12 United States Patent

US011972004B2

(10) Patent No.: US 11,972,004 B2

Ramos et al. 45) Date of Patent: Apr. 30, 2024
(54) DOCUMENT REDACTION AND (56) References Cited
RECONCILIATION |
U.S. PATENT DOCUMENTS
(71) Applicant: International Business Machines 5787 175 A 711998 Carter
Corporation, Armonk, NY (US) 10,163,080 B2 12/2018 Chow et al.
10,410,016 B ¥ 9/2019 Damick HO4L 63/0435
(72) Inventors: Igor S. Ramos, Round Rock, TX (US); 10,762,060 B1* 9/2020 Faulkner GOOF 7/14
Marc Dickenson, Austin, TX (US): 2003/0081790 Al1* 5/2003 Kallahalla HO4L 9/088
. . ’ 380/281
Sumabala Nair, Austin, 1X (US) 2007/0136662 Al 6/2007 Khaba
2013/0297559 Al* 11/2013 Bailor GOO6F 21/6227
(73) Assignee: International Business Machines 707/608
Corporation, Armonk, NY (US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
%aslg p Six]genlzledl 0 szUSted under 35 pp 20200097147 A * 8/2020
S5.C. 154(b) by dys. WO WO0-2017153495 Al * 9/2017 ... G06Q 10/1053
WO WO0O-2018100227 A1 * 6/2018 ... GO6F 16/00
(21) Appl. No.: 16/438,439
OTHER PUBLICATIONS
(22) Filed: Jun. 11, 2019
List of IBM Patents or Patent Applications Treated as Related, Jun.
(65) Prior Publication Data 16, 2015. Continued)
ontinue
US 2020/0394322 Al Dec. 17, 2020
Primary Examiner — James E Richardson
(51) Int. CL
GO6F 16/23 (2019.01) (57) ABSTRACT
GO6F 16/176 (2019.01) An example operation may include one or more of splitting,
GO6F 16/93 (2019.01) by a document server, a document provided by a document
GO6l’ 21/62 (2013.01) owner node 1nto a plurality of segments to be stored on a
(52) U.S. Cl. ledger of a blockchain, detecting, by the document server, a
CPC GOG6F 21/6218 (2013.01); GO6F 16/1767 change to the document made by an authorized participant
(2019.01); GO6F 16/2358 (52019‘01). GO6F node, updating, by the document server, a segment of the
16/2370 12019 01); GO6F 16/93 (2619 01) plurality of segments stored on the ledger based on the
(58) Field of Classificati S ’ b | change to the document, collecting, by the document server,
ield of Classification Searc

votes on the change to the document from a plurality of

CPC v, GO6F 16/176; GO6F 16/1767; GO6F participant nodes, and committing the updated segment to
16/2358; GO6F 16/2379; GO6F 16/93; the blockchain based on the votes.

GO6F 21/6218; GO6F 21/64
See application file for complete search history. 17 Claims, 19 Drawing Sheets

0

Sand a notification of the changa {0 the documant o a8
set of participant nodes of the dlurality of the participant nodes
—pl ZLLNOrZEd (O view the document

472

Determine view and edit access for each of the
segments of the document for the plurality of the participant

nodes
b‘ A74

Receive instructions from the document owner cn a
consensus method for reconciiation of changes of the
» document

476

Assign participant nodes selected by the document
ownel from the plurality of the participart nodes to vote on the
L » documeni change

478

Recorg a lsdgar entry an the blockehain if a consensus
» on the documeant change is not reached by the participant
nodes assigned to vole 80

A

Exacute a smart contract 1o restrict access to the
segments of the document identified by the documeant cwner

462

|

US 11,972,004 B2

(56)

2015/0074033

20
20
20
20

17/0103472
| 7/0220815
7/02377569
1'7/0243193

20

201
201
201
201
201
201
201
201

|7/0287090
2017/0289111

8/01838]

201

7/0364701
8/005281
8/017371

3
9
0

8/0189732
8/0219683
9/0236562
9/0281066
9/0305938

Page 2
References Cited 2019/0311147 Al 10/2019 Gollogly

2019/0325038 Al1* 10/2019 Finlow-Bates GO6F 16/162
UUS. PATENT DOCUMENTS 2019/0334912 Al 10/2019 Sloane et al.

2019/0342074 Al1* 11/2019 Housholder HO41. 9/0637
Al* 3/2015 Shah .. GO6N 5/02 2020/0204358 A1* 6/2020 Nandakumar HO41. 9/3236

706/46
Al 4/2017 Shah
AT YT NSAM C06Q 201385 OTHER PUBLICATIONS
Al* 82017 Manian G060 20/3829 . e
Al 10/2017 Hl?lllllllmelt al Q I. Ramos et al., Document Redaction and Reconciliation, U.S. Appl.
Al 10/2017 Voell et al. No. 16/438,427, filed Jun. 11, 2019 (a copy 1s not provided as this
Al . 12/2017 Struttmann application is available to the Examiner).
A'_" 2/ 2078 Laul?l’ etre ... HO4L 65/403 COVEPDF, “Straight line to the future of document management:
ii‘ gggg JBastldetetlal. A new way of document collaboration, powered by Blockchain™
A-'h /90 . g Koélzelsosekiae‘t o http://blockchain.covepdf.com/dl/Introductio_to CovePDF_Blockchain.
AL* 82018 Deery HO04TL 63/083 Pdf [Accessed Jan. 13, 2019].
Al* 872019 Padmanabhan . H04T 63/00 Graphite, “Graphite” [Accessed Jan. 13, 2019] https://www.
Al* 9/2019 SIMONS .oovvvvvevvrnnn, HO04L 9/3239 graphitedocs.com/.
Al* 10/2019 Sandberg-Maitland
HO041. 9/321 * cited by examiner

U.S. Patent Apr. 30, 2024 Sheet 1 of 19 US 11,972,004 B2

CWVYNER NODE(S DOCUMENT SERVER 102

105
COMPUTER READABLE MEDIUM 112

Receive a document from a
document owner node, the document
contains restricted access segments

114

RARTICIPANT
MODE(S)
107

Spiit the document into a pluralily of
EBSUR ledoer entries {0 be stored on a
104 hlockohain

116

Lndate g iedger eniry of ihe pluraildy
of ledger entries pased on a
proposed change o the document
raage py an authorized participant
node
118

BLOCKOHAN
108

piockehain based on votes collecied
from a plurality of participant nodes
120

Sanag & notification o a sel of
participant nodes of the piurality of
the paricipant nodes guthorized 1o
view the document

122

LEDGER DB 108

Ledger
1140

FiG. 1A

U.S. Patent Apr. 30, 2024 Sheet 2 of 19 US 11,972,004 B2

COUVWNER NODE{S) DOCUMENT SERVER 102
105

COMPUTER READARLE MEDIUM 112
Sphit a document provided Dy &
JdOCUMEent CWNEr node into a8 plurality
. ot segments 10 pe siwored on a iedger
RARTICIPANT of a binckchain

NODE(S) 113

made by an authorized pariicipant
node
115

Jodate a segment of the pluraiity of
segmernts siorad on the ledger based

BLOCKCHAIN on ihe change o the document
108 117

Lollect voles m' the éhaﬂge io the'
gocument from a pluralty of
participant nodes

118

LEDGER DR 108 omrmt the updated segment 1o

- . - the hlockehain based on the voles
Legger kntries
110 11

FIG. 1B

U.S. Patent Apr. 30, 2024 Sheet 3 of 19 US 11,972,004 B2

00

PEER 4
210

PR S
20
BLOCKCHAIN NODES
202

APPLICATION(S)
224

220

APPLICATION CODE
220

BLOCKUHAIN PLATFORM
212

TRUST SERVICES (CRYPTO)
218

BLOCKCHAIN LAYER
(VIRTUAL EXECUTION ENVIRONMENT/)
216

INFRASTRUCTURE
214

FiG. 2A

U.S. Patent Apr. 30, 2024 Sheet 4 of 19 US 11,972,004 B2

2
oy
-

4" PEER
NODE

CLIENT NODED

PASTE

(ORDERING
NODIE) 284

TRANSACHION
281

’ EXECUTE

RAMSACTION DATA
PALS!

TRAMNSACTION TRANSACTION TRANSACTION
204 294 294
COMMIET 1X COMMIT TX A COMMIT TX
1O ‘ o C o
LEDGER LEDGER LEDGER
285 295 295

i, 2B

U.S. Patent Apr. 30, 2024 Sheet 5 of 19 US 11,972,004 B2

l:l BLOCKCOHAIN USER 302
CRRTIFICATE

/AR | AUTHORITY 318
REGULATOR 306

J

HLOCKOHAIN
DEVELOFPER 310 Mermissioned OROCESSING

t . S
Blocxchain PLATHFORM 318
304

Pl
BLOGCKUCHAIN
NETWORK
OPERATOR 308

G, 3A

U.S. Patent Apr. 30, 2024

K3
-

REGULATOH 326

J

BLOCKCHAIN
EVELOPER 330

(AR N
BLOCKUHAIN
NETWORK
OFPERATOR 325

Sheet 6 of 19

HBLOCKCHAIN USER 322

HarimisSsSionas

Blockehain
324

iz, 3B

US 11,972,004 B2

ETﬂ=
==
CERTIFICATE
ATHEOKITY 3386

HFROCESSING
PLATHFORNM 338

LDATA

2 OURCE
334

U.S. Patent Apr. 30, 2024 Sheet 7 of 19 US 11,972,004 B2

Raceive g document from a document owner node

ihe document contains restrnicted access segments
41

oplit the document into a plurality of ledger entries {o
oe stored on a plockehain

414

Updatle a ledger entry of the pluraiity of ledger entries
pased on a proposed change to the document made

by an authorized parficipant node
416

Commit the ledger entry to the blockchain based on

voles collected from a plurality of participant nodes
418

Send a notification to a set of participant nodes of the
clurality of the participant nodes authorized (o view
the document

420

F1G. 4A

Apr. 30,2024 Sheet 8 of 19 US 11,972,004 B2

Uelermine a consensus method for reconciigtion of Changes
of the document basad on instructions recaived irom he
document owner

452

Determine view and edit access for each of the raestricted
access segments of the document for the piurality of the
participant nodes

454

Agsign participant nodes from the piuraiity of the
carticipant noges 1o vole on the proposad change as
defined by the document owner

456

Generate g ledger entry that indicates reiection of the
Droeposed enange it consensus is not reached by the
participant nodes assigned o vote

458

Execute a smart contract o resinct access o the
segments of the document

Convert the ledger entries into blobs prior to their storage
L | £30Y the bgﬂﬁkchaim

404

FlG. 48

U.S. Patent Apr. 30, 2024 Sheet 9 of 19 US 11,972,004 B2

Split 8 document provided by a document owner node
iNto a piurabty of segments to be siored on a leqdger of
a plockenain

413

Detect a change o the document made by an
authorized participant node
415

Update a segment of the plurality of segments stored
on the ledger based on the change to the document

417

{Sollect votes on the change to the document from a8

piuraiity of participant nodes
419

Commit the updated segment to the blockehain
pased on the voles

427

G, 40

U.S. Patent Apr. 30, 2024 Sheet 10 of 19 US 11,972,004 B2

470

Send a notification of the change o the document o 8
set of participant nodes of the pluraity of the participant nodes
authorized to view the document

472

Determing view and egil aceess for each of ine
segments of the document for the pluralily of the participant
noges

474

Receive instructions from the document owner on a
consensus metnoed for reconciliation of changes of the
document

470

ASSIgn participant nodes selected by the document
owner from the plurahly of the participant nodes to vole on the
dgocument change

478

Recorg a ledger entry on the plockehain if @ consensus
on the document change is not reached by the participant
nodes assigned o vote

480

Execute g smart contract 1o restrict access 10 the
segments of the document Wdentinied by the document owner

484

G, 4D

U.S. Patent Apr. 30, 2024 Sheet 11 of 19 US 11,972,004 B2

STEPS
508

MODULE 512

PHYSICAL INFRASTRUCTURE
510

MODULE 514

SMART BLOCKOHAIN

H20

CONTRACT
<X 10

F1G. S5A

U.S. Patent Apr. 30, 2024 Sheet 12 of 19 US 11,972,004 B2

MODULE 512

MODULE 514

SMART
CONTRADT

SXIV.

BLOCKOHAIN
820

FiG. 5B

U.S. Patent Apr. 30, 2024 Sheet 13 of 19 US 11,972,004 B2

20

USER DEVICE USER DEVICE
ENTITY #7 SE§5ZER ENTITY #
552 550
SBLOCKCHAIN
o240

SMART CONTRACT
30

CONTRACT {

CENTITY#1. ENTIT
Y#2..
ADDRESSES...
FUNCTION!
ASSETS
SIGNATURES

FlG. 50

U.S. Patent Apr. 30, 2024 Sheet 14 of 19 US 11,972,004 B2

060

USkER DEVICE USSR DEVICE
ENTITY #1 ENTITY #2
552 556

AP GATEWAY/CLIENT
502

SERVER (BLOCKCHAIN PEER)
554

SMART CONTRACT
530

-G 5D

U.S. Patent Apr. 30, 2024

")
{3
o

e

| —

— —

== —

— Lrv—
L !

