United States Patent

US011968251B1

(12) 10) Patent No.: US 11,968.251 B1
Kommula et al. 45) Date of Patent: Apr. 23, 2024
(54) SELF-LEARNING SERVICE SCHEDULER 9,571,391 B2 2/2017 Tsiatsis et al.
FOR SMART NICS 2005/0120095 Al1* 6/2005 Aman ... HO4L 67/1008
709/219
(71) Applicant: Juniper Networks, Inc., Sunnyvale, 2006/0136701 AL* 6/2006 Dickinson GO6L 8/61
CA (US) 712/205
(Continued)
(72) Inventors: Raja Kommula, Cupertino, CA (US); | |
Ganesh Byagoti Matad Sunkada, FOREIGN PATENT DOCUMENTS
Bengaluru (IN); Thayumanavan
Sridhar, Sunnyvale, CA (US); WO 2013/184846 Al 12/2013
Rajasree Krishnamoorthy, Fremont,
CA (US); Raj Yavatkar, Los Gatos, OTHER PUBLICATIONS
CA (US); Jit Gupta, Philadelphia, PA o
(US); Krishna Kant, Philadelphia, PA Adarsh, “Autonomous and Predictive Systems to Enhance the
(US) Performance of Resilient Networks”, University of California,
Santa Barbara, Sep. 30, 2022, 268 pp.
(73) Assignee: élglip([}esr)Networks, Inc., Sunnyvale, (Continued)
(*) Notice: Subject to any disclaimer, the term of this Primary Lxaminer — JOShL}a Joo |
patent 1s extended or adjusted under 35 (74) Attorney, Agent, or Firm — Shumaker & Sieflert,
U.S.C. 154(b) by 0 days. P.A.
(21) Appl. No.: 18/064,803 (57) ARSTRACT
(22) Filed: Dec. 12, 2022 An example method comprises determining, by an edge
services controller, based on a respective predicted resource
(1) Int. Cl, utilization value for each of a plurality of servers, a corre-
ggji ‘6”72208 (38338%) sponding server weight for each of the plurality of servers;
(52) US.Cl (01) the plurality of servers comprising respective network inter-
PO Sl | tace cards (NICs), wherein each NIC of the plurality of NICs
CPC s HO4L 6771008 (2013.01); Ho‘;ﬁf?ﬁf comprises an embedded switch and a processing unit
52) Field of Classification S h (01) coupled to the embedded switch; determining, by the edge
(58) Nle of Classification Searc services controller, based on a respective predicted resource
S;jenz lication file for comnlete search histo utilization value for each of a plurality of services, a
PP P 2 corresponding application weight for each of the plurality of
(56) References Cited services; and scheduling, by the edge services controller,

U.S. PATENT DOCUMENTS

based on the respective server weight for a server of the
plurality of servers and the respective application weight for
the service, a service of the plurality of services on the

6,141,705 A * 10/2000 Anand GO6F 9/5044 server
718/107
RE37.811 E * 7/2002 Sitbon GO6F 9/5083
713/1 20 Claims, 11 Drawing Sheets
8
N
network
4
SERVICE FROVIDER NETWORK
z
DATA CENTER
10
R
IP fabric
20
CONTROLLER CHASSIS CHASSIS | —
24 SWITCH SWITCH
:l 184 u 18M
EDGE SERVICES
CONTROLLER ‘ \ 14
28
" "
LN SWITCH 000 SWITCH
FIRST - 16N
SERVICE ko
29 |, | D
NIC NIC
134234 13X ﬁ
SERVER eoe SERVER
— 12X

US 11,968,251 B1
Page 2

(56)

2018/0359544
2019/0243691
2020/0019444
2020/0106856
2021/0004258
2021/0037363
2022/0129316
2022/0382593

References Cited

U.S. PATENT DOCUMENTS

12/2018
8/2019
1/2020
4/2020

2/2021
4/2022
12/2022

% ¥ % * * ¥ *

AN A AN NN

Tootaghaj et al.

OTHER PUBLICATIONS

[]
SAZIC vvveiiiireinn,

1/2021 L .o,

Yang
Sheoran

HO04Q 11/0062
GOo6F 9/5077
GO6F 9/5016
GOO6F 16/24578
HO4L 67/10
HO4L 41/5054
GOo6F 9/5027

Extended Search Report from counterpart European Application
No. 23215625.7 dated Feb. 27, 2024, 10 pp.

* cited by examiner

U.S. Patent Apr. 23, 2024 Sheet 1 of 11 US 11,968,251 B1

CUSTOMER SITES
11

SERVICE PROVIDER NETWORK
VA

'/8

DATA CENTER
10
IP fabric
20
CONTROLLER | CHASSIS CHASSIS
24 swncn SWITCH
i18M
EDGE SERVICES
CONTROLLER
28
T TOR TOR
A SWITCH SWITCH
FIRST _1oA 16N
SERVICE }_
29 o

= NIC
SERVER |

FIG. 1

US 11,968,251 Bl

Sheet 2 of 11

Apr. 23, 2024

U.S. Patent

¢ Ol

e 557
ASIA AYOWIAN

(1] %4 24
YOSSIIOUJOUIIN | T _ 390148 LINYIHLI

[m T TR T —m—m—m——— - “
_ [%74 _ 757 |

| DS TINYI |
| - 1aNuan | _ e

_. r T T T T T i 44
_ | ALnoun HOWAIN
_ _ | 1| oNissad0ud
_ | i
| I ez Y w I

|1 s3oauzs | IN3OV | |

r | mu<HMMum: |
r , Fovasuasn ;
| | 14
| (STINIHOVIN | LINN DNISS3d0Ud
| JYUMA | -
| eze] QY2 JDVAYILNI NOMLIN
_ IERIN WALHIA / |
_ 3 | 3DIA3A %.N_NSnZQU
. 30VdS HISN |

US 11,968,251 Bl

Sheet 3 of 11

Apr. 23, 2024

U.S. Patent

8tt

SFOIAYAS NAS ANV XNNIT

91t

AOIAYAS
AdLING11L

JOIVYISIHNAIO

00€ ~

174

(A%

SAOIAYIS SAOIAULS

L171

HJOMLIN

- 90F -
VOt w.ioped

UOIJeLIOINE YIOMION

£ Old

SNdd Yim

| L sSNdA yam
S3poN aindwo) . sapoN 9)ndwo)

= =
= - =
= =
= =

e I == =) ==
pe =1 =) ==

N80t V80t

US 11,968,251 Bl

Sheet 4 of 11

Apr. 23, 2024

U.S. Patent

00y

JISY

JIN 3 HOLIMS |

‘STIOD WY

Qd30d349IN3
HLIM NdQ

Ndd

S1dOd TVNU311X3

IIIIIIIIIIIIIIIIIIIIIIII

HOLIMS 3dag3ging
JISY JIN .
TANED {1 s3yod
SOAS IDVYOLS ALRINDIS ‘MN | ,m__,,__nwzﬂw
| XNNITONINNNY 15
“ STUOD WYV . . et] m_u“._M_MM
JIVAS HISN
. OLSSVdAg
TINYIN
HOLIMSA H1IM HOSIANYd3dAH --.
| YOSIAYIdAH
ONISSVdAS
HOLIMSA HONOYHL | DV4YALINE
$SIDIV WA NO JIN TVNLIIA §5400V 40vdS 445N 55100¥ud | AOI-YS 1}
1J341Q %Add HLIM AOI-IS
TANAIN TANYIN TANYIN
SYINIVINOD/S3SSII0¥d | | 3ovds ¥3sn JOVdS ¥3sN 3IvdS ¥3sN

HLIM SNIA “HOSIAYAdAH &
ONINNNY 1SOH 98X

SINA |

 NAQ HLIM 43A¥3S 98X

U.S. Patent Apr. 23, 2024 Sheet 5 of 11 US 11,968,251 B1

DATA CENTER 540
FIRST . SECOND ! FIRSTDPURLL
INSTANCEOF | § INSTANCEOF i _ __ _____________ L
FIRSTSERVICE | i SECOND SERVICE : b
501 . 502 ;
HHHHHHHHHHHHHHHHHHHHHHHHHHHHHH i
3
|
|
_ - . - i - '
FIRST SECOND SECOND DPU 512 1
INSTANCE OF INSTANCE OF FL‘E%U{;‘&”;%‘EC%F ;
THIRD SERVICE FIRST SERVICE 0 :
503 204 "
|
A T A A YA i
- |
|
- a :
" THIRD DPU 513 | ;
FIRST INSTANCE OF SECOND SECOND | !
206 THIRD SERVICE SECOND SERVICE ;
i
_ R y ? . |
_______________________ . ;
- “iJ{éK&Eé?Eé{ PROCESSOR | EDGE SERVICES
— : CONTROLLER 525 |
METRIC SERVICE SERVICE / SCHEDULER | =& 225
COLLECTOR/DATABASE PROFILE APPLICATION L CONFIGURATOR
521 DATABASE 524 SCHEDULER 523 522

R, 5

U.S. Patent Apr. 23, 2024 Sheet 6 of 11 US 11,968,251 B1

SERVICE/
APPLICATION
SCHEDULER
923

USER/AUTO
SCALER
102

SERVICE
PROFILE
DATABASE 524

SCHEDULER
CONFIGURATOR

SERVER (DPU)

£10

222

DEPLOY OR AUTO

122

i
i
:
: i
'
| SCALE %SZERVICE . GET SERVICE . :
: ; PROFILE : :
: i 14 ' .
: 1 I GETSERVERTAINTS | :
: 1 I AND AFFINITY I '
: ! I CONFIGURATIONBY | :
. ' I USER ! ;
. SELECT SERVER ¢ I 716 ’ "
! BASED ON CURRENTS I I :
, RESOURCE & | | i
' AVAILABILITY AND 3 l I ;
I TAINTS AND [DISCARD CORRECT I i
: AFFINITY # . SERVER FOR l ;
: CONFIGURATION : : SCHEDULING BASED : I
; 718 ; : ON CURRENT ; :
: \ ; RESOURCE ; I
’ . , AVA!EZSIUTY , :
i
. i : I ,
| i i | j
. 1 : SCHEDULE TO ' ;
. ! I WRONG SERVERFOR | ;
: ! I SCHEDULING BASED ¢ ,
: ! ; ON CURRENT I "
, ! I RESOURCE I '
: ' f AVAILABILITY ' ;
) 1 i I
4

