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MANAGING LOOKUP OPERATIONS OF A
METADATA STRUCTURE FOR A STORAGE
SYSTEM

TECHNICAL FIELD

This disclosure relates generally to data storage manage-
ment techniques and, more particularly, to techniques for
managing and accessing metadata 1n a data storage system.

BACKGROUND

Storage systems utilize some form of internal layout for a
physical data layer, and employ a mapping mechanism from
a logical layer (as understood by user volumes or files) to a
physical layer that 1s used to store data. A storage controller
may arrange data in the physical layer using various meth-
ods such as, e.g., packing data to conserve capacity, imple-
menting a log-structured array, storage tiering, etc. In addi-
tion, storage systems require various types ol metadata to
support core storage functionality. Such metadata includes,
¢.g., metadata for mapping logical locations (offset 1n a file
or volume) to a physical location (to track the physical
location of stored data items), invalidation and garbage
collection related metadata, metadata for accounting, dedu-
plication referencing, snapshot generation, and tracking
relationships, and resiliency related metadata (e.g., RAID),
etc. The metadata must be resilient to failures such as a
device or a node going offline, because without the meta-
data, the stored data become inaccessible and key function-
ality breaks. In addition, the process of persisting metadata
should not add a significant amount of bandwidth or IOPS
(input/output operations per second) which degrades system
performance and affects the endurance of storage devices
used to store the metadata. In this regard, eflicient metadata

management 1s critical to overall performance of a data
storage system.

SUMMARY

Exemplary embodiments of the disclosure include tech-
niques for managing and accessing metadata in a storage
system. For example, an exemplary embodiment includes a
method that 1s performed by a storage control system. The
storage control system receives an iput/output (I/0O) read
request to access target data and searches a primary metadata
structure to find a metadata entry associated with the target
data. The primary metadata structure comprises a log-
structured merge tree comprising at least a first level of
segments, wherein the at least first level of segments com-
prises at least one group of segments having an associated
group filter, and individual filters associated with respective
segments of the at least one group of segments. In searching
the primary metadata structure, the storage control system
performs a lookup operation using the group filter to deter-
mine whether the metadata entry, which 1s associated with
the target data, 1s potentially present 1n a given segment of
the at least one group of segments, and performs a lookup
operation using the individual filters to 1dentify the given
segment of the at least one group of segments which
potentially includes the metadata entry, 1n response to deter-
mimng that the metadata entry i1s potentially present in a
given segment of the at least one group of segments, using
the group {ilter.

Other embodiments of the disclosure include, without
limitation, systems and articles of manufacture comprising
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2

processor-readable storage media, which are configured for
managing and accessing metadata in a storage system.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 schematically illustrates a network computing
system comprising a data storage system which implements
a metadata management system, according to an exemplary
embodiment of the disclosure.

FIG. 2 schematically illustrates a storage node which
comprises a metadata management system, according to an
exemplary embodiment of the disclosure.

FIG. 3 schematically illustrates a process for utilizing a
high-performance data structure for managing metadata 1n a
storage system, according to an exemplary embodiment of
the disclosure.

FIG. 4 schematically illustrates an exemplary log-struc-
tured merge tree data structure which i1s utilized to 1mple-
ment a high-performance data structure for managing meta-
data 1n a storage system, according to an exemplary
embodiment of the disclosure.

FIG. § schematically illustrates an exemplary B+ tree data
structure which 1s utilized to implement a high-performance
data structure for managing metadata 1n a storage system,
according to an exemplary embodiment of the disclosure.

FIG. 6 schematically illustrates an exemplary log-struc-
tured merge tree data structure which implements Bloom
filters for groups of segments to enhance lookup operations
ol a storage metadata structure, according to another exem-
plary embodiment of the disclosure.

FIG. 7 illustrates a flow diagram of a method for per-
forming lookup operations of a storage metadata structure,
according to an exemplary embodiment of the disclosure.

FIG. 8 schematically 1llustrates a framework of a server
node for hosting a storage node which comprises a metadata
management system, according to an exemplary embodi-
ment of the disclosure.

DETAILED DESCRIPTION

Exemplary embodiments of the disclosure will now be
discussed in further detail with regard to systems and
methods for managing and accessing metadata 1n a storage
system. For purposes of illustration, exemplary embodi-
ments will be described herein with reference to exemplary
network computing environments, such as distributed stor-
age environments, which implement data processing sys-
tems and associated computers, servers, storage devices and
other processing devices. It 1s to be appreciated, however,
that these and other embodiments are not restricted to the
particular 1llustrative system and device configurations
shown. Accordingly, the term “network computing environ-
ment” as used herein 1s intended to be broadly construed, so
as to encompass, for example, processing systems compris-
ing cloud computing and storage systems, as well as other
types ol processing systems comprising various combina-
tions of physical and virtual processing resources. A network
computing environment may therefore comprise, {for
example, at least one data center or other cloud-based
systems that include one or more cloud systems that host
multiple tenants which share cloud resources. Numerous
different types of enterprise computing and storage systems
are also encompassed by the term “network computing
environment” as that term 1s broadly used herein

FIG. 1 schematically illustrates a network computing
system comprising a data storage system which implements
a metadata management system, according to an exemplary
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embodiment of the disclosure. The network computing
system 100 comprises one or more host systems 110-1,
110-2, . . . 110-H (collectively, host systems 110), one or
more management nodes 115, a communications network
120, and a data storage system 130. The data storage system
130 comprises one or more storage nodes 140-1,
140-2, . . ., 140-N (collectively, storage nodes 140). As
shown 1n FIG. 1, the storage node 140-1 comprises a storage
control system 1350, a storage array 160 (e.g., primary
storage) comprising a plurality of storage devices
162-1, . . ., 162-D (collectively, storage devices 162), and
primary memory 170 (alternatively, system memory 170).
The primary memory 170 comprises volatile random-access
memory (RAM) and non-volatile RAM (NVRAM). The
storage control system 150 comprises a storage data server
152, and a metadata management system 154. The primary
memory 170 1s configured to implement a write cache 180
and a primary metadata structure 190. The metadata man-
agement system 154 implements methods that are config-
ured to provision and manage the primary metadata structure
190. As explained 1n further detail below, the metadata
management system 154 1s configured to utilize the write
cache 180 and the primary metadata structure 190 to manage
metadata on the storage node 140. In some embodiments,
the other storage nodes 140-2 . . . 140-N have the same or
similar configuration as the storage node 140-1 shown 1n
FIG. 1.

In general, the management nodes 115 implement appli-
cation programming interfaces (APIs) to enable manual,
automated, and/or semi-automated configuration, manage-
ment, provisioning, and monitoring of the data storage
system 130 and the associated storage nodes 140. In some
embodiments, the management nodes 115 comprise stand-
alone dedicated management server nodes, which may com-
prise physical and/or virtual server nodes.