Slockenain Node

611

ya |

=i [ransactions e
=l > ==
==
S [|
I []
2 E —

Ordenng Service Biockehain Node
10 512
/]

siockchain Node
613

G, BA

Sheet 15 of 19

US 11,972,004 B2

Lhisinhuied Ledger 620
(Channei 1D)

| é {

| o |

|| Genesis | Dala - Lala

| Block | Block Block

| | j

l T
S]
' i
| D@?ﬁf ,Dzsz";sf | Dﬁfﬁf |
| 300K 3I0CK BIOCK |
| | | |
|

|

, Bioei Blockchain 622

| H30

e

e e e e e e e e o —— — — ———
|

: Wortd State Database

| 524

|

b e e o o . . o — o o

SR GG ML DR A oGRS GGG MGG R RN oM MMM MM AL ol MMM A i bbbl

MR AR ol MGG A ol

U.S. Patent Apr. 30, 2024 Sheet 16 of 19 US 11,972,004 B2

NMew Data Biock 630

BSiock Header &40

Numbper Frevious Hash Lata Hash

Siock Data 650
- N Transactions

Type, Version, Channel 1D, Tx 1D, . ..

Chaincode Data Endorser afa

Read Set Write Sef

- New Data 662

BSiock Metadata 660

Orderer Data Signatures

Last Config Valid/invalid Txs

F1G. 6B

U.S. Patent Apr. 30, 2024 Sheet 17 of 19 US 11,972,004 B2

670
880 GEO 830
g z i
672 Heaaqer | ead | | sadar
1 § Meadge % 672, | Header 572,
g , |
| |
% % §
% §
| | §
| |
574, rile wills | e with i % File with
| Metaoaia | Meladatls | BT4y e e | Metadals 674y
' %
| |
| |
R |
|
878, value Vaiue % 575, | Value 6768y
— " | |
Siock 1 SBlock 2 Blonk N
G784 878, G718y

FIG. 60

U.S. Patent Apr. 30, 2024 Sheet 18 of 19 US 11,972,004 B2

90

BIOCK,

Header

Gl —— - Hash Value of Previous Biock
- Reference information

Fiie(s) & Meladata

Data 1 R Metadata 1

674 —— Lata £ REF 2 Meladata 2

Data N Rk N Meladata N

Value based on one or more of;

876, —
| New Hashed Value of File

~ New Storage Location for File

- New Metadata Assigned (o File

- Transfer of Access/Coniroi 1o New Blockehain Participant
New/Existing/Change Ownership of the File

-G, 6D

U.S. Patent Apr. 30, 2024 Sheet 19 of 19 US 11,972,004 B2

00

COMPUTER
oY STEM/SERVER
702

RAM
710
CACHE
712

S TORAGE
SYSTEM

714

MEMORY
706

PROCESSING

NETWORK
ADAPTER
726

UNIT
/04

O
INTERFACES
?2

EATERNAL

DISPLAY
722

DEVICES
720

G, 7

US 11,972,004 B2

1

DOCUMENT REDACTION AND
RECONCILIATION

TECHNICAL FIELD

This application generally relates to a database storage
system, and more particularly, to redaction and reconcilia-
tion.

BACKGROUND

A centralized database stores and maintains data 1 a
single database (e.g., a database server) at one location. This
location 1s often a central computer, for example, a desktop
central processing unit (CPU), a server CPU, or a mainirame
computer. Information stored on a centralized database 1s
typically accessible from multiple different points. Multiple
users or client workstations can work simultaneously on the
centralized database, for example, based on a client/server
configuration. A centralized database 1s easy to manage,
maintain, and control, especially for purposes of security
because of 1ts single location. Within a centralized database,
data redundancy 1s minimized as a single storing place of all
data also implies that a given set of data only has one
primary record.

However, a centralized database suflers from significant
drawbacks. For example, a centralized database has a single
point of failure. In particular, 1f there are no fault-tolerance
considerations and failures occur (for example, a hardware,
a firmware, and/or a software failure), all data within the
database 1s lost and work of all users 1s interrupted. In
addition, centralized databases are highly dependent on
network connectivity. As a result, the slower the connection,
the amount of time needed for each database access 1s
increased. Another drawback 1s the occurrence of bottle-
necks when a centralized database experiences high traflic
due to a single location. Furthermore, a centralized database
provides limited access to data because only one copy of the
data 1s maintained by the database. As a result, multiple
devices cannot access the same piece of data at the same
time without creating significant problems or risk overwrit-
ing stored data. Furthermore, because a database storage
system has minimal to no data redundancy, data that 1s
unexpectedly lost 1s very diflicult to retrieve other than
through manual operation from back-up storage.

As such, what 1s needed 1s a blockchain-based solution
that overcomes these drawbacks and limitations. Block-
chains may be used for secure document sharing. Sometimes
just portions of a document need to be shared securely for
edits or review, while other parts of that document must
remain classified because they contain sensitive information.
Furthermore, sometimes portions of a shared document may
need to be redacted. For example, there are regulations such
as HIPPA, GDPR, PCI, where certain information such as
social security numbers, credit card numbers and other
personally 1dentifiable data may need to be redacted for
compliance with standards. This complicates daily business
transactions, because 1t restricts the exchange of documents.
For example, the electronic document may contain PHI
(personal health info) and may need to be send to a con-
tracting vendor to extract billing codes (or other processing).
The organization may not want to reveal the PHI to the
contractor. Thus, a redacted version of the documents may
be shared to fix/annotate billing codes without having PHI
revealed.

While existing solutions may create a version of the
original document for sharing, the changes to the derived

10

15

20

25

30

35

40

45

50

55

60

65

2

document may not be easily reconciled into the original
document. Existing solutions often apply encryption of the

file content as an after-thought or an additional security
step(s), which leaves the files vulnerable to human error. The
encryption 1s built-in as part of a blockchain design. Also, 1n
a blockchain network, only encrypted content 1s stored.
Accordingly, i1t 1s desired to have a blockchain-based
solution for redaction and reconciliation of documents.

SUMMARY

One example embodiment provides a system that includes
a processor and memory, wherein the processor 1s config-
ured to perform one or more of receive a document from a
document owner node, the document contains restricted
access segments, split the document 1nto a plurality of ledger
entries to be stored on a blockchain, update a ledger entry of
the plurality of the ledger entries based on a proposed
change to the document made by an authorized participant
node, commit the ledger entry to the blockchain based on
votes collected from a plurality of participant nodes, and
send a noftification to a set of participating nodes of the
plurality of the participant nodes authorized to view the
document.

Another example embodiment provides a system that
includes a processor and memory, wherein the processor 1s
configured to perform one or more of split a document
provided by a document owner node into a plurality of
segments to be stored on a ledger of a blockchain, detect a
change to the document made by an authorized participant
node, update a segment of the plurality of segments stored
on the ledger based on the change to the document, collect
votes on the change to the document from a plurality of
participant nodes, and commit the updated segment to the
blockchain based on the votes.

Another example embodiment provides a method that
includes one or more of receiving, by a document server, a
document from a document owner node, the document
contains restricted access segments, splitting, by the docu-
ment server, the document to a plurality of ledger entries
to be stored on a blockchain, updating, by the document
server, a ledger entry of the plurality of the ledger entries
based on a proposed change to the document made by an
authorized participant node, committing, by the document
server, the ledger entry to the blockchain based on votes
collected from a plurality of participant nodes, and sending
a notification to a set of participating nodes of the plurality
of the participant nodes authorized to view the document.

Another example embodiment provides a method that
includes one or more of splitting, by a document server, a
document provided by a document owner node into a
plurality of segments to be stored on a ledger of a block-
chain, detecting, by the document server, a change to the
document made by an authorized participant node, updating,
by the document server, a segment of the plurality of
segments stored on the ledger based on the change to the
document, collecting, by the document server, votes on the
change to the document from a plurality of participant
nodes, and committing the updated segment to the block-
chain based on the votes.

A Turther example embodiment provides a non-transitory
computer readable medium comprising instructions, that
when read by a processor, cause the processor to perform
one or more ol receiving a document from a document
owner node, the document contains restricted access seg-
ments, splitting the document 1nto a plurality of ledger
entries to be stored on a blockchain, updating a ledger entry

US 11,972,004 B2

3

of the plurality of the ledger entries based on a proposed
change to the document made by an authorized participant
node, committing the ledger entry to the blockchain based
on votes collected from a plurality of participant nodes, and
sending a notification to a set of participating nodes of the
plurality of the participant nodes authorized to view the
document.

A further example embodiment provides a non-transitory
computer readable medium comprising instructions, that
when read by a processor, cause the processor to perform
one or more of splitting a document provided by a document
owner node 1nto a plurality of segments to be stored on a
ledger of a blockchain, detecting a change to the document
made by an authorized participant node, updating a segment
of the plurality of segments stored on the ledger based on the
change to the document, collecting votes on the change to
the document from a plurality of participant nodes, and
committing the updated segment to the blockchain based on
the votes.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A 1llustrates a network diagram of a system 1nclud-
ing a database, according to example embodiments.

FIG. 1B 1llustrates a network diagram of a system includ-
ing a database, according to example embodiments.

FIG. 2A 1llustrates an example blockchain architecture
configuration, according to example embodiments.

FIG. 2B 1illustrates a blockchain transactional flow,
according to example embodiments.

FIG. 3 A illustrates a permissioned network, according to
example embodiments.

FI1G. 3B 1llustrates another permissioned network, accord-
ing to example embodiments.

FIG. 4A 1llustrates a flow diagram, according to example
embodiments.

FIG. 4B 1illustrates a further flow diagram, according to
example embodiments.

FIG. 4C illustrates a flow diagram, according to example
embodiments.

FIG. 4D 1llustrates a further flow diagram, according to
example embodiments.

FIG. 5A illustrates an example system configured to
perform one or more operations described herein, according
to example embodiments.

FIG. 3B illustrates another example system configured to
perform one or more operations described herein, according,
to example embodiments.

FI1G. 5C illustrates a further example system configured to
utilize a smart contract, according to example embodiments.

FIG. 5D illustrates yet another example system config-
ured to utilize a blockchain, according to example embodi-
ments.

FIG. 6A 1illustrates a process for a new block being added
to a distributed ledger, according to example embodiments.

FIG. 6B 1llustrates contents of a new data block, accord-
ing to example embodiments.

FIG. 6C 1illustrates a blockchain for digital content,
according to example embodiments.

FIG. 6D illustrates a block which may represent the
structure of blocks in the blockchain, according to example
embodiments.

FI1G. 7 illustrates an example system that supports one or
more of the example embodiments.

DETAILED DESCRIPTION

It will be readily understood that the instant components,
as generally described and illustrated 1n the figures herein,

10

15

20

25

30

35

40

45

50

55

60

65

4

may be arranged and designed 1n a wide variety of different
configurations. Thus, the following detailed description of
the embodiments of at least one of a method, apparatus,
non-transitory computer readable medium and system, as
represented 1n the attached figures, 1s not intended to limit
the scope of the application as claimed but 1s merely
representative of selected embodiments.

The 1nstant features, structures, or characteristics as
described throughout this specification may be combined or
removed 1n any suitable manner 1 one or more embodi-
ments. For example, the usage of the phrases “example
embodiments”, “some embodiments”, or other similar lan-
guage, throughout this specification refers to the fact that a
particular feature, structure, or characteristic described in
connection with the embodiment may be included 1n at least
one embodiment. Thus, appearances of the phrases

“example embodiments™, * . “in other

"y

, “in some embodiments”,
embodiments™, or other similar language, throughout this
specification do not necessarily all refer to the same group
of embodiments, and the described features, structures, or
characteristics may be combined or removed 1n any suitable
manner in one or more embodiments.

In addition, while the term “message” may have been
used in the description of embodiments, the application may
be applied to many types of networks and data. Furthermore,
while certain types of connections, messages, and signaling
may be depicted 1 exemplary embodiments, the application
1s not limited to a certain type of connection, message, and
signaling.

Example embodiments provide methods, systems, com-
ponents, non-transitory computer readable media, devices,
and/or networks, which provide for redaction and reconcili-
ation of a document.

