12 United States Patent

Gurcan et al.

US011978536B2

US 11,978,536 B2
*May 7, 2024

(10) Patent No.:
45) Date of Patent:

(54) SYNTHETIC IHC-STAINED DIGITAL SIDES
GENERATED USING ARTIFICIAL NEURAL
NETWORKS

(71) Applicant: Ohio State Innovation Foundation,
Columbus, OH (US)

(72) Inventors: Metin Gurcan, Winston-Salem, NC

(US); Caglar Senaras, Findhoven
(NL); Gerard Lozanski, West Dublin,

OH (US)

(73) Assignee: QOhio State Innovation Foundation,
Columbus, OH (US)

( *) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 0 days.

This patent 1s subject to a terminal dis-
claimer.

(21)  Appl. No.: 18/104,662

(22) Filed:  Feb. 1, 2023

(65) Prior Publication Data
US 2023/0178187 Al Jun. 8, 2023

Related U.S. Application Data

(62) Davision of application No. 16/271,356, filed on Feb.
8, 2019, now Pat. No. 11,621,038.

(60) Provisional application No. 62/628,027, filed on Feb.

3, 2018.
(51) Int. CL
G16B 40/30 (2019.01)
GOIN 33/50 (2006.01)
GO6N 3/045 (2023.01)
GO6N 3/088 (2023.01)
GO6N 20/20 (2019.01)

Training Phase

raming

fdataset

P A3 P g N Bl B, T ¥ [ A . - R R PR P [T TR PP

.......................................................................................................................................................................

(52) U.S. CL
CPC ... G16B 40/30 (2019.02); GOIN 33/5005
(2013.01); GO6N 3/045 (2023.01); GO6N
3/088 (2013.01); GO6N 20/20 (2019.01)

(58) Field of Classification Search
CPC .... G16B 40/30; GOIN 33/5005; GO6N 3/045;
GO6N 3/088; GO6N 20/20; GO6N 7/01;
GO6N 3/047; GO6N 3/08

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

3/2021 Guo
4/2023 Gurcan .................. GO6N 3/047

702/19

10,943,186 B2
11,621,058 B2 *

2014/0270457 Al 9/2014 Bhargava

(Continued)

OTHER PUBLICATTONS

M. Khalid Khan Niazi, Anjali A. Satoskar, Metin N. Gurcan, “An

automated method for counting cytotoxic T-cells from CDS8 stained
images of renal biopsies,” Proc. SPIE 8676, Medical Imaging 2013:
Digital Pathology, 867606 (Mar. 29, 2013); doi: 10.1117/12.
2007977 (Year: 2013).*

(Continued)

Primary Examiner — Andrae S Allison

(74) Attorney, Agent, or Firm — Meunier Carlin &
Curfman LLC

(57) ABSTRACT

Disclosed herein are systems, methods and computer-pro-
gram products to create synthetic immunohistochemistry
(IHC) stained digital slides generated using artificial neural
networks (ANNs). In some implementations, the created
digital slides can be used as a ground truth to evaluate a
method of analyzing IHC stained tissues.

13 Claims, 9 Drawing Sheets

Interance Phase

inout
data

|

Generstor

AU, S,

Synthetic
image:

bl B R R R R R R o R SR o R b o o R b o o

illustrates an exemplary overview system for waming and inference phases to create

syathetic digital sides;



US 11,978,536 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2015/0347702 Al* 12/2015 Chukka .................. G16H 30/20
702/19

2017/0249548 Al 8/2017 Nelson

2017/0270660 Al* 9/2017 Krueger ................ GO6T 7/0012

2017/0274019 Al* 9/2017 Wang ..........cccoenn, A61K 35/30

2017/0298446 Al 10/2017 Byrd

2019/0087780 Al 3/2019 Cerqueira

2019/0156476 Al 5/2019 Yoshida

2019/0156481 Al 5/2019 Sekiguchi

2019/0266486 Al* 8§/2019 Yamada ................ GO6N 3/08

2019/0347467 Al* 11/2019 Ohsaka ................ GO6V 10/449

2020/0340909 Al* 10/2020 Ohsaka .............. GOIN 15/1475

2020/0388028 Al* 12/2020 Agus ......oooeevvvvennnnn, G16H 50/20

2020/0394825 Al* 12/2020 Stumpe ........ccoeeenneee, GOIN 1/30

2020/0405148 Al* 12/2020 Tran ..................... A61B 3/0025

2021/0325308 Al* 10/2021 Kannan .............. GOIN 21/6458

2022/0189150 Al 6/2022 Bentaieb

OTHER PUBLICATIONS

Diem et al., Image analysis for accurately counting CD4+ and CD8+
T cells iIn human tissue, J Virol Methods. Sep. 15, 2015; 222:

117-121. do1:10.1016/7.jviromet.2015.06.004. (Year: 2015).*

A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” 1n Proc. ICML, 2013.
B. B. Cheikh, C. Bor-Angelier, and D. Racoceanu, “A model of
tumor architecture and spatial interactions with tumor microenviron-
ment 1n breast carcinoma,” 1n SPIE Medical Imaging, 2017, pp.
101400C-101400C-8.

C. Szegedy, V. Vanhoucke, S. Iofle, J. Shlens, and Z. Wojna,

“Rethinking the inception architecture for computer vision,” In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2016, pp. 2818-2826.

C. Taylor and R. M. Levenson, “Quantification of
immunohistochemistry—issues concerning methods, utility and
semiquantitative assessment II,” Histopathology, vol. 49, pp. 411-
424, 2006.

D. C. Zaha, “Significance of immunohistochemistry in breast can-
cer,” World journal of clinical oncology, vol. 5, p. 382, 2014.

D. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

D. Shen, G. Wu, and H.-I. Suk, “Deep Learning in Medical Image
Analysis,” Annual Review of Biomedical Engineering, 2017.

[. Goodfellow, J. Pouget-Abadie, M. Murza, B. Xu, D. Warde-
Farley, S. Ozair, et al., “Generative adversarial nets,” in Advances
in neural information processing systems, 2014, pp. 2672-2680.
J.L.Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv
preprint arXiv:1607.06450, 2016.

K. Niazi, F. Abas, C. Senaras, M. Pennell, B. Sahiner, W. Chen, et

al., “Nuclear IHC enumeration: A digital phantom to evaluate the
performance of automated algorithms in digital pathology,” PLoS
ONE 2018, 13(5): e0196547.

M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P.
Goyal, et al., “End to end learning for self-driving cars,” arXiv
preprint arXiv:1604.07316, 2016.

M. D. Reid, P. Bagci, N. Ohike, B. Saka, I. E. Seven, N. Dursun, et

al., “Calculation of the Ki67 index in pancreatic neuroendocrine
tumors: a comparative analysis of four counting methodologies,”
Modern pathology: an oflicial journal of the United States and
Canadian Academy of Pathology, Inc, vol. 28, p. 686, 2015.

M. E. A. Fauzi, M. Pennell, B. Sahiner, W. Chen, A. Shana’ah, J.

Hemminger, et al., “Classification of follicular lymphoma: the eflect

of computer aid on pathologists grading,” BMC medical informatics
and decision making, vol. 15:115, 2015.

M. K. K. Niazi, E. Downs-Kelly, and M. N. Gurcan, “Hot spot
detection for breast cancer 1in Ki-67 stained slides: image dependent
filtering approach,” in SPIE Medical Imaging, 2014, 9041, 904106.

M. K. K. Niazi, M. Pennell, C. Elkins, J. Hemminger, M. Jin, S.
Kirby, et al., “Entropy based quantification of Ki-67 positive cell
images and 1ts evaluation by a reader study,” in SPIE Medical
Imaging, 2013, 8676, 86760I-1.

M. K. K. Niazi, Y. Lin, F Liu, A. Ashoka, M. Marcellin, G.
Tozbikian, et al., “Pathological image compression for big data
image analysis: Application to hotspot detection in breast cancer,”
Artificial Intelligence In Medicine 95 (2019) 82-87.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in International
Conference on Medical Image Computing and Computer-Assisted
Intervention, 2015, pp. 234-241.

P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image
translation with conditional adversarial networks,” arXiv preprint
arX1v:1611.07004, 2016.

S. D1 Cataldo, E. Ficarra, A. Acquaviva, and E. Macii, “Automated
segmentation of tissue 1mages for computerized IHC analysis,”
Computer methods and programs in biomedicine, vol. 100, pp. 1-15,
2010.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arX1v:1502.03167, 2015.

V. J. Tuominen, S. Ruotoistenmaiki, A. Viitanen, M. Jumppanen, and
J. Isola, “ImmunoRatio: a publicly available web application for
quantitative image analysis of estrogen receptor (ER), progesterone
receptor (PR), and Ki-67,” Breast cancer research, vol. 12, p. R56,
2010.

X. Wang and A. Gupta, “Generative image modeling using style and
structure adversarial networks,” 1n European Conference on Com-
puter Vision, 2016, pp. 318-335.