The host systems 110 comprise physical server nodes
and/or virtual server nodes which host and execute applica-
tions that are configured to process data and execute tasks/
workloads and perform computational work, either individu-
ally, or 1n a distributed manner, to thereby provide compute
services to one or more users (the term “user” herein 1s
intended to be broadly construed so as to encompass numer-
ous arrangements of human, hardware, software or firmware
entities, as well as combinations of such entities). In some
embodiments, the host systems 110 comprise application
servers, database servers, etc. The host systems 110 can
include virtual nodes such as virtual machines and container
systems. In some embodiments, the host systems 110 com-
prise a cluster of computing nodes of an enterprise comput-
ing system, a cloud-based computing system, or other types
of computing systems or information processing systems
comprising multiple computing nodes associated with
respective users. The host systems 110 i1ssue data access
requests to the data storage system 130, wherein the data
access requests include (1) write requests to store data in the
storage arrays 160 of the storage nodes 140 and (11) read
requests to access data that 1s stored 1n the storage arrays 160
of the storage nodes 140.

The communications network 120 1s configured to enable
communication between the host systems 110 and the stor-
age nodes 140, and between the management nodes 115, the
host systems 110, and the storage nodes 140, as well as to
enable peer-to-peer communication between the storage
nodes 140 of the data storage system 130. In this regard,
while the communications network 120 1s generically
depicted 1n FIG. 1, 1t 1s to be understood that the commu-
nications network 120 may comprise any known commu-
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4

nications network such as, a global computer network (e.g.,
the Internet), a wide area network (WAN), a local area
network (LAN), an intranet, a satellite network, a telephone
or cable network, a cellular network, a wireless network
such as Wi-F1 or WiIMAX, a storage fabric (e.g., IP-based or
Fiber Channel storage fabric), or various portions or com-
binations of these and other types of networks. In this regard,
the term “network™ as used herein 1s therefore intended to be
broadly construed so as to encompass a wide variety of
different network arrangements, including combinations of
multiple networks possibly of different types, which enable
communication using, €.g., Transfer Control Protocol/Inter-

net Protocol (TCP/IP) or other communication protocols
such as Fibre Channel (FC), FC over Ethernet (FCoE),

Internet Small Computer System Interface (1ISCSI), Periph-
cral Component Interconnect express (PCle), InfimBand,
(igabit Ethernet, etc., to implement 1/O channels and sup-
port storage network connectivity. Numerous alternative
networking arrangements are possible 1 a given embodi-
ment, as will be appreciated by those skilled in the art.

The data storage system 130 may comprise any type of
data storage system, or combination of data storage systems,
including, but not limited to, a storage area network (SAN)
system, a network-attached storage (NAS) system, a direct-
attached storage (DAS) system, dynamic scale-out data
storage systems, or other types of distributed data storage
systems comprising software-defined storage, clustered or
distributed virtual and/or physical infrastructure. The term
“data storage system”™ as used herein should be broadly
construed and not viewed as being limited to storage sys-
tems ol any particular type or types. It 1s to be noted that
cach storage node 140 and its associated storage array 160
1s an example of what 1s more generally referred to herein as
a “storage system” or a “storage array.” The storage nodes
140 can be physical nodes, virtual nodes, and a combination
of physical and virtual nodes.

In some embodiments, the storage nodes 140 comprise
storage server nodes (e.g., server node 800, shown in FIG.
8) having processor and system memory, and possibly
implementing virtual machines and/or containers, although
numerous other configurations are possible. In some
embodiments, one or more of the storage nodes 140 can
additionally implement functionality of a compute node, and
vice-versa, wherein a compute node 1s configured to process
data and execute tasks/workloads and perform computa-
tional work, either individually, or 1n a distributed manner,
to thereby provide compute services such as execution of
one or more applications on behalf of one or more users. In
this regard, the term “storage node” as used herein 1s
therefore intended to be broadly construed, and a storage
system 1n some embodiments can be implemented using a
combination of storage nodes and compute nodes.

In some embodiments, each storage node 140 comprises
a server node that 1s implemented on, e.g., a physical server
machine or storage appliance comprising hardware proces-
sors, system memory, and other hardware resources that
execute software and firmware to implement the function-
alities and data management services ol the storage node
140 and the storage control system 150, as discussed herein.
More specifically, in some embodiments, each storage node
140 comprises a plurality of storage control processors
which execute a lightweight operating system (e.g., a cus-
tomized lightweight Linux kernel) and functional software
(e.g., software-defined storage software) to implement vari-
ous functions of the storage node 140 and the storage control
system 130, wherein such functions include, but are not
limited to, (1) managing and executing data access requests
issued by the host systems 110, (11) performing various data
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management and storage services, and (111) controlling net-
work communication and connectivity with the host systems
110 and between the storage nodes 140 within the data
storage system 130, etc.

In a distributed storage environment, the storage control
systems 1350 of the storage nodes 140 are configured to
communicate 1 a cooperative manner to perform functions
such as e.g., processing data access requests received from
the host systems 110, aggregating/pooling the storage capac-
ity ol the storage arrays 160 of the storage nodes 140,
performing functions such as inline data compression/de-
compression, data deduplication, thin provisioning, and data
protection functions such as data replication, snapshot, and
data protection and resiliency schemes based on data strip-
ing and/or parity (e.g., erasure coding, RAID, etc.), and
other types of data management functions, depending on the
system configuration.

The storage devices 162 comprise one or more of various
types of storage devices such as hard-disk drives (HDDs),
solid-state drives (SSDs), Flash memory cards, or other
types of non-volatile memory (INVM) devices including, but
not lmmited to, non-volatile random-access memory
(NVRAM), phase-change RAM (PC-RAM), magnetic
RAM (MRAM), etc. In some embodiments, the storage
devices 162 comprise flash memory devices such as NAND
flash memory, NOR flash memory, etc. The NAND flash
memory can include single-level cell (SLC) devices, multi-
level cell (MLC) devices, triple-level cell (TLC) devices, or
quad-level cell (QLC) devices. These and various combina-
tions of multiple different types of storage devices may be
implemented 1n the data storage system 130. In this regard,
the term “storage device” as used herein should be broadly
construed to encompass all types of persistent storage media
including hybrid drives.

In some embodiments, the storage array 160 of a given
storage node 140 comprises DAS resources (internal and/or
external), wherein the storage control system 150 of the
given storage node 140 1s configured to directly access the
storage array 160 of the given storage node 140. In some
embodiments, the data storage system 130 comprises a
disaggregated data storage system in which storage data
processing 1s separate from data storage. More specifically,
in an exemplary embodiment of a disaggregated storage
system, the storage control systems 130 comprise storage
control nodes, and the storage arrays 160 comprises storage
nodes, which are separate from the storage control nodes. In
such a configuration, the storage control nodes (e.g., storage
control systems 150) are configured to handle the processing
of data associated with data access requests (1.e., mput/
output (I/0) read and write requests), and the storage nodes
(storage array 160) are configured to handle writing/reading
data to/from respective storage devices 162. In a disaggre-
gated architecture, each storage control node (e.g., each
storage control system 150) would be configured to directly
access data stored in each storage node (e.g., each storage
array 160) 1n the data storage system 130. The disaggregated
storage system architecture essentially separates the storage
control compute layers (e.g., storage control systems 150)
from the data storage layers (e.g., storage arrays 160).