In one embodiment the application utilizes a decentralized
database (such as a blockchain) that 1s a distributed storage
system, which includes multiple nodes that communicate
with each other. The decentralized database includes an
append-only immutable data structure resembling a distrib-
uted ledger capable of maintaining records between mutu-
ally untrusted parties. The untrusted parties are referred to
herein as peers or peer nodes. Each peer maintains a copy of
the database records and no single peer can modity the
database records without a consensus being reached among
the distributed peers. For example, the peers may execute a
consensus protocol to validate blockchain storage transac-
tions, group the storage transactions into blocks, and build a
hash chain over the blocks. This process forms the ledger by
ordering the storage transactions, as 1s necessary, for con-
sistency. In various embodiments, a permissioned and/or a
permissionless blockchain can be used. In a public or
permission-less blockchain, anyone can participate without
a specific identity. Public blockchains often involve native
crypto-currency and use consensus based on various proto-
cols such as Proof of Work (PoW). On the other hand, a
permissioned blockchain database provides secure interac-
tions among a group of entities which share a common goal
but which do not fully trust one another, such as businesses
that exchange funds, goods, information, and the like.

This application can utilize a blockchain that operates
arbitrary, programmable logic, tallored to a decentralized
storage scheme and referred to as “smart contracts” or
“chaincodes.” In some cases, specialized chaincodes may
exist for management functions and parameters which are
referred to as system chaincode. The application can further
utilize smart contracts that are trusted distributed applica-
tions which leverage tamper-proof properties of the block-
chain database and an underlying agreement between nodes,

US 11,972,004 B2

S

which 1s referred to as an endorsement or endorsement
policy. Blockchain transactions associated with this appli-
cation can be “endorsed” before being committed to the
blockchain while transactions, which are not endorsed, are
disregarded. An endorsement policy allows chaincode to
specily endorsers for a transaction 1n the form of a set of peer
nodes that are necessary for endorsement. When a client
sends the transaction to the peers specified 1n the endorse-
ment policy, the transaction 1s executed to validate the
transaction. After validation, the transactions enter an order-
ing phase 1 which a consensus protocol 1s used to produce
an ordered sequence of endorsed transactions grouped into
blocks.

This application can utilize nodes that are the communi-
cation entities of the blockchain system. A “node” may
perform a logical function in the sense that multiple nodes
of different types can run on the same physical server. Nodes
are grouped 1n trust domains and are associated with logical
entities that control them in various ways. Nodes may
include different types, such as a client or submitting-client
node which submits a transaction-invocation to an endorser
(c.g., peer), and broadcasts transaction-proposals to an
ordering service (e.g., ordering node). Another type of node
1s a peer node which can receive client submitted transac-
tions, commit the transactions and maintain a state and a
copy of the ledger of blockchain transactions. Peers can also
have the role of an endorser, although 1t 1s not a requirement.
An ordering-service-node or orderer 1s a node runmng the
communication service for all nodes, and which implements
a delivery guarantee, such as a broadcast to each of the peer
nodes in the system when committing transactions and
moditying a world state of the blockchain, which 1s another
name for the imitial blockchain transaction which normally
includes control and setup information.

This application can utilize a ledger that 1s a sequenced,
tamper-resistant record of all state transitions of a block-
chain. State transitions may result from chaincode invoca-
tions (1.e., transactions) submitted by participating parties
(e.g., client nodes, ordering nodes, endorser nodes, peer
nodes, etc.). Each participating party (such as a peer node)
can maintain a copy of the ledger. A transaction may result
in a set ol asset key-value pairs being committed to the
ledger as one or more operands, such as creates, updates,
deletes, and the like. The ledger includes a blockchain (also
referred to as a chain) which 1s used to store an immutable,
sequenced record in blocks. The ledger also 1ncludes a state
database which maintains a current state of the blockchain.

This application can utilize a chain that 1s a transaction log
which i1s structured as hash-linked blocks, and each block
contains a sequence of N transactions where N 1s equal to or
greater than one. The block header includes a hash of the
block’s transactions, as well as a hash of the prior block’s
header. In thus way, all transactions on the ledger may be
sequenced and cryptographically linked together. Accord-
ingly, 1t 1s not possible to tamper with the ledger data without
breaking the hash links. A hash of a most recently added
blockchain block represents every transaction on the chain
that has come before 1t, making it possible to ensure that all
peer nodes are 1n a consistent and trusted state. The chain
may be stored on a peer node file system (i.e., local, attached
storage, cloud, etc.), ethciently supporting the append-only
nature of the blockchain workload.

The current state of the immutable ledger represents the
latest values for all keys that are included in the chain
transaction log. Since the current state represents the latest
key values known to a channel, 1t 1s sometimes referred to
as a world state. Chaincode invocations execute transactions

10

15

20

25

30

35

40

45

50

55

60

65

6

against the current state data of the ledger. To make these
chaincode 1nteractions eflicient, the latest values of the keys
may be stored in a state database. The state database may be
simply an indexed view into the chain’s transaction log, it
can therefore be regenerated from the chain at any time. The
state database may automatically be recovered (or generated
iI needed) upon peer node startup, and belfore transactions
are accepted.

Some benefits of the instant solutions described and

depicted herein include a method and system for redaction
and reconciliation of a document m blockchain networks.
The exemplary embodiments solve the issues of time and
trust by extending features of a database such as 1immuta-
bility, digital signatures and being a single source of truth.
The exemplary embodiments provide a solution for redac-
tion and reconciliation of a document 1n blockchain-based
network. The blockchain networks may be homogenous
based on the asset type and rules that govern the assets based
on the smart contracts.

Blockchain 1s different from a traditional database 1n that
blockchain 1s not a central storage, but rather a decentral-
ized, immutable, and secure storage, where nodes must
share 1n changes to records in the storage. Some properties
that are inherent in blockchain and which help implement
the blockchain include, but are not limited to, an immutable
ledger, smart contracts, security, privacy, decentralization,
consensus, endorsement, accessibility, and the like, which
are further described herein. According to various aspects,
the system for redaction and reconciliation of a document in
blockchain networks 1s implemented due to immutable
accountability, security, privacy, permitted decentralization,
availability of smart contracts, endorsements and accessi-
bility that are inherent and unique to blockchain. In particu-
lar, the blockchain ledger data 1s immutable and that pro-
vides for eflicient method for redaction and reconciliation of
a document 1n blockchain networks. Also, use of the encryp-
tion 1n the blockchain provides security and builds trust. The
smart contract manages the state of the asset to complete the
life-cycle. The example blockchains are permission decen-
tralized. Thus, each end user may have 1ts own ledger copy
to access. Multiple organizations (and peers) may be on-
boarded on the blockchain network. The key organizations
may serve as endorsing peers to validate the smart contract
execution results, read-set and write-set. In other words, the
blockchain inherent features provide for eflicient implemen-
tation ol a method for redaction and reconciliation of a
document.

One of the benefits of the example embodiments 1s that it
improves the functionality of a computing system by imple-
menting a method for redaction and reconciliation of a
document 1n blockchain-based systems. Through the block-
chain system described herein, a computing system can
perform functionality for redaction and reconciliation of a
document in blockchain networks by providing access to
capabilities such as distributed ledger, peers, encryption
technologies, MSP, event handling, etc. Also, the blockchain
enables to create a business network and make any users or
organizations to on-board for participation. As such, the
blockchain 1s not just a database. The blockchain comes with
capabilities to create a Business Network of users and
on-board/ofl-board organizations to collaborate and execute
service processes in the form of smart contracts.

The example embodiments provide numerous benefits
over a traditional database. For example, through the block-
chain the embodiments provide for immutable accountabil-
ity, security, privacy, permitted decentralization, availability

US 11,972,004 B2

7

of smart contracts, endorsements and accessibility that are
inherent and unique to the blockchain.

Meanwhile, a traditional database could not be used to
implement the example embodiments because i1t does not
bring all parties on the business network, it does not create
trusted collaboration and does not provide for an eflicient
storage ol digital assets. The traditional database does not
provide for a tamper prood storage and does not provide for
preservation of the digital assets being stored. Thus, the
proposed method for redaction and reconciliation of a docu-
ment 1 blockchain networks cannot be implemented 1n the
traditional database.

Meanwhile, 1f a traditional database were to be used to
implement the example embodiments, the example embodi-
ments would have suffered from unnecessary drawbacks
such as search capability, lack of security and slow speed of
transactions. Additionally, the automated method for redac-
tion and reconciliation of a document i1n the blockchain
network would simply not be possible.

Accordingly, the example embodiments provide for a
specific solution to a problem 1n the arts/field of asset access
management in the blockchain networks.

The example embodiments also change how data may be
stored within a block structure of the blockchain. For
example, a digital asset data may be securely stored within
a certain portion of the data block (i.e., within header, data
segment, or metadata). By storing the digital asset data
within data blocks of a blockchain, the digital asset data may
be appended to an immutable blockchain ledger through a
hash-linked chain of blocks. In some embodiments, the data
block may be different than a traditional data block by
having a personal data associated with the digital asset not
stored together with the assets within a traditional block
structure of a blockchain. By removing the personal data
associated with the digital asset, the blockchain can provide
the benefit of anonymity based on immutable accountability
and security.

According to the exemplary embodiments, a system and
method for handling of electronic documents contaiming,
protected information are provided. The exemplary embodi-
ments permit for a secure redaction, distribution, and rec-
onciliation of documents involving complex cases where
multiple parties are imnvolved. In some cases each party may
have a different privilege level applied to certain document
segments. The exemplary embodiments may create a fast
and secure reconciliation flow. A system (i.e., a document
server), 1n accordance to the exemplary embodiment, may
accept edits from authorized users, then 1t may dispatch the
proposed changes to an approval flow (11 set by the owner).
The document server may tally the votes for consensus, and
then it may reconcile the diflerences back into the original
document. Finally, the document server provides a real-time
update notification to all users including viewers of a
redacted document version. In simple terms, everyone works
ofl the master document, even the redacted viewers.

In a sensitive document, which needs restricted access
control levels (ACL), the owner may define who has access
to which portions of the document and specifies view (read)
or edit (write) access for each portion/segment (word, sen-
tence, paragraph, spreadsheet cell, column, row, etc.) of the
document. The document owner may also define the con-
sensus method for reconciling document edits. The owner
may, for example, select consensus as “‘all voters must
agree” or “most voters must agree.” Finally, the owner may
assign voters that can accept or reject the proposed edits.
After this 1nitial set up, the owner may publish his changes
to a document server (e.g., a cloud server). The document

10

15

20

25

30

35

40

45

50

55

60

65

8

server then parses the document, splitting 1t into multiple
ledger entries for blockchain storage. From that point, the
blockchain enforces the access to each document portion,
such that only authorized users can obtain view or edit
access to the document or may vote on each segment, as
defined by the owner via an application (e.g., a word
processing application or similar). When an authorized
editor performs a change to the document, the ledger entry
for that segment 1s updated with the proposed change. The
voters must then approve or reject the change. Once the
voting 1s concluded, the votes are tallied up, and upon
consensus the update 1s marked as proposed. The update
must be voted per rules set by a block, belfore the editor’s
changes become ellective.

In one exemplary embodiment, upon voting completion,
results are tallied and 1if there 1s a change to the original
document, all viewer nodes get a real-time notification of the
document updates. For example, the updates may be pro-
vided via a word processing application or another special
application. If there 1s no consensus on the proposed
changes, a new ledger entry i1s generated to reflect rejection
of the editor’s proposed changes.

According to one exemplary embodiment, security 1is
strictly enforced using smart contracts running on a block-
chain fabric. In other words, the security 1s not something
that has to be *“added in” as an option to an existing
document, because the security 1s built into the entire
blockchain process. The document server tokenizes a docu-
ment 1nto segments and stores the segments into blockchain
ledger entries that provide fine-grained access control levels.
The document server creates a single source of truth, regard-
less of a user’s access control level, hence eliminating
multiple copies of the same document. An unauthorized user
does not have to see the entire document to make a change
to a certain portion. Configuration of the consensus rules
may be immplemented at a segment level. Consensus 1s
enforced by the smart contracts on the blockchain fabric.
The document server connected to the blockchain provides
for an end to end solution—i.e., redaction, distribution, and
reconciliation of document may occur seamlessly and
entirely within an encrypted space as defined by the smart
contracts on the blockchain fabric. According to one exem-
plary embodiment, CRUD (Create, Read, Update, and
Delete) operations may be enabled for a document entirely
within an encrypted space so that there 1s never a moment
that an unencrypted version of the document 1s stored on the
client’s disk. The document server may provide real-time
update nofifications to all users including viewers of a
redacted document version.