Caglar Senaras, Berkman Sahiner, Gary Tozbikian, Gerard Lozanski,
Metin N. Gurcan, “Creating synthetic digital slides using condi-
tional generative adversarial networks: application to Ki67 stain-
ing,” Proc. SPIE 10581, Medical Imaging 2018: Digital Pathology,
1058103 (Mar. 6, 2018); (Year: 2018).

Xu, Zidui, X1 Li, Xithan Zhu, Luyang Chen, Yonghong He, and
Yupeng Chen. “Effective Immunohistochemistry Pathology Micros-
copy Image Generation Using CycleGAN.” Frontiers in Molecular
Biosciences 7 (2020) (Year: 2020).

Xu, Z., Moro, C. F., Boz6ky, B., and Zhang, Q. (2019). Gan-based
virtual restaining: a promusing solution for whole slide image
analysis. arXiv:1901.04059 (Year: 2019).

J. Tremblay et al., “Training Deep Networks with Synthetic Data:
Bridging the Reality Gap by Domain Randomization,” 2018 IEEE/
CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), 2018, pp. 1082-10828, do1: 10.1109/CVPRW.
2018.00143. (Year: 2018).

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. “U-net:
Convolutional networks for biomedical 1mage segmentation.” Inter-
national Conference on Medical image computing and computer-
assisted intervention. Springer, Cham, 2015. (Year: 2015).
Senaras, Caglar, et al. “Creating synthetic digital slides using
conditional generative adversarial networks: application to Ki67
staining.” Medical Imaging 2018: Digital Pathology. vol. 10581.
SPIE, 2018. (Year: 2018).

Isola, Phillip, et al. “Image-to-image translation with conditional
adversarial networks.” Proceedings of the IEEE conference on
computer vision and pattern recognition. 2017. (Year: 2017).
Bayramoglu, Neslihan, et al. “Towards virtual H&E staining of
hyperspectral lung histology 1mages using conditional generative
adversarial networks.” Proceedings of the IEEE International Con-
ference on Computer Vision Workshops. 2017. (Year: 2017).

* cited by examiner



US 11,978,536 B2

Sheet 1 of 9

May 7, 2024

U.S. Patent

L 94

‘SOPIS (RS

[P O1IOUTHAS

a1eei0 03 sospyd sousieiul pur JUINIRI] IO WISSAS MoiAIoA0 Arejdwioxs ug seBusH [ O

R R R R R R R R R R R R R L R R R S R R R R R S R R R R R R R S g

adeuu
JIIBYIUAG

................. e

10IRISLTE)

ASeUd 32UBIBLUS

*****************************************************************************************

###########################################

A0IPURULIDISIY

HOCIEDEL

ja5e1ep
auiuiesl

BSRUJ duiuies]




US 11,978,536 B2

¢ Bl

4 _a I I T TR R I T | I I O TR I I
L] L L] L
T T e e e

N PC T P P L

Sheet 2 of 9

AT ‘el
.T‘ T‘.'* T‘.T‘ ".T‘ T‘.'* T‘.T‘ "T

May 7, 2024

fsrersrrrrrrrrr-rrrrfrrrITT
LR R T T A R R R R T R R R B R R |

U.S. Patent



US 11,978,536 B2

Sheet 3 of 9

May 7, 2024

U.S. Patent

= =
3

%«ﬁﬁ
ek 8

ATty
SAN

Ax33Ehd
21{1 

.._.....
' ks LX) LA AL
....w.q.r...--.r..ﬁ.._...-_i-.._- l___..__.__.

2N _ .,x.m._

o bk h oa b o hoa I . . . . . ' .
- ram or ik R . R »
|...hnnl_l.._....l L ht##% - .. .. f "."n‘. a ¥. - vl -
- > AL . . . L
A Ll e e, uﬂ.? ._ﬁ e Ay
l-.-.__.._..q.-..-..r..-_ -y ”I""I . L ' .
s o g d o W X ' i . . . .
P g a b a s e > - . .. T . R
....ln ) -...r....r.._q.r e R e : . . "
._...__nl-..__ni.___......__ e s . LT
CR O RN N s R g
o

[ ] Y -k 4 B A -
. l”- P WK A ..___.-_-..._.....
....r * e e a  aa

" ....q...k!i.qtbtbu___....b.....i...k

Sesna ﬁ..yﬂﬁxwaww
: S . .-."..r.n . )

x 1-'4'-'4- ¥ l' o *
l
[ ]

:‘- L)
*

.-
» .....__....lul."......._n N I DL A e
..l”.__.__.r.r.'l_ .__..r.r.r .Llr.l._..”-. - .._.l..t.r....-...__.ri.-....__.-.l_-.-..__ T,
. i.._ﬂ.l.._.._i - 0 Wi e om oo e B A A . . .
..-.....i.r.-.........nk.-_.r-_.....-..-..__.l.r.-..-_ -..-_.__ R ...ﬁ_
tll.....n...l"-...-k-_...4.-.-. E) ok - - N
2 > B i Pl Tl e Y ....r.r & ar . . . . .
...-_Il.._..-.I.... &Lk dr bk oa [ e I - h.%
» e B B & i [ ] | F o ir 4 4 a .TH .
i 4 - i i i - B a i om b oa
ik § i« AW EaC N RO ol W -
. X PO ] iy & a a M i b ko2 h *
. .I". ™ .-..._..1........__.._-1 l.....-_.._ li.l.__. iy i.......l....i.r.r.r.l.l.. ] . l.'l.. .
L) g T e e e . Ny
- T e et -~
W e .-__F.___ __.--..-_.____r.._.u.r.r.._.-_ -.___.___I.q.r.r.-_t.__ “ﬂ- ..“ -H.Juw.-. m i -
. . - ﬁ._-.#._l.._-.l. F Y e l.l.l...
. -

.
- -
.
. -
. B
A -
. .
A ’
. .
A -
. .
- r
. B
A -
. a
A -
. B
- r
. .
- e e . .. .o
.-ll ............ *"""""""'l

¥ -

P

-

.

P

¥

¥

¥

[ I ] - .

. .

.-..-...1. ‘__-.i_-.i‘.

il [

7 43318

.......... afe

g '.".-..I.'.I. .I.I_.I. .I.I.I. .I.'.I. .I.I_.I. .I.I.I. .I.'.I. .I.I.".I_.I ) . . C
.__.q._."_..n_.._."_.._..q._.._.._..r."_..n_.._." H,.m

H!-\......_

S e, - . - .
S s aaa e a el

~..u1-1u1-1-1.-1-1-1-1-1-1.-1-1-1.-1-1-?1-. : _H_L. .

SHEUH um»ﬁ%} 2 fesy

sajdwexs anayuAs

T T T o T O o T T o e T T o o T T T e e T T e e T T T T e o o T T T S o e S e T O S T T T O T T T "I o S Sy

THIOMISU "] JOIBUIULIOSIP A1 Jo Sunneny o3 saensnil ¢ O

nnnnn - m - ]
-..._.._.._l:.n _-_l.._ A N NN
4 2 s k. O e
.-..._....nl.r.__.._.__.__.ln.-.- ar a kW .
F I ERE R A ol
TR Y N P
sk ok a B .__.n.__n.r.r.r
Ay Bk R i oa kg & a
- . b & &= & h = oa r 2 =
.-._-..-_....tn.._.._.....-..-_.....-.1......_!.1".-..._....._..1_-..._...

CREN PN R e a_ .
S :.nn...nl.q.....-..-..-.'.__ r.ri.r..?nlnrﬁn.—#l&i
i

g™ .rn.r.-_.-..-_.__.__.._...._.__.__.r.v.-..._.__.t .._.“Iuii.._n.....-..._....i.-_l.__....-..._.__.r._._-.
R N PN BN R M o A T
VoA e e PN RO L N R WA
N .'l"*"‘.r“.' h b a2
s - B R A B ke ar [l SR
Pl e R M N LRI AL
e e e e T e
[ ] b"l‘**'bh.l'*‘**l.‘.'l
L R L e A N AL
& [ T o R e e e M L A R A 1 Tl
.-_.rn.il....l...l.tl.-.'.._.r....._.._...l.tkl.t.
b oa om g ko adp ko b o o W A s g F ok oa
B R A d i a de i Ak a A A R TR Ak
.._...r.._.._...._-..._.._n.-..ll.rn.r.rn.._.._lmlrn.__.
R I A I L o .
A o L i
N N N NN s RN
A T 2 Bk owax Fh Ik &k
[ l."#'*l!b*l"l.'*lh.
i s W oa . or M F R R N oa g
i g 8 a &k sl 1 r bk om k' E hoak
- P 1....................._.1*
r * a bl.hbl.-.".l"'bb .
.ﬂ.u"....#k.r.k o nt O
Pt Tt e e e ..__-._-...r.._.r.._.q
“ —."r'—.-.—.'j- —.'l.‘.'—...'-1-—.'—.-
.l - . .
.
LT
.
; .
4 P
- .
P L
: .
4 P
- .
. T
: .
J . 4
- .
: .
Jd .
- .
P e
dr m m om oW W W W W W W oW '.-'"""""""'-1-
&
“a
Y
‘n
&
‘n
&
‘xo.
..rl.‘. ‘I_...lﬁ.
atwt ¥
i %
.-
.l"l_-m...__ .
e o
-
‘.-l.
._-__.1..LT
N N N
.ﬁ......&......k......&......&......&...&...
[
[
N .
Y -
a0 .
-lr.ll.
..
;.__nf“. % ,m M M m ww.w. .M..w
Lo .. . . hl-.h— " “ u .....