Ll
@
o

U.S. Patent Apr. 23, 2024 Sheet 7 of 11 US 11,968,251 B1

ENTER 540
FIRST . SECOND | FIRST DPU 214
INSTANCEOF | | INSTANCEOF | __________________ i
FIRSTSERVICE | | SECOND SERVICE -
E 501 g 502 ; :
T —— '
_______ I
i
i
R R N R L Lt L e N L R o e R aa e e L L m e & T I
. - - - o - i
FIRST SECOND SECOND DPU512 | 1
INSTANCE OF INSTANCE OF F‘S‘ggﬁ&%ﬁg L
THIRD SERVICE FIRST SERVICE i
[203 204 202 :
Lttt i
...... . 1
|
|
AR |
3 |
 THIRDDPUS13 |
FIRST INSTANCE OF SECOND SECOND o
COURTH SERVICE INSTANCE OF INSTANCE OF i
06 THIRD SERVICE | | SECOND SERVICE ;
| |
i
i
i
........... i
LEARNING ENGINE , ! EDGE SERVICES
METRIC A =) SERVICE / : CONTROLLER Z25
COLLECTOR/DATABASE ARPLICATION SERVER WEIGHTS . APPLICATION | ___ _,
591 PREDICTOR PREDICTOR SCHEDULER
701 A 523

U.S. Patent Apr. 23, 2024 Sheet 8 of 11 US 11,968,251 B1

METRIC

SERVER (DPU) COLLECTOR/
810 DATABASE

SERVICE/

LEARNING APPLICATION USER/AUTO

ENGINE

705 SCHESDL:L;LER SCALER 802

221

EXPORT SERVER& !

i |
I i
I i
: : .
' APPLICATION PREDICT SERVER | .
i METRICS y CETMEIRICS DATA 1 METRIC VALUESAND | :
: 812 . SERVER WEIGHTS
MODELS i I .
. 1 816 I i
, ASSIGN AT LEAST " l " I
" ONE PREDICTED i I I
! SERVERWEIGHT 1 I '
' AND ATLEASTONE 1 ::__:__] i I
) APPLICATION] j I
! WEIGHT TO SERVER | | PSE%E f;sz@lﬁg ;_ APPLICATION !
, AND APPLICATION | b ppLICATION WelGHTs ! INSTALLORSCALE
" INSTANCE ! i (Aw) i UP REQUEST I
| 820 i | W 821 I
; 318 Lhsssimmmmiimsossomessisssssossssssssn?
) ! i i |
" ! 1 I I
j 1 i i :
: : ' SELECT SERVERAND &
iy APPLICATION WITH I
| DISCARD WRONG 1 1 OBTAINATLEAST | THEOBTAINEDAT @
' SERVER AND X " ONE SERVER LEAST ONE SERVER |
: SCHEDULE I I WEIGHT FROM 5w, WEIGHTANDTHE |
, APP/SERVICE : I ANDATLEASTONE | OBTAINED AT LEAST
: INSTANCE TO : I APPLICATION I ONEAPPLICATION !
! CORRECTSERVER ! ! WEIGHT FROMAW | WEIGHT .
: 826 ' 822 l 824 :
i
i
]

L
@
oo

U.S. Patent Apr. 23, 2024 Sheet 9 of 11 US 11,968,251 B1

200

Determining a respective server weight
for each of a plurality of servers, based
on a respective predicted resource
utilization value for each of the plurality
of servers

902

Determining a respective application
weight for each of a plurality of services,
based on a respective predicted
resource utilization value for each of the
plurality of services

904

Scheduling a service of the plurality of
services on a server of the plurality of
servers based on the respective server
weight for the server and the respective
application weight for the service

306

FIG. 9

U.S. Patent Apr. 23, 2024 Sheet 10 of 11 US 11,968,251 B1

Day {N-2} Day (N-1) Today
Time chU Network | DPU Num Num CPU Network |DPU NI Num CPU Network;DPU Num Nurm
Usage Usage % Usage [Jumbo Firewall (Usage |Usage |Usage [Jumbo |[Firewall (Usage Usage [Usage [Junbo | Firewall
T1 30 20 o 2100 70 24 30 8 4500 68 ? ? ? ? ?
T2 20 18 12 2900 50 32 28 25 5300 | 29 ? ? ? ? ?
T3 70 50 35 110500, 110 56 47 28 9750 | 105 ? ? ? ? ?

FIG. 10

U.S. Patent Apr. 23, 2024 Sheet 11 of 11 US 11,968,251 B1

DPU-1 DPU-2 DPU-3
Time
Sw Aw(S1-1) Sw A{S3-1) | A(S1-2) | A(S2-1) Sw A(S54-1) | A(S53-2) |A(S2-2)
t 7 4 o 7 3] 4 5 3 2
t+Dtl 5 6 4 6 7 8 9 7 5
t+ D12 8 5 5 5 S 5 6 4 3
t+D3 4 9 7 8 4 8 8 6 4 7/

FIG. 11

US 11,968,251 Bl

1

SELF-LEARNING SERVICE SCHEDULER
FOR SMART NICS

TECHNICAL FIELD

The disclosure relates to computer networks.

BACKGROUND

In a typical cloud-based data center environment, a large
collection of mterconnected servers provide computing and/
or storage capacity to run various applications. For example,
a data center may comprise a facility that hosts applications
and services for subscribers, 1.e., customers of a data center
provider. The data center may, for example, host all of the
infrastructure equipment, such as networking and storage
systems, redundant power supplies, and environmental con-
trols. In a typical data center, clusters of storage servers and
application servers (compute nodes) are terconnected via
a high-speed switch fabric provided by one or more tiers of
physical network switches and routers. More sophisticated
data centers provide infrastructure spread throughout the
world with subscriber support equipment located 1n various
physical hosting facilities.

Connectivity between the server and the switch fabric 1s
provided by a hardware module called a Network Interface
Card (NIC). A conventional NIC includes an application-
specific 1tegrated circuit (ASIC) to perform packet for-
warding, which includes some basic Layer 2/Layer 3 (LL2/
[L3) functionality. In conventional NICs, the packet
processing, policing and other advanced Ifunctionality,
known as the “datapath,” 1s performed by the host CPU, 1.¢.,
the CPU of the server that includes the NIC. However, some
NIC vendors may include an additional processing unit in
the NIC 1tself to offload at least some of the datapath
processing from the host CPU to the NIC. The processing,
unit in the NIC may be, e.g., a multi-core ARM processor
with some hardware acceleration provided by a Data Pro-
cessing Unit (DPU), Field Programmable Gate Array
(FPGA), and/or an ASIC. A processing unit may be alter-
natively reterred to as a DPU. NICs that include such
augmented datapath processing capabilities are typically
referred to as SmartNICs.

SUMMARY

In general, techniques are described for an edge services
platform that leverages processing units of NICs to augment
the processing and networking functionality of a network of
servers that include the NICs. Features provided by the edge
services platform may include, e.g., orchestration of NICs;
API driven deployment of services on NICs; NIC addition,
deletion, and replacement; monitoring of services and other
resources on NICs; and management of connectivity
between various services running on the NICs. More spe-
cifically, this disclosure describes an edge services platiorm
that implements a seli-learning scheduler to determine
placements of service instances based on predicted future
application/service resource utilizations and server resource
utilizations. The self-learning scheduler learns about
resource utilization requirements of one or more services,
and resource utilization patterns of hardware resources of
one or more servers, mcluding resource utilization patterns
of processing units of NICs of the servers. In some
examples, the edge services platform uses a machine leamn-
ing model to mform scheduling of a service of the one or
more services to a server of the one or more servers. The

10

15

20

25

30

35

40

45

50

55

60

65

2

machine learning model 1s trained by analyzing a first set of
historical utilization data for the one or more servers and a
second set of historical utilization data for the one or more
services. The ftrained machine learning model predicts
resource utilization values for the one or more servers and
the one or more services.

Services runmng 1n a typical enterprise data center envi-
ronment may follow a predictable pattern of server compute
and network resource usage. For example, administrators
may schedule backup services during the overnight hours.
Payroll processing software may run on a weekly,
bimonthly, or monthly schedule. Branch offices may upload
daily transaction data to the central oflice at the end of the
day. A typical use case 1s a backup service that follows a
pattern of a large number of elephant flows from servers to
storage devices during the backup process. Backup software
may use jumbo packets to minimize the total number of
required transactions. Administrators may pre-configure a
virtual local area network (VLAN) for backup traflic.

When services follow predictable resource usage patterns,
these services cause predictable resource usage patterns on
the servers running the services. These patterns can be used
to schedule the services onto appropriate servers to utilize
server resources efliciently, and to maximize the perfor-
mance of the services. Traditional schedulers make sched-
uling decisions based on the availability of resources on
cach of a plurality of servers at the time of scheduling, along
with one or more user-configured static scheduling policies
such as server atlinity and server taints.

Since traditional schedulers are not aware of future utili-
zation trends for services and resources on the plurality of
servers, high resource utilization services may be scheduled
onto a server which then faces a resource deficiency subse-
quent to the scheduling. Likewise, one or more low resource
utilization services may be scheduled onto a server for
which additional resources may become available subse-
quent to the scheduling. These scheduling inefliciencies may
result 1n degraded service performance or underutilization of
Server resources.

The techniques may provide one or more technical advan-
tages that realize one or more practical applications. For
example, 1n contrast to traditional schedulers, the seli-
learning scheduler described herein acquires knowledge
about future resource requirements of services and resource
availabilities of servers, including the processing units of
NICs of such servers. The selif-learning scheduler uses a
machine learning model to make predictions of future
resource requirements based on usage telemetry data relative
to start times for each of the services. The seli-learming
scheduler uses the machine learning model to make predic-
tions ol future resource availabilities for servers based on
resource usage telemetry of service instances. Based on the
predicted future resource requirements and predicted future
resource availabilities, the seli-learning scheduler schedules
a service having a high future resource requirement with a
server having a high future resource availability, such that a
service requiring high resources 1s scheduled for deployment
on a server having more resources. In this way, the tech-
niques may improve overall service performance across
multiple service instances deployed to multiple servers,
reduce performance bottlenecks from oversubscribed serv-
ers, and/or facilitate enhanced reliability and performance of
service mstances by ensuring sutlicient resources for future
deployments.

In one example, this disclosure describes a system com-
prising a plurality of servers comprising respective network
interface cards (NICs), wherein each NIC of the plurality of

US 11,968,251 Bl

3

NICs comprises an embedded switch and a processing unit
coupled to the embedded switch; and an edge services

controller configured to determine, based on a correspond-
ing predicted resource utilization value for the processing
unit of the corresponding NIC of each of the plurality of
servers, a corresponding server weight for each of the
plurality of servers; determine, based on a corresponding
predicted resource utilization value for each of the plurality
ol services, a corresponding application weight for each of
a plurality of services; and schedule a service of the plurality
ol services on a processing unit of the corresponding NIC of
a server of the plurality of servers based on the correspond-
ing server weight for the server and the corresponding
application weight for the service.

In another example, this disclosure describes a method
comprising determining, by an edge services controller,
based on a respective predicted resource utilization value for
cach of a plurality of servers, a corresponding server weight
for each of the plurality of servers; the plurality of servers
comprising respective network interface cards (NICs),
wherein each NIC of the plurality of NICs comprises an
embedded switch and a processing umt coupled to the
embedded switch; determining, by the edge services con-
troller, based on a respective predicted resource utilization
value for each of a plurality of services, a corresponding
application weight for each of the plurality of services; and
scheduling, by the edge services controller, based on the
respective server weight for a server of the plurality of
servers and the respective application weight for the service,
a service of the plurality of services on the server.