According to the exemplary embodiments, a user may
create a new document in the word processing application.
This user becomes the document owner. That 1nitial docu-
ment may be referred to as the seed document and 1s the
source of truth. The owner 1s given full rights to compose
and restrict the seed document’s access. The word process-
ing application (or other application that may produce the
seed document) may connect to the document server (e.g., a
cloud server) using CRUD-based calls. The document server
may manage the document lifecycle, such as rendering,
editing, and voting for changes. The document owner may
decide to securely allow others to view or edit portions (i.e.,
segments) of the document. The owner may then select a
portion(s) of the document and may assign access level to
the portion(s) along with the authorized users. For example,
the document owner may highlight and restrict access to a
text segment “dolor sit amet” to a user Mary. The result may
be intended as a segment to be redacted out for a user John.

US 11,972,004 B2

9

Then, the owner may highlight the word “labore” to give
edit access to an authorized user Mary. The document owner
may at this time (optionally) define and select the consensus
method and may assign which participants are to vote to
approve Mary’s changes. Additionally, view, edit, or vote
permissions may have an expiration date. The document
owner may publish his changes (1.e., may either create a new
document or may alter an existing one) to the document
server. The document server may split the document into
separate transactions in a manner that 1s compatible with the
selected blockchain technology in the implementation (Hy-
perledger, Ethereum, etc.). Then, the document server may
submit transaction(s) to update the blockchain ledger.

In one embodiment, parsing and splitting of the seed
document may be implemented using a parent-child data
model, which defines master and child components. The
following three ledger entry classes may be used:

(1) MASTER DOCUMENT RECORD (MDR);

(2) CHILD RECORD; and

(3) ACCESS CONTROL LIST (ACL).

Concept of PARTICIPANT, ASSET, and TRANSAC-
TIONS may be used. The MDR contains references to
CHILD RECORDS and the ACCESS CONTROL LIST
(ACL). These artifacts are based on the specifications gen-
erated by the document server. Each child record represents
a segment that 1s redacted for different participants. The
ACL document contains the permissions for each child
document specified. For example, a transaction may indicate
that only Oscar and Mary can write to the child record with
document 1d “z”. The MDR may also contain information on
how the child elements should be assembled, so that the
word processing application (or similar client application)
can render the final document view. This allows users
recreate a version of the seed document containing the
user-specific viewing, editing and voting privileges. For
example, the MDR may show the following child element:
[['x°, 0], ['Y’, 0], ['x’, [‘Z’, O], [‘x’, 2]], where the first value
pair ([‘'x’, 0]), 15 decoded as follows: ‘X’ 1s the child
document 1d, the second value “0” 1s the child’s value index.
The value pair ([*x’, 0]) indicates which segment of the child
document 1s to be rendered. Note that a child record may
have multiple segments stored 1n 1t. The MDR may contain
document rendering logic. For example, the MDR child may
show that rendering takes place by first taking a pair [*X’, 0],
where child document 1s ‘x’, an value index 1s 0. The
document server may evaluate the ACL (sent in a transac-
tion) and then fetch document X (sent 1n another transac-
tion). The document may be retrieved either by fetching the
corresponding block directly or by reading a world state
database. For example, the document ‘x’, index O has the
value of “Lorem i1psum”. Thus, this segment needs to be
rendered first. The next element to be rendered 1s [‘y’, O],
and the above process may be repeated until all child
clements listed 1n the MDR are evaluated.

In one example, a child record ‘z’ may require approvals
for a proposed change from either the document owner or
from both Paul and Peter. Once approved, the change(s) may
be reflected to the subscribing users. In one embodiment,
cach ledger entry may include creation and update time-
stamps and version number(s). The child record may include
other metadata such as PCI-type of data. The child record
may make reference to another child record and or an object
located at another source (e.g., ofl the blockchain storage).
This may be used for embedding of large data such as video
files. A client application (e.g., word processing application)
may subscribe to the document server (e.g., a cloud server)
to receive real-time updates on changes to the document of

10

15

20

25

30

35

40

45

50

55

60

65

10

interest. In one embodiment, read-only users may not
receive notifications on the proposed changes, but may only
receive the nofification on the committed/voted changes.
The subscription mechanism may be implemented using
WebSockets and a queue (RabbitM(Q), Katka) or other
equivalent technology. This may allow for a simultaneous
document editing and for an instant notification of two users
making conflicting changes to a text segment. In another
embodiment, a document may be, for example, an MS
EXCEL spreadsheet, MS Visio, or MS EXCEL document,
vector graphics, or layer-based computer-aided design
(CAD) document. This may allow, for example, a blueprint
of a building (or of a city) to be shared with contractors on
an as-needed basis without revealing sensitive information
about the entire infrastructure. In another embodiment,
Hyperledger Composer solutions may be used.

In one exemplary embodiment, a client application may
accept an ID card as an imput. The client application may
consume REST APIs exposed for the contract and may
agogregate the document accordingly for each participant
based on the role and access control defined for the partici-
pant. Additional security can be enforced by mechanisms
like enforcing an ID login into nthe application before
allowing the ID card to be imported and associating the 1D
card and the login credentials. Storing and managing of
assets on the blockchain can be accomplished 1n several
ways. If the size of the asset/asset segments 1s not a concern,
the asset can be converted into blob(s) and stored directly 1n
the blockchain 1f the participants in the network are willing
and the cost 15 acceptable. One important thing to note 1s that
the transactions are replicated in a blockchain solution, so 1
storage 1s a concern other ofl-chain solutions may be used.
Other reasons for the off-chain storage may be the owner not
wanting the document/segments distributed across the net-
work, but rather stored in a secure trusted location (or
legal/government requirements that require a specific kind
of centralized storage). In cases of the off-chain storage,
instead storing of the actual document segments/child docu-
ments, hashes referencing the asset (1.e., a document) may
be stored on the blockchain.

FIG. 1B illustrates a logic network diagram for redaction
and reconciliation of a document 1n a blockchain network,
according to example embodiments.

Referring to FIG. 1B, the example network 100 includes
a document server 102 connected to document owner nodes
105 and to other participant nodes 107. The document server
102 may be connected to a blockchain 106 that has a ledger
108 for storing ledger entries 110. While this example
describes 1n detail only one document server 102, multiple
such nodes may be connected to the blockchain 106. It
should be understood that the document server 102 may
include additional components and that some of the com-
ponents described herein may be removed and/or modified
without departing from a scope of the document server 102
disclosed herein. The document server 102 may be a com-
puting device or a server computer, or the like, and may
include a processor 104, which may be a semiconductor-
based microprocessor, a central processing unit (CPU), an
application specific integrated circuit (ASIC), a field-pro-
grammable programmable gate array (FPGA), and/or
another hardware device. Although a single processor 104 1s
depicted, 1t should be understood that the document server
102 may include multiple processors, multiple cores, or the
like, without departing from the scope of the document
server node 102 system.

The document server 102 may also include a non-transi-
tory computer readable medium 112 that may have stored

US 11,972,004 B2

11

thereon machine-readable instructions executable by the
processor 104. Examples of the machine-readable 1nstruc-
tions are shown as 114-122 and are further discussed below.
Examples of the non-transitory computer readable medium
112 may include an electronic, magnetic, optical, or other
physical storage device that contains or stores executable
instructions. For example, the non-transitory computer read-
able medium 112 may be a Random Access memory (RAM),
an Electrically Erasable Programmable Read-Only Memory
(EEPROM), a hard disk, an optical disc, or other type of
storage device.

The processor 104 may fetch, decode, and execute the
machine-readable 1nstructions 114 to receive a document
from a document owner node 105. The document may
contain restricted access segments. As discussed above, the
blockchain ledger 108 may store the segments of a seed
document 1 a form of ledger entries 110. The blockchain
106 network may be configured to use one or more smart
contracts that manage transactions for multiple participating
nodes. The document server 102 may provide real-time
notifications to the nodes 105 and 107.

The processor 104 may fetch, decode, and execute the
machine-readable 1nstructions 116 to split the document 1nto
a plurality of ledger entries 110 to be stored on a blockchain
106. The processor 104 may fetch, decode, and execute the
machine-readable instructions 118 to update a ledger entry
of the plurality of ledger entries based on a proposed change
to the document made by an authorized participant node.
The processor 104 may fetch, decode, and execute the
machine-readable instructions 120 to commit the ledger
entry to the blockchain based on votes collected from a
plurality of participant nodes 107. The processor 104 may
fetch, decode, and execute the machine-readable instruc-
tions 122 to send a notification to a set of participant nodes
of the plurality of the participant nodes 107 authorized to
view the document.

FIG. 1B 1llustrates a logic network diagram for redaction
and reconciliation of a document 1n a blockchain network,
according to example embodiments.

Referring to FIG. 1B, the example network 101 includes
a document server 102 connected to document owner nodes
105 and to other participant nodes 107. The document server
102 may be connected to a blockchain 106 that has a ledger
101 for storing ledger entries 110. While this example
describes 1n detail only one document server 102, multiple
such nodes may be connected to the blockchain 106. It
should be understood that the document server 102 may
include additional components and that some of the com-
ponents described herein may be removed and/or modified
without departing from a scope of the document server 102
disclosed herein. The document server 102 may be a com-
puting device or a server computer, or the like, and may
include a processor 104, which may be a semiconductor-
based microprocessor, a central processing unit (CPU), an
application specific integrated circuit (ASIC), a field-pro-
grammable gate array (FPGA), and/or another hardware
device. Although a single processor 104 1s depicted, it
should be understood that the document server 102 may
include multiple processors, multiple cores, or the like,
without departing from the scope of the document server
node 102 system.

The document server 102 may also include a non-transi-
tory computer readable medium 112 that may have stored
thereon machine-readable instructions executable by the
processor 104. Examples of the machine-readable instruc-
tions are shown as 113-121 and are further discussed below.
Examples of the non-transitory computer readable medium

10

15

20

25

30

35

40

45

50

55

60

65

12

112 may include an electronic, magnetic, optical, or other
physical storage device that contains or stores executable
instructions. For example, the non-transitory computer read-
able medium 112 may be a Random Access memory (RAM),

an Electrically Erasable Programmable Read-Only Memory
(EEPROM), a hard disk, an optical disc, or other type of

storage device.

The processor 104 may fetch, decode, and execute the
machine-readable instructions 113 to split a document pro-
vided by a document owner node 105 imto a plurality of
segments to be stored on a ledger of a blockchain 106. As
discussed above, the blockchain ledger 101 may store the
segments of a seed document 1n a form of ledger entries 110.
The blockchain 106 network may be configured to use one
or more smart contracts that manage transactions for mul-
tiple participating nodes. The document server 102 may
provide real-time notifications to the nodes 105 and 107.

The processor 104 may fetch, decode, and execute the
machine-readable mstructions 113 to detect a change to the
document made by an authorized participant node 107. The
processor 104 may fetch, decode, and execute the machine-
readable instructions 117 to update a segment of the plurality
of segments stored on the ledger 101 based on the change to
the document. The processor 104 may fetch, decode, and
execute the machine-readable 1nstructions 119 collect votes
on the change to the document from a plurality of participant
nodes 107. The processor 104 may fetch, decode, and
execute the machine-readable instructions 121 to commit the
updated segment to the blockchain 106 based on the votes.

FIG. 2A illustrates a blockchain architecture configuration
200, according to example embodiments. Referring to FIG.
2A, the blockchain architecture 200 may include certain
blockchain elements, for example, a group of blockchain
nodes 202. The blockchain nodes 202 may include one or
more nodes 204-210 (these four nodes are depicted by
example only). These nodes participate in a number of
activities, such as blockchain transaction addition and vali-
dation process (consensus). One or more of the blockchain
nodes 204-210 may endorse transactions based on endorse-
ment policy and may provide an ordering service for all
blockchain nodes in the architecture 200. A blockchain node
may 1nitiate a blockchain authentication and seek to write to
a blockchain immutable ledger stored in blockchain layer
216, a copy of which may also be stored on the underpinning
physical infrastructure 214. The blockchain configuration
may include one or more applications 224 which are linked
to application programming 1nterfaces (APIs) 222 to access
and execute stored program/application code 220 (e.g.,
chaincode, smart contracts, etc.) which can be created
according to a customized configuration sought by partici-
pants and can maintain their own state, control their own
assets, and receive external information. This can be
deployed as a transaction and 1nstalled, via appending to the
distributed ledger, on all blockchain nodes 204-210.

The blockchain base or platform 212 may include various
layers of blockchain data, services (e.g., cryptographic trust
services, virtual execution environment, etc.), and underpin-
ning physical computer infrastructure that may be used to
receive and store new transactions and provide access to
auditors which are seeking to access data entries. The
blockchain layer 216 may expose an interface that provides
access to the virtual execution environment necessary to
process the program code and engage the physical inira-
structure 214. Cryptographic trust services 218 may be used
to verily transactions such as asset exchange transactions
and keep mformation private.