sajduwiexs [pay



US 11,978,536 B2

Sheet 4 of 9

May 7, 2024

U.S. Patent

r.gl WL Gy
ar
N

ol

" m oy s aomaoamoaoa .
b & k bk b & oa

r . .
a ax & o
b b & om

L |
iy

L]
L}

-
FERC I N R

X

m b dr k2 a hoa k a ..
Y EN YR XN

ke
F FF ¥ &

ir
[]

]
»
»
»
X
X
X

oy
....“-_“.__ N
e A
o
11..11...1.._......._.1..1......_ Fog
n i drodp i b b A oa
n F w i &k gk bk Noaa

-

a1 2 k' h a2 sl s a ak

LI TN B R R R R I




US 11,978,536 B2

Sheet 5 of 9

May 7, 2024

U.S. Patent

GOl

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

3905
PSS CHBUILAG VY @1esu))

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

vOS
SINAUL SIOW JO BUQ BU L JO UDHIO
v 18887 1y Buisny abew inding uy ‘smiasy Bugnduwiod
SU L U Bunnosxy Jojesauss) pauiRi] v Ag ‘B1eal)

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

208
IPUS QRBYIUAS pauisa( v UNAA POIRIDOSSY
Sindul IO IO UG ‘B0IAS(] BunndwionN ¢ A ‘SAIBoaY

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

Aol oo wokecies doiek  ovieckos JRORRR Soeiey

J01elaust) syl uied]

—_—_——t— —_—— —_—— —_——_— —_——_— —_——_— —_——_— —_——_— —_——_— —_——_— —_——_— ——_— ——_— ——_— — — — — — — —— — — — — — — — — — — — — — — — — — — — — — — — — =



US 11,978,536 B2

Sheet 6 of 9

May 7, 2024

U.S. Patent

s
ERLENEIIY

929
SINAIA
O/

79

ASVEVLY(

9 Old

(¥4
HOSSIDOUd

iZ42)
IDVHOLS




= VA AR B _ 201dA L
[eo1dA ] ) 70/

US 11,978,536 B2

LA N B F N 3
- L] 4 i
a r bk oa i CNCELN o
- m oa b &N & b .
l.__.._-.-...._n.._....i.-_-.-..r.rn

re.r A A F X 4 8 A 4 X AT A A 8 4 a8 4 T ..
E I o o E
o R %
. FF

L
-
'%‘

& b

e e e il e A h A h A !
.__l.l.__.._.-..r P .....r * l..... & i....-.l..r.;. - .-..II » e il.... a . .r...l_l.-_il..;.-.. [ .r.;.l.l..._...........-..l.._l. .-
a A s oa ow Nk B i .-.ll-. Lk b bk kA ko deode dr o drodp Jp o dr A A h
nh " a B & ) t.-.-.t.r.r.....v.r.._.._n.._.._.q-n .nl.r.r.r.__.._.-......._...........__..-..-.........._ !

* .4”.._,.___ W Nk kA ]

'

X i & I T !

aw dr o ok oa

-
&
L]

._....1...._......._-_
- .ln...n...n.r.-..-.l.-.........r.........-.tn”il

8~
* ¥
XK .
F

lr"Jr:'-

4
L e
r
N

2 g g a a R e d K N K a d a a

Al A A a bk O A ke
it - .r.__n.r.r.._..r.__n.._.t“ﬂ."-.._
'
[

Sheet 7 of 9

T T T T T T T T T T T T

May 7, 2024

N N S i ...........r.._.... ! - e . -
[ e i e i N r .-t‘ . . r n..il“.‘"ﬂl}
. Wty e » - . . N L U
N W N 1 - e " R o L o N
RN ORI AN ' . 'y " B b e e e
b h Bl oo d o droamoamomomodr dp A i i i - R r a2 T h T »
h s mom i bqq..rl.-..-..-..._.._.r R, .-..r...'"l_...l.._. i . 1 ."b. " I.”. LT .._._-_l.-..-..._n.r.r....._l.__.li
e W w r C . R s
._.“.......rn...__..q#....q.q IR ......................1_-_"-"-.... . W - -_.-_.4.__........“..... )
.-._..__.rin....r...l..r.....r.-..........-.r.r.............r........rh..n.__.__.r.r.....-..-_.-..-_.-.l.rt.__nn.r. o ¥ ) - t”....“.-.”....”.__“....“.__n - K “ .H.-.
s -
. 1 - e e e e L,
Pl ol r - L A A N A R e e e e T
. Xlw o . . N R NN IO e
LN NI ' P N A N
ek a
&
et e ! i
- .__.-l......_.1| a Il.-I e .ii.-_.-.._......_..i.-.t.__n.r.vn.._.__ e r ! .
Sl W Iu..u_..q#k.qbub 1 ' .
r
' > -
IllWl' ' _
> ' ) )
wr L ' . L ™
Jod dp ok b Sl ik o dp e m A Ak . s .
L ! * . Yy
P R N A N R - M r e . "
r 1 .I-_ - . L
PR o o S L 2 F » .
e e e oy Ty iy S S At gl T T e r
e T T R i et e P 1 .
v r rdp d b b o m b r d droa s om ok b oaom o drdp b h dr b k& 4 ol dr drdrdp & dr bl dr dedr b el dr el '
Vo ek r e ey n ke .._..._nq..rn.._nnhn.._.t-....r..........n.-.-....-....-...l..-..-..-_l-... A ¥ L
LN LR T e T e e T e T aw aw . . . LA ICN
i .._.H.rH...H.._.H...“..ru.__”.._.“..._”...”L.rH. ) r " ......_“..n.__.u.___n._._"._......_.-_._._.q.__..q.._ P M
~.__.|....__.-._..t._.....__.__.-..._-I-...... 1 L R
- a d d dpodr A ar o o
R “I-. -._-.‘1 .-I. " .
- . r - [
r
1
[ | -
1 .1”.._. .
v o
! " & - ...ll ....._.__.r.T._.._....l..._.._......_.r.._.._ bdr b & J o drod b &
L] . ax
U h
" * . R .r......_.n.._ r dr & .._......-.._.. "
. e
' -, A
: = o
-
T }.}.Hin.r“bni.r-h#b...h-.r.rn o o N 1 S mat . T
I.... a - n.........l.-_l.._..._n- P S .._...._-.-_ P ¥ .".. .._n.._......_..a..-......._1
e Y I Peaom M kW B .
P I_.-..r.__ 1
- r ) . . .
e e e 1 -l."- L I_I_.. L. .
' . r 1 . A - .r.r.t.....v......_..._.........._ o
. _-I.... .
a a X a x ....._n.rhnu.._.ln.r.._...q.__. r
ax
. T e Ay e L
. & _ir R N | 1 .lf 2 L]
o . r . v e -, -
- i 1.].—.
1 - . d ]
| .

o

ERCE !
2k h omlh k k 2 aw & Wk a . -
' l_..r_..'.-_i.__.__.llnl._.-rnq L . WK

U.S. Patent



US 11,978,536 B2

Sheet 8 of 9

May 7, 2024

U.S. Patent

LIV I DO O IO OO D O OO OO DO O O O DO O DO O IO O OO OO O O O O OO OO O OO O O OO O O O O O OO OO O O O O IO O DO O DO O OO OO O O O O O OO O O O O OO OO D O O O IO O O O DO O O OO DO O IO O OO OO DO O DO O OO O O O O O O O O O DO O O OO DO O DO O O OO DO O IO O O OO DO O IO O O O O O DO O O OO DO O DO O O OO DO O OO O O OO DO O O O O OO DO O OO O O OO DO O DO O O OO O O DO O O OO O O OO O O OO O O OO O O OO O O OO O O OO D O OO O O OO DO O IO O O OO IO O OO O IO O IR O O |

At e e T e T T T T T N T T Y M T

A e e T e T T T e T T e T T T T e T e T T T T T e T T T T T e T T T T T T e T T T T T T T T T T T T T T T T T T T Y

o X



HO"V6 SOl

Ind1no indingG nding
PBSEg pasEy PIsSER NAING
-yoneuswgas -UOREIUBLIESS -UCHEIUBLIZSS posEg-UCHRIoULY