In another example, this disclosure describes a non-
transitory computer-readable storage medium comprising,
instructions that, when executed, configure processing cir-
cuitry of a computing system to perform operations com-
prising: determining, by an edge services controller, based
on a respective predicted resource utilization value for each
of a plurality of servers, a corresponding server weight for
cach of the plurality of servers; the plurality of servers
comprising respective network interface cards (NICs),
wherein each NIC of the plurality of NICs comprises an
embedded switch and a processing unit coupled to the
embedded switch; determining, by the edge services con-
troller, based on a respective predicted resource utilization
value for each of a plurality of services, a corresponding,
application weight for each of the plurality of services; and
scheduling, by the edge services controller, based on the
respective server weight for a server of the plurality of
servers and the respective application weight for the service,
a service of the plurality of services on the server.

The details of one or more embodiments of this disclosure
are set forth 1n the accompanying drawings and the descrip-
tion below. Other features, objects, and advantages will be
apparent from the description and drawings, and from the
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram 1illustrating an example network
system having a data center in which examples of the
techniques described herein may be implemented.

FIG. 2 1s a block diagram illustrating an example com-
puting device that uses a network interface card having a
separate processing unit, to perform services managed by an
edge services platform according to techniques described
herein.

FIG. 3 1s a conceptual diagram illustrating a data center
with servers that each include a network interface card

5

10

15

20

25

30

35

40

45

50

55

60

65

4

having a separate processing unit, controlled by an edge
services platform, according to techniques of this disclosure.

FIG. 4 1s a block diagram illustrating an example com-
puting device that uses a network interface card having a
separate processing unit, to perform services managed by an
edge services platform according to techmiques described
herein.

FIG. 5 a block diagram illustrating an example system for
scheduling one or more services to one or more servers,
according to techniques of this disclosure.

FIG. 6 1s a data flow diagram illustrating an example
method for scheduling one or more services to one or more
servers, according to techniques of this disclosure.

FIG. 7 1s a block diagram 1llustrating an example system
for scheduling one or more services to one or more servers,
according to techniques of this disclosure.

FIG. 8 1s a data flow diagram illustrating an example
method for scheduling one or more services to one or more
servers, according to techniques of this disclosure.

FIG. 9 1s a flowchart for an example method performed by
an edge services controller according to techniques of this
disclosure.

FIG. 10 1s a table showing an illustrative resource utili-
zation pattern on a data processing unit.

FIG. 11 1s a table showing a server and application weight
matrix for multiple data processing units of servers, at each
of a plurality of different time stamps.

Like reference characters denote like elements throughout
the description and figures.

DETAILED DESCRIPTION

FIG. 1 1s a block diagram 1llustrating an example network
system 8 having a data center 10 1n which examples of the
techniques described herein may be implemented. In gen-
eral, data center 10 provides an operating environment for
applications and services for customer sites 11 having one or
more customer networks coupled to data center 10 by a
service provider network 7. Data center 10 may, for
example, host infrastructure equipment, such as networking
and storage systems, redundant power supplies, and envi-
ronmental controls. Service provider network 7 1s coupled to
a public network 4. Public network 4 may represent one or
more networks administered by other providers and may
thus form part of a large-scale public network infrastructure,
¢.g., the Internet. For instance, public network 4 may rep-
resent a local area network (LAN), a wide area network
(WAN), the Internet, a virtual LAN (VLAN), an enterprise
LLAN, a layer 3 virtual private network (VPN), an Internet
Protocol (IP) intranet operated by the service provider that
operates service provider network 7, an enterprise IP net-
work, or some combination thereof.

Although customer sites 11 and public network 4 are
illustrated and described primarily as edge networks of
service provider network 7, in some examples, one or more
of customer sites 11 and public network 4 are tenant net-
works within data center 10 or another data center. For
example, data center 10 may host multiple tenants (custom-
ers) each associated with one or more virtual private net-
works (VPNs). Each of the VPNs may implement one of
customer sites 11.

Service provider network 7 offers packet-based connec-
tivity to attached customer sites 11, data center 10, and
public network 4. Service provider network 7 may represent
a network that 1s operated (and potentially owned) by a
service provider to interconnect a plurality of networks.
Service provider network 7 may implement Multi-Protocol

US 11,968,251 Bl

S

Label Switching (MPLS) forwarding and, 1n such instances,
may be referred to as an MPLS network or MPLS backbone.
In some instances, service provider network 7 represents a
plurality of interconnected autonomous systems, such as the
Internet, that offers services from one or more service
providers.

In some examples, data center 10 may represent one of
many geographically distributed network data centers. As
illustrated 1n the example of FIG. 1, data center 10 may be
a facility that provides network services for customers. A
customer of the service provider may be a collective entity
such as enterprises and governments or individuals. For
example, a network data center may host web services for
several enterprises and end users. Other exemplary services
may include data storage, virtual private networks, traflic
engineering, file service, data mining, scientific- or super-
computing, and so on. Although illustrated as a separate
edge network of service provider network 7, elements of
data center 10 such as one or more physical network
tfunctions (PNFs) or virtualized network functions (VNFs)
may be included within the service provider network 7 core.

In this example, data center 10 includes storage and/or
compute servers interconnected via switch fabric 14 pro-
vided by one or more tiers of physical network switches and
routers, with servers 12A-12X (herein, “servers 127)
depicted as coupled to top-of-rack (TOR) switches 16A-
16N. This disclosure may refer to TOR switches 16A-16N
collectively, as “TOR switches 16.” TOR switches 16 may
be network devices that provide layer 2 (MAC) and/or layer
3 (e.g., IP) routing and/or switching functionality.

Servers 12 may also be referred to herein as “hosts™ or
“host devices.” Data center 10 may include many additional
servers coupled to other TOR switches 16 of the data center
10.

Switch fabric 14 in the illustrated example includes
interconnected TOR switches 16 (or other “leal” switches)
coupled to a distribution layer of chassis switches 18 A-18M
(collectively, “chassis switches 18”). Chassis switches may
also be referred to as “spine™ or “core” switches. Although
not shown in the example of FIG. 1, data center 10 may also
include one or more non-edge switches, routers, hubs,
gateways, security devices such as firewalls, intrusion detec-
tion, and/or 1ntrusion prevention devices, servers, computer
terminals, laptops, printers, databases, wireless mobile
devices such as cellular phones or personal digital assistants,
wireless access points, bridges, cable modems, application
accelerators, and/or other network devices.

In some examples, TOR switches 16 and chassis switches
18 provide servers 12 with redundant (e.g., multi-homed)
connectivity to IP fabric 20 and service provider network 7.
Chassis switches 18 aggregate traflic tlows and provide
connectivity between TOR switches 16. TOR switches 16
and chassis switches 18 may each include one or more
processors and a memory and can execute one or more
soltware processes. Chassis switches 18 are coupled to IP
tabric 20, which may perform layer 3 routing to route
network trathic between data center 10 and customer sites 11
via service provider network 7. The switching architecture
of data center 10 shown in FIG. 1 1s merely an example.
Other switching architectures may have more or fewer
switching layers, for instance. TOR switches 16 and chassis
switches 18 may each include physical network interfaces.

In this disclosure, the terms “packet tflow,” “traflic flow,”
or simply “flow” each refer to a set of packets originating
from a particular source device or endpoint and sent to a
particular destination device or endpoint. A single flow of
packets may be identified by the 5-tuple: <source network

10

15

20

25

30

35

40

45

50

55

60

65

6

address, destination network address, source port, destina-
tion port, protocol>, for example. This 5-tuple generally
identifies a packet tlow to which a received packet corre-
sponds. An n-tuple refers to any n items drawn from the
S-tuple. For example, a 2-tuple for a packet may refer to the
combination of <source network address, destination net-
work address> or <source network address, source port> for
the packet. The term “source port” refers to a transport layer
(e.g., TCP/UDP) port. A “port” may refer to a physical
network interface of a NIC.

Each of servers 12 may be a compute node, an application
server, a storage server, or other type of server. For example,
cach of servers 12 may represent a computing device, such
as an Xx86 processor-based server, configured to operate
according to techniques described herein. Servers 12 may

provide Network Function Virtualization Infrastructure
(NFVI) for a Network Function Virtualization (NFV) archi-

tecture.

Servers 12 may host endpoints for one or more virtual
networks that operate over the physical network represented
in FIG. 1 by IP fabric 20 and switch fabric 14. Endpoints
may include, e.g., virtual machines, containerized applica-
tions, or applications executing natively on the operating
system or bare metal. Although described primarily with
respect to a data center-based switching network, other
physical networks, such as service provider network 7, may
underlay the one or more virtual networks.

FEach of servers 12 includes at least one network interface
card (NIC) of NICs 13A-13X (collectively, “NICs 13”). For

example, server 12A includes NIC 13A. Fach of NICs 13
includes at least one port. Each of NICs 13 may send and
receive packets over one or more communication links
coupled to the ports of the NIC.

In some examples, each of NICs 13 provides one or more
virtual hardware components for virtualized input/output
(I/0). A virtual hardware component for virtualized I/O may
be a virtualization of a physical NIC 13 (the “physical
function”). For example, 1n Single Root I/O Virtualization
(SR-I0OV), which 1s described 1n the Peripheral Component
Interface Special Interest Group SR-IOV specification, the
Peripheral Component Intertace (PCI) express (PCle) Physi-
cal Function of the network interface card (or “network
adapter”) 1s virtualized to present one or more virtual
network interface cards as ““virtual functions” for use by
respective endpoints executing on the server 12. In this way,
the virtual network endpoints may share the same PCle
physical hardware resources and the virtual functions are
examples of virtual hardware components. As another
example, one or more servers 12 may implement Virtio, a
para-virtualization framework available, e.g., for the Linux
Operating System, that provides emulated NIC functionality
as a type of wvirtual hardware component. As another
example, one or more servers 12 may implement Open
vSwitch to perform distributed virtual multilayer switching,
between one or more virtual NICs (vINICs) for hosted virtual
machines, where such vNICs may also represent a type of
virtual hardware component. In some instances, the virtual
hardware components are virtual I/O (e.g., NIC) compo-
nents. In some instances, the virtual hardware components
are SR-10V virtual functions and may provide SR-IOV with
Data Plane Development Kit (DPDK)-based direct process
user space access.

In some examples, one or more of NICs 13 include
multiple ports. NICs 13 may be connected to one another via
ports of NICs 13 and communications links to form a NIC
tabric having a NIC fabric topology. Such a NIC fabric 1s the

US 11,968,251 Bl

7

collection of NICs 13 connected to at least one other of NICs
13 and the communications links coupling NICs 13 to one
another.