US 11,972,004 B2

13

The blockchain architecture configuration of FIG. 2A may
process and execute program/application code 220 via one
or more interfaces exposed, and services provided, by block-
chain platform 212. The code 220 may control blockchain
assets. For example, the code 220 can store and transier data,
and may be executed by nodes 204-210 in the form of a
smart contract and associated chaincode with conditions or
other code elements subject to 1ts execution. As a non-
limiting example, smart contracts may be created to execute
reminders, updates, and/or other notifications subject to the
changes, updates, etc. The smart contracts can themselves be
used to identily rules associated with authorization and
access requirements and usage of the ledger. For example,
the seed document information 226 may be processed by
one or more processing entities (e.g., virtual machines)
included in the blockchain layer 216. The result 228 may
include data blocks reflecting changes to the seed document.
The physical infrastructure 214 may be utilized to retrieve
any of the data or information described herein.

A smart contract may be created via a high-level appli-
cation and programming language, and then written to a
block 1n the blockchain. The smart contract may include
executable code which 1s registered, stored, and/or repli-
cated with a blockchain (e.g., distributed network of block-
chain peers). A transaction 1s an execution of the smart
contract code which can be performed 1n response to con-
ditions associated with the smart contract being satisfied.
The executing of the smart contract may trigger a trusted
modification(s) to a state of a digital blockchain ledger. The
modification(s) to the blockchain ledger caused by the smart
contract execution may be automatically replicated through-
out the distributed network of blockchain peers through one
Or more consensus protocols.

The smart contract may write data to the blockchain in the
format of key-value pairs. Furthermore, the smart contract
code can read the values stored 1n a blockchain and use them
in application operations. The smart contract code can write
the output of various logic operations into the blockchain.
The code may be used to create a temporary data structure
in a virtual machine or other computing platform. Data
written to the blockchain can be public and/or can be
encrypted and maintained as private. The temporary data
that 1s used/generated by the smart contract 1s held in
memory by the supplied execution environment, then
deleted once the data needed for the blockchain 1s 1dentified.

A chaincode may include the code interpretation of a
smart contract, with additional features. As described herein,
the chaincode may be program code deployed on a com-
puting network, where 1t 1s executed and validated by chain
validators together during a consensus process. The chain-
code receives a hash and retrieves from the blockchain a
hash associated with the data template created by use of a
previously stored feature extractor. If the hashes of the hash
identifier and the hash created from the stored identifier
template data match, then the chaincode sends an authori-
zation key to the requested service. The chaincode may write
to the blockchain data associated with the cryptographic
details.

FIG. 2B illustrates an example of a blockchain transac-
tional flow 250 between nodes of the blockchain 1 accor-
dance with an example embodiment. Referring to FIG. 2B,
the transaction flow may include a transaction proposal 291
sent by an application client node 260 to an endorsing peer
node 281. The endorsing peer 281 may vernily the client
signature and execute a chaincode function to initiate the
transaction. The output may include the chaincode results, a
set of key/value versions that were read 1n the chaincode

10

15

20

25

30

35

40

45

50

55

60

65

14

(read set), and the set of keys/values that were written 1n
chaincode (write set). The proposal response 292 1s sent
back to the client 260 along with an endorsement signature,
il approved. The client 260 assembles the endorsements 1nto
a transaction payload 293 and broadcasts 1t to an ordering
service node 284. The ordering service node 284 then
delivers ordered transactions as blocks to all peers 281-283
on a channel. Before commuttal to the blockchain, each peer
281-283 may validate the transaction. For example, the
peers may check the endorsement policy to ensure that the
correct allotment of the specified peers have signed the
results and authenticated the signatures against the transac-
tion payload 293.

Referring again to FIG. 2B, the client node 260 initiates
the transaction 291 by constructing and sending a request to
the peer node 281, which 1s an endorser. The client 260 may
include an application leveraging a supported soltware
development kit (SDK), which utilizes an available API to
generate a transaction proposal. The proposal 1s a request to
invoke a chaincode function so that data can be read and/or
written to the ledger (1.e., write new key value pairs for the
assets). The SDK may serve as a shim to package the
transaction proposal into a properly architected format (e.g.,
protocol bufler over a remote procedure call (RPC)) and take
the client’s cryptographic credentials to produce a unique
signature for the transaction proposal.

In response, the endorsing peer node 281 may verity (a)
that the transaction proposal 1s well formed, (b) the trans-
action has not been submitted already in the past (replay-
attack protection), (¢) the signature 1s valid, and (d) that the
submitter (client 260, 1n the example) 1s properly authorized
to perform the proposed operation on that channel. The
endorsing peer node 281 may take the transaction proposal
inputs as arguments to the mvoked chaincode function. The
chaincode 1s then executed against a current state database
to produce transaction results including a response value,
read set, and write set. However, no updates are made to the
ledger at this point. In 292, the set of values, along with the
endorsing peer node’s 281 signature 1s passed back as a
proposal response 292 to the SDK of the client 260 which
parses the payload for the application to consume.

In response, the application of the client 260 inspects/
verifies the endorsing peers’ signatures and compares the
proposal responses to determine 1f the proposal response 1s
the same. If the chaincode only queried the ledger, the
application would inspect the query response and would
typically not submit the transaction to the ordering node
service 284. If the client application intends to submit the
transaction to the ordering node service 284 to update the
ledger, the application determines 11 the specified endorse-
ment policy has been fulfilled before submitting (i.e., did all
peer nodes necessary for the transaction endorse the trans-
action). Here, the client may include only one of multiple
parties to the transaction. In this case, each client may have
their own endorsing node, and each endorsing node will
need to endorse the transaction. The architecture 1s such that
even 1f an application selects not to inspect responses or
otherwise forwards an unendorsed transaction, the endorse-
ment policy will still be enforced by peers and upheld at the
commit validation phase.

After successiul ispection, 1 step 293 the client 260
assembles endorsements into a transaction and broadcasts
the transaction proposal and response within a transaction
message to the ordering node 284. The transaction may
contain the read/write sets, the endorsing peers’ signatures
and a channel ID. The ordering node 284 does not need to
inspect the entire content of a transaction in order to perform

US 11,972,004 B2

15

its operation, instead the ordering node 284 may simply
recerve transactions from all channels 1n the network, order
them chronologically by channel, and create blocks of
transactions per channel.

The blocks of the transaction are delivered from the
ordering node 284 to all peer nodes 281-283 on the channel.
The transactions 294 within the block are validated to ensure
any endorsement policy 1s fulfilled and to ensure that there
have been no changes to ledger state for read set variables
since the read set was generated by the transaction execu-
tion. Transactions 1n the block are tagged as being valid or
invalid. Furthermore, 1n step 295 each peer node 281-283
appends the block to the channel’s chain, and for each valid
transaction the write sets are committed to current state
database. An event 1s emitted, to notify the client application
that the transaction (invocation) has been i1mmutably
appended to the chain, as well as to notily whether the
transaction was validated or invalidated.

FIG. 3 A 1llustrates an example of a permissioned block-
chain network 300, which features a distributed, decentral-
1zed peer-to-peer architecture. In this example, a blockchain
user 302 may initiate a transaction to the permissioned
blockchain 304. In this example, the transaction can be a
deploy, mvoke, or query, and may be issued through a
client-side application leveraging an SDK, directly through
an API, etc. Networks may provide access to a regulator 306,
such as an auditor. A blockchain network operator 308
manages member permissions, such as enrolling the regu-
lator 306 as an “auditor” and the blockchain user 302 as a
“client”. An auditor could be restricted only to querying the
ledger whereas a client could be authorized to deploy,
invoke, and query certain types of chaincode.

A blockchain developer 310 can write chaincode and
client-side applications. The blockchain developer 310 can
deploy chaincode directly to the network through an inter-
face. To include credentials from a traditional data source
312 1n chaincode, the developer 310 could use an out-oi-
band connection to access the data. In this example, the
blockchain user 302 connects to the permissioned block-
chain 304 through a peer node 314. Belfore proceeding with
any transactions, the peer node 314 retrieves the user’s
enrollment and transaction certificates from a certificate
authority 316, which manages user roles and permissions. In
some cases, blockchain users must possess these digital
certificates 1n order to transact on the permissioned block-
chain 304. Meanwhile, a user attempting to utilize chaincode
may be required to verily their credentials on the traditional
data source 312. To confirm the user’s authorization, chain-
code can use an out-oi-band connection to this data through
a traditional processing platiorm 318.

FIG. 3B illustrates another example of a permissioned
blockchain network 320, which features a distributed,
decentralized peer-to-peer architecture. In this example, a
blockchain user 322 may submit a transaction to the per-
missioned blockchain 324. In this example, the transaction
can be a deploy, invoke, or query, and may be 1ssued through
a client-side application leveraging an SDK, directly
through an API, etc. Networks may provide access to a
regulator 326, such as an auditor. A blockchain network
operator 328 manages member permissions, such as enroll-
ing the regulator 326 as an “auditor” and the blockchain user
322 as a “client”. An auditor could be restricted only to
querying the ledger whereas a client could be authorized to
deploy, 1nvoke, and query certain types of chaincode.

A blockchain developer 330 writes chaincode and client-
side applications. The blockchain developer 330 can deploy
chaincode directly to the network through an interface. To

10

15

20

25

30

35

40

45

50

55

60

65

16

include credentials from a traditional data source 332 1n
chaincode, the developer 330 could use an out-of-band
connection to access the data. In this example, the block-
chain user 322 connects to the network through a peer node
334. Before proceeding with any transactions, the peer node
334 retrieves the user’s enrollment and transaction certifi-
cates Irom the certificate authority 336. In some cases,
blockchain users must possess these digital certificates in
order to transact on the permissioned blockchain 324. Mean-
while, a user attempting to utilize chaincode may be required
to verily their credentials on the traditional data source 332.
To confirm the user’s authorization, chaincode can use an
out-of-band connection to this data through a traditional
processing platiorm 338.

FIG. 4A illustrates a flow diagram 400 of an example
method for redaction and reconciliation of a document in
blockchain networks, according to example embodiments.
Referring to FIG. 4A, the method 400 may include one or
more of the steps described below.

FIG. 4A illustrates a flow chart of an example method
executed by the document server 102 (see FIG. 1). It should
be understood that method 400 depicted in FIG. 4A may
include additional operations and that some of the operations
described therein may be removed and/or modified without
departing from the scope of the method 400. The description
ol the method 400 1s also made with reference to the features
depicted 1n FIG. 1 for purposes of illustration. Particularly,
the processor 104 of the document server 102 may execute
some or all of the operations included 1n the method 400.

With reference to FIG. 4A, at block 412, the processor
104 may receive a document from a document owner node.
The document may contain restricted access segments. At
block 414, the processor 104 may split the document 1nto a
plurality of ledger entries to be stored on a blockchain. At
block 416, the processor 104 may update a ledger entry of
the plurality of ledger entries based on a proposed change to
the document made by an authorized participant node. At
block 418, the processor 104 may commit the ledger entry
to the blockchain based on votes collected from a plurality
of participant nodes. At block 420, the processor 104 may
send a notification to a set of participant nodes of the
plurality of the participant nodes authorized to view the
document.

FIG. 4B illustrates a flow diagram 4350 of an example
method for redaction and reconciliation of a document 1n a
blockchain network, according to example embodiments.
Referring to FIG. 4B, the method 450 may also include one
or more of the following steps. At block 4352, the processor
104 may determine view and edit access for each of the
restricted access segments of the document for the plurality
of the participant nodes. At block 454, the processor 104
may determine a consensus method for reconciliation of
changes of the document based on instructions received
from the document owner. At block 456, the processor 104
may assign participant nodes from the plurality of the
participant nodes to vote on the proposed change as defined
by the document owner. At block 458, the processor 104
may generate a ledger entry that indicates rejection of the
proposed change 11 consensus 1s not reached by the partici-
pant nodes assigned to vote. At block 460, the processor 104
may execute a smart contract to restrict access to the
segments of the document. At block 462, the processor 104
may convert the ledger entries into blobs prior to their
storage on the blockchain.

FIG. 4C 1illustrates a flow diagram 410 of an example
method for redaction and reconciliation of a document in
blockchain networks, according to example embodiments.

US 11,972,004 B2

17

Referring to FIG. 4C, the method 410 may include one or
more of the steps described below.

FIG. 4C illustrates a flow chart of an example method
executed by the document server 102 (see FIG. 1A). It
should be understood that method 410 depicted i FIG. 4C
may include additional operations and that some of the
operations described therein may be removed and/or modi-
fied without departing from the scope of the method 410.
The description of the method 410 1s also made with
reference to the features depicted 1n FIG. 1A for purposes of
illustration. Particularly, the processor 104 of the document
server 102 may execute some or all of the operations
included in the method 410.

With reference to FI1G. 4C, at block 413, the processor 104
may split a document provided by a document owner node
into a plurality of segments to be stored on a ledger of a
blockchain. At block 415, the processor 104 may detect a
change to the document made by an authorized participant
node. At block 417, the processor 104 may update a segment
of the plurality of segments stored on the ledger based on the
change to the document. At block 419, the processor 104
may collect votes on the change to the document from a
plurality of participant nodes. At block 421, the processor
104 may commit the updated segment to the blockchain
based on the votes.