US 11,978,536 B2

" s r ooy
naomow ki kA
I.rlI.T.T.T.r

i

-
. a sk w
st .r.r.__.._.r.._n.....r.rn.._n rr

r a
Pkl oa b oa M bk M or
rr

)

x
Ll e
b b e h b oaa
F bk kg dpor koa
a2 = bk oak
rd k&
M

rx

.
r 'l ¥k om o Jpodp i boa
..._i.r._...._.i.rn...n.._.”...._..........__.._..._n
.

r

m ko om b kA ok oh

.. . [ e e e a -
om drddow o O B I o i S r
- - i.r.r.....-..........r.....-..-...__.r.-......__i-.._.-..r.__.r.__.__ -.__.rii.....r........l..-......-. & bl a komom ddoa .....-..—.
l.'-* Ib*bblb*b-*bl N HI.'I**.'.T** .TI n d
.-..-_.....__.... " at ......_......._..r LT, "
1.-_.._. - . 2 dr A
P
“xw

.
L
FY
X &
* X
Lt
ol
"a-*a-:'ar
, A m

AE X
i

.lr#
X

L -.__.r.r.r............-
" a - -
- N &

)
»

& .Tl " .T.v
ol

.
. r b oa
.r.._..._.._.-n.._n

" d E E I

AT
. [ .n.._.__n.r.-..-......-..._

.._nq.-.nnl_

Sheet 9 of 9

Induy indu ynduy
slalcds paseq paseg ndu
-LHOIIRIUBMIZSS -HOIIRIUBMIGSS -UONBIUBWERS pIseg-uoiiglouuY

May 7, 2024

‘wlelelteleinisinie'eis'sisiiniels's s s el

L]

'.r.r.r.r.'.'.'.'.'.'.'.'.r.f.r.'.'.'.'.'.'.r'.r.r.'.'.'.'.'.'.'.'.r.r.r.r.'"'.'""""""".u. i._I_._._I_._._I_._._I_._I_I_._._I_._._I_._._I ._ . _._._I_._._I_._._I_._._I_._._I_._._I_._._I_._._I_._ -.I.l.l...l.l...l.l...l.l...l.l...l.l....l.r.l-..l..l-..l...l.l...l.l...l.l...l.l...l.l...l.l...l.l...l.l...l.l...l.l...l.l.”. "-..I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I
) K ) e ] ! . W
: 3 . “ £l LM " - v - :
: * : ; . ; o s
- “ o [ ! “ ." ...-.-. . w"
” 3 & ] a .. " . N _-_“.
: i : ““ L] : “ S -
: * : b £ . _ :
] ] : ”” v ’ e - . .\__..
: * : . " gl ' A “
& ...1“ . ] . “._ ." ..I.H. .
.t . * . . __“. ’ o i -
“ .-M “ a..rl.rl.rl.rl.rl.rl.rl ' "L .“l. ”" "1..'.
L] . ! . .I - -
. K . v ) P, - W 3
: 3 . " £ o | »
. ¥ H . ) ’ A .
a' .-‘ ._n - [] .- .- .1"'.
Y “ ._u -.”_ “-. ."
- . '. . ¥ n 1
N . ‘_ P
t . %” " ) . x ! ) )
N -_.-‘.. ¥ ! “._ "_ . K o . .
. . ¥ H . ] b % -
- v 'y [ l. !
: ' . E _"
: b \ £ ’
- ¥ 1 .... !
N . » [ ‘_ !
- 'y ] ..-. !
P : : . : _"
. v “ . :
- . !.n ] .- .-
. . u. !
L : . . »
] . .-
. . u. 3
: “ £l !
]
: . . ’
U |



US 11,978,536 B2

1

SYNTHETIC THC-STAINED DIGITAL SIDES
GENERATED USING ARTIFICIAL NEURAL
NETWORKS

CROSS-REFERENCE TO RELATED D
APPLICATION

This application 1s a divisional application of U.S. non-

provisional application Ser. No. 16/271,356 filed Feb. 8,
2019, which claims priority to and benefit of U.S. provi- 1Y
sional patent application Ser. No. 62/628,027 filed Feb. 8,
2018, each of which are fully incorporated by reference and
made a part hereof.

GOVERNMENT SUPPORT CLAUS. 15

T

This invention was made with government support under
grant number CA134451 awarded by the National Institutes
of Health. The government has certain rights 1n the inven-
tion. 20

BACKGROUND

Field of the Invention
25
Described herein are systems and methods for generation
of 1n-s1lico slide 1mages that contain an exact known number
of true positive cells, true negative cells, and background
representations 1n a variety of synthesized sample conditions
and the use thereof. 30

Background

Immunohistochemistry (IHC) 1s widely used in climical
practice to localize specific epitopes of molecules 1n cells 35
and tissues that aid 1n diagnosis and prognosis of cancer. It
also plays a vital role 1n selecting an appropriate systemic
therapy for cancer patients. Typically, IHC markers are used
according to specific guidelines where the 1intensity of stains
and the number of positive cells are expressed as a percent- 40
age ol all malignant cells. In clinical practice, IHC stain
interpretation 1s often carried out manually. It consists of
counting each positively- and negatively-stained cell under
the microscope and reporting the ratio of number of posi-
tively stained nucler to the total number of nucle1. Faced 45
with this daunting task and because of the shortage of time,
some pathologists revert to estimating the number of cells.
As expected, the manual enumeration suflers from poor
reproducibility even 1n the hands of expert pathologists.

A traditional approach for the evaluation of quantitative 50
image analysis methods includes having an expert diligently
generate a reference standard (e.g., by segmenting structures
or by counting cells), and then comparing the computer
results to the reference standard. However, due to inter- and
intra-observer variability in performing a quantitative task 55
on digital pathology 1images, a reference standard generated
by one expert 1s often considered nadequate, and multiple
experts’ interpretation 1s sought. Involving multiple experts
results 1n a resource-intensive evaluation process and limits
the sample size for the evaluation. If the ground truth were 60
known, as 1n the case of synthetically generated images, the
ellort for the evaluation would be immensely reduced, and
much larger evaluation data sets could be used, reducing the
uncertainty herent due to limited sample sizes.

There have been some previous eflorts to develop syn- 65
thetic histopathological images: Cheikh et al. recently devel-
oped a synthetic histological image generation algorithm by

2

modeling tumor architecture and spatial interactions in
breast cancer (B. B. Cheikh, C. Bor-Angelier, and D. Rac-

oceanu, “A model of tumor architecture and spatial interac-
tions with tumor microenvironment in breast carcinoma,” 1n
SPIE Medical Imaging, 2017, pp. 101400C-101400C-8.)
Although the statistical properties of the synthetic 1mages
(1.e. the number of tumor patterns, their area and their shape)
were similar to those of real 1mages, the models created
‘unrealistic’ details 1n the generated synthetic 1mages.

Therefore, systems and methods are desired that create
realistic 1images to match pathologists” expectations that can
be used to validate analytical methods.

SUMMARY

Disclosed and described herein are systems and methods
for creating phantom digital histopathological slides by an
artificial neural network.

In recent years, the convolutional neural networks (CNN)
have become a critical workhorse for many different 1image
processing problems. A novel application of the CNN 1s in
Generative Adversarial Networks (GAN) with a goal to
“make the output indistinguishable from reality” (P. Isola,
I1-Y. Zhu, T. Zhou, and A. A. Eifros, “Image-to-image
translation with conditional adversarial networks,” arXiv
preprint arXiv:1611.07004, 2016.) Described herein, a
variation of a GAN, termed conditional GAN (cGAN), 1s
used that allows the generation of realistic histopathological
images with a fully controlled ground truth. In one aspect,
the synthetic IHC image generated can be used for the
cvaluation of quantitative image analysis methods for IHC
slides. The disclosed systems and methods can generate
realistic looking positive and negative nucler with different
shape, size, and spatial distributions.

For example, computer-based systems, methods and com-
puter program product are disclosed herein that involve user
defined parameters that permit generation of an 1in-silico
image with ability to select inclusion of various types of
stains; cells, including overall number of positive and nega-
tive cells, mixed populations, altered morphology, and spa-
tial distributions within the 1mage including overlap, eftc.
The 1mages can also include artifacts that make interpreta-
tion diflicult such as debris, other tissues, staining 1nconsis-
tencies, and the like. The disclosed systems and methods
result 1n 1mages that represent real human cells and struc-
tures (healthy and diseased), which are assembled from
actual patient samples. This allows digital creation of all the
procedural, biochemical, structural and anatomical incon-
sistencies associated with histology that make accurate
counting and diagnosis tricky.