NICs 13A-13X include corresponding processing units
25A-25X (collectively, “processing units 25°). Processing
units 25 to oflload aspects of the datapath from CPUs of
servers 12. One or more of processing units 25 may be a
multi-core ARM processor with hardware acceleration pro-
vided by a Data Processing Unit (DPU), a Field Program-
mable Gate Array (FPGA), and/or an Application Specific
Integrated Circuit (ASIC). Because NICs 13 include pro-
cessing units 25, NICs 13 may be referred to as “Smart-
NICs” or “GeniusNICs.”

In accordance with various aspects of the techniques of
this disclosure, an edge services platiorm uses processing
units 25 of NICs 13 to augment the processing and network-
ing functionality of switch fabric 14 and/or servers 12 that
include NICs 13. In the example of FIG. 1, network system
8 includes an edge services controller 28. This disclosure
may also refer to an edge services controller, such as edge
services controller 28, as an edge services platform control-
ler.

Edge services controller 28 may manage the operations of
the edge services platform within NIC 13s 1 part by
orchestrating services performed by processmg units 23;
orchestrating API driven deployment of services on NICs
13; orchestrating NIC 13 addition, deletion and replacement
within the edge services platform; monitoring of services
and other resources on NICs 13; and/or management of
connectivity between various services 133 running on the
NICs 13. In some examples, edge services controller 28 may
include one or more computing devices, such as server
devices, personal computers, intermediate network devices,
or the like, configured to execute a distributed implementa-
tion of an edge services controller. In some examples, edge
services controller 28 may be implemented using a single
computing device.

Edge services controller 28 may communicate informa-
tion describing services available on NICs 13, a topology of
a NIC fabric, or other information about the edge services
platform to an orchestration system (not shown) or a con-
troller 24. Edge services controller 28 may be integrated
within an overall controller 24 for computing infrastructure
8. Example orchestration systems include OpenStack, vCen-
ter by VMWARE, or System Center by MICROSOFT
CORPORATION of Redmond, Washington. Example con-
trollers include a controller for Contrail by JUNIPER NET-
WORKS or Tungsten Fabric. Controller 24 may be a net-
work fabric manager. Additional information regarding a
controller 24 operating 1n conjunction with other devices of
data center 10 or other software-defined network 1s found 1n
International Application Number PCT/US2013/044378,
filed Jun. 5, 2013, and enfitled “PHYSICAL PATH DETER-
MINATION FOR VIRTUAL NETWORK PACKET
FLOWS;” and in U.S. Pat. No. 9,571,391, filed Mar. 26,
2014, and entitled “Tunneled Packet Aggregatlon for Virtual
Networks,” each of which 1s incorporated by reference as 1t
tully set forth herein.

Edge services controller 28 may be configured to deter-
mine a respective server weight for each of a plurality of
servers 12, based on a respective predicted resource utili-
zation value for each of the plurality of servers 12; determine
a respective application weight for each of a plurality of
services, based on a respective predicted resource utilization
value for each of the plurality of services; schedule a service
of the plurality of services on a server of the plurality of

5

10

15

20

25

30

35

40

45

50

55

60

65

8

servers 12 based on the respective server weight for the
server and the respective application weight for the service.

In some embodiments, the edge services controller 28
may 1mplement a self-learming scheduler that acquires
knowledge about future resource requirements ol services
and resource availabilities of servers 12. The seli-learning
scheduler may use a machine learning model to make
predictions of future resource requirements based on usage
telemetry data relative to start times for each of the services.
The seli-learning scheduler may use the machine learning
model to make predictions of future resource availabilities
for servers 12 based on resource usage telemetry of service
instances. Based on the predicted future resource require-
ments and predicted future resource availabilities, the seli-
learning scheduler can push a service having a high future
resource requirement to a server having a high future
resource availability. For example, a service requiring high
resources, such as a first instance of first service 29, can be
scheduled for deployment on NIC 13A of server 12A.
Pursuant to this illustrative example, server 12A may have
a greater amount of future resource availability as compared
to at least one other server 12X.

FIG. 2 1s a block diagram illustrating an example com-
puting device 200 that uses a NIC 230 having a separate
processing unit 25, to perform services managed by an edge
services platform according to techniques described herein.
Computing device 200 of FIG. 2 may represent a real or
virtual server and may represent an example instance of any
of servers 12 of FIG. 1. In the example of FIG. 2, computing
device 200 includes a bus 242 that couples hardware com-
ponents of the hardware environment of computing device
200. Specifically, 1n the example of FIG. 2, bus 242 couples
a Single Route Input/Output Virtualization (SR-IOV)-ca-
pable NIC 230, a storage disk 246, and a microprocessor
210. In some examples, a front-side bus couples micropro-
cessor 210 and memory device 244. In some examples, bus
242 couples memory device 244, microprocessor 210, and
NIC 230. Bus 242 may represent a PCle bus. In some
examples, a direct memory access (DMA) controller may
control DMA transiers among components coupled to bus
242. In some examples, components coupled to bus 242
control DMA transiers among components coupled to bus
242,

Microprocessor 210 may include one or more processors
cach including an independent execution unit (“processing
core”) to perform instructions that conform to an instruction
set architecture. Execution units may be implemented as
separate mtegrated circuits (ICs) or may be combined within
one or more multi-core processors (or “many-core” proces-
sors) that are each implemented using a single 1C (1.e., a chip
multiprocessor).

Disk 246 represents computer readable storage media that
includes volatile and/or non-volatile, removable and/or non-
removable media implemented 1n any method or technology
for storage of information such as processor-readable
instructions, data structures, program modules, or other data.
Computer readable storage media includes, but 1s not limited
to, random access memory (RAM), read-only memory
(ROM), EEPROM, flash memory, CD-ROM, digital versa-
tile discs (DVD) or other optical storage, magnetic cassettes,
magnetic tape, magnetic disk storage or other magnetic
storage devices, or any other medium that can be used to
store the desired information and that can be accessed by
microprocessor 210.

Memory device 244 includes one or more computer-
readable storage media, which may include random-access
memory (RAM) such as various forms of dynamic RAM

US 11,968,251 Bl

9

(DRAM), e.g., DDR2/DDR3 SDRAM, or static RAM
(SRAM), flash memory, or any other form of fixed or
removable storage medium that can be used to carry or store
desired program code and program data in the form of
instructions or data structures and that can be accessed by a
computer. Memory device 244 provides a physical address
space composed ol addressable memory locations.

Network interface card (NIC) 230 includes one or more
interfaces 232 configured to exchange packets using links of
an underlying physical network. Interfaces 232 may include
a port interface card having one or more network ports. NIC
230 also include an on-card memory 227 to, e.g., store
packet data. Direct memory access transfers between NIC
230 and other devices coupled to bus 242 may read/write
from/to the memory 227.

Memory device 244, NIC 230, disk 246, and micropro-
cessor 210 provide an operating environment for a software
stack that executes a hypervisor 214 and one or more virtual
machines 228 managed by hypervisor 214. In general, a
virtual machine provides a virtualized/guest operating sys-
tem for executing applications in an isolated virtual envi-
ronment. Because a virtual machine 1s virtualized from
physical hardware of the host server, executing applications
are 1solated from both the hardware of the host and other
virtual machines. Computing device 200 executes hypervi-
sor 214 to manage virtual machines 228. Example hypervi-
sors include Kernel-based Virtual Machine (KVM) for the
Linux kernel, Xen, ESX1 available from VMWARE, Win-
dows Hyper-V available from MICROSOFT, and other
open-source and proprietary hypervisors. Hypervisor 214
may represent a virtual machine manager (VMM). Virtual
machines 228 may host one or more applications, such as
virtual network function instances. In some examples, a
virtual machine 228 may host one or more VNF instances,
where each of the VNF 1nstances 1s configured to apply a
network function to packets.

An alternative to virtual machines 1s the virtualized con-
tainer, such as those provided by the open-source DOCKER
Container application. Like a virtual machine, each con-
tainer 1s virtualized and may remain isolated from the host
machine and other containers. However, unlike a virtual
machine, each container may omit an individual operating
system and provide only an application suite and applica-
tion-specific libraries. A container 1s executed by the host
machine as an 1solated user-space instance and may share an
operating system and common libraries with other contain-
ers executing on the host machine. Thus, containers may
require less processing power, storage, and network
resources than virtual machines. As used herein, containers
may also be referred to as virtualization engines, virtual
private servers, silos, or jails. In some 1nstances, the tech-
niques described herein with respect to containers and
virtual machines or other virtualization components.

While virtual network endpoints 1in FIG. 2 are 1llustrated
and described with respect to virtual machines, other oper-
ating environments, such as containers (e.g., a DOCKER
container) may implement virtual network endpoints. An
operating system kernel (not shown 1n FIG. 2) may execute
in kernel space and may include, for example, a Linux,
Berkeley Software Distribution (BSD), another Unix-vari-
ant kernel, or a Windows server operating system kernel,
available from MICROSOEFT.

Hypervisor 214 includes a physical driver 2235 to use a
physical function provided by NIC 230. In some cases, NIC
230 may also implement SR-IOV to enable sharing the
physical network function (I/O) among virtual machines
224. Each port of NIC 230 may be associated with a different

5

10

15

20

25

30

35

40

45

50

55

60

65

10

physical function. The shared virtual devices, also known as
virtual functions, provide dedicated resources such that each
of virtual machines 228 (and corresponding guest operating
systems) may access dedicated resources of NIC 230, which
therefore appears to each of virtual machines 224 as a
dedicated NIC. Virtual functions may be lightweight PCle
functions that share physical resources with the physical
function and with other virtual functions. NIC 230 may have
thousands of available virtual functions according to the
SR-IOV standard, but for I/O-intensive applications the
number of configured virtual functions is typically much
smaller.

Virtual machines 228 include respective virtual NICs 229
presented directly into the virtual machine 228 guest oper-
ating system, thereby offering direct communication
between NIC 230 and virtual machines 228 via bus 242,
using the virtual function assigned for the virtual machine.
This may reduce hypervisor 214 overhead involved with
soltware-based, VIRTIO and/or vSwitch implementations 1n
which a memory address space of hypervisor 214 within
memory device 244 stores packet data and because copying
packet data from NIC 230 to the memory address space of
hypervisor 214 and from the memory address space of
hypervisor 214 to memory address spaces of virtual
machines 228 consumes cycles of microprocessor 210.
Microprocessor 210 1s a server resource and may be asso-
ciated with a CPU utilization percentage. The CPU utiliza-
tion percentage may be incorporated into the machine learn-
ing model.

NIC 230 may be associated with a network utilization for
bandwidth to/from the ports of NIC 239. The network
utilization for bandwidth 1s a server resource and can be
incorporated into the machine learning model. NIC 230 may
turther include a hardware-based Ethernet bridge 234. Eth-
ernet bridge 234 may be an example of an embedded switch
234. Ethernet bridge 234 may perform layer 2 forwarding
between virtual functions and physical functions of NIC
230. Thus, 1 some cases, Ethernet bridge 234 provides
hardware acceleration, via bus 242, of inter-virtual machine
224 packet forwarding and hardware acceleration of packet
forwarding between hypervisor 214 and any of virtual
machines 224. Hypervisor 214 may access the physical
function via physical driver 225. Ethernet bridge 234 may be
physically separate from processing unit 235. Processing unit
25 1s a server resource and may be associated with a data
processing unit (DPU) utilization percentage. The DPU
utilization percentage can be icorporated into the machine
learning model.