FIG. 4D illustrates a flow diagram 470 of an example
method for redaction and reconciliation of a document 1n a
blockchain network, according to example embodiments.
Referring to FIG. 4D, the method 470 may also include one
or more of the following steps. At block 472, the processor
104 may send a notification of the change to the document
to a set of participant nodes of the plurality of the participant
nodes authorized to view the document. At block 474, the
processor 104 may determine view and edit access for each
of the segments of the document for the plurality of the
participant nodes. At block 476, the processor 104 may
receive istructions from the document owner on a consen-
sus method for reconciliation of changes of the document. At
block 478, the processor 104 may assign participant nodes
selected by the document owner from the plurality of the
participant nodes to vote on the document change. At block
480, the processor 104 may record a ledger entry on the
blockchain 11 a consensus on the document change 1s not
reached by the participant nodes assigned to vote. At block
482, the processor 104 may execute a smart contract to
restrict access to the segments of the document 1dentified by
the document owner.

FIG. SA illustrates an example system 600 that includes
a physical infrastructure 510 configured to perform various
operations according to example embodiments. Referring to
FIG. 5A, the physical infrastructure 510 includes a module
512 and a module 514. The module 514 includes a block-
chain 520 and a smart contract 530 (which may reside on the
blockchain 520), that may execute any of the operational
steps 508 (1n module 512) included 1n any of the example
embodiments. The steps/operations 508 may include one or
more of the embodiments described or depicted and may
represent output or written information that 1s written or read
from one or more smart contracts 330 and/or blockchains
520. The physical infrastructure 510, the module 512, and
the module 514 may include one or more computers, serv-
ers, processors, memories, and/or wireless communication
devices. Further, the module 512 and the module 514 may
be a same module.

FIG. 5B illustrates another example system 540 config-
ured to perform various operations according to example
embodiments. Referring to FIG. 6B, the system 640 includes

10

15

20

25

30

35

40

45

50

55

60

65

18

a module 512 and a module 514. The module 514 includes
a blockchain 520 and a smart contract 530 (which may
reside on the blockchain 520), that may execute any of the
operational steps 508 (1n module 512) included 1n any of the
example embodiments. The steps/operations 508 may
include one or more of the embodiments described or
depicted and may represent output or written information
that 1s written or read from one or more smart contracts 530
and/or blockchains 520. The physical infrastructure 510, the
module 512, and the module 514 may include one or more
computers, servers, processors, memories, and/or wireless
communication devices. Further, the module 512 and the
module 514 may be a same module.

FIG. 5C 1illustrates an example system configured to
utilize a smart contract configuration among contracting
parties and a mediating server configured to enforce the
smart contract terms on the blockchain according to example
embodiments. Referring to FIG. 5C, the configuration 550
may represent a communication session, an asset transier
session or a process or procedure that 1s driven by a smart
contract 330 which explicitly i1dentifies one or more user
devices 352 and/or 556. The execution, operations and
results of the smart contract execution may be managed by
a server 554. Content of the smart contract 330 may require
digital signatures by one or more of the entities 552 and 556
which are parties to the smart contract transaction. The
results of the smart contract execution may be written to a
blockchain 520 as a blockchain transaction. The smart
contract 530 resides on the blockchain 520 which may reside
On one or more computers, servers, processors, memories,
and/or wireless communication devices.

FIG. 5D illustrates a system 360 including a blockchain,
according to example embodiments. Referring to the
example of FIG. 5D, an application programming interface
(API) gateway 562 provides a common 1nterface for access-
ing blockchain logic (e.g., smart contract 530 or other
chaincode) and data (e.g., distributed ledger, etc.). In this
example, the API gateway 562 1s a common interface for
performing transactions (1invoke, queries, etc.) on the block-
chain by connecting one or more entities 552 and 556 to a
blockchain peer (i.e., server 534). Here, the server 554 1s a
blockchain network peer component that holds a copy of the
world state and a distributed ledger allowing clients 552 and
556 to query data on the world state as well as submiut
transactions into the blockchain network where, depending
on the smart contract 530 and endorsement policy, endorsing
peers will run the smart contracts 530.

The above embodiments may be implemented in hard-
ware, 1n a computer program executed by a processor, 1n
firmware, or 1n a combination of the above. A computer
program may be embodied on a computer readable medium,
such as a storage medium. For example, a computer program
may reside 1 random access memory (“RAM™), flash
memory, read-only memory (“ROM”), erasable program-
mable read-only memory (“EPROM”), electrically erasable
programmable read-only memory (“EEPROM?”), registers,
hard disk, a removable disk, a compact disk read-only
memory (“CD-ROM”), or any other form of storage
medium known 1n the art.

An exemplary storage medium may be coupled to the
processor such that the processor may read information
from, and write information to, the storage medium. In the
alternative, the storage medium may be integral to the
processor. The processor and the storage medium may reside
in an application specific integrated circuit (“ASIC”). In the
alternative, the processor and the storage medium may
reside as discrete components.

US 11,972,004 B2

19

FIG. 6A 1illustrates a process 600 of a new block being
added to a distributed ledger 620, according to example
embodiments, and FIG. 6B 1llustrates contents of a new data
block structure 630 for blockchain, according to example
embodiments. Referring to FIG. 6A, clients (not shown)
may submit transactions to blockchain nodes 611, 612,
and/or 613. Clients may execute be instructions received
from any source to enact activity on the blockchain 620. As
an example, clients may be applications that act on behalf of
a requester, such as a device, person or entity to propose
transactions for the blockchain. The plurality of blockchain
peers (e.g., blockchain nodes 611, 612, and 613) may

maintain a state of the blockchain network and a copy of the
distributed ledger 620. Diflerent types of blockchain nodes/
peers may be present 1n the blockchain network including
endorsing peers which simulate and endorse transactions
proposed by clients and committing peers which verily
endorsements, validate transactions, and commit transac-

tions to the distributed ledger 620. In this example, the
blockchain nodes 611, 612, and 613 may perform the role of
endorser node, committer node, or both.

The distributed ledger 620 includes a blockchain which
stores immutable, sequenced records 1n blocks, and a state
database 624 (current world state) maintaining a current
state of the blockchain 622. One distributed ledger 620 may
exist per channel and each peer maintains its own copy of
the distributed ledger 620 for each channel of which they are
a member. The blockchain 622 1s a transaction log, struc-
tured as hash-linked blocks where each block contains a
sequence ol N transactions. Blocks may include various
components such as shown in FIG. 6B. The linking of the
blocks (shown by arrows in FIG. 6 A) may be generated by
adding a hash of a prior block’s header within a block header
of a current block. In this way, all transactions on the
blockchain 622 are sequenced and cryptographically linked
together preventing tampering with blockchain data without
breaking the hash links. Furthermore, because of the links,
the latest block i1n the blockchain 622 represents every
transaction that has come before it. The blockchain 622 may
be stored on a peer file system (local or attached storage),
which supports an append-only blockchain workload.

The current state of the blockchain 622 and the distributed
ledger 622 may be stored 1n the state database 624. Here, the
current state data represents the latest values for all keys ever
included 1n the chain transaction log of the blockchain 622.
Chaincode 1mvocations execute transactions against the cur-
rent state in the state database 624. To make these chaincode
interactions extremely etlicient, the latest values of all keys
are stored 1n the state database 624. The state database 624
may include an indexed view into the transaction log of the
blockchain 622, it can therefore be regenerated from the
chain at any time. The state database 624 may automatically
get recovered (or generated 11 needed) upon peer startup,
before transactions are accepted.

Endorsing nodes receive transactions from clients and
endorse the transaction based on simulated results. Endors-
ing nodes hold smart contracts which simulate the transac-
tion proposals. When an endorsing node endorses a trans-
action, the endorsing node creates a transaction endorsement
which 1s a signed response from the endorsing node to the
client application indicating the endorsement of the simu-
lated transaction. The method of endorsing a transaction
depends on an endorsement policy which may be specified
within chaincode. An example of an endorsement policy 1s
“the majority of endorsing peers must endorse the transac-
tion”. Diflerent channels may have different endorsement

10

15

20

25

30

35

40

45

50

55

60

65

20

policies. Endorsed transactions are forward by the client
application to ordering service 610.

The ordering service 610 accepts endorsed transactions,
orders them into a block, and delivers the blocks to the
committing peers. For example, the ordering service 610
may initiate a new block when a threshold of transactions
has been reached, a timer times out, or another condition. In
the example of FIG. 6A, blockchain node 612 1s a commut-
ting peer that has recerved a new data new data block 630 for
storage on blockchain 620. The first block in the blockchain
may be referred to as a genesis block which includes
information about the blockchain, its members, the data
stored therein, etc.

The ordering service 610 may be made up of a cluster of
orderers. The ordering service 610 does not process trans-
actions, smart contracts, or maintain the shared ledger.
Rather, the ordering service 610 may accept the endorsed
transactions and specifies the order in which those transac-
tions are committed to the distributed ledger 620. The
architecture of the blockchain network may be designed
such that the specific implementation of ‘ordering’ (e.g.,
Solo, Katka, BFT, etc.) becomes a pluggable component.

Transactions are written to the distributed ledger 620 1n a
consistent order. The order of transactions 1s established to
ensure that the updates to the state database 624 are valid
when they are committed to the network. Unlike a crypto-
currency blockchain system (e.g., Bitcoin, etc.) where order-
ing occurs through the solving of a cryptographic puzzle, or
mining, 1n this example the parties of the distributed ledger
620 may choose the ordering mechanism that best suits that
network.

When the ordering service 610 imnitializes a new data
block 630, the new data block 630 may be broadcast to
committing peers (e.g., blockchain nodes 611, 612, and
613). In response, each committing peer validates the trans-
action within the new data block 630 by checking to make
sure that the read set and the write set still match the current
world state in the state database 624. Specifically, the
committing peer can determine whether the read data that
existed when the endorsers simulated the transaction 1s
identical to the current world state in the state database 624.
When the committing peer validates the transaction, the
transaction 1s written to the blockchain 622 on the distrib-
uted ledger 620, and the state database 624 1s updated with
the write data from the read-write set. If a transaction fails,
that 1s, 11 the committing peer finds that the read-write set
does not match the current world state 1n the state database
724, the transaction ordered into a block will still be
included 1n that block, but 1t will be marked as invalid, and
the state database 624 will not be updated.

Referring to FIG. 6B, a new data block 630 (also referred
to as a data block) that 1s stored on the blockchain 622 of the
distributed ledger 620 may include multiple data segments
such as a block header 640, block data 650, and block
metadata 660. It should be appreciated that the various
depicted blocks and their contents, such as new data block
630 and 1ts contents. shown 1n FIG. 6B are merely examples
and are not meant to limit the scope of the example embodi-
ments. The new data block 630 may store transactional
information of N transaction(s) (e.g., 1, 10, 100, 500, 1000,
2000, 3000, etc.) within the block data 650. The new data
block 630 may also include a link to a previous block (e.g.,
on the blockchain 622 in FIG. 6A) within the block header
640. In particular, the block header 640 may include a hash
of a previous block’s header. The block header 640 may also
include a umique block number, a hash of the block data 650
of the new data block 630, and the like. The block number

US 11,972,004 B2

21

of the new data block 630 may be unique and assigned 1n
vartous orders, such as an incremental/sequential order
starting from zero.

The block data 650 may store transactional information of
cach transaction that 1s recorded within the new data block
630. For example, the transaction data may include one or
more of a type of the transaction, a version, a timestamp, a
channel ID of the distributed ledger 620, a transaction ID, an
epoch, a payload visibility, a chaincode path (deploy tx), a
chaincode name, a chaincode version, input (chaincode and
functions), a client (creator) identify such as a public key
and certificate, a signature of the client, identities of endors-
ers, endorser signatures, a proposal hash, chaincode events,
response status, namespace, a read set (list of key and
version read by the transaction, etc.), a write set (list of key
and value, etc.), a start key, an end key, a list of keys, a
Merkel tree query summary, and the like. The transaction
data may be stored for each of the N transactions.

In some embodiments, the block data 650 may also store
new data 662 which adds additional information to the
hash-linked chain of blocks 1n the blockchain 622. The
additional information includes one or more of the steps,
features, processes and/or actions described or depicted
herein. Accordingly, the new data 662 can be stored 1n an
immutable log of blocks on the distributed ledger 620. Some
ol the benefits of storing such new data 662 are reflected 1n

the various embodiments disclosed and depicted herein.
Although 1 FIG. 6B the new data 662 1s depicted in the

block data 6350 but could also be located 1n the block header
640 or the block metadata 660.