In one aspect, an in-silico standard 1s created that 1s
comprised of a combination of IHC positive and IHC
negative (counterstained) cells. This standard 1s generated
by software that uses an ANN, and generates virtual tissue
sections with known numbers (total count, percentages, etc.)
of positive and negative cells. For example, the proportion
can be varied from less than 1% to 100% of positive cells.
User inputs, which may include an image, the number of
positive and negative cells, size, shape and/or location of
positive and negative cells and/or artifacts, and the like. The
distribution of positive and negative cells can be adjusted to
mimic true histological sections where positive cells can be
distributed evenly throughout the tissue or may show focal
clustering depending on intention of the operator. A cluster
of cells can be comprised of positive cells with different
intensities of staining, different patterns of staining, different
cell size with cells showing good separation and cells
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overlapping (to afford challenge of cell segmentation for
computer algorithms). This 1n silico tissue modeling can be
used for different tissue types including lymphoma, different
types of breast cancer, lung cancer, prostate cancer, etc. For
cach tumor type phantom tissue can be further complicated
by introduction of other objects such as lymphocytes, his-
tiocytes, blood vessels, nerve bundles, fibrotic fibers, and
artifacts such as hemorrhage of necrosis. The view of cells
can be rendered at high magnification and low magnifica-
tion.

By generating a series of virtual tissues (phantoms) with
different proportions and distribution of positive and nega-
tive cells, the exact number of positive and negative cells 1s
known, therefore, it can be used as for at least the following,

PUrposes:

1. IHC standard for industry to test computer algorithms
for enumeration of IHC stained cells.

2. IHC standards for pathology quality assurance pro-
grams such as those admimstered by the College of
American Pathologists (CAP) and similar organiza-
tions for programs used to standardize breast cancer
pathology, lung cancer pathology, lymphoma pathol-
ogy, €tc.

3. Using standards with different proportions of positive
and negative cells, high resolution slides can be printed
on glass that can be used for testing with light micros-
copy and for testing of high resolution slide scanners.

4. Generate three-dimensional (3D) phantoms of tissue
with different proportions ol negative and positive
cells. Using 3D printers, artificial tissue can be printed
using a cartridge of collagen, or other matrix, with a
positively and negatively stained suspension of cells.
Such 3D printed tissue can be used to standardize
histology processing of tissue fixation and tissue cut-
ting.

5. Using 3D printer with cartages of collagen or other
Matrix and unstained cells with known immunopheno-
type, one can generate (print) 3D artificial tissues that
can be used as standard for tissue fixation, tissue
processing, IHC staining using different IHC platiorms,
image acquisition, and 1mage IHC analysis.

An objective of embodiments described herein 1s to
provide a reliable approach to generate ground truth 1n the
study and analysis of IHC stained tissues. In most study and
analysis of IHC stained images, obtaining the ground truth
1s a major challenge due to various factors such as avail-
ability of experts perform annotation, inter and intra reader-
variability and limited dataset. Often, ground truths are
either generalization of reader consensus or average of
readings among multiple readers which may in the end be
biased and can be disputed. Embodiments described herein
allow virtual 1mages to be generated that mimic IHC stained
tissue at various magnification that are composed of exact
proportions of positive and negative cells with controlled
distribution of stained cells. These virtual tissue 1images can
be used as a standard for IHC quantification for both
computer based 1mage analysis methods and quality assur-
ance programs for manual evaluation of IHC stained tissue
by pathologists. Virtual IHC stained sections are created
with exact known percentage of positive and negative cells
and bias that 1s associated with IHC standards where truth 1s
based on manual counting of positive cells by pathologist 1s
climinated.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of this specification, 1llustrate embodi-
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ments and together with the description, serve to explain the
principles of the methods and systems:

FIG. 1 1illustrates an exemplary overview system for
training and inference phases to create synthetic digital
sides;

FIG. 2 illustrates a neural network framework for an
exemplary generator, G;

FIG. 3 illustrates the training of the discriminator, D,
network;

FIGS. 4A-4E are examples of the real and synthetic
images used 1n an exemplary experiment described herein;

FIG. 5 1s a flowchart illustrating the steps of an exemplary
method of creating synthetic immunohistochemistry (IHC)
stained digital slides generated using artificial neural net-
works (ANNs);

FIG. 6 1llustrates an exemplary computer that can be used
for creating synthetic immunohistochemistry (IHC) stained
digital slides generated using artificial neural networks
(ANNs):;

FIGS. 7A-TF illustrates example images and results
including annotations and generated synthetic images;

FIG. 8 1s a graph illustrating the mean and standard
deviation of the ImmunoRatio differences between real and
synthetic 1images; and

FIGS. 9A-9H illustrate generated synthetic 1mages with
different characteristics.

DETAILED DESCRIPTION

Betore the present methods and systems are disclosed and
described, 1t 1s to be understood that the methods and
systems are not limited to specific synthetic methods, spe-
cific components, or to particular compositions. It 1s also to
be understood that the terminology used herein 1s for the
purpose of describing particular embodiments only and 1s
not intended to be limiting.

As used 1n the specification and the appended claims, the
singular forms “a,” “an” and *“‘the” include plural referents
unless the context clearly dictates otherwise. Ranges may be
expressed herein as from “about” one particular value,
and/or to “about” another particular value. When such a
range 1s expressed, another embodiment includes from the
one particular value and/or to the other particular value.
Similarly, when values are expressed as approximations, by
use of the antecedent “about,” 1t will be understood that the
particular value forms another embodiment. It will be further
understood that the endpoints of each of the ranges are
significant both in relation to the other endpoint, and 1nde-
pendently of the other endpoint.

“Optional” or “optionally” means that the subsequently
described event or circumstance may or may not occur, and
that the description includes instances where said event or
circumstance occurs and instances where 1t does not.

Throughout the description and claims of this specifica-
tion, the word “comprise” and vanations of the word, such
as “‘comprising” and “comprises,” means “including but not
limited to,” and 1s not intended to exclude, for example,
other additives, components, integers or steps. “Exemplary”™
means “an example of” and 1s not intended to convey an
indication of a preferred or 1deal embodiment. “Such as™ 1s
not used 1n a restrictive sense, but for explanatory purposes.

Disclosed are components that can be used to perform the
disclosed methods and systems. These and other compo-
nents are disclosed herein, and it 1s understood that when
combinations, subsets, interactions, groups, etc. of these
components are disclosed that while specific reference of
cach various individual and collective combinations and
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permutation of these may not be explicitly disclosed, each 1s
specifically contemplated and described herein, for all meth-
ods and systems. This applies to all aspects of this applica-
tion including, but not limited to, steps 1n disclosed methods.
Thus, 1f there are a variety of additional steps that can be
performed 1t 1s understood that each of these additional steps
can be performed with any specific embodiment or combi-
nation of embodiments of the disclosed methods.

As will be appreciated by one skilled in the art, the
methods and systems may take the form of an entirely
hardware embodiment, an entirely software embodiment, or
an embodiment combining software and hardware aspects.
Furthermore, the methods and systems may take the form of
a computer program product on a computer-readable storage
medium having computer-readable program instructions
(e.g., computer software) embodied in the storage medium.
More particularly, the present methods and systems may
take the form of web-implemented computer software. Any
suitable computer-readable storage medium may be utilized
including hard disks, CD-ROMs, optical storage devices, or
magnetic storage devices.

Embodiments of the methods and systems are described
below with reference to block diagrams and flowchart
illustrations of methods, systems, apparatuses and computer
program products. It will be understood that each block of
the block diagrams and flowchart illustrations, and combi-
nations of blocks 1n the block diagrams and flowchart
illustrations, respectively, can be implemented by computer
program instructions. These computer program instructions
may be loaded onto a general-purpose computer, special
purpose computer, or other programmable data processing
apparatus to produce a machine, such that the instructions
which execute on the computer or other programmable data
processing apparatus create a means for implementing the
functions specified in the flowchart block or blocks.

These computer program 1nstructions may also be stored
in a computer-readable memory that can direct a computer
or other programmable data processing apparatus to function
1n a particular manner, such that the instructions stored 1n the
computer-readable memory produce an article of manufac-
ture including computer-readable instructions for imple-
menting the function specified in the flowchart block or
blocks. The computer program instructions may also be
loaded onto a computer or other programmable data pro-
cessing apparatus to cause a series of operational steps to be
performed on the computer or other programmable appara-
tus to produce a computer-implemented process such that
the 1nstructions that execute on the computer or other
programmable apparatus provide steps for implementing the
functions specified in the flowchart block or blocks.

Accordingly, blocks of the block diagrams and flowchart
illustrations support combinations of means for performing
the specified functions, combinations of steps for perform-
ing the specified functions and program instruction means
for performing the specified functions. It will also be under-
stood that each block of the block diagrams and flowchart
illustrations, and combinations of blocks 1n the block dia-
grams and flowchart illustrations, can be implemented by
special purpose hardware-based computer systems that per-
form the specified functions or steps, or combinations of
special purpose hardware and computer instructions.