Computing device 200 may be coupled to a physical
network switch fabric that includes an overlay network that
extends a switch fabric from physical switches to software
or “virtual” routers of physical servers coupled to the switch
tabric, including virtual router 220. Virtual routers may be
processes or threads, or a component thereol, executed by
the physical servers, e.g., servers 12 of FIG. 1, that dynami-
cally create and manage one or more virtual networks usable
for communication between virtual network endpoints. In
one example, virtual routers implement each virtual network
using an overlay network, which provides the capability to
decouple an endpoint’s virtual address from a physical
address (e.g., IP address) of the server on which the endpoint
1s executing. Each virtual network may use 1ts own address-
ing and security scheme and may be viewed as orthogonal
from the physical network and its addressing scheme. Vari-
ous techniques may be used to transport packets within and
across virtual networks over the physical network. At least
some functions of the virtual router may be performed as one

US 11,968,251 Bl

11

of services 233 or fabric service 235. In the example of FIG.
2, virtual router 220 executes within hypervisor 214 that
uses physical function 221 for 1I/O, but virtual router 220
may execute within a hypervisor, a host operating system, a
host application, one of virtual machines 228, and/or pro-
cessing unit 25 of NIC 230.

In general, each virtual machine 228 may be assigned a
virtual address for use within a corresponding virtual net-
work, where each of the virtual networks may be associated
with a different virtual subnet provided by virtual router 220.
A virtual machine 228 may be assigned its own virtual layer
three (LL3) IP address, for example, for sending and receiving,
communications but may be unaware of an IP address of the
computing device 200 on which the virtual machine 1is
executing. In this way, a “virtual address™ 1s an address for
an application that differs from the logical address for the
underlying, physical computer system, e.g., computing
device 200.

In one implementation, computing device 200 includes a
virtual network (VN) agent (not shown) that controls the
overlay of virtual networks for computing device 200 and
that coordinates the routing of data packets within comput-
ing device 200. In general, a VN agent communicates with
a virtual network controller for the multiple virtual net-
works, which generates commands to control routing of
packets. A VN agent may operate as a proxy for control
plane messages between virtual machines 228 and virtual
network controller, such as controller 24 (FIG. 1). For
example, a virtual machine may request to send a message
using its virtual address via the VN agent, and VN agent may
in turn send the message and request that a response to the
message be recerved for the virtual address of the virtual
machine that originated the first message. In some cases, a
virtual machine 228 may mnvoke a procedure or function call
presented by an application programming interface of VN
agent, and the VN agent may handle encapsulation of the
message as well, including addressing.

In one example, network packets, e.g., layer three (L3) IP
packets or layer two (L2) FEthernet packets generated or
consumed by the instances of applications executed by
virtual machine 228 within the virtual network domain may
be encapsulated 1n another packet (e.g., another IP or Eth-
ernet packet) that 1s transported by the physical network.
The packet transported 1n a virtual network may be referred
to heremn as an “inner packet” while the physical network
packet may be referred to herein as an “outer packet” or a
“tunnel packet.” Encapsulation and/or de-capsulation of
virtual network packets within physical network packets
may be performed by virtual router 220. This functionality
1s referred to herein as tunneling and may be used to create
one or more overlay networks. Besides IPinIP, other
example tunneling protocols that may be used include IP
over Generic Route Encapsulation (GRE), Virtual Exten-
sible Local Area Network (VXLAN), Multiprotocol Label
Switching (MPLS) over GRE (MPLSoGRE), MPLS over
User Datagram Protocol (UDP) (MPLSoUDP), etc.

As noted above, a virtual network controller may provide
a logically centralized controller for facilitating operation of
one or more virtual networks. The virtual network controller
may, for example, maintain a routing information base, e.g.,
one or more routing tables that store routing information for
the physical network as well as one or more overlay net-
works. Virtual router 220 of hypervisor 214 implements a
network forwarding table (INFT) 222A-222N for N virtual
networks for which virtual router 220 operates as a tunnel
endpoint. In general, each NF'T 222 stores forwarding infor-
mation for the corresponding virtual network and identifies

10

15

20

25

30

35

40

45

50

55

60

65

12

where data packets are to be forwarded and whether the
packets are to be encapsulated 1n a tunneling protocol, such
as with a tunnel header that may include one or more headers
for different layers of the virtual network protocol stack.
Each of NFTs 222 may be an NFT for a diflerent routing
instance (not shown) implemented by virtual router 220.

In accordance with techniques of this disclosure, edge
services controller 28 (FIG. 1) uses processing unit 25 of
NIC 230 to augment the processing and networking func-
tionality of computing device 200. Processing unit 23
includes processing circuitry 231 to execute services orches-
trated by edge services controller 28. Processing circuitry
231 may represent any combination of processing cores,
ASICs, FPGAs, or other integrated circuits and program-
mable hardware. In an example, processing circuitry may
include a System-on-Chip (SoC) having, e.g., one or more
cores, a network interface for high-speed packet processing,
one or more acceleration engines for specialized functions
(e.g., security/cryptography, machine learning, storage),
programmable logic, integrated circuits, and so forth. Such
SoCs may be referred to as data processing units (DPUs).
DPUs may be examples of processing unit 25.

In the example NIC 230, processing unit 25 executes an
operating system kernel 237 and a user space 241 for
services. Kernel 237 may be a Linux kernel, a Unix or BSD
kernel, a real-time OS kernel, or other kernel for managing
hardware resources of processing unit 25 and managing user
space 241.

Services 233 may include network, security, storage, data
processing, co-processing, machine learming or other ser-
vices. Services 233 and edge services platform (ESP) agent
236 1nclude executable instructions. Processing unit 25 may
execute 1nstructions of services 233 and edge services

controller (ESC) agent 236 as processes and/or within
virtual execution elements such as containers or virtual
machines. As described elsewhere in this disclosure, ser-
vices 233 may augment the processing power ol the host
processors (e.g., microprocessor 210), e.g., by enabling
computing device 200 to offload packet processing, security,
or other operations that would otherwise be executed by the
host processors. Network services of services 233 may
include security services (e.g., firewall), policy enforcement,
proxy, load balancing, or other [L.4-L.7 services.

Processing unit 25 executes ESC agent 236 to exchange
data with edge services controller 28 (FIG. 1) for the edge
services platform. While shown 1n the example of FIG. 2 as
being 1n user space 241, 1n other examples, ESC agent 236
1s a kernel module of kernel 237. As an example, ESC agent
236 may collect and send telemetry data to the edge services
controller 28 (FIG. 1). The telemetry data may be generated
by services 233 (FIG. 2) and may describe tratlic in the
network, availability of computing device 200 or network
resources, resource availability of resources of processing
umt 25 (such as memory or core utilization), or other
information. As another example, ESC agent 236 may
receive, from the edge services controller, service code to
execute any of services 233, service configuration to con-
figure any of services 233, packets or other data for injection
into the network.

Edge services controller 28 (FIG. 1) manages the opera-
tions of processing unit 25 by, e.g., orchestrating and con-
figuring services 233 (FIG. 2) that are executed by process-
ing unit 25, deploying services 233; adding, deleting and
replacing NICs within the edge services platiform, monitor-
ing of services 233 and other resources on NIC 230, and
managing connectivity between various services 233 run-
ning on NIC 230. The edge services controller 28 may push

US 11,968,251 Bl

13

one or more services 233 to NICs of one or more servers,
based on based on predicted future application/service
resource utilizations and server resource utilizations.

Example resources on NIC 230 include memory 227 and
processing circuitry 231. Edge services controller 28 may
provide topology information via ESC agent 236. Edge
services controller 28 may provide flow information and/or
forwarding information via ESC agent 236. The flow infor-
mation describes, and 1s usable for 1dentifying, packet flows.
The forwarding information 1s usable for mapping packets
received by NIC 230 to an output port of NIC 230.

FIG. 3 1s a conceptual diagram illustrating a data center
300 with servers that each include a network interface card
having a separate processing unit, controlled by an edge
services platform, according to techniques of this disclosure.
Racks of compute nodes 307A-307N (collectively, “racks of
compute nodes 307”) may correspond to servers 12 of FIG.
1, and switches 308A-308N (collectively, “switches 3087)
may correspond to the switches of switch fabric 14 of FIG.
1. An agent 302 of orchestrator 304 represents software
executed by the processing unit (1llustrated in FIG. 3 as a
data processing unit or DPU) and receives configuration
information for the processing unit and sends telemetry and
other information for the NIC that includes the processing
unit to orchestrator 304. Agent 302 may represent an
example of ESC agent 236. Network services 312, L4-L7
services 314, telemetry service 316, and Linux and software
development kit (SDK) services 318 may represent
examples of services 233. Orchestrator 304 may represent an
example of edge services controller 28 of FIG. 1.

Network automation platform 306 connects to and man-
ages network devices and orchestrator 304, by which net-
work automation platform 306 can utilize the edge services
plattorm. Network automation platform 306 may, for
example, deploy network device configurations, manage the
network, extract telemetry, and analyze and provide indica-
tions of the network status.

FIG. 4 1s a block diagram illustrating an example com-
puting device that uses a network interface card having a
separate processing unit, to perform services managed by an
edge services platform according to techniques described
herein. Although wvirtual machines are shown 1n this
example, other instances of computing device 400 may also
or alternatively run containers, native processes, or other
endpoints for packet flows. Diflerent types of vSwitches
may be used, such as Open vSwitch or a virtual router (e.g.,
Contrail). Other types of interfaces between endpoints and
NIC are also contemplated, such as tap interfaces, veth pair
interfaces, etc.

FIG. 5 1s a block diagram illustrating an example data
center 540 having an edge services controller 5235 {for
scheduling one or more services to one or more servers,
according to techniques of this disclosure. Edge services
controller 525 may represent an example mstance of edge
services controller 28 of FIG. 1. In the 1llustrated example,
single or multiple 1nstances of services may be running on
DPUs of any of three servers, which are represented by and
include a corresponding first DPU 511, a second DPU 512,
and a third DPU 513. For example, a {irst instance of a {irst
service 501 and a second 1nstance of a second service 502
may be running on the first DPU 511. Likewise, a first
istance of a third service 503, a second instance of the first
service 504, and a first instance of the second service 505
may be running on the second DPU 512. Similarly, a first
instance of a fourth service 506 and a second instance of the
third service 507 may be running on the third DPU 513. One
or more processors (“processor 3277) of edge services

10

15

20

25

30

35

40

45

50

55

60

65

14

controller 525 may be configured to implement a service/
application scheduler 523 for scheduling one or more ser-
vices on at least one of the first, second, or third DPUs 511,
512 and 513. The edge services platiorm controller 525 may
also include a scheduler configurator 522 that receives and
tracks any server taints and/or athnity configurations. Server
taints can be used to mark a server that 1s 1n an unusable,
unstable, or security-compromised state, so that the appli-
cation scheduler 523 can avoid scheduling a service to the
marked server. Aflinity configuration, which may also be
referred to as DPU pinning or “cache atlimity”, enables a
binding of a service, process or thread to a specific DPU, so
that the service, process or thread will execute only on the
designated DPU rather than on any DPU. Processor 527 can
be operatively coupled to a memory 3529 configured for
storing a service profile database 524 and a metric collector
database 521. The service profile database 524 associates
cach of a plurality of services/applications with a corre-
sponding resource utilization level.