In a disaggregated data storage system, each storage array
160 1s implemented as, e.g., an external DAS device,
wherein each storage control system 150 of each storage
node 140-1, 140-2, . . . , 140-N 1s connected to each storage
array 160 using any suitable interface protocol such as Small
Computer Systems Interface (SCSI), Fibre Channel (FC),
etc. In other embodiments, the storage control systems 150
of the storage nodes 140-1, 140-2, . . . , 140-N can be
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network-connected to each of the storage arrays 160 (via a
high-performance network fabric) using any suitable net-
work configuration and network interface protocol such as
Ethernet, FC, Internet Small Computer Systems Interface
(1SCSI), InfiniBand, etc. For example, in some embodi-
ments, the storage nodes 140 and the storage arrays 160 are
interconnected in a full-mesh network, wherein back-end
interconnectivity between the storage nodes 140 and the
storage arrays 160 1s achieved using, e.g., a redundant
high-speed storage fabric, wherein the storage control sys-
tems 150 can utilize remote procedure calls (RPC) for
control messages and remote direct memory access
(RDMA) for moving data blocks.

In some embodiments, the storage data servers 152 of the
storage nodes 140 are configured to consolidate the capacity
of the storage arrays 160 (e.g., HDDs, SSDs, PCle or NVMe
flash cards, etc.) of the storage nodes 140 1nto storage pools
from which logical volumes are allocated, wherein the
logical volumes (e.g., a block unit of storage management)
are 1dentified by, e.g., logical unit numbers (LUNs). More
specifically, the storage data servers 152 of the storage nodes
140 are configured to create and manage storage pools (e.g.,
virtual pools of block storage) by aggregating storage capac-
ity of the storage arrays 160 of the storage nodes 140 and
dividing a given storage pool into one or more volumes,
wherein the volumes are exposed to the host systems 110 as
block devices. For example, a virtual block device can
correspond to a volume of a storage pool. Each virtual block
device comprises any number of actual physical storage
devices, wherein each block device 1s preferably homog-
enous 1n terms of the type of storage devices that make up
the block device (e.g., a block device can include only HDD
devices or SSD devices, etc.).

In some embodiments, each host system 110 comprises a
storage data client (SDC) which executes on the host system
and which consumes the block storage exposed by the
storage data servers 152. In particular, an SDC comprises a
lightweight block device driver that 1s deployed on a given
host system 110 to expose shared block volumes to the given
host system 110. The SDC exposes the storage volumes as
block devices to each application (e.g., virtual machine,
container, etc.) that execute on the same server (e.g., host
system 110) on which the SDC 1s installed. The SDC of a
given host system 110 exposes block devices representing
the virtual storage volumes that are currently mapped to the
grven host system 110. The SDC for a given host system 110
serves as a block driver for the host system 110, wherein the
SDC mtercepts I/O requests, and utilizes the intercepted 1/0O
request to access the block storage that 1s managed by the
storage data servers 152. The SDC provides the operating
system or hypervisor (which runs the SDC) access to the
logical block devices (e.g., volumes). Each SDC has knowl-
edge of which storage data servers 152 hold (e.g., own) their
block data, so multipathing can be accomplished natively
through the SDCs.

As noted above, the management nodes 115 1n FIG. 1
implement a management layer which manages and config-
ures the network computing system 100. In some embodi-
ments, the management nodes 115 comprise a tightly-
coupled cluster of manager nodes that are configured to
supervise the operations of the storage cluster and manage
storage cluster configurations. For example, management
nodes 115 include metadata manager (MDM) modules that
operate outside of the data path and provide the relevant
information to the SDCs and the storage data servers 152 to
allow such components to control data path operations. The
MDM modules are configured to manage the mapping of
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SDCs to the storage data servers 152 of the storage nodes
140. The MDM modules manage various types of metadata
that are required to perform various management operations
in the storage environment such as, e.g., managing configu-
ration changes, managing the SDCs and storage data servers
152, maintaining and updating device mappings, maintain-
ing management metadata for controlling data protection
operations such as snapshots, replication, RAID configura-
tions, etc., managing system capacity icluding device allo-
cations and/or release of capacity, performing operation for
recovery from errors and failures, and system rebuld tasks
including rebalancing, efc.

The metadata management system 1354 1s configured to
utilize the write cache 180 and the primary metadata struc-
ture 190 to manage metadata of the storage system. The
write cache 180 and the primary metadata structure 190 are
maintained 1n a persistence storage/memory resource. In the
context of a software-defined storage system, the storage
control system 150 1s essentially a hardware independent
storage control system which 1s configured to abstract stor-
age and memory resources from the underlying hardware
platform for greater flexibility, efliciency and faster scalabil-
ity. In this regard, the storage control system 150 will have
no control over the types of storage and memory hardware
resources that will be utilized during run-time. In this regard,
in some embodiments, the write cache 180 and the primary
metadata structure 190 are implemented 1n primary memory
170. In other embodiments, the write cache 180 and/or the
primary metadata structure 190 can be implemented in
primary storage (e.g., the storage array 160).

As noted above, the primary memory 170 comprises
volatile RAM such as dynamic RAM (DRAM), synchro-
nous DRAM (SDRAM), etc. In some embodiments, the
primary memory 170 comprises non-volatile memory which
1s configured as RAM. For example, 1n some embodiments,
the primary memory 170 comprises a storage class memory
(SCM) tier which extends the RAM that 1s available to the
operating system of the storage node 140. The SCM tier can
be implemented with various types of non-volatile memory
media hardware such as persistent memory (PMEM) mod-

ules, solid-state drive (SSD) devices, nonvolatile dual in-line
memory modules (NVDIMMs), and other types of persistent
memory modules with a DRAM form factor, etc. In addition,
the persistent memory may be implemented using a vaulting
RAM system which comprises a battery-backed RAM 1n
which data 1s stored to vault devices upon device or power
tailure. In general, the non-volatile memory devices can be
accessed over a memory bus (1implemented via, e.g., Periph-
eral Component Interconnect Express) using a suitable inter-
face such as non-volatile memory express (NVMe).

The metadata management system 134 1s configured to
implement a high-performance metadata storage and pro-
cessing system through use of the primary metadata struc-
ture 190. For example, the metadata 1s maintained and
managed in such a manner that the metadata 1s at least as
resilient as the associated data. In addition, the metadata 1s
maintained and managed 1n a manner that the metadata 1s
swappable between RAM and persistent storage. Due to the
s1ze of the metadata, the metadata may not it within RAM
in many cases. As such, the metadata management system
154 allows relevant metadata 1s be maintained in RAM, and
then allows swapping in ol metadata when the workload
changes. Further, the metadata 1s generated and managed 1n
a way that minimizes write overhead. For example, the
persisting of the metadata does not add a significant amount
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of bandwidth or TOPS. In addition, the metadata manage-
ment system 154 supports both random and sequential
access to the metadata.