The block metadata 660 may store multiple fields of
metadata (e.g., as a byte array, etc.). Metadata fields may
include signature on block creation, a reference to a last
configuration block, a transaction filter identifying valid and
invalid transactions within the block, last oflset persisted of
an ordering service that ordered the block, and the like. The
signature, the last configuration block, and the orderer
metadata may be added by the ordering service 610. Mean-
while, a committer of the block (such as blockchain node
612) may add validity/invalidity information based on an
endorsement policy, verification of read/write sets, and the
like. The transaction filter may include a byte array of a size
equal to the number of transactions in the block data 650 and
a validation code identifying whether a transaction was
valid/invalid.

FI1G. 6C 1illustrates an embodiment of a blockchain 670 for
digital content 1 accordance with the embodiments
described herein. The digital content may include one or
more files and associated information. The files may include
media, 1images, video, audio, text, links, graphics, anima-
tions, web pages, documents, or other forms of digital
content. The immutable, append-only aspects of the block-
chain serve as a safeguard to protect the integrity, validity,
and authenticity of the digital content, making it suitable use
in legal proceedings where admissibility rules apply or other
settings where evidence 1s taken 1n to consideration or where
the presentation and use of digital information 1s otherwise
ol interest. In this case, the digital content may be referred
to as digital evidence.

The blockchain may be formed 1n various ways. In one
embodiment, the digital content may be included i and
accessed from the blockchain itself. For example, each block
of the blockchain may store a hash value of reference
information (e.g., header, value, etc.) along the associated
digital content. The hash value and associated digital content
may then be encrypted together. Thus, the digital content of
cach block may be accessed by decrypting each block 1n the

5

10

15

20

25

30

35

40

45

50

55

60

65

22

blockchain, and the hash value of each block may be used
as a basis to reference a previous block. This may be

illustrated as follows:

Block 1 Block 2 Block N

Hash Value N
Digital Content N

Hash Value 2
Digital Content 2

Hash Value 1
Digital Content 1

In one embodiment, the digital content may be not
included 1n the blockchain. For example, the blockchain
may store the encrypted hashes of the content of each block
without any of the digital content. The digital content may
be stored 1in another storage area or memory address in
association with the hash value of the original file. The other
storage area may be the same storage device used to store the
blockchain or may be a diflerent storage area or even a
separate relational database. The digital content of each
block may be referenced or accessed by obtaining or que-
rying the hash value of a block of interest and then looking
up that has value in the storage area, which 1s stored in
correspondence with the actual digital content. This opera-
tion may be performed, for example, a database gatekeeper.
This may be illustrated as follows:

Blockchain Storage Area

Block 1 Hash Value Block 1 Hash Value . . . Content

Block N Hash Value Block N Hash Value . . . Content

In the example embodiment of FIG. 6C, the blockchain

670 includes a number of blocks 678,, 678,, . . . 678,
cryptographically linked in an ordered sequence, where

Nz1. The encryption used to link the blocks 678,

678, ...678, may be any of a number of keyed or un-keyed
Hash functions. In one embodiment, the blocks 678,
678, ...678, arec subject to a hash function which produces
n-bit alphanumeric outputs (where n 1s 256 or another
number) from mputs that are based on information in the
blocks. Examples of such a hash function include, but are
not limited to, a SHA-type (SHA stands for Secured Hash
Algorithm) algorithm, Merkle-Damgard algorithm, HAIFA
algorithm, Merkle-tree algorithm, nonce-based algorithm,
and a non-collision-resistant PRF algorithm. In another
embodiment, the blocks 678,, 678,, . . . , 678,, may be
cryptographically linked by a function that 1s different from
a hash function. For purposes of illustration, the following

description 1s made with reference to a hash function, e.g.,
SHA-2.

Each of the blocks 678, 678, . .., 678,,1n the blockchain
includes a header, a version of the file, and a value. The
header and the value are different for each block as a result
of hashing 1n the blockchain. In one embodiment, the value
may be included 1n the header. As described 1n greater detail
below, the version of the file may be the original file or a
different version of the original {ile.

The first block 678, 1n the blockchain 1s referred to as the
genesis block and includes the header 672,, original file
674, and an mitial value 676,. The hashing scheme used for
the genesis block, and 1indeed 1n all subsequent blocks, may
vary. For example, all the information in the first block 678,
may be hashed together and at one time, or each or a portion

US 11,972,004 B2

23

of the information in the first block 678, may be separately
hashed and then a hash of the separately hashed portions
may be performed.

The header 672, may include one or more initial param-
eters, which, for example, may include a version number,
timestamp, nonce, root information, difliculty level, consen-
sus protocol, duration, media format, source, descriptive
keywords, and/or other information associated with original

file 674, and/or the blockchain. The header 672, may be

generated automatically (e.g., by blockchain network man-
aging software) or manually by a blockchain participant.

Unlike the header in other blocks 678, to 678, i the

blockchain, the header 672, 1n the genesis block does not
reference a previous block, simply because there i1s no
previous block.

The original file 674, in the genesis block may be, for
example, data as captured by a device with or without
processing prior to its inclusion in the blockchain. The
original file 674, 1s received through the interface of the
system from the device, media source, or node. The original
file 674, 1s associated with metadata, which, for example,
may be generated by a user, the device, and/or the system
processor, either manually or automatically. The metadata
may be included 1n the first block 678, 1n association with
the original file 674,.

The value 676, i the genesis block 1s an initial value
generated based on one or more unique attributes of the
original file 674,. In one embodiment, the one or more
unique attributes may include the hash value for the original
file 674,, metadata for the original file 674,, and other
information associated with the file. In one implementation,
the 1nitial value 676, may be based on the following unique
attributes:

1) SHA-2 computed hash value for the original file

2) oniginating device 1D

3) starting timestamp for the original file

4) 1mitial storage location of the original file

5) blockchain network member ID for software to cur-

rently control the original file and associated metadata

The other blocks 678, to 678,,1n the blockchain also have
headers, files, and values. However, unlike the first block
672,, each of the headers 672, to 672, in the other blocks
includes the hash value of an immediately preceding block.
The hash value of the immediately preceding block may be
just the hash of the header of the previous block or may be
the hash value of the entire previous block. By including the
hash value of a preceding block in each of the remaining
blocks, a trace can be performed from the Nth block back to
the genesis block (and the associated original file) on a
block-by-block basis, as indicated by arrows 680, to estab-
lish an auditable and immutable chain-of-custody.

Each of the header 672, to 672,; 1n the other blocks may
also include other information, €.g., version number, time-
stamp, nonce, root iformation, difliculty level, consensus
protocol, and/or other parameters or information associated
with the corresponding files and/or the blockchain in gen-
eral.

The files 674, to 674, 1n the other blocks may be equal to
the original file or may be a modified version of the original
file 1n the genesis block depending, for example, on the type
of processing performed. The type of processing performed
may vary from block to block. The processing may involve,
for example, any modification of a file 1n a preceding block,
such as redacting information or otherwise changing the
content of, taking information away from, or adding or
appending information to the files.

10

15

20

25

30

35

40

45

50

55

60

65

24

Additionally, or alternatively, the processing may mvolve
merely copying the file from a preceding block, changing a
storage location of the file, analyzing the file from one or
more preceding blocks, moving the file from one storage or
memory location to another, or performing action relative to
the file of the blockchain and/or its associated metadata.
Processing which involves analyzing a file may include, for
example, appending, including, or otherwise associating
various analytics, statistics, or other information associated
with the file.

The values 1n each of the other blocks 676, to 676,,1n the
other blocks are unique values and are all different as a result
of the processing performed. For example, the value 1n any
one block corresponds to an updated version of the value 1n
the previous block. The update is retlected 1n the hash of the
block to which the value 1s assigned. The values of the
blocks therefore provide an indication of what processing
was performed in the blocks and also permit a tracing
through the blockchain back to the original file. This track-
ing confirms the chain-of-custody of the file throughout the
entire blockchain.

For example, consider the case where portions of the file
in a previous block are redacted, blocked out, or pixilated 1n
order to protect the identity of a person shown 1n the file. In
this case, the block including the redacted file will include
metadata associated with the redacted file, e.g., how the
redaction was performed, who performed the redaction,
timestamps where the redaction(s) occurred, etc. The meta-
data may be hashed to form the value. Because the metadata
for the block 1s different from the information that was
hashed to form the value 1n the previous block, the values are
different from one another and may be recovered when
decrypted.

In one embodiment, the value of a previous block may be
updated (e.g., a new hash value computed) to form the value
ol a current block when any one or more of the following
occurs. The new hash value may be computed by hashing all
or a portion of the information noted below, 1n this example
embodiment.

a) new SHA-2 computed hash value 11 the file has been
processed 1in any way (e.g., if the file was redacted,
copied, altered, accessed, or some other action was
taken)

b) new storage location for the file

¢) new metadata identified associated with the file

d) transfer of access or control of the file from one
blockchain participant to another blockchain partici-
pant

FIG. 6D illustrates an embodiment of a block which may
represent the structure of the blocks 1n the blockchain 690 in
accordance with one embodiment. The block, Block,
includes a header 672,, a file 674, and a value 676..

The header 672, includes a hash value of a previous block
Block, , and additional reference information, which, for
example, may be any of the types of information (e.g.,
header information including references, characteristics,
parameters, etc.) discussed herein. All blocks reference the
hash of a previous block except, of course, the genesis block.
The hash value of the previous block may be just a hash of
the header 1n the previous block or a hash of all or a portion
of the mformation in the previous block, including the file
and metadata.

The file 674 , includes a plurality of data, such as Data 1,
Data 2, . .., Data N 1n sequence. The data are tagged with
metadata Metadata 1, Metadata 2, . . . , Metadata N which
describe the content and/or characteristics associated with
the data. For example, the metadata for each data may

US 11,972,004 B2

25

include information to indicate a timestamp for the data,
process the data, keywords indicating the persons or other
content depicted 1n the data, and/or other features that may
be helpful to establish the validity and content of the file as
a whole, and particularly its use a digital evidence, for
example, as described 1n connection with an embodiment
discussed below. In addition to the metadata, each data may
be tagged with reference REF,, REF,, REF ., to a previous
data to prevent tampering, gaps in the file, and sequential
reference through the file.

Once the metadata 1s assigned to the data (e.g., through a
smart contract), the metadata cannot be altered without the
hash changing, which can easily be identified for invalida-
tion. The metadata, thus, creates a data log of information
that may be accessed for use by participants 1n the block-
chain.

The value 676, 1s a hash value or other value computed
based on any of the types of information previously dis-
cussed. For example, for any given block Block,, the value
for that block may be updated to retlect the processing that
was performed for that block, e.g., new hash value, new
storage location, new metadata for the associated file, trans-
fer of control or access, identifier, or other action or infor-
mation to be added. Although the value 1n each block 1s
shown to be separate from the metadata for the data of the
file and header, the value may be based, in part or whole, on
this metadata 1n another embodiment.

Once the blockchain 670 1s formed, at any point 1n time,
the immutable chain-of-custody for the file may be obtained
by querying the blockchain for the transaction history of the
values across the blocks. This query, or tracking procedure,
may begin with decrypting the value of the block that 1s most
currently included (e.g., the last (N?) block), and then
continuing to decrypt the value of the other blocks until the
genesis block 1s reached and the original file 1s recovered.
The decryption may involve decrypting the headers and files
and associated metadata at each block, as well.

Decryption 1s performed based on the type of encryption
that took place 1 each block. This may mnvolve the use of
private keys, public keys, or a public key-private key parr.
For example, when asymmetric encryption 1s used, block-
chain participants or a processor 1n the network may gen-
erate a public key and private key pair using a predetermined
algorithm. The public key and private key are associated
with each other through some mathematical relationship.
The public key may be distributed publicly to serve as an
address to recerve messages from other users, e¢.g., an IP
address or home address. The private key 1s kept secret and
used to digitally sign messages sent to other blockchain
participants. The signature 1s included 1n the message so that
the recipient can verily using the public key of the sender.
This way, the recipient can be sure that only the sender could
have sent this message.

Generating a key pair may be analogous to creating an
account on the blockchain, but without having to actually
register anywhere. Also, every transaction that 1s executed
on the blockchain 1s digitally signed by the sender using
their private key. This signature ensures that only the owner
of the account can track and process (11 within the scope of
permission determined by a smart contract) the file of the
blockchain.

FI1G. 7 illustrates an example system 700 that supports one
or more of the example embodiments described and/or
depicted herein. The system 700 comprises a computer
system/server 702, which i1s operational with numerous
other general purpose or special purpose computing system
environments or configurations. Examples of well-known

10

15

20

25

30

35

40

45

50

55

60

65

26

computing systems, environments, and/or configurations
that may be suitable for use with computer system/server
702 1include, but are not limited to, personal computer
systems, server computer systems, thin clients, thick clients,
hand-held or laptop devices, multiprocessor systems, micro-
processor-based systems, set top boxes, programmable con-
sumer e¢lectronics, network PCs, minicomputer systems,
mainframe computer systems, and distributed cloud com-
puting environments that include any of the above systems
or devices, and the like.