Consider an 1illustrative scenario where a resource utili-
zation of the first service 1s high, and the utilization reaches
a peak 1n a periodic and/or predictable pattern. When the
peak 1s reached, the first service may consume almost all
available resources, and/or may compete with other services
running on the same DPU, such as the first DPU 511. These
factors may cause performance issues with respect to the
first service, and/or any other service running on the first
DPU 511, due to insutflicient resources on the first DPU 511.
For example, assume that the service/application scheduler
523 1s configured for scheduling the second instance of the
second service 502 using a traditional scheduling approach
based on current resource availability. As the first instance of
the second service 505 i1s already running on the second
DPU 512, the service/application scheduler 523 i1s able to
select from among the first DPU 511 and the third DPU 513
as target servers for scheduling. The service/application
scheduler 523 may obtain resource availability information
for the first DPU 511 and the third DPU 513 from the metric
collector/database 521. The service/application scheduler
523 may also check a requirements profile for the second
service from the service profile database 524 to see if the
first DPU 511 and/or the third DPU 513 have required and/or
suflicient resources to run the second service.

Pursuant to a traditional scheduling approach, the service/
application scheduler 523 lacks knowledge of resource
utilization patterns for services and servers. For example, the
service/application scheduler 523 may determine that the
first DPU 511 and the third DPU 513 both have suflicient
resources for running the second service, but the first DPU
511 has more resources than the third DPU 513. Thus, the
service/application scheduler 523 may simply schedule the
second instance of the second service onto the first DPU 511,
in response to the first DPU 511 having more available
resources than the third DPU 513. However, if the first DPU
511 1s selected for running the first service, a relatively large
amount of resources may be consumed on a periodic basis,
causing other services to starve for resources. Such a sched-
uling approach can cause performance 1ssues for the first
instance of the first service 301 and the second instance of
the second service 502, which are both running on the first
DPU 511. In the present example, the second service 502
running on the first DPU 511 1s shown in dashed lines to
indicate that this scheduling may be suboptimal and/or
ineflicient.

Performance 1ssues may arise when resource utilization of
the first instance of the first service 501 reaches a peak value
as per its resource utilization pattern. For example, 11 the

US 11,968,251 Bl

15

second 1nstance of the second service 502 1s deployed to the
first DPU 511, the second instance of the second service 502
may be forced to compute for resources of the first DPU 511
with the first instance of first service 501 and may be unable
to obtain suflicient resources of the first DPU 511 to operate
cllectively This scenario represents an existing or traditional
approach to scheduling.

The edge services controller 525 may acquire knowledge
associated with future resource requirements of services and
future resource availabilities of servers, such as the first,
second, and third DPUs 511, 512 and 513. Based on this
acquired knowledge, the service/application scheduler 523
may schedule the second 1nstance of second service 502 to
the third DPU 513 1nstead of the first DPU 311. For example,
the second instance of second service 502 can be scheduled
to the third DPU 513 where resource consumption of already
running services may not be high, such that the third DPU
513 1s predicted to have sutlicient future resources to accoms-
modate the second 1nstance of second service 502.

FIG. 6 1s a data flow diagram illustrating an example
method for scheduling one or more services. The procedure
may commence at step 712 where a user/auto scaler 702
sends a request to the service/application scheduler 523
requesting a deployment and/or an auto-scaling of a service.
At step 714, the service/application scheduler 523 may
obtain a service profile from the service profile database 524.
The service profile associates a specified service/application
with a corresponding resource utilization level.

The service/application scheduler 523 may obtain server
taints and/or an athnity configuration by user from the
scheduler configurator 522 at step 716. As mentioned pre-
viously, the server taint can be used to mark a server that 1s
in an unusable, unstable, or security-compromised state, so
that the application scheduler 523 can avoid scheduling a
service to the marked server. Athnity configuration enables
a binding of a service, process or thread to a specific DPU,
so that the service, process or thread will execute only on the
designated DPU rather than on any DPU. The service/
application scheduler 523 may then select a server based on
current resource availability, the server taints, and/or the
aflinity configuration at step 718. At step 720, pursuant to a
traditional or conventional approach, the service/application
scheduler 523 may discard a correct or optimum server for
scheduling while selecting a server (1.e., a DPU such as the
first, second, or third DPUs 511, 512, 513 of FIG. 5) based
solely on current resource availability. Accordingly, at step
722 (FIG. 7), the service/application scheduler 523 sched-
ules the service to a wrong (1.e., a less optimal or less
ellicient) server due to the scheduling being based solely on
current resource availability.

FIG. 7 1s a block diagram 1illustrating an example system
for scheduling one or more services to one or more servers,
according to techniques of this disclosure. An edge services
controller 725 implements a seli-learning scheduler. The
self-learning scheduler may use a learning engine 705 to
learn about resource utilization requirements ol services,
and resource utilization patterns of servers, to schedule
services to appropriate servers to further optimize service
scheduling. By analyzing historical usage data of servers
and services/applications obtained from the metric collector/
database 521, the learning engine 705 can train a machine
learning model to predict resource utilization values for
servers and services/applications at any given timestamp.

Based on the predicted resource utilization patterns for
cach of a plurality of servers, a server weights predictor 703
of the learning engine 705 may calculate a server weight for
cach of the plurality of servers to thereby provide a set of

10

15

20

25

30

35

40

45

50

55

60

65

16

server weights (Sw). Each respective server weight 1n the set
of server weights (Sw) can be indicative of a resource
availability on a corresponding server for scheduling. In one
embodiment, high values of Sw for a given server indicate
that more resources are available on the server, whereas low
values of Sw indicate that less resources are available on the
server. Based on the predicted resource utilization values of
services/applications, an application weights predictor 701
of the learning engine 705 may calculate an application
weight for each of one or more services/applications, to
thereby provide a set of application weights (Aw). The set of
application weights (Aw) may indicate the resource utiliza-
tion requirements of the one or more services/applications.
In one embodiment, high values of Aw indicate that the
service requires more resources on the server, whereas low
values of Aw indicate that the service requires less resources
on the server. The learning engine 705 may instruct the
service/application scheduler 3523 to schedule a service
based on the calculated set of server weights (Sw) and the
calculated set of application weights (Aw). In one embodi-
ment, a service with a high Aw 1s scheduled to a server with
a high Sw. Accordingly, a service requiring high resources
can be scheduled to a server having more resources.

Pursuant to an illustrative example, assume that a backup
service 15 to be scheduled by a user every two hours
throughout a 24-hour day. The resource utilization of the
backup service may reach a peak every two hours. The
machine learming model of the learning engine 703 analyzes
the resource utilization metrics of the backup service as
received from the metric collector/database 521, as well as
the resource utilization metrics of the servers on which the
backup service runs, to predict one or more timestamps at
which the backup service would consume a peak and/or
maximum amount of resources, thereby causing servers to
have less resources available for other co-located services.

Resource usage metrics of individual services and servers
can be exported from the metric collector/database 521 as a
time series database (e.g., Prometheus). The collected
resource usage metric data can be used to train the machine
learning model of the learning engine 705 to predict the
resource usage metrics at future timestamps. The trained
machine learning model can be deployed to formulate a
solution using the learning engine 705. The learning engine
705 can conftinue to analyze live resource usage data from
the metric collector/database 521 and train the already-
trained machine learning model to improve overall accuracy
of the predictions.

The service/application scheduler 523, informed by one
or more predictions from learning engine 7035, may schedule
the second instance of the second service 502 to the third
DPU 513 rather than the first DPU 511. This 1s because the
learning engine 705 possesses knowledge encompassing
future resource requirements of services as well as resource
availabilities of servers. Thus, the learning engine 705 can
schedule the second instance of S2 onto the third DPU 513
where resource consumption of already running services not
going to be high and the server (third DPU 513) has the
required resources to accommodate the second instance of
the second service 502, without causing any performance
1SSUEs.

Some 1mplementations described herein use learming
engine 705 to generate a machine-learning based solution
configured to predict future requirements of services, and
also configured to predict future resource availabilities of
servers. For example, some implementations described
herein may train a model using a machine learning tech-
nique. The model may be trained based on observed opera-

US 11,968,251 Bl

17

tional information (e.g., telemetry data and/or the like) for a
set of DPUs 511, 512, 513 and based on flow information for
traflic flows processed by the set of DPUs while running
specific applications and/or services. The model may output
predicted performance mnformation for the set of DPUs 511,
512 513 based on mput information identiiying traflic flows
and/or operational information.

Furthermore, according to some 1mplementations
described herein, the learning engine 705 may update the
model using the machine learning techniques and based on
observations regarding eflicacy of any of the set of DPUs
511, 512, 513 executing services and/or applications. In this
way, the model may adapt to changing DPU conditions and
topology (e.g., 1n real time as the network conditions and/or
the topology change). Thus, throughput, reliability, and
conformance with SLAs 1s improved. Further, some imple-
mentations described herein may use a rigorous, well-
defined approach to service/application scheduling, which
may reduce uncertainty, subjectivity, and inefliciency that
may be introduced by a human actor attempting to define a
scheduling policy based on empirical observations regarding
network and DPU performance.

Also, some 1mplementations described herein may 1den-
tify a best or optimum DPU {for executing an application/
service at a given timestamp. Since the best or optimum
DPU may iteratively change based on DPU load and DPU
behavior/faults, the machine learning component of 1mple-
mentations described herein may regularly re-predict the
best or optimum DPU to optimize application/service execu-
tion at any given time. This reprogramming may be based on
dynamic prediction of DPU load, DPU dropouts, and/or
DPU delays. Thus, implementations described herein may
improve adaptability and versatility of DPU scheduling for
applications/services in comparison to a rigidly defined
scheduling protocol.

Furthermore, by using machine learning, implementations
described herein may predict DPU delays or dropouts, or
reduced capacity on network devices, and may perform
pre-emptive scheduling updates to avoid inefliciencies or
dropouts due to DPU degradation. Thus, forward-looking
maintenance and scheduling 1s provided, which further
improves reliability and performance.