FIG. 2 schematically illustrates a storage node 200 which
comprises a metadata management system, according to an
exemplary embodiment of the disclosure. In some embodi-
ments, FIG. 2 schematically 1llustrates an exemplary archi-
tecture of the storage nodes 140 of the data storage system
130 of FIG. 1. As shown 1n FIG. 2, the storage node 200
comprises a storage control system 210 which implements a
storage data server 220, a data management services module
225, a write cache management system 230, and a metadata
management system 240. The storage data server 220 com-
prises a storage virtualization management module 222. The
write cache management system 230 comprises various
functional modules 1ncluding, but not limited to, a write
cache destage control module 232. The metadata manage-
ment system 240 comprises various functional modules
including, but not limited to, a first metadata structure
management module 242 (alternatively referred to herein as
an “‘updates data structure” management module 242), and
a second metadata structure management module 244 (alter-
natively referred to herein as a “core data structure” man-
agement module 244).

The storage node 200 further comprises an array of
storage devices 250 and primary memory 260. The storage
devices 250 comprise primary storage resources, wherein at
least some capacity of the storage devices 250 1s partitioned
into one or more storage volumes 252. In the exemplary
embodiment of FIG. 2, the primary memory 260 comprises
a write cache 262 which 1s provisioned and managed by the
write cache management system 230. In some embodiments,
the write cache 262 resides 1n a region of non-volatile RAM
(e.g., PMEM memory, SSD memory, etc.), which i1s allo-
cated for the write cache 262. In other embodiments, the
write cache 262 resides 1n an allocated region of the storage
space ol the array of storage devices 250.

As further shown i FIG. 2, the primary memory 260
comprises a primary metadata structure 270. The primary
metadata structure 270 comprises a first data structure 280
(referred to as the updates data structure 280), and a second
data structure 290 (referred to as the core data structure 290).
The updates data structure 280 1s provisioned and managed
by the updates data structure management module 242, and
the core data structure 290 1s provisioned and managed by
the core data structure management module 244. In some
embodiments, the updates data structure 280 comprises a
log-structured merge (LSM) tree data structure 282, and the
core data structure 290 comprise a B+ tree data structure
292, the structures and functions of which will be discussed
in further detail below.

The storage data server 220 implements functions as
discussed above such as processing I/O write and read
requests received from host systems to write/read data
to/from the storage devices 250. The storage virtualization
management module 222 implements any suitable logical
volume management (LVM) system which 1s configured to
create and manage the storage volumes 252 by aggregating
the capacity of the storage devices 250 into one or more
virtual storage pools that are thin-provisioned for maximum
capacity, and logically dividing each storage pool into one or
more storage volumes that are exposed as block devices
(e.g., LUNSs) to the applications or host systems 110 (FIG. 1)
which consume the data. The data management services
module 225 implements one or more types of data manage-
ment services including, but not limited to, inline data
compression/decompression, thin provisioning, and data
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protection functions such as data replication, data backup,
data snapshot, and data protection and resiliency schemes
based on data striping and/or parity (e.g., erasure coding,
RAID, etc.), and other types of data management functions,
depending on the system configuration. In embodiments
where the storage data server 220 abstracts the physical
media (e.g., storage devices 250) and presents logical (vir-
tualized) addresses to users 1n the form of LUNSs, the storage
data server 220 generates metadata to provide mapping
between logical addresses and physical addresses. In addi-
tion, the storage control system 210 generates metadata
which 1s utilized for managing snapshots, tracking for
remote replication, managing deduplication pointers, man-
aging data compression, resiliency related metadata (e.g.,
RAID), etc. The metadata management system 240 manages
the metadata generated by the storage control system 210.

The write cache management system 230 implements
methods that are configured to provision and manage the
write cache 262 1n the primary memory 260 or in primary
storage as provided by the array of storage devices 2350. In
some embodiments, the write cache 262 1s utilized to serve
I/O write requests by persistently storing data items (e.g.,
write data) together with associated metadata 1tems in the
write cache 262. In this regard, the write cache 262 reduces
the overhead for handling write data and associated meta-
data since the write data and associated metadata 1s 1nitially
persisted 1n the write cache 262 without the need for extra
I/O to store the metadata items separately from the data
items. In addition, when the storage control system 210
receives an 1/0 write request and associated write data from
a given host system, the storage control system 210 will send
an acknowledgment to the host system to indicate that the
write data 1s successtully written to the primary storage, in
response to the recerved write data and associated metadata
being stored in the write cache 262.

In some embodiments, the write cache 262 1s 1mple-
mented as a cyclic buller, wherein items (e.g., data items and
metadata 1tems) are always written to a head location of the
write cache 262, and 1tems are destaged from a tail location
of the write cache 262. With this scheme, the items in the
write cache 262 are arranged 1n a cyclic write order from the
tail location of the write cache 262 to the head location of the
write cache 262. Further, in some embodiments, the write
cache management system 230 utilizes a plurality of point-
ers 1n conjunction with the write cache 262 (e.g., cyclic write
cache) to (1) determine the tail location and the head location
of the write cache 262, (11) determine a location 1n the write
cache 262 from where to begin a recovery process, and to
(111) keep track of the data items and metadata items that are
destaged from the tail of the write cache 262 via destage
operations performed by the write cache destage control
module 232.

More specifically, the write cache destage control module
232 implements write cache eviction/destaging operations
which take into consideration that the write cache 262
comprises both data items and associated metadata items,
which are separate entities that are persisted 1n different
primary data structures. In some embodiments, the write
cache destaging operations are configured to destage data
items and destage metadata items, separately, based on
associated eviction/destaging policies. For example, the
metadata 1tems destaged from the write cache 262 are
persisted 1n the primary metadata structure 270 using tech-
niques as discussed 1n further detail below.

The metadata management system 240 utilizes the write
cache 262 in conjunction with the primary metadata struc-
ture 270 to persist, manage, and access metadata maintained
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by the storage node 200. Collectively, the write cache 262
and the primary metadata structure 270 provide a high-
performance data structure that enables eflicient manage-
ment of metadata 1n the storage system. Various techniques
for high-performance metadata management will now be
discussed in further detail 1n conjunction with FIGS. 3, 4, 5,
and 6.

For example, FIG. 3 schematically 1llustrates a process for
utilizing a high-performance data structure for managing
metadata 1n a storage system, according to an exemplary
embodiment of the disclosure. More specifically, FIG. 3
schematically illustrates a write cache 300, and a primary
metadata structure 310. The primary metadata structure 310
comprises an updates data structure 312, and a core data
structure 314. As noted above, the write cache 300 1s
configured to initially persist data items (e.g., write data of
I/O write requests) and metadata items to thereby serve 1/0
write requests with a minimal delay, and allow the storage
control system 210 to return an acknowledgment to a host
system when the write data of an I/O write request and
associated metadata 1s successiully written to the write
cache 300.

