, which 1s i1nfeasible. An
alternative approach to avoid such failures 1s to modity the
implementation of an existing scripting language to support
built-in mock objects and/or to reveal the necessary infor-

10

15

20

25

30

35

40

45

50

55

60

65

20

mation. However, moditying the implementation of the
scripting language to support built-in mock objects and/or to
reveal the necessary implementation 1s time-consuming and
difficult. Unfortunately, there 1s not currently a means for
cllectively handling mock objects written 1n the form of
multiple assignment instructions 1n scripting programming
languages, such as Python® and Ruby®, such as in pro-
grams 1o test software by performing dynamic program
analysis.

Embodiments of the present disclosure improve such
technology by imstrumenting a program to test software so as
to obtain an istrumented program having one or more mock
objects. “Instrumentation,” as used herein, refers to the
measure of a software product’s performance, to diagnose
errors, and to write trace information. In one embodiment,
such an instrumented program contains one or more mock
objects. A “mock object,” as used herein, refers to a simu-
lated object that mimics the behavior of the smallest testable
parts ol an application 1n controlled ways, most often as part
of a software testing initiative, such as dynamic program
analysis. For example, a mock object may be created to test
the behavior of another object. The mstrumented program 1s
parsed to 1identily one or more multiple assignment nstruc-
tions each corresponding to a mock object. A “multiple
assignment instruction,” as used herein, 1s an assignment
statement 1n which one or more values are given to two or
more variables. A “multiple assignment instruction corre-
sponding to a mock object,” as used herein, refers to a mock
object written 1n the form of a multiple assignment instruc-
tion. A function 1s then mserted 1n the instrumented program
for each of the identified multiple assignment instructions
corresponding to a mock object, where the function returns
a tuple of the first “n” elements of the mock object. The
instrumented program (after inserting the function(s) dis-
cussed above) 1s outputted to perform software testing, such
as dynamic program analysis. In this manner, by i1nserting
such function(s) i the instrumented program, the mock
object(s) will be able to be executed without causing a
failure. Furthermore, in this manner, there 1s an improve-
ment 1n the technical field involving software testing.

The technical solution provided by the present disclosure
cannot be performed 1n the human mind or by a human using
a pen and paper. That 1s, the technical solution provided by
the present disclosure could not be accomplished in the
human mind or by a human using a pen and paper 1n any
reasonable amount of time and with any reasonable expec-
tation of accuracy without the use of a computer.

The descriptions of the various embodiments of the
present disclosure have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill 1in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

The mvention claimed 1s:

1. A computer-implemented method for handling mock
objects written 1n a form of multiple assignment instruc-
tions, the method comprising:

inserting a first function in each multiple assignment

istruction of a program, wherein said first function
returns a tuple of a first n elements of a mock object;
and

US 11,989,122 B2

21

outputting said program to perform software testing after
inserting said first function 1n said program for each
multiple assignment instruction.

2. The method as recited 1n claim 1 further comprising;:

istrumenting said program to obtain an instrumented

program having one or more mock objects, wherein
said one or more mock objects are simulated objects
that mimic a behavior of real objects.

3. The method as recited in claim 2 further comprising:

parsing said istrumented program to 1dentify one or more

multiple assignment instructions each corresponding to
said mock object.

4. The method as recited 1n claim 3 further comprising:

counting a number of variables in each of said one or

more 1dentified multiple assignment 1nstructions.

5. The method as recited 1n claim 3 further comprising;:

parsing said mstrumented program to identify each loop

istruction containing one or more of said identified
one or more multiple assignment instructions.

6. The method as recited 1n claim 3 further comprising:

iserting a second function in each of said identified loop

istruction of said mstrumented program, wherein said
second function returns of list of said first functions.

7. The method as recited 1n claim 1, wherein said program
1s to perform dynamic program analysis.

8. A computer program product for handling mock objects
written 1 a form of multiple assignment instructions, the
computer program product comprising one or more coms-
puter readable storage mediums having program code
embodied therewith, the program code comprising programs-
ming instructions for:

iserting a first function 1 each multiple assignment

istruction of a program, wherein said first function
returns a tuple of a first n elements of a mock object;
and

outputting said program to perform software testing after

mserting said first function in said program for each
multiple assignment instruction.

9. The computer program product as recited in claim 8,
wherein the program code further comprises the program-
ming instructions for:

instrumenting said program to obtain an instrumented

program having one or more mock objects, wherein
said one or more mock objects are simulated objects
that mimic a behavior of real objects.

10. The computer program product as recited in claim 9,
wherein the program code further comprises the program-
ming instructions for:

parsing said istrumented program to 1dentify one or more

multiple assignment instructions each corresponding to
said mock object.

11. The computer program product as recited i claim 10,
wherein the program code further comprises the program-
ming instructions for:

counting a number of variables in each of said one or

more 1dentified multiple assignment 1nstructions.

12. The computer program product as recited in claim 10,
wherein the program code further comprises the program-
ming instructions for:

10

15

20

25

30

35

40

45

50

55

22

parsing said mstrumented program to i1dentily each loop
istruction containing one or more of said identified
one or more multiple assignment instructions.

13. The computer program product as recited 1n claim 12,
wherein the program code further comprises the program-
ming instructions for:

inserting a second function 1n each of said 1dentified loop

instruction of said mstrumented program, wherein said
second function returns of list of said first functions.

14. The computer program product as recited 1n claim 8,
wherein said program 1s to perform dynamic program analy-
S18.
15. A system, comprising:
a memory for storing a computer program for handling
mock objects written 1in a form of multiple assignment
instructions; and
a processor connected to said memory, wheremn said
processor 1s configured to execute program instructions
of the computer program comprising:
iserting a first function in each multiple assignment
instruction of a program, wherein said first function
returns a tuple of a first n elements of a mock object;
and

outputting said program to perform software testing
after inserting said {first function in said program for
cach multiple assignment instruction.

16. The system as recited in claim 15, wherein the
program instructions of the computer program further com-
prise:

instrumenting said program to obtain an instrumented
program having one or more mock objects, wherein
said one or more mock objects are simulated objects
that mimic a behavior of real objects.

17. The system as recited in claim 16, wherein the
program instructions of the computer program further com-
prise:

parsing said mstrumented program to identify one or more
multiple assignment 1nstructions each corresponding to
said mock object.

18. The system as recited in claim 17, wherein the
program instructions of the computer program further com-
prise:

counting a number of variables 1n each of said one or
more 1dentified multiple assignment instructions.

19. The system as recited in claim 17, wherein the
program instructions of the computer program further com-
prise:

parsing said mstrumented program to i1dentily each loop
istruction containing one or more of said identified
one or more multiple assignment instructions.

20. The system as recited in claim 19, wherein the
program instructions of the computer program further com-
prise:

inserting a second function 1n each of said 1dentified loop
instruction of said mstrumented program, wherein said
second function returns of list of said first functions.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