The model trained by learning engine 705 and used for
inference/prediction, as described 1n this disclosure, may be
a machine learning (ML) model. Learning engine 705 may
be able to train various types of ML models. For instance, in
some examples, learning engine 705 1s configured to train
baseline ML models. A baseline ML model may be a type of
ML model other than a deep learning ML models and
statistical ML models. Baseline ML models may be able to
generate predictions based on limited amounts of data. For
example, a baseline ML model may be able to generate a
prediction based on less than 1 hour of data (e.g., for hourly
predictions). Example types of baseline ML models may
include an Exponential Weighted Moving Average (EWMA)
model, a Hidden Markov model, and so on.

In some examples, learning engine 705 1s configured to
train statistical ML models. Example types of statistical
models 1nclude a Holt-Winters model, an autoregressive
integrated moving average (ARIMA) model, a seasonal
ARIMA model, a vector autoregression (VAR) model, a
Facebook PROPHET model, and so on. In some examples,
statistical ML models may have greater utility than basic ML
models when there 1s more data available to use to make
predictions. For mstance, a statistical ML model that 1s used
to generate hourly predictions may be usable when more
than 24 hours of data i1s available.

10

15

20

25

30

35

40

45

50

55

60

65

18

In some examples, learning engine 705 1s configured to
train deep learning ML models. Deep learning ML models
may require more data than basic ML models or statistical
ML models but may be able to provide more sophisticated
types of predictions. Example types of deep learning ML
models may include Long Short-Term Memory (LSTM)
models, bi-directional LSTM models, recurrent neural net-
works, or other types of neural networks that include mul-
tiple layers. In other examples, learning engine 705 may use
neural network models other than deep learning ML models

The ML models may be grouped as regression-based ML
models, classification-based ML models, and unsupervised
learning models. There may be baseline, statistical, and deep
learning MLs for each of these groups. In some examples,
for regression-based ML models, learming engine 705 may
use a Hodrick-Prescott filter to perform an initial level of
ML model selection. Specifically, the Hodrick-Prescott filter
breaks time-series data (y_t) mto a trend component and a
cyclical component c_t: y_t=tou_t(trend)+c_t(cyclical). The
time-series data 1s the data that the ML models use to
generate the predictions. By breaking the time-series data
into a trend component and a cyclical component, learning
engine 7035 may be able to determine whether the time-series
data has more of a cyclic nature or more of a trend nature and
use an appropriate ML model based on the determination.
For example, the EWMA model and Holts-Winter model
perform better on time-series data that has a cyclic nature.
An ARIMA model, a VAR model, etc., may perform better
on time-series data that has a trend nature.

By performing this initial level of ML model selection,
learning engine 705 may be able to avoid training every
regression-based ML model, thereby potentially saving time
and computational resources. In some examples, learning
engine 7035 may filter the regression-based ML models based
on how much data 1s available. For instance, 1f there 1s less
than a threshold amount of time’s worth of available traiming
data (e.g., 24-48 hours), learning engine 705 may train only
regression-based baseline ML models. Otherwise, 11 there 1s
more than the threshold amount of time’s worth of available
data, learning engine 705 may additionally or alternatively
train other types of regression-based ML models, such as
statistical models or low capacity deep learning ML models.

Example types of regression-based baseline ML models
may 1nclude a hidden Markov model and season trend
decomposition approaches. Example types ol regression-
based statistical ML models may include Error-Trend-Sea-
sonality (E'TS) models (including exponential smoothing
models, trend method models, and E'TS decomposition),
EWMA models (including simple moving averages and
EWMA), Holt Winters models, ARIMA models, SARIMA
models, vector autoregression models, seasonal trend
autoregression (STAR) models, and Facebook PROPHET
models. Example types of regression-based deep learming
ML models may include LSTM architectures (including
single-layer LSTMs, depth LSTMs, bi-directional LSTMs),
RNNs, and gated recurrent units (GRUS) Example types of
classification-based baseline ML models may include logis-
tic regression models and K-nearest neighbor models.
Example types of classification-based statistical ML models
may include support vector machines and boosting ensemble
algorithms (e.g. XGBoost). Example types of classification-
based deep learning ML models may mnclude LSTM archi-
tectures, RNN architectures, GRU architectures, and artifi-
cial neural network architectures. Example types of
unsupervised ML models may include K-means clustering
models, Gaussian clustering models, and density-based spa-
tial clustering.

US 11,968,251 Bl

19

Prediction of the Set of Application Weights (Aw): The
application weight can be an attribute of every service
scheduled to run on any of the servers. It may be an indicator
ol resource usage requirements of a service at any given

20

and 40% DPU usage may contribute 0.2 to the application
weilght.

Application Weight for Metric (AWmx) (Metric
Value*Metric Weight Factor)/100, where Metric Value 1s

timestamp. When a service instance 1s going to consume 5 predicted value of a metric, Metric Weight Factor is user
more resources at a next hour, a next minute, or a next adjusted or configured fraction between 0 and 1. One may
second, a higher value can be assigned to the application take a mean of the predicted weights as a weight of the
weight (Aw) compared to other less resource consuming, server-
services. Thus, when a service instance has a higher appli-
catiqn u{eight (Aw) value, this may be indicative that‘ the 10 Application Weight(Aw)—(E" AWmx 14+ AWmx2+ . .
service instance would need more resources at the given AWmxi)
timestamp. The application weight (Aw) can be predicted by o _
the trained machine learning model using resource usage Prediction of the set of Server Weights (Sw): The set of
telemetry data of a service relative to a starting time of the server weights (Sw) may comprise an attribute of every
service/application, as received from the metric collector/ 15 server managed by the ESP Controller 725 and/or an orches-
database 521. The machine learning model can predict the ~ trator. This may be an indicator of cumulative resource
resource usage values for the given timestamp, and the set ~ usage by all service instances running on the server at any
of application weights 1s calculated based on predicted given timestamp. When resource usage metrics of a server
resource usage metric values imncluding one or more of: CPU are 1ncreasing 1n a next hour, a next minute or a next second,
Usage, Network Usage, DPU Usage, or another metric. In 20 @ higher value can be assigned to a server weight in the set
some embodiments, any one or more of the following ©f server weights (Sw) compared to other servers whose
resource usage telemetry metrics can be used to predict the resource usage metrics are lower. When a server has a higher
set of application weights (Aw): server weight value, this may indicate that resource usage
1) CPU Usage: will be higher on that server at a predicted timestamp.
2) Memory Usage; and/or »5 The set of server weights (Sw) can be predicted by the
3) Network Usage. trained machine learning model using resource usage telem-
The historical data values of any of these metrics can beused ~ ¢try data of a service instance acquired from the metric
to predict the metric values at different future timestamp collector/database 521. Any one or more of the following
values. Using the historical data of above metrics, a machine ~ resource usage telemetry metrics can be used to predict the
learning model is trained to predict metric values at future 30 set of server weights (Sw):
timestamps. In some examples, the machine learning model 1 CPU Usage: Measured as a percentage
1s 1mplemented using Vector Auto Regression. 2 Network Usage: Measured as a percentage
An example mathematical model for a metric value 3 DPU Usage: Measured as a percentage
predictor machine learning model 1s: 4 Jumbo packets
35 O BECMP usage percentage
MV (t)=a+W1*MV{t-1)+ . . . + Wp*MV (i—p)+e(r) 6 Elephant Aows
where: 7 Mice tlows
MYV 1s Metric Value at future time t 8 Trathic leaving DC
a 1s constant 9 Encrypted traflic %
W1 & Wp are co-eflicient values 20 10 Compressed trathic %
p 1s number of past values of metric 11 Number of firewall rules
e(t) 1s error correction at time t 12 Network Latency: as milliseconds
Table 1 shows a historical or past data of collected metrics 13 Network Packet Loss: as percentage
and forecasted values at diflerent future timestamps. 14 Network Throughput: as bps
TABLE 1
Davy (N-2) Davy (N-1) Dav N
CPU DPU Network CPU DPU Network CPU DPU Network
Time* Usage Usage Usage Usage Usage Usage Usage Usage Usage
t + Dtl 3 2 4 2 4 1 3 4 2
t + Dt2 12 8 7 13 6 8 11 7 0
t + Dt3 7 5 6 S 7 4 6 5 S

“F7_= Time 15 relative to start time of service instance.
Note:

To simplify, this table only shows the learning process for some of the metrics. The same process can be applied to a different

set of metrics 1n various examples.

Table 1 shows a resource usage pattern of a service. After
obtaining forecasted values of resource usage metrics of a
service/application at diflerent timestamp values relative to
start timestamp of service, a weight fraction can be calcu-
lated for each individual metric. For example, a 100% CPU
usage metric may contribute 20% and a 100% DPU usage

metric may contributes 40% to an application weight of the
set of application weights (Aw). The CPU usage metric
value of 30% may contribute 0.06 to the application weight,

60

65

15 Jitter: as milliseconds

As shown 1 FIG. 10, metric values for a present day can
be forecast using metric values of a last two days. To
simplity, the learning and prediction process for a few
illustrative metrics 1s shown. This process can be applied to
any additional metrics as well. FIG. 10 shows an 1llustrative

resource utilization pattern on a DPU (such as the first DPU
511). The metric data of last 2 days indicates that CPU,
network and DPU usage and request rate values are high

US 11,968,251 Bl

21

towards the end of the day, so aprobability of the machine
learning model predicting higher values for these metrics 1s
high.

An example mathematical model for a metric value
predictor machine learning model 1s:

MV (t)=a+ W1 *MV{t-1)+ . . . + Wp*MV (i—p)+e(r)

Where:

MYV 1s Metric Value at future time t

a 1s constant

W1 & Wp are co-eflicient values

p 1s number of past values of metric

e(t) 1s error correction at time t

After obtaining forecasted values of resource usage met-
rics of a server at diflerent timestamp values, a weight
fraction can be calculated for each individual metric. For
example, assume that a 100% CPU usage metric contributes
20% and a 100% DPU usage metric contributes 40% to a
server weight. The CPU usage metric value of 30% can
contribute 0.06 to the server weight and 40% DPU Usage
can contribute 0.2 to the server weight.

Server Weight for MetriclAWmx)=(Metric
Value*Metric Weight Factor)/100,

where
Metric Value 1s predicted value of a metric
Metric Weight Factor 1s user adjusted or configured
fraction between 0 and 1.
One may take a mean of predicted weights as a weight of
a server:

Server Welght(Aw)=(Z"AWmx1+AWmx2+ . . .
AWmx1)

The edge services platform 725 can schedule a service
based on the calculated set of server weights (Sw) and the
calculated set of application weights (Aw). In one embodi-
ment, the edge services platform 725 schedules a service
with a high Aw onto a server with a hugh Sw. Accordingly,
a service requiring high resources can be deployed on a
server having more resources.

FIG. 11 shows a server and application weight matrix for
multiple data processing units of servers at each of a
plurality of different time stamps. A second instance ‘S2-2°
ol a second service S2 can be scheduled to the third DPU
513 1nstead of the first DPU 511. That 1s because the third
DPU 513 has a highest server weight complementing a
higher application weight Aw of the second service S2-2 at
the time of scheduling of S2-2.