As shown 1 FIG. 3, the write cache 300 comprises a
plurality of data items 301, 303, 305, and 307, and a plurality
of associated metadata 1items 302, 304, 306, and 308. In the
illustrative embodiment of FIG. 3, each metadata 1item 302,
304, 306, and 308 1s labeled by a letter and a number. For
instance, the metadata item 302 1s labeled AS, the metadata
item 304 1s labeled F3, the metadata item 306 1s labeled C2,
and the metadata item 308 1s labeled F4. The letter of a given
metadata 1tem represents a location of the data item (e.g., an
oflset in a file or volume, or an object ID) associated with the
given metadata item, and the number represents a consecu-
tive order of update of the data item (e.g., A5 denotes a next
change to Ad for location “A”). In other words, the number
represents a generation (or revision) number of the given
data item. In an exemplary embodiment 1n which the allo-
cation units (1.e., fixed-size addressable units) of the storage
devices have a fixed “allocation unit s1ze” of, e.g., 8 KB, and
the letters represent offset locations 1n a given volume, then
the following representations may apply: A—oflset O,
B—oflset 8 KB, C—oflset 16 KB, D—oflset 24 KB, E—ofl-
set 32 KB, etc.

Since writes to the write cache 300 are acknowledged to
the host, the write cache 300 1s configured to serve read
requests for the cached data items that have not yet been
destaged to the primary storage. To serve reads, the data 1n
the write cache 300 must have lookup capabilities. However,
the write cache 300 1s optimized for writes and not for reads
and, thus, the metadata in the write cache 300 1s not random
access. The lookup capability 1s provided by the updates
data structure 310 and the core data structure 314. In other
words, the primary metadata structure 310 provides a joint
metadata structure to access data items 1n the write cache
300 before the data items are destaged and stored to primary
storage (e.g., HDD/SSD primary storage devices of the
storage system), as well as to access data items after they are
destaged from the write cache 300 and stored to primary
storage.

As noted above, 1n some embodiments, the write cache
300 1s located on the same storage device as the data, while
in other embodiments, the write cache 300 i1s allocated 1in a
region ol a persistent memory. In such instance, metadata 1s
required to access both the primary storage and the write
cache 300. The updates and core data structures as discussed
herein are utilized to refer to storage and cache interchange-
ably. A data i1tem that was originally placed 1n the write
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cache may be destaged, mvolving an update to a metadata
item, using all the same structures. This 1s enabled by the
ability to persist micro updates with negligible I/O overhead.

The updates data structure 312 1s configured to accumu-
late changes to metadata and provide write amortization to
the core data structure 314. As shown 1n FIG. 3, the metadata
items 1n the write cache 300 are added to the updates data
structure 312 by performing a metadata destage operation
330 under control of the write cache destage control module
232. The metadata destage operation 330 involves writing
copies of the metadata items 1n the write cache 300 to an
in-memory butler in RAM, which 1s allocated to the updates
data structure management module 242 for temporarily
buflering cached metadata items before persisting the meta-
data items in the updates data structure 312. When the
in-memory butler becomes full (e.g., the number or amount
of metadata 1tems in the bufler reaches a predetermined
bufler size), the metadata 1tems are persisted to the updates
data structure 312. During the metadata destage operation
330, resiliency of the metadata 1items 1s provided by the write
cache 300 until the buflered metadata items are persisted 1n
the updates data structure 312. Once the metadata items are
persisted 1n the updates data structure 312, the cached
metadata 1tems are no longer needed, and can be removed
from the write cache 300.

As shown in FIG. 3, the data and associated metadata
items 1n the write cache 300 are arranged 1n a temporal order
based on, e.g., an order 1in which user writes are received by
the storage control system. In other words, assuming that the
letters (e.g., A, F, C, F, etc.) of the data 1items and associated
metadata 1tems represent oflset location 1n volume, the 1tems
in the write cache 300 are not arranged 1n “alphabetic order”
but mstead are arranged in temporal order. However, when
the metadata 1tems are destaged from the write cache 300
and persisted 1n the updates data structure 312, the metadata
items are arranged in the updates data structure 312 in a
sorted manner (e.g., alphabetical order) to facilitate indexing
and searching of the metadata items.

To enable lookup using the updates data structure 312, the
internal ordering of the updates data structure 312 is the
same as the internal ordering of the core data structure 314
in that both data structures 312 and 314 utilize the same key
(e.g., the keys (letters) which represent the oflset positions
in a given volume). In some embodiments, to support
swapping ol metadata, the updates data structure 312 com-
prises pages, each of which may or may not be 1n the system
RAM. FEach page comprises a unit of capacity that is
allocated to store metadata items. For example, 1n some
embodiments, the page size for the updates data structure

312 can be 512 bytes, 1,024 bytes (1 KB), 2,048 bytes (2
KB), 4,096 bytes (4 KB), 8,192 bytes (8 KB), efc.

The core data structure 314 1s a primary metadata storage
and indexing structure, which is configured to contain all the
metadata except the most recent metadata that 1s contained
in the updates data structure 312. The core data structure 314
1s essentially a semi-static data structure since all metadata
updates are first accumulated 1n the updates data structure
312, and then eventually persisted to the core data structure
314 using a bulk update operation 340, as schematically
shown 1 FIG. 3. The updates data structure 312 essentially
serves as a journal which persists and accumulates most
recent changes of the metadata 1tems, and then over time, the
metadata 1s sorted 1nto the core data structure 314. The bulk
update operation 340 1s occasionally performed to apply
metadata updates from the updates data structure 312 to the
core data structure 314. The occasional bulk update opera-
tion 340 leads to large-scale changes to the core data
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structure 314, which allows for many optimizations includ-
ing, but not limited to, write amortization, tree balancing,
removal of deleted 1tems, constructing new inner nodes of
the core data structure 314 when write-in-place 1s avoided.

In some embodiments, the updates data structure 312 1s
implemented using an LSM tree data structure, and the core

data structure 314 1s implemented using a B+ tree data
structure. The combined use of the LSM tree and B+ tree
data structure provides a high-performance data structure for
managing metadata. More specifically, the B+ tree data
structure 1s utilized to implement a primary lookup and
address mapping functionality, while the LSM tree data
structure 1s configured to provide write amortization for
metadata updates (e.g., adding new metadata 1tems, modi-
tying metadata i1tems, deleting/invalidating metadata items.
The LSM tree data structure allows for low-latency writing
of metadata to a persistent data structure using out-of-place
updates 1n which metadata i1tems (new metadata items,
updated metadata 1tems) are always stored to new locations
instead of overwriting old entries (eliminating the need for
random I/Os for writes). The LSM tree data structure
enhances write performance for persisting the metadata
since the LSM tree data structure can exploit sequential I/Os
to handle a high rate of write operations and, thereby, allow
metadata to be quickly persisted to support high-throughput
writes. In addition, the LSM tree data structure comprises a
multilevel tree-like structure which 1s configured to progres-
sively store key-value pairs associated with metadata items
to enable read access to the metadata items using binary
searches, indexing structures, Bloom f{ilters, etc.