The present methods and systems may be understood
more readily by reference to the following detailed descrip-
tion of preferred embodiments and the Examples included
therein and to the Figures and their previous and following
description.
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FIG. 1 illustrates an exemplary overview system {for
creating synthetic digital sides generated using artificial

neural networks. Generally, as shown in FIG. 1, the system
comprises two main components: a generator, G, and a
discriminator, D.

A user inputs parameters that are used by the generator to
create an output image. For a given real image, 1, let M
represents 1t corresponding user annotations or segmentation
output mask. The generator G, tries to create output images,
I;, that cannot be distinguished by D from real images. The
G 1s tasked to not only fool D but also to make 1" as similar
as possible to I *. The final objective function 1s defined as:

L gnat = ﬂl’gﬂgﬂmD&KLcGAN(G; D)+ L (G)

where L _ -, ,(G,D) 1s part of the objective Tunction which D
fries to maximize while learning on how to distinguish real
pairs (M?, L }) from fake pairs (M’, I;). Simultaneously, G
tries to minimize L_-,,(G,D) and synthesize fake images
that would deceive D. Here, L,;((G) 1s the difference of
output I;, and the ground truth, I}, as L1 distance.

In an exemplary study, Ki67-stained whole slide images
from 32 different breast cancer patients were collected. It 1s
worth mentioning that the proposed method can be easily
generalized to other stains (such as CD3, CD4, CDS8, CD21,
etc.) and diseases (e.g. lung, colon, prostate cancer, kidney
disease, etc.). For this particular application, the slides were
scanned using an Aperio ScanScope (Leica Biosystems Inc.,
Buifalo Grove, IL) at 40X magnification where the pixel size
1s 0.2461x0.2461 um. An experienced breast pathologist
carefully annotated these slides for tumor and non-tumor
regions. 84 region-of-interest (ROI) images within the tumor
region were randomly selected. Each ROI has a size of
2300x1200 pixels. This size was selected to provide the
pathologists with the similar environment when they analyze
a shde at 40x magnification under a microscope. Two
different input data types were used to train the system: 1)
user annotations mask and 2) segmentation output mask.

After the input data generation, all of the ROIs are divided
into tiles of size 256X256 pixels. Any tile that doesn’t
contain a positive or a negative nucleus was excluded from
the dataset. There was a total of 684 tiles, 572 of which were
used for training, the rest for visual validation.

User annotations mask: To create a training dataset, all of
the stain-positive and stain-negative nucle1 in the ROIs were
marked manually. A stain-positive (or negative) nucleus
means that a cell within a tissue 1s stained positively (or
negatively). To ensure the quality of the annotations, four
trained operators were used. Each operator first annotated
the entire positive and negative nuclei with colored dots in
21 ROls, analyzed the annotations of another operator, and
corrected any annotation mistakes. It 1s important to mention
that the area, orientation or shape information was not saved
because the nucler were represented by only coordinate
information represented by dots.

Segmentation output mask: As a second approach, the
system was trained with the output of a nucle1 segmentation
technique that developed 1n a prior study [M. K. K. Niazi, M.
Pennell, C. Elkins, J. Hemminger, M. Jin, S. Kirby, et al.,
“Entropy based quantification of Ki-67 positive cell images
and its evaluation by a reader study,” in SPIE Medical
Imaging, 2013, pp. 867601-867601, which 1s incorporated by
reference]. To illustrate the process, in FIG. 7E, the colors
oreen 702 and red 704 represent the regions that were
segmented as positive Ki67 and negative Ki67, respectively.
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The yellow 706 color was used for lightly stained positive
regions, which may occur as staining artifacts or background
staining. For each patch, the nucle1 segmentation was gen-
erated and used 1t as an iput for the cGAN neural network.

In the study, as a generator, GG, a modified version of the
“U-net” was used [O. Ronneberger, P. Fischer, and T. Brox,
“U-net: Convolutional networks for biomedical image seg-
mentation,” 1n International Conference on Medical Image
Computing and Computer-Assisted Intervention, 2015, pp.

234-2416, mcorporated by reference], whose architectural
overview 1s shown 1n FIG. 2. All CNN blocks described 1n

FIG. 2 include 3x3 CNNs with 2x2 strides, batch normal-

ization, and leak Relu layers. Instead of batch normalization,
the CNN blocks may also include layer normalization. The
exemplary generator includes 16 CNN blocks, eight of those
are used for encoding and the remaining eight are used for
decoding. For larger images, the number of blocks may be
increased. The number of filter at i”” CNN block, n,, is

defined as:

1. =64 % 2mz’n(3,ﬂ—0.5 —1i—L—-0.5D

where L 1s the number of layers 1n the encoder and decoder,
and 1s equal to eight 1n the current setup.

As a discriminator, D, a CNN based classifier “patch-
GAN” was used [P. Isola, J.-Y. Zhu, T. Zhou, and A. A.
Efros, “Image-to-image translation with conditional adver-
sarial networks,” arXiv preprint arXiv:1611.07004, 2016,
incorporated by reference]. The exemplary classifier
includes four CNN blocks and a convolution layer with a
1-dimensional output. In this study, 64x64 patches were
used and for each patch; patchGAN ftries to identify the input
as real or fake. The final output 1s the average of all
responses.

During the training of the proposed method, the standard
approach was followed, such that one gradient descent step
on D 1s followed by one gradient descent step on G for
optimization. The training procedure for D 1s given in FIG.
3. The network 1s optimized with Adam [D. Kingma and J.
Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXi1v:1412.6980, 2014, incorporated by reference]
tor 200 epochs with the batch size of four. FIG. 3 illustrates
the training of the discriminator, D, network. For real
examples, the real images and their segmentation/annotation
masks (M’, 1.7) were used as an input. For fake examples, a
two-step procedure was applied. In Step 1, we used a
generator, G, (U-net) algorithm to create a synthetic image
by using the segmentation/annotation. In Step 2, the output
of the generator and initial segmentation (M’, ;) were used
as an input for the discriminator, D.

For inference, the method provides the freedom to manu-
ally create a scenario which allows: 1) defining different
spatial overlap of nucle1, 2) placement of different sized
nucler at certain locations, 3) and control over spatial
frequency of nucle1 during synthetic data generation (FIGS.
9A-9H). The mput data was fed to the generator, G, and
skipped the discriminator, D, to create inferenced synthetic
image, 1.€. D was not used during validation and testing.

The method was trained for both of the datasets (1.e. “user
annotated”, and “segmentation output masks™) separately.
However, the proposed approach may use any manual
annotation or another computer segmentation algorithm as
an put. Two systems were tramned with different 1nput
types, and the comparison of their results 1s presented 1n the
results section, below. The algorithm was tested on an
independent set of 122 randomly selected validation images,
none of which were used during the training. Each 17, and
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its corresponding M’ were used to create a synthetic image
with the same characteristics as 1.

In a first experiment, three 1mage analysts and three
pathologists were used for their visual evaluations. To
maintain the attention of the observers, the experiment was
divided into three iterations. In each iteration, each were
shown a dataset of 10 images and asked to identily synthetic
images. To make the 1terations unbiased, the distributions of
the synthetic images in the three datasets were kept confi-
dential. The first dataset included 10 synthetic images. The
second dataset included 10 real images, and final dataset
included five real and five synthetic images.

Reader accuracy in identifying the correct image type
(real versus synthetic) was analyzed using a hierarchical
Bayesian logistic regression model containing random
cllects for images and readers. The random reader efiects
accounted for heterogeneity in reader accuracy while the
random 1mage eflects accounted for heterogeneity in the
difficulty of 1images. Diffuse or non-informative priors were
assigned to all parameters, and the posterior inference was
obtained using Metropolis-Hastings sampling run for 500,
000 1terations following a 5,000-1teration burn-in. Sampled
values were used to calculate the posterior probability that
the average reader would be able to identity the correct
image type more than 50% of the time 11 presented with an
image ol average difhiculty. Two readers were excluded from
this analysis since their decisions on individual images were
not recorded; the number correct and incorrect were just
tabulated for each data set. As a secondary analysis, the
hierarchical model was extended to included fixed effects of
data set to determine 1f performance diflered by ratio of real
to artificial cases. Modeling was performed using PROC
MCMC 1 SAS Version 9.4 (SAS Inc, Cary, NC).