Computer system/server 702 may be described in the
general context of computer system-executable 1nstructions,
such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer system/server 702 may be
practiced in distributed cloud computing environments
where tasks are performed by remote processing devices that
are linked through a communications network. In a distrib-
uted cloud computing environment, program modules may
be located 1n both local and remote computer system storage
media including memory storage devices.

As shown 1n FIG. 7, computer system/server 702 in cloud
computing node 700 1s shown in the form of a general-
purpose computing device. The components of computer
system/server 702 may include, but are not limited to, one or
more processors or processing units 704, a system memory
706, and a bus that couples various system components
including system memory 706 to processor 704.

The bus represents one or more of any of several types of
bus structures, including a memory bus or memory control-
ler, a peripheral bus, an accelerated graphics port, and a
processor or local bus using any of a variety of bus archi-
tectures. By way ol example, and not limitation, such
architectures include Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (IMCA) bus, Enhanced ISA
(EISA) bus, Video Flectronics Standards Association
(VESA) local bus, and Peripheral Component Interconnects
(PCI) bus.

Computer system/server 702 typically includes a variety
of computer system readable media. Such media may be any
available media that 1s accessible by computer system/server
702, and 1t includes both volatile and non-volatile media,
removable and non-removable media. System memory 706,
in one embodiment, implements the flow diagrams of the
other figures. The system memory 706 can include computer
system readable media 1n the form of volatile memory, such
as random-access memory (RAM) 710 and/or cache
memory 712. Computer system/server 702 may further
include other removable/non-removable, volatile/non-vola-
tile computer system storage media. By way of example
only, storage system 714 can be provided for reading from
and writing to a non-removable, non-volatile magnetic
media (not shown and typically called a *“hard drive™).
Although not shown, a magnetic disk drive for reading from
and writing to a removable, non-volatile magnetic disk (e.g.,
a “floppy disk™), and an optical disk drive for reading from
or writing to a removable, non-volatile optical disk such as
a CD-ROM, DVD-ROM or other optical media can be
provided. In such 1nstances, each can be connected to the bus
by one or more data media interfaces. As will be further
depicted and described below, memory 706 may include at
least one program product having a set (e.g., at least one) of
program modules that are configured to carry out the func-
tions of various embodiments of the application.

US 11,972,004 B2

27

Program/utility 716, having a set (at least one) of program
modules 718, may be stored in memory 706 by way of
example, and not limitation, as well as an operating system,
one or more application programs, other program modules,
and program data. Each of the operating system, one or more
application programs, other program modules, and program
data or some combination thereof, may include an 1mple-
mentation of a networking environment. Program modules
718 generally carry out the functions and/or methodologies
of various embodiments of the application as described
herein.

As will be appreciated by one skilled 1n the art, aspects of
the present application may be embodied as a system,
method, or computer program product. Accordingly, aspects
of the present application may take the form of an entirely
hardware embodiment, an entirely software embodiment
(including firmware, resident software, micro-code, etc.) or
an embodiment combining software and hardware aspects
that may all generally be referred to herein as a “circuit,”
“module” or “system.” Furthermore, aspects of the present
application may take the form of a computer program
product embodied 1n one or more computer readable medi-
um(s) having computer readable program code embodied
thereon.

Computer system/server 702 may also communicate with
one or more external devices 720 such as a keyboard, a
pointing device, a display 722, etc.; one or more devices that
enable a user to interact with computer system/server 702;
and/or any devices (e.g., network card, modem, etc.) that
ecnable computer system/server 702 to commumnicate with
one or more other computing devices. Such communication
can occur via I/O terfaces 724. Still yet, computer system/
server 702 can communicate with one or more networks
such as a local area network (LAN), a general wide area
network (WAN), and/or a public network (e.g., the Internet)
via network adapter 726. As depicted, network adapter 726
communicates with the other components of computer sys-
tem/server 702 via a bus. It should be understood that
although not shown, other hardware and/or software com-
ponents could be used 1n conjunction with computer system/
server 702. Examples, include, but are not limited to:
microcode, device dnivers, redundant processing units,
external disk drnive arrays, RAID systems, tape drives, and
data archival storage systems, etc.

Although an exemplary embodiment of at least one of a
system, method, and non-transitory computer readable
medium has been illustrated 1n the accompanied drawings
and described 1n the foregoing detailed description, 1t will be
understood that the application 1s not limited to the embodi-
ments disclosed, but 1s capable of numerous rearrangements,
modifications, and substitutions as set forth and defined by
the following claims. For example, the capabilities of the
system of the various figures can be performed by one or
more of the modules or components described herein or in
a distributed architecture and may include a transmitter,
receiver or pair of both. For example, all or part of the
functionality performed by the individual modules, may be
performed by one or more of these modules. Further, the
functionality described herein may be performed at various
times and 1n relation to various events, internal or external
to the modules or components. Also, the information sent
between various modules can be sent between the modules
via at least one of: a data network, the Internet, a voice
network, an Internet Protocol network, a wireless device, a
wired device and/or via plurality of protocols. Also, the

10

15

20

25

30

35

40

45

50

55

60

65

28

messages sent or received by any of the modules may be sent
or recerved directly and/or via one or more of the other
modules.

One skilled 1n the art will appreciate that a “system™ could
be embodied as a personal computer, a server, a console, a
personal digital assistant (PDA), a cell phone, a tablet
computing device, a smartphone or any other suitable com-
puting device, or combination of devices. Presenting the
above-described functions as being performed by a “system”™
1s not intended to limit the scope of the present application
in any way but 1s mtended to provide one example of many
embodiments. Indeed, methods, systems and apparatuses
disclosed herein may be implemented in localized and
distributed forms consistent with computing technology.

It should be noted that some of the system features
described 1n this specification have been presented as mod-
ules, 1n order to more particularly emphasize theirr imple-
mentation mdependence. For example, a module may be
implemented as a hardware circuit comprising custom very
large-scale integration (VLSI) circuits or gate arrays, ofl-
the-shell semiconductors such as logic chips, transistors, or
other discrete components. A module may also be 1mple-
mented 1n programmable hardware devices such as field

programmable gate arrays, programmable array logic, pro-
grammable logic devices, graphics processing units, or the
like.

A module may also be at least partially implemented 1n
soltware for execution by various types of processors. An
identified unit of executable code may, for instance, com-
prise one or more physical or logical blocks of computer
instructions that may, for instance, be organized as an object,
procedure, or function. Nevertheless, the executables of an
identified module need not be physically located together
but may comprise disparate instructions stored in diflerent
locations which, when joined logically together, comprise
the module and achieve the stated purpose for the module.
Further, modules may be stored on a computer-readable
medium, which may be, for imnstance, a hard disk drive, tlash
device, random access memory (RAM), tape, or any other
such medium used to store data.

Indeed, a module of executable code could be a single
instruction, or many instructions, and may even be distrib-
uted over several different code segments, among different
programs, and across several memory devices. Similarly,
operational data may be 1dentified and illustrated herein
within modules and may be embodied 1n any suitable form
and organized within any suitable type of data structure. The
operational data may be collected as a single data set or may
be distributed over different locations including over differ-
ent storage devices, and may exist, at least partially, merely
as electronic signals on a system or network.

It will be readily understood that the components of the
application, as generally described and illustrated i the
figures herein, may be arranged and designed in a wide
variety ol different configurations. Thus, the detailed
description of the embodiments 1s not intended to limait the
scope of the application as claimed but 1s merely represen-
tative of selected embodiments of the application.

One having ordinary skill in the art will readily under-
stand that the above may be practiced with steps in a
different order, and/or with hardware elements 1n configu-
rations that are different than those which are disclosed.
Therefore, although the application has been described
based upon these preferred embodiments, 1t would be appar-
ent to those of skill in the art that certain modifications,
variations, and alternative constructions would be apparent.

"y

US 11,972,004 B2

29

While preferred embodiments of the present application
have been described, 1t 1s to be understood that the embodi-
ments described are illustrative only and the scope of the
application 1s to be defined solely by the appended claims
when considered with a full range of equivalents and modi-
fications (e.g., protocols, hardware devices, soltware plat-
forms etc.) thereto.

What 1s claimed 1s:

1. A system comprising:

a memory storing one or more 1nstructions; and

a processor that when executing the one or more nstruc-

tions 1s configured to:
split a document provided by a document owner node
into a plurality of segments and store the plurality of
segments via a blockchain ledger of a blockchain
network, wherein a plurality of participant nodes of
the blockchain network are assigned different restric-
tions with respect to the plurality of segments,
receive a proposed change to the document which 1s
input via a view ol the document at a participant
node among the plurality of participant nodes,
approve the proposed change to the document based on
votes on the proposed change collected from the
plurality of authorized participant nodes, and
in response to the determination, update a view of the
document at a different participant node from among,
the plurality of participants nodes by redacting a
portion of the document based on a smart contract of
the blockchain ledger of the blockchain network and
the approved proposed change to the document.

2. The system of claim 1, wherein the processor 1s further
configured to:

send a notification of the update to the document to the

plurality of authorized participant nodes.

3. The system of claim 1, wherein the processor 1s further
configured to:

determine, for the plurality of the participant nodes, view

access and edit access for the segment.

4. The system of claim 1, wherein the processor 1s further
configured to:

receive a consensus method for reconciliation of the

proposed change from the document owner node.

5. The system of claim 1, wherein the processor 1s further
configured to:

assign the plurality of authorized participant nodes to vote

on the proposed change to the document.

6. The system of claim 1, wherein the processor 1s further
configured to:

convert a segment mmto a blob prior to storage on the

blockchain ledger.

7. A method, comprising:

splitting, by a document server of a blockchain network,

a document provided by a document owner node 1nto a
plurality of segments and storing the plurality of seg-
ments via a blockchain ledger of the blockchain net-
work, wherein a plurality of participant nodes of the
blockchain network are assigned different restrictions
with respect to the plurality of segments;

receiving a proposed change to the document which 1s

iput via a view ol the document at a participant node
among the plurality of participant nodes;

approving the proposed change to the document based on

votes on the proposed change collected from the plu-
rality of authorized participant nodes, and

in response to the determination, updating a view of the

document at a different participant node from among

5

10

15

20

25

30

35

40

45

50

55

60

65

30

the plurality of participants nodes by redacting a por-
tion of the document based on a smart contract of the
blockchain ledger of the blockchain network and the
approved proposed change to the document.

8. The method of claim 7, further comprising:

sending a notification of the update to the document to the

plurality of authorized participant nodes.

9. The method of claim 7, further comprising;:

determining, for the plurality of the participant nodes,

view access and edit access for the segment.

10. The method of claim 7, further comprising:

receiving a consensus method for reconciliation of the

proposed change from the document owner node.

11. The method of claim 7, further comprising:

assigning the plurality of authorized participant nodes to

vote on the proposed change to the document.

12. The method of claim 7, further comprising:

converting a segment into a blob prior to storage on the

blockchain ledger.

13. A non-transitory computer readable medium compris-
ing one or more instructions that when executed by a
processor of a server 1 a blockchain network cause the
processor to perform:

splitting a document provided by a document owner node

into a plurality of segments and storing the plurality of
segments via a blockchain ledger of the blockchain
network, wherein a plurality of participant nodes of the

* [

blockchain network are assigned different restrictions
with respect to the plurality of segments;

receirving a proposed change to the document which 1s
input via a view ol the document at a participant node
among the plurality of participant nodes which 1is

authorized to update the segment within the different
access restrictions:

approving the proposed change based on votes on the

proposed change collected from the plurality of autho-
rized participant nodes, and

in response to the determination, updating a view of the

document at a different participant node from among
the plurality of participants nodes by redacting a por-
tion of the document based on a smart contract of the
blockchain ledger of the blockchain network and the
approved proposed change to the document.

14. The non-transitory computer readable medium of
claim 13, wherein the one or more 1nstructions further cause
the processor to perform:

sending a notification of the update to the document to the

plurality of authorized participant nodes.

15. The non-transitory computer readable medium of
claim 13, wherein the one or more 1nstructions further cause
the processor to perform:

determining, for the plurality of the participant nodes,

view access and edit access for the segment.

16. The non-transitory computer readable medium of
claim 13, wherein the one or more 1nstructions further cause
the processor to perform:

receiving a consensus method for reconciliation of the

proposed change from the document owner node.

17. The non-transitory computer readable medium of
claim 13, wherein the one or more 1nstructions further cause
the processor to perform:

assigning the plurality of authorized participant nodes to

vote on the proposed change to the document.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