The B+ tree data structure implements a primary metadata
storage and indexing structure, which 1s configured to con-
tamn all the metadata except the most recent metadata
updates that are accumulated 1n the LSM data structure. The
B+ tree data structure 1s optimized for read access to
metadata items as the B+ tree data structure allows random
or sequential I/O access to the metadata 1tems. However, a
B+ tree data structure 1s not optimized for write operations,
as the B+ tree data structure 1s typically configured for
in-place updates in which old records are overwritten to
store new updates. In this regard, the use of a B+ tree data
structure alone to manage metadata would sacrifice write
performance, as updates to the B+ tree data structure incur
random I/Os as every write to the B+ tree data structure has
to perform multiple write operations including a write of the
given record, as well as performing required metadata
updates to the B+ tree data structure with regard to moving,
splitting and merging nodes 1n the B+ tree data structure,
whereby resulting in slower writes. In this regard, the LSM
tree data structure 1s utilized to accumulate metadata
changes with high write performance, and heavily buller
such metadata changes for subsequent addition to the B+
tree data structure using bulk update operations outside the
I/O processing path. Exemplary embodiments of LSM and
B+ tree data structures will be discussed in further detail
below 1n conjunction with FIGS. 4, §, and 6.

FIG. 4 schematically illustrates an exemplary LSM tree
data structure 400 which 1s utilized to implement a high-
performance data structure for managing metadata 1n a
storage system, according to an exemplary embodiment of
the disclosure. The exemplary LSM tree data structure 400
implements an in-memory buller 402, and comprises Bloom
filters 404, and a multilevel structure comprising a plurality
of segment levels, e.g., Level 0, Level 1, and Level 2. The
LSM tree data structure 400 1s configured to enable write
amortization for accumulating changes to metadata 1tems
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(e.g., adding new metadata items, updating metadata items,
and deleting metadata items) which are first written to the
persistent write cache.

The in-memory builer 402 comprises an 1n-memory struc-
ture that buflers metadata 1tems that are destaged from the
write cache. As noted above, metadata items 1n the write
cache are destaged by copying the metadata items to the
in-memory bufler 402. In some embodiments, the metadata
items are inserted into the in-memory bufler 402 and sorted
in order (e.g., by oflset location, and generation number).
When the in-memory bufler 402 reaches a predefined thresh-
old size (e.g., allocation unit size, page size, etc.), the
accumulated metadata items within the in-memory builer
402 are tlushed to a Level O segment of the LSM tree data
structure 400.

For example, as shown in FIG. 4, the LSM tree data
structure 400 comprises a plurality of Level O segments 410
(or root segments) comprising a first segment 411, a second
segment 412, a third segment 413, etc. Fach Level 0
segment 410 comprises a persistent immutable data structure
which stores a plurality of metadata items that are flushed
from the in-memory builer 402 at a given time. The process
of updating the LSM tree data structure 400 prevents a high
rate of updates to the Level O layer of the LSM tree data
structure 400 by accumulating metadata changes (e.g., hun-
dreds) in the write cache before the metadata i1tems are
written persistently from the in-memory bufler 402 to new
Level O segment at once. Once the metadata items are
persisted 1n a Level 0 segment 410, the metadata items 1n the
write cache can be deleted.

More specifically, 1n the exemplary embodiment of FIG.
4, the first segment 411 comprises sorted metadata 1tems
(A5, C2, F3, F4), the second segment 412 comprises sorted
metadata items (A6, B4, ES, G2), and the third segment 413
comprises sorted metadata items (E6, H2, J5, K3). While
FIG. 4 shows each Level 0 segment 410, 411, and 412
having four (4) metadata 1tems for ease of illustration, each
Level O segment 410 can have hundreds of metadata 1tems
(e.g., the Level 0 segments 411, 412, and 413 can each have
a size of 8 KB (similar to the allocation unit size, or page
s1ze, etc.). The first segment 411 comprises metadata items
F3 and F4 where F4 denotes a recent change to data at oflset
location F from the previous version F3. In addition, the first
and second segments 411 and 412 include respective meta-
data items A5 and A6, where A6 denotes a recent change to
data at offset location A from the previous version AS.
Further, the second and third segments 412 and 413 include
respective metadata items E5S and E6, where E6 denotes a
recent change to data at oflset location from the previous
version ES.

In this regard, the updated metadata items are written
out-of-place by appending an update to the same or a new
Level 0 segment as cached metadata items 1n the write cache
are added to the LSM tree data structure 400. The older
values for metadata items are removed at a later point in time
through merge operations (or compaction operations). In the
event of a crash while metadata items are still in the
in-memory buller 402, the wrte cache will be used to
recover on the next restart.

The Level 0 segments 410 are continuously generated as
more blocks of cached metadata items are flushed from the
in-memory bufler 402. Periodically, multiple segments 1n a
given Level (1) of the LSM tree data structure 400 are
merged together into a single segment that 1s added to the
next Level (1+1). The merging 1s performed to, e.g., reduce
the number of segments that need to be searched. For
example, as shown 1 FIG. 4, the LSM tree data structure
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400 comprises a plurality of Level 1 segments 420 including
a first segment 421, a second segment 422, a third segment
423, etc., and a plurality of Level 2 segments 430 compris-
ing a first segment 431, etc.

In the exemplary embodiment shown in FIG. 4, the
segments 411, 412, and 413 of the Level 0 segments 410 are
merged together into the first segment 421 1n Level 1 of the
LSM tree data structure 400. The first segment 421 in Level
1 aggregates the metadata items from each of the Level O
segments 411, 412, and 413, and stores the metadata items
in a sorted order. Following the merge operation, the Level
0 segments 411, 412, and 413 (source segments) are
removed from the LSM tree data structure 400. While not
specifically shown 1n FIG. 4, the second and third segments
422 and 423 in Level 1 of the LSM tree data structure 400
could each have a plurality of sorted entries aggregated from
merging different blocks of three segments in Level 0 of the
LSM tree data structure 400. Moreover, the first segment
431 in Level 2 of the LSM tree data structure 400 could have
a plurality of sorted records as a result of merging the
segments 421, 422, and 423 in Level 2 of the LSM tree data
structure 400. The LSM tree data structure 400 uses very few
writes to propagate entries from one level to the next by
merging segments.

In some embodiments, each segment 1n the LSM tree data
structure 400 1s stored as a file, wherein the metadata 1tems
in a given segment are divided into fixed size pages (e.g., 8
KB blocks) of the file. More specifically, in some embodi-
ments, each segment 1 each level of the LSM tree data
structure 400 1s divided into one or more pages which
facilitates access, memory allocation, persistency, and swap-
ping segments or portions of segments 1 and out of
memory. For example, assume that each Level 0 segment
410 has a size equivalent to a page size (e.g., 8 KB), the
segments of higher levels (e.g., Level 1, Level 2, etc.) will
be increasingly larger 1n size and have multiple pages.