To claim that images generated by the described tech-
niques can produce images that can be used for evaluation
of computerized quantitative methods, a prerequisite 1s that
the quantitative methods perform similarly for real and
synthetic images. To test the disclosed method 1n a situation
similar to the example above, a real data set of 122 Ki-67
stained 1mages was used that was completely independent
from the cGAN training data set. This data set 1s termed as
the quantitative comparison dataset below. For each image
patch 1n the quantitative comparison data set, the goal was
generating a synthetic image that 1s diflerent from the real
image 1n terms of its overall appearance (1.e., location and
spatial arrangement of the cells) but 1s similar to the real
image 1 terms of Ki-67 quantitation. To achieve this, a
segmentation algorithm [M. K. K. Niazi, M. Pennell, C.
Elkins, J. Hemminger, M. Jin, S. Kirby, et al., “Entropy
based quantification of Ki-67 positive cell images and 1its
evaluation by a reader study,” in SPIE Medical Imaging,
2013, pp. 867601-86760I1, incorporated by reference]| was
used to generate a segmentation mask, and the segmentation
mask and the real image was applied as the imput to the
cGAN. The output of the cGAN was used as the synthetic
image. An example of the real and synthetic images used 1n
this experiment 1s shown in FIGS. 4A-4E. FIGS. 4A-4E
illustrate examples for (FIG. 4A) real image, (FIG. 4B)
segmentation result based on the above segmentation algo-
rithm, (FIG. 4C) synthetic image used for evaluation of
computerized quantitative method, (FIG. 4D) visual Immu-
noRatio output for the real image, and (FIG. 4E) visual
ImmunoRatio output for synthetic image.

If the cGAN output 1s suitable for the evaluation of
computerized quantitative methods, then a quantitative
method applied to the real and ¢cGAN-generated 1mages
should provide similar results, as discussed above. To test
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this, a quantification method was applied that uses a funda-
mentally different segmentation algorithm from the above-
used segmentation algorithm to both real and synthetic
images, termed ImmunoRatio (“M. K. K. Niazi, Y. Lin, F.
Liu, A. Ashoka, M. Marcellin, G. Tozbikian, et al., “Inter- 5
active Image Compression for Big Data Image Analysis:
Application to Hotspot Detection 1in Breast Cancer,” Sub-
mitted for Journal publication, 2017, incorporated by refer-
ence, which has been accepted to the Journal Artificial
Intelligence In Medicine for publication with the same 10
authors “M. Khalid Khan Niazi, Y. Lin, F. Liu, A. Ashok, M.
W. Marcellin, G. Tozbikian, M. N. Gurcan, A. Bilgin™” but
with a slightly different title: “Pathological image compres-
sion for big data image analysis: Application to hotspot
detection 1n breast cancer”). 15

FIG. 5 1s a flowchart that illustrates an exemplary method
of creating synthetic digital slides generated using artificial
neural networks. In one embodiment, the method comprises
502 receiving, by a computing device, one or more mnputs
related to the desired synthetic slides. These mputs can be a 20
user annotation or a computer-aided diagnosis (CAD) sys-
tem’s output, an 1image or a map that contains the location
of the positive and negative cells and may include additional
information like the orientation and/or size of positive
and/or negative cells, the location and type of the artifacts. 25
At 504, at least a portion of the inputs are provided to a
trained generator, G, executing on the computing device.
During the training, the generator tries to create an 1mage
that the discriminator will not able to distinguish from a real
image. On the other hand, during training the discriminator 30
learns how to distinguish the fake and real images. The
calculated errors are used during the training to update of the
weights of the network to improve 1t. Both the discriminator
and the generator are based on neural networks. The trained
generator uses artificial neural network (ANN) program- 35
ming to create an output image. In some instances, the ANN
used by the generator comprises convolutional neural net-
works (CNN). For example, the CNN may be a modified
version of the “U-net,” as described herein. Finally, at 506
a synthetic slide 1s created. 40

The system has been described above as comprised of
units. One skilled 1n the art will appreciate that this 1s a
functional description and that the respective functions can
be performed by software, hardware, or a combination of
software and hardware. A unit can be software, hardware, or 45
a combination of software and hardware. The units can
comprise software for creating synthetic digital slides gen-
erated using artificial neural networks. In one exemplary
aspect, the units can comprise a computing device that
comprises a processor 621 as illustrated 1n FIG. 6 and 50
described below.

FI1G. 6 illustrates an exemplary computer that can be used
for creating synthetic digital slides generated using artificial
neural networks. As used herein, “computer” may include a
plurality of computers. The computers may include one or 55
more hardware components such as, for example, a proces-
sor 621, a random-access memory (RAM) module 622, a
read-only memory (ROM) module 623, a storage 624, a
database 625, one or more input/output (I/0) devices 626,
and an interface 627. Alternatively, and/or additionally, the 60
computer may include one or more software components
such as, for example, a computer-readable medium 1nclud-
ing computer executable instructions for performing a
method associated with the exemplary embodiments. It 1s
contemplated that one or more of the hardware components 65
listed above may be implemented using software. For
example, storage 624 may include a software partition
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associated with one or more other hardware components. It
1s understood that the components listed above are exem-
plary only and not intended to be limiting.

Processor 621 may include one or more processors, each
configured to execute instructions and process data to per-
form one or more functions associated with a computer for
classilying pathologies of an eardrum based upon one or
more 1mages of the eardrum. Processor 621 may be com-

municatively coupled to RAM 622, ROM 623, storage 624,
database 625, I/O devices 626, and interface 627. Processor
621 may be configured to execute sequences of computer
program 1nstructions to perform various processes. The
computer program instructions may be loaded imnto RAM
622 for execution by processor 621.

RAM 622 and ROM 623 may each include one or more

devices for storing information associated with operation of
processor 621. For example, ROM 623 may include a
memory device configured to access and store information
associated with the computer, including information for
identifving, imtializing, and monitoring the operation of one
or more components and subsystems. RAM 622 may
include a memory device for storing data associated with
one or more operations ol processor 621. For example,
ROM 623 may load instructions into RAM 622 for execu-
tion by processor 621.

Storage 624 may include any type of mass storage device
configured to store information that processor 621 may need
to perform processes consistent with the disclosed embodi-
ments. For example, storage 624 may include one or more
magnetic and/or optical disk devices, such as hard drives,
CD-ROMs, DVD-ROMSs, or any other type of mass media
device.

Database 625 may include one or more software and/or
hardware components that cooperate to store, organize, sort,
filter, and/or arrange data used by the computer and/or
processor 621. For example, database 6235 may store user
inputs associated with creating a synthetic slide, store output
images irom the generator, and store synthetic shides. It 1s
contemplated that database 625 may store additional and/or
different information than that listed above.

I/O devices 626 may include one or more components
configured to communicate information with a user associ-
ated with computer. For example, I/O devices may include
a console with an itegrated keyboard and mouse to allow a
user to maintain a database of synthetic slides, results of the
analysis of the output images, metrics, and the like. I/O
devices 626 may also include a display including a graphical
user interface (GUI) for outputting information on a moni-
tor. I/O devices 626 may also include peripheral devices
such as, for example, a printer for printing information
associated with the computer, a user-accessible disk drive
(e.g., a USB port, a tfloppy, CD-ROM, or DVD-ROM drive,
etc.) to allow a user to mput data stored on a portable media
device, a microphone, a speaker system, or any other suit-
able type of interface device.

Interface 627 may include one or more components
configured to transmit and receive data via a communication
network, such as the Internet, a local area network, a
workstation peer-to-peer network, a direct link network, a
wireless network, or any other suitable communication
plattorm. For example, interface 627 may include one or
more modulators, demodulators, multiplexers, demultiplex-
ers, network communication devices, wireless devices,
antennas, modems, and any other type of device configured
to enable data communication via a communication net-
work.
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EXAMPLES

The following examples are set forth below to illustrate
the methods and results according to the disclosed subject
matter. These examples are not intended to be inclusive of all
aspects of the subject matter disclosed herein, but rather to
illustrate representative methods and results. These
examples are not intended to exclude equivalents and varia-

tions of the present invention which are apparent to one
skilled 1n the art.

Pathologist 1

Pathologist 2

12

when presented with a data set comprised entirely of real
images, the posterior probability of correctly classifying an
image more than 50% of the time was 70.4% compared to
only a 30.5% probability for data set 1 (100% synthetic
images) and a 40.1% probability for data set 3 (50%
synthetic, 50% real). The improved classification perfor-
mance 1n data set 1 could be due to a tendency of readers to
label 1mages as “real” slightly more often than “synthetic”

(54% of the time compared to 46% of the time based on the
data for the four readers used in the modeling).

TABLE 1

Pathologist 3  Image Analyst 1 Image Analyst 2 Image Analyst 3

TP + TP + TP + TN + TN + TN +
TP IN TN TP TN TN TP TN TN TP TN 1P TP TN TP TP TN TP
Dataset1 2 0 2 6 0 6 6 0 6 4 0 4 10 0 10 4 0 4
(10
synthetic)
Dataset2 0 6 6 0 6 6 0 4 4 0 5 5 0 1 0 0 0 6
(10 real)
Dataset3(5 0 2 2 4 2 6 2 3 S 2 3 5 3 1 4 3 3 6
synthetic,
5 real)
Accuracy 33.3% 60.0% 50.0% 46.7% 46.7% 53.3%
Efforts have been made to ensure accuracy with respect to Experts’ discrimination performance on synthetic/real

numbers (e.g., amounts, temperature, etc.) but some errors
and deviations should be accounted for. Unless indicated
otherwise, parts are parts by weight, temperature 1s 1 © C.
or 1s at ambient temperature, and pressure 1s at or near
atmospheric. There are numerous variations and combina-
tions of reaction conditions, e.g., component concentrations,
temperatures, pressures and other reaction ranges and con-
ditions that can be used to optimize the product purity and
yield obtained from the described process.