FIG. 8 1s a data flow diagram illustrating an example
method for scheduling one or more services to one or more
servers, according to techniques of this disclosure. At step
812, the metric collector/database 521 receives server and
application metrics from a server 810. At step 814, the
learning engine 703 trains the machine learning model using
one or more metrics obtained from the metric collector/
database 521. The learning engine 705 predicts server metric
values and the set of server weights (Sw) at step 816. The
learning engine 705 predicts application metric values and
computes a set of application weights (Aw) at step 818. The
learning engine 705 assigns predicted server weights of the
set of server weights (Sw) to corresponding servers and
predicted application weights of the set ol application
weights (Aw) to corresponding application instances at step
820. At step 822, the service/application scheduler 523
obtains at least one server weight of the set of server weights
(Sw), and at least one application weight of the set of
application weights (Aw), from the learning engine 705. At
step 824, the service/application scheduler 523 selects a

10

15

20

25

30

35

40

45

50

55

60

65

22

server and an application/service instance using the at least
one server weight and the at least one application weight. An
optional prior selection of a wrong server may be discarded,
and an application/server mstance 1s scheduled by the leamn-
ing engine 705 to the correct server at step 826.

FIG. 9 15 a flowchart of an example method performed by
an edge services platform controller 7235 (FIG. 7) according
to techniques of this disclosure. At block 902 (FIG. 9), a
respective server weight 1s determined for each of a plurality
of servers, based on a respective predicted resource utiliza-
tion value for each of the plurality of servers. At block 904,
a respective application weight 1s determined for each of a
plurality of services, based on a respective predicted
resource utilization value for each of the plurality of ser-
vices. At block 906, a service of the plurality of services 1s
scheduled on a server of the plurality of servers based on the
respective server weight for the server and the respective
application weight for the service.

Like reference characters denote like elements throughout
the description and figures.

The techniques described herein may be implemented 1n
hardware, software, firmware, or any combination thereof.
Various features described as modules, units or components
may be implemented together 1n an integrated logic device
or separately as discrete but interoperable logic devices or
other hardware devices. In some cases, various features of
clectronic circuitry may be implemented as one or more
integrated circuit devices, such as an integrated circuit chip
or chipset.

If implemented 1n hardware, this disclosure may be
directed to an apparatus such as a processor or an integrated
circuit device, such as an integrated circuit chip or chipset.
Alternatively or additionally, 11 implemented 1n software or
firmware, the techniques may be realized at least 1n part by
a computer-recadable data storage medium comprising
instructions that, when executed, cause a processor to per-
form one or more of the methods described above. For
example, the computer-readable data storage medium may
store such instructions for execution by a processor.

A computer-readable medium may form part of a com-
puter program product, which may include packaging mate-
rials. A computer-readable medium may comprise a com-
puter data storage medium such as random access memory
(RAM), read-only memory (ROM), non-volatile random
access memory (NVRAM), electrically erasable program-
mable read-only memory (EEPROM), Flash memory, mag-
netic or optical data storage media, and the like. In some
examples, an article ol manufacture may comprise one or
more computer-readable storage media.

In some examples, the computer-readable storage media
may comprise non-transitory media. The term “non-transi-
tory” may indicate that the storage medium 1s not embodied
1n a carrier wave or a propagated signal. In certain examples,
a non-transitory storage medium may store data that can,
over time, change (e.g., in RAM or cache). The code or
instructions may be software and/or firmware executed by
processing circuitry including one or more processors, such
as one or more digital signal processors (DSPs), general
purpose microprocessors, application-specific imntegrated cir-
cuits (ASICs), field-programmable gate arrays (FPGAs), or
other equivalent integrated or discrete logic circuitry.
Accordingly, the term “processor,” as used herein may refer
to any of the foregoing structure or any other structure
suitable for implementation of the technmiques described
herein. In addition, 1n some aspects, Tunctionality described
in this disclosure may be provided within software modules
or hardware modules.

US 11,968,251 Bl

23

What 1s claimed 1s:

1. A system comprising;:

a plurality of servers, wherein each server of the plurality

of servers comprises a network interface card (NIC) of
a plurality of NICs, and wherein each NIC of the
plurality of NICs comprises a processing unit; and

an edge services controller configured to:

for each server of the plurality of servers, determine,
based on a predicted resource utilization value for
the processing unit of the NIC of the server, a server
weight;

for each service of a plurality of services, determine,
based on a predicted resource utilization value for
the service, an application weight for the service; and

schedule a service of the plurality of services on the
processing unit of the NIC of a server of the plurality
of servers based on the server weight for the server
and the application weight for the service.

2. The system of claim 1, wherein the edge services
controller 1s further configured to:

receive historical usage data for the plurality of servers

and the plurality of services; and

process the historical usage data to train a machine

learning model.

3. The system of claim 2, wherein the trained machine
learning model 1s configured to:

predict the resource utilization value for the processing

umt of the NIC of each server of the plurality of servers
at each time of a plurality of times; and

predict the resource utilization value for each service of

the plurality of services at each time of the plurality of
times.

4. The system of claim 2, wherein the edge services
controller 1s further configured to iteratively train the
machine learning model with a current resource utilization
value for the processing unit of the NIC of each server of the
plurality of servers and with a current resource utilization
value for each service of the plurality of services.

5. The system of claim 1,

wherein the plurality of servers comprises a first server

and a second server,

and

wherein to schedule the service, the edge services con-

troller 1s configured to, based on the server weight for

the first server, the server weight for the second server,

and the application weight for the service:

schedule a first instance of the service on the first
server; and

schedule a second 1nstance of the service on the second
server.

6. The system of claim 1, wherein to determine the
application weight for each service of the plurality of
services, the edges services controller 1s configured to:

receive historical usage data associated with one or more

of:

a central processing unit (CPU) usage for each server of
the plurality of servers,

a memory usage for each server of the plurality of
servers; and

a network usage for each server of the plurality of
servers; and

determine the application weight for each service of the

plurality of services as a function of the historical usage
data.

7. The system of claim 1, wherein the edge services
controller 1s further configured to determine a first weight
fraction for CPU usage of the plurality of servers, a second

5

10

15

20

25

30

35

40

45

50

55

60

65

24

weight fraction for memory usage of the plurality of servers,
and a third weight fraction for network usage of the plurality
of servers such that the first weight fraction, the second
weight fraction, and the third weight fraction each define a
contribution to an application weight for a service of the
plurality of services.

8. The system of claim 1, wherein to determine the server
weight for each server of the plurality of servers, the edge
services controller 1s configured to determine a cumulative
resource utilization by all service istances running on each
server ol the plurality of servers at any given timestamp.

9. The system of claim 1, wherein the edge services
controller 1s further configured to predict the server weight
for each server of the plurality of servers using a machine
learning model that incorporates usage telemetry data of at
least one service instance.

10. A method, comprising:

for each server of a plurality of servers, determining, by

an edge services controller based on a predicted
resource utilization value for a processing unit of a
network interface card (NIC) of the server, a server
weight, wherein each server of the plurality of servers
comprises a NIC of a plurality of NICs, and wherein
cach NIC of the plurality of NICs comprises a process-
ing unit;

for each service of a plurality of services, determining, by

the edge services controller based on a predicted
resource utilization value for the service, an application
weight for the service; and

scheduling, by the edge services controller a service of the

plurality of services on a processing unit of the NIC of
a server of the plurality of servers based on the server
weilght for the server and the application weight for the
service.

11. The method of claim 10, further comprising:

recerving, by the edge services controller, historical usage

data for the plurality of servers and the plurality of
services; and

processing, by the edge services controller, the historical

usage data to train a machine learning model.

12. The method of claim 11, further comprising:

predicting, by the trained machine learning model, the

resource utilization value for the processing unit of the
NIC of each server of the plurality of servers at each
time of a plurality of times; and

predicting, by the trained machine learning model, the

resource utilization value for each service of the plu-
rality of services at each time of the plurality of times.

13. The method of claim 12, further comprising iteratively
training, by the edge services controller, the trained machine
learning model with a current resource utilization value for
the processing unit of the NIC of each server of the plurality

of servers and with a current resource utilization value for
cach service of the plurality of services.
14. The method of claim 10,
wherein the plurality of servers comprises a first server
and a second server, and
wherein scheduling the service comprises, based on the
server weight for the first server, the server weight for
the second server, and the application weight for the
service:
scheduling, by the edge services controller, a first
instance of the service on the first server; and
scheduling, by the edge services controller, a second
instance of the service on the second server.

US 11,968,251 Bl

25

15. The method of claim 10, wherein determining the
application weight for each service of the plurality of
SErvices Comprises:

receiving, by the edge services controller, historical usage
data associated with one or more of:
a central processing unit (CPU) usage for each server of
the plurality of servers,
a memory usage for each server of the plurality of

servers; and
a network usage for each server of the plurality of
servers; and

determining, by the edge services controller, the applica-

tion weight for each service of the plurality of services
as a function of the historical usage data.

16. The method of claim 15, wherein the service of the
plurality of services 1s associated with a first timestamp
corresponding to a start of the service, and wherein the
method further comprises applying, by the edge services
controller, a vector autoregression machine learning model
to the historical usage data to generate a value, for a second
timestamp following the first timestamp, for one or more of:
the CPU usage for each server of the plurality of servers;
the memory usage for each server of the plurality of

servers; and

the network usage for each server of the plurality

SCrvers.

17. The method of claim 10, further comprising deter-
mimng, by the edge services controller, a first weight
fraction for CPU usage of the plurality of servers, a second
weilght fraction for memory usage of the plurality of servers,
and a third weight fraction for network usage of the plurality
of servers such that the first weight fraction, the second

of

5

10

15

20

25

30

26

weight fraction, and the third weight fraction each define a
contribution to an application weight for a service of the
plurality of services.

18. The method of claim 10, wherein determining the
server weight for each server of the plurality of servers
comprises determining, by the edge services controller, a
cumulative resource utilization by all service instances run-
ning on each server of the plurality of servers at any given
timestamp.

19. The method of claim 10, wherein predicting the server
weilght for each server of the plurality of servers comprises
using, by the edge services controller, a machine learning
model that incorporates usage telemetry data of at least one
service instance.

20. A non-transitory computer-readable medium storing
instructions that, when executed by processing circuitry,
cause the processing circuitry to:

for each server of a plurality of servers, determining,

based on a predicted resource utilization value for a
processing unit of a network interface card (NIC) of the
server, a server weight, wherein each server of the
plurality of servers comprises a NIC of a plurality of
NICs, and wherein each NIC of the plurality of NICs
comprises a processing unit;

for each service of a plurality of services, determining,

based on a predicted resource utilization value for the
service, an application weight for the service; and

scheduling, a service of the plurality of services on a

processing unit of the NIC of a server of the plurality
of servers based on the server weight for the server and
the application weight for the service.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