The pages are used for purposes of memory allocation and
to facilitate lookup for a target metadata item in the LSM
tree data structure 400. For example, each segment can have
additional metadata with regard to the page(s) of the seg-
ment, wherein such metadata comprises a page key for each
page 1n the segment, and an associated value which repre-
sents the key (e.g., oflset location) of the first metadata item
within the given segment. To locate a given entry 1n a given
segment, the segment may include a page index which
records a key of the first entry in each page. The page index
together with the Bloom filters 404 provides for fast search-
ing of metadata 1tems in the LSM tree data structure 400.

In particular, when searching for a given metadata item
which may be located 1n a given segment of the LSM ftree
data structure 400, the Bloom filters 404 will be used
initially to enable eflicient per-segment lookup. A Bloom
filter for a given segment comprises a probabilistic data
structure which provides an indication that (1) the given
segment may contain a key that 1s being searched for with
a high probability, or that (11) the given segment does not
include the key that 1s being searched. In some embodi-
ments, 1f a given segment 1s 1dentified (via Bloom filtering)
to likely have the target key, a binary search can be con-
ducted to find and access the key within the given segment
(11 the key does 1n fact exist 1in the given segment). In some
embodiments, for large sized segments, once a given seg-
ment 1s 1dentified (via Bloom filtering) to most likely contain
the target key, the page index for the given segment can be
used to identily the page within the given segment which
would have the key (if the key was indeed 1n the segment).
Once the target page 1n the given segment 1s 1dentified via
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the page index, the page can be loaded to memory and to
perform a binary search of the keys in the target page to find
the target key. In this regard, the first key of each page 1s
maintained 1n RAM to reduce the search within a segment

to a single page utilizing the fact that the segments are >
sorted.

FI1G. 5 schematically illustrates an exemplary B+ tree data
structure which 1s utilized to implement a high-performance
data structure for managing metadata 1n a storage system,
according to an exemplary embodiment of the disclosure. In
particular, FIG. 5 schematically illustrates an exemplary B+
tree data structure 500 comprising three levels of nodes
including a root level comprising a root node 501, an
intermediate node level 510, and a leaf node level 520. The
intermediate node level 510 comprises two intermediate

nodes 511 and 512, and the leafl node level 520 comprises
five leat nodes 521, 522, 523, 524, and 525, wherein all leaf

nodes are 1n the same level of the B+ tree data structure 500.
For ease of 1llustration, FIG. 5 depicts an exemplary B+ tree g
data structure 500 which 1s configured, at a given point 1n
time, to enable random access to stored data items in
fourteen (14) oflset locations 1dentified by metadata keys A,
B,C,D EF G HIIJ K, L, Mand N.

Furthermore, for ease of illustration, the exemplary B+ 25
tree data structure 500 1s an n-order tree structure, wherein
n=3. The “order” of a B+ tree data structure denotes a
maximum number of key fields that a given node can have.
For n=3, the internal nodes and leal nodes can have at most
n=3 key fields and n+1=4 pointer fields. In addition, when 30
n=3, each leaf node must have a least two (2) entries, and
cach non-leal node must have at least one (1) entry and two
(2) pomnters. In practice, the order n of the B+ tree data
structure 500 would be 1n the hundreds, or thousands, etc. In
this regard, while the exemplary embodiment of FIG. 5 35
shows the exemplary B+ tree data structure 500 having three
levels of nodes (the root node 3501 level, the intermediate
node level 510, and the leat node level 520 level), 1t 1s to be
understood that at any given time, there can be zero (0) to
N intermediate levels of nodes. For example, as 1s known in 40
the art, a B+ tree data structure grows from the leaf nodes
upwardly. In this regard, at some period of time, the B+ tree
may only have leal nodes, with zero (0) non-leaf nodes.

In the exemplary B+ tree data structure 500, each non-leaf
node 501, 511, and 512 includes one or more keys (e.g., 45
oflset locations), and each leaf node 521, 522, 523, 524, and
525 includes one or more key:value pairs. Fach key:value
pair comprises a key (represented by a letter) whose value
represents, e.g., a logical offset location of the data in
volume, and a value “loc” which identifies (e.g., pointer) a 50
physical location of the data 1n the physical storage space.
The B+ tree data structure 500 1s configured to organize the
metadata 1tems 1n a manner which enables eflicient mapping,
and lookup functionality for metadata 1tems and associated
data blocks as 1dentified in the leal nodes 521, 522, 523, 524, 55
and 525. In the exemplary embodiment of FIG. §, the root
node 501 comprises a key value J, with a pointer P1 to the
intermediate node 511, and a pointer P2 to the intermediate
node 512. The root node 501 comprises two empty key fields
and two empty pointer fields, which can be used when new 60
leal nodes are added to the B+ tree data structure 500,
resulting in a change 1n the structure of the inner nodes (root
and intermediate nodes). The pointer P1 points to a branch
of the B+ tree data structure 500 having nodes with key
values that are less than the key value of I. The pointer P2 65
points to a branch of the B+ tree data structure 500 having
nodes with key values that are greater than, or equal to, the
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key value J. More specifically, the pointer P1 points to the
intermediate node 311, while the pointer P2 points to the
intermediate node 512.

As further shown 1in FIG. 5, the intermediate node 511
comprises key values D and G, and pointers P3, P4, and P5.
The mtermediate node 511 1ncludes one empty key field and
one empty pointer field, which can be used when new leaf
nodes are added to the B+ tree data structure 500. The
pointer P3 points to the leal node 521 having a plurality of
key:value pairs (e.g., A:loc; B:loc; C:loc), with key values A,
B and C which are less than the key value D. The pointer P4
points to the leal node 522 having a plurality of key:value
pairs (e.g., D:loc; E:loc; F:loc), with key values D, E, and F
which are greater than or equal to the key value of D, but less
than the key value of G. The pointer P5 pomts to the leaf
node 523 having a plurality of key:value pairs (e.g., G:loc;
H:loc; I:loc), with key values G, H, and I which are greater
than or equal to the key value of G, but less than the key
value .

Furthermore, the intermediate node 512 comprises a key
value M and pointers P6 and P7. The mtermediate node 512
comprises two empty key fields and two empty pointer
fields, which can be used when new leat nodes are added to
the B+ tree data structure 500. The pointer P6 points to the
leat node 524 having a plurality of key:value pairs (e.g.,
I:loc; K:loc; L:loc), with key values I, K, and L which are
less than the key value M. The pointer P7 points to the leaf
node 325 having a plurality of key:value pairs (e.g., M:loc;
N:loc) with key values M and N which are greater than or
equal to the key value M. The leal node 525 comprises an
empty data record, which can be used when new leal nodes
are added to the B+ tree data structure 500. The B+ tree data
structure 500 comprises a dynamic multilevel indexing data
structure which can grow and shrink as leafl nodes are added
or removed from the B+ tree data structure. The B+ tree data
structure grows from the bottom up by the addition of new
leal nodes when data i1s written to storage using B+ tree
insertion methods well-known to those of ordinary skill 1n
the art.