Some example images and results are shown i FIGS.

7TA-TF. FIGS. 7TA-TF show example images where FIG. 7A

1s an original image used for annotation; FIG. 7B 1s a dot
based annotation; FIG. 7C 1s a cGAN generated synthetic
image from FIG. 7B; FIG. 7D 1s an oniginal image used for

segmentation; FIG. 7E 1s a segmentation result using [M. K.
K. Niazi, Y. Lin, F. Liu, A. Ashoka, M. Marcellin, G.

Tozbikian, et al., “Interactive Image Compression for Big
Data Image Analysis: Application to Hotspot Detection 1n
Breast Cancer,” Submitted for Journal publication, 2017,

incorporated by reference has been accepted to the Journal
Artificial Intelligence In Medicine for publication with the

same authors “M. Khalid Khan Niazi, Y. Lin, F. Liu, A.
Ashok, M. W. Marcellin, G. Tozbikian, M. N. Gurcan, A.
Bilgin™” but with a slightly different title: “Pathological
image compression for big data image analysis: Application
to hotspot detection in breast cancer”]; and FIG. 7F 1s a
cGAN generated 1mage from FIG. 7E. FIG. 7B shows the
manual nucle1 annotations for an example 1image 1n FIG. 7A.
The output of the generator 1s given 1n FIG. 7C. Similarly,
the output of the generator by using segmentation algo-
rithm’s output (FIG. 7E) 1s given 1n FIG. 7F. The numbers
of correctly identified real and synthetic 1image by readers
are given 1n Table 1.

According to a hierarchical logistic regression model, the
probability that the average reader would be able to correctly
classily an image as synthetic or real more than 50% of the
time was only 44.7%. These results suggest that, overall,
readers are incapable of distinguishing synthetic 1mages
from real ones. However, the results differed by data set:

30

35

40

45

50

55

60

65

images. TP represents the number of correctly identified
synthetic images and TN represents the number of correctly
identified real 1mages.

When the real and synthetic 1mages are analyzed using
computerized quantitative methods, 1t was observed that the
mean and standard deviation of the ImmunoRatio differ-
ences between real and synthetic images are 2.55 and 2.25,
respectively. The detailed information 1s given in FIG. 8.

During the experiments, 1t was observed that both
approaches (1.e. location or segmentation initiated) allow us
to create realistic phantom 1mages. Although the accuracy of
the segmentation approach was not perfect, leading to some
under- and over-segmentation problems, the proposed
method was robust to handle these challenges. On the other
hand, 1n addition the location of the nuclel, the segmentation
based approach allowed to define the size, orientation and

shape information, as shown in the fully synthetic images of
FIGS. 9A-9H.

CONCLUSIONS

In the described study, conditional Generative Adversarial
Networks were used to create realistic looking histopatho-
logical cancer images with IHC staining. The disclosed
method 1s different from the prior approaches to the problem
in that at least the resulting synthetic images were observed
to be realistic and hard to distinguish from their real counter
parts even by experienced pathologists. For training, two
different input methods were used: manual nuclei location
annotations and segmentation masks generated by our algo-
rithm. It was observed that using the segmentation masks
may provide advantages over manual annotation. First, 1t
allows defining shape, size and orientation information for
cach nucleus. Second, unequivocal staining conditions (i.e.
a cell that cannot be easily labeled as positive or negative)
can be simulated with this approach (e.g. yellow 706 color
regions in FI1G. 7E). Finally, no manual annotation 1s needed
if there 1s an existing segmentation algorithm.

This study has several practical implications. The artifi-
cially created datasets with known ground truth allows
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researchers to analyze the accuracy, precision, and 1ntra- and
inter-observer variability in a systematic manner and com-
pare the human readers with a computer analysis. Besides,
this approach may help algorithm developers for not only
evaluating their methods but also for generating unlimited
training and testing samples for algorithm development.

At the moment, each laboratory within the Umited States
uses locally devised tissue slide preparation and scanming,
protocols. The study 1s significant as 1t has the potential to
assist 1n careful selection of technical parameters that
directly aflect the tissue slide preparation and its display and
also assist 1n regular checking of scanner performance with
measurement of physical image parameters. Both, the tech-
nical parameters and the physical parameters have the
potential to bring standardization to digital slide preparation
process. Moreover, the study can assist 1n devising new
standards to compare the quality of diflerent scanners.

While the methods and systems have been described in
connection with preferred embodiments and specific
examples, 1t 1s not mtended that the scope be limited to the
particular embodiments set forth, as the embodiments herein
are intended in all respects to be illustrative rather than
restrictive.

Unless otherwise expressly stated, 1t 1s 1n no way intended
that any method set forth herein be construed as requiring,
that its steps be performed 1n a specific order. Accordingly,
where a method claim does not actually recite an order to be
followed by its steps or 1t 1s not otherwise specifically stated
in the claims or descriptions that the steps are to be limited
to a specific order, 1t 1s no way intended that an order be
inferred, 1 any respect. This holds for any possible non-
express basis for interpretation, including: matters of logic
with respect to arrangement of steps or operational flow;
plain meaning derived from grammatical organization or
punctuation; the number or type of embodiments described
in the specification.

Throughout this application, various publications may be
referenced. The disclosures of these publications 1n their
entireties are hereby fully incorporated by reference into this
application 1n order to more fully describe the state of the art
to which the methods and systems pertain.

It will be apparent to those skilled in the art that various
modifications and variations can be made without departing
from the scope or spirit. Other embodiments will be apparent
to those skilled in the art from consideration of the speci-
fication and practice disclosed herein. It 1s intended that the
specification and examples be considered as exemplary only,
with a true scope and spirit being indicated by the following,
claims.

What 1s claimed 1s:

1. A method of evaluating an analysis method for ana-
lyzing an immunohistochemistry (IHC) stained slide com-
prising:

generating an IHC stained digital slide having known

values for one or more parameters, wherein the THC
stained digital slide 1s created by receiving, by a
computing device, one or more inputs related to a
desired synthetic slide mimicking an IHC stained tis-
sue; and providing at least a portion of the one or more
iputs to a generator, G, executing on the computing
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device, wherein the generator creates an output 1mage
corresponding to at least a portion of the one or more
inputs related to the desired synthetic slide, wherein the
output 1image comprises the IHC stained digital slide;

performing an analysis of the IHC stained digital slide
using the analysis method, wherein the analysis com-
prises determining an analyzed value for at least one of
the one or more parameters; and

comparing the analyzed value for the at least one of the

one or more parameters to the known value for the at
least one of the one or more parameters, wherein the
comparison 1s used to evaluate the analysis method.

2. The method of claim 1, wherein the analysis method 1s
a method for counting IHC-stained positive cells and THC-
stained negative cells.

3. The method of claim 2, wherein the method {for
counting IHC-stained positive cells and IHC-stained nega-
tive cells 1s performed manually.

4. The method of claim 2, wherein the method {for
counting IHC-stained positive cells and IHC-stained nega-
tive cells 1s performed automatically.

5. The method of claim 4, wherein the method {for
counting IHC-stained positive cells and IHC-stained nega-
tive cells 1s performed automatically using software.

6. The method of claam 1, wheremn generating an IHC
stained digital slide having known values for one or more
parameters further comprises:

the generator using ANN programming to create the

output 1mage corresponding to the synthetic slide; and
analyzing, by a discriminator, D, executing on the com-
puting device, the output 1mage, wherein the discrimi-
nator either accepts or rejects the output 1mage based
on the analysis and wherein the discriminator uses
ANN programming to analyze the output image,
wherein 1f the output image 1s rejected, then another
output 1mage 1s created by the generator, and
wherein 11 the output 1mage 1s accepted by the discrimi-
nator, then the IHC stained digital slide 1s created.

7. The method of claim 6, wherein the one or more mnputs
include annotation or segmentation-based inputs.

8. The method of claim 6, wherein the one or more mnputs
include one or more of an 1mage, a number or percentage of
positive and negative cells, a location and/or size of positive
and/or negative cells, or a description and/or location of
artifacts that would be seen on a real slide.

9. The method of claim 6, wherein the ANN programming,
used by the generator comprises convolutional neural net-
works (CNN).

10. The method of claim 9, wherein the CNN comprises
a modified version of U-net.

11. The method of claim 6, wherein the ANN program-
ming used by the discriminator comprises a CNN based
classifier.

12. The method of claim 11, wherein the CNN based
classifier comprises patchGAN.

13. The method of claim 6, wherein the synthetic slide 1s
used as a ground truth to evaluate a method of analyzing
IHC stained tissues.
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