In some embodiments, to support swapping, the nodes of
the B+ tree data structure 500 (core data structure) are
divided into pages similar to the LSM tree data structure 400
(updates data structure) as discussed above. In particular, the
inner nodes and the leaf nodes of the B+ tree data structure
500 can be constructed from swappable pages. Even at a
granularity of 4 KB, a reasonable system should be able to
contain all the inner nodes of the B+ free data structure 1n
RAM, requiring only a single read to retrieve required
metadata.

The updates data structure (e.g., LSM tree data structure
400) 1s optimized for writes, and handles individual writes.
The LSM tree data structure can have multiple values per
key. Insertions into the LSM tree data structure are lightly
buflered by the write cache. On the other hand, the core data
structure (e.g., B+ tree data structure 500) 1s optimized for
reads, and 1s configured to handle bulk writes of updated
metadata. The B+ tree data structure may have a single value
per key. Insertions into the B+ tree data structure are heavily
buflered by the updates data structure.

In some embodiments, the size of the updates data struc-
ture (e.g., LSM ftree data structure 400) 1s determined by a
compromise between two competing factors: (1) read per-
formance and (1) write performance. In particular, read
performance 1s the highest when there 1s no entry in the
updates data structure. In this regard, to enhance the overall
read performance of the primary metadata structure, it 1s
preferable to keep the updates data structure as small as
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possible. On the other hand, the overall write performance 1s
greatest with a large updates data structure, so that the
number of pages to update 1n the core data structure 1s small
in relation to the number of changes being applied to the
core data structure from the updates data structure. In some
embodiments, a balance between read and write perfor-
mance 1s achieved by keeping the size of the updates data
structure to be approximately 1% the size of the core data
structure. However, the size difference will depend on
several factors such as the page size and the metadata entry
S1ZE.

The exemplary embodiments discussed above provide
techniques for configuring and utilizing a metadata structure
comprising a combination of an updates data structure (e.g.,
LLSM tree data structure) and a core data structure (e.g., B+
tree data structure) to implement a key-value store which 1s
configured as a logical-to-physical address mapping data
structure which 1s utilized to access data 1n a storage system,
and other possible use cases and implementations that may
be readily envisioned by those of ordinary skill in the art
based on the teachings herein. Furthermore, as discussed
above, 1 some embodiments an updates data structure is
implemented using a multi-level LSM tree data structure
which comprises Bloom f{ilters that are used to perform
lookup operations for key-value entries in LSM segments.

A Bloom filter comprises a probabilistic data structure
that 1s utilized during lookup operation to determine whether
a given element (e.g., key-value entry) 1s a member of a
given LSM segment which 1s associated with the Bloom
filter. When querying a given Bloom filter for a target
key-value entry, the query result will return either (1) an
indication that the target key-value entry 1s “possibly” 1n the
associated LSM segment or (11) an indication that the target
key-value entry 1s “definitely not” in the associated LSM
segment. In other words, with Bloom filter lookup opera-
tions, false positive matches are possible, while false nega-
tive matches are not possible.

As noted above, in response to recerving an /O read
request from host system for reading target data, a search for
corresponding target metadata (e.g., key-value pair) to
access the target data will be performed 1n the order of the
(1) write cache, (1) the LSM tree data structure (updates data
structure), and (111) the B+ tree data structure (core data
structure). I1 the target metadata 1s not 1n the write cache, the
LSM tree data structure will be searched for the target
metadata. I the target metadata entry 1s found in the LSM
tree data structure, the target metadata entry will be deemed
the newest metadata entry 1n the primary metadata structure
such that the B+ tree data structure will not be searched
(since 1t would only have an older version of the target
metadata). On the other hand, if the target metadata entry 1s
not found 1n the LSM tree data structure, the B+ tree data
structure will be searched to find the target metadata entry.

A process of searching the LSM ftree data structure
(updates data structure) for a target metadata entry (e.g.,
key-value pair) would typically involve searching through
the Bloom filters of all the LSM segments, starting with the
first (root) level, and then proceeding to the next lower
levels, 1 sequence, until a potential “hit” 1s returned. If the
target metadata entry does not exist 1n the LSM tree data
structure, the cost of the Bloom filter lookup 1s N*S, where
N denotes the number of levels of the LSM structure, and S
denotes the number of segments per level. For instance,
assuming the number of levels N=3, and each level com-
prises S=9 segments, the LSM search would require a
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maximum of 27 Bloom filter lookup operations, assuming
that the target metadata entry did not actually exist in the
Bloom filter.

As noted above, 1n some embodiments, the primary
metadata structure 1s configured such that the size of the
LLSM tree data structure (updates data structure) is much
smaller relative to the size of the B+ tree data structure (core
data structure). For example, the LSM tree data structure
may be configured to store about 1% of the total metadata of
the primary metadata structure at a given time. In this regard,
the vast majority of the metadata entries will be located only
in the B+ tree data structure, and not 1n the LSM tree data
structure. In this configuration, when performing lookup
operations on the LSM tree data structure, there 1s a likel-
hood that the target metadata entry will not exist in the LSM
tree data structure, which results 1n a relatively large amount
of wasted time and resources associated with having to
search all the Bloom filters of all the segments of the LSM
tree data structure, just to determine that the target metadata
entry does not exist in the LSM tree data structure. To reduce
the cost of performing lookup operations 1n the LSM tree
data structure, exemplary embodiments of the disclosure
include techniques for generating Bloom filters for sets or
groups of segments 1 a given level of the LSM tree data
structure, and utilizing such Bloom filters to expedite the
lookup operations, the details of which will now be
explained 1n further detail in conjunction with FIGS. 6 and
7.

For example, FIG. 6 schematically illustrates an exem-
plary log-structured merge tree data structure which 1mple-
ments Bloom filters for groups of segments to enhance
lookup operations of a storage metadata structure, according
to another exemplary embodiment of the disclosure. In
particular, FIG. 6 schematically illustrates an exemplary
LSM tree data structure 600 which comprises “merge set
Bloom filters” which are generated for sets of segments and
utilized to reduce the time needed to perform lookup opera-
tions on the LLSM tree data structure 600, as will be discussed
in further detail below.

The LSM tree data structure 600 comprises a multilevel
structure comprising a plurality of segment levels, e.g.,
Level 0, Level 1, and Level 2 wherein each segment level
comprises nine (9) segments. In particular, a root level

(Level 0) comprises a plurality of Level O segments 610
which include segments 610-0, 610-1, 610-2, 610-3, 610-4,

610-5, 610-6, 610-7, and 610-8 (generally, 610-x). A next
level (Level 1) comprises a plurality of Level 1 segments
620 which include segments 620-0, 620-1, 620-2, 620-3,
620-4, 620-5, 620-6, 620-7, and 620-8 (generally, 620-x). A
last level (Level 2) comprises a plurality of Level 2 segments
630 which include segments 630-0, 630-1, 630-2, 630-3,
630-4, 630-5, 630-6, 630-7, and 630-8 (generally, 630-x). In
the exemplary LSM tree data structure 600 shown 1n FIG. 6,
the segments comprise entries of metadata items (e.g.,
key-value entries), which are sorted in order. The heights of
the segments represent a relative size of the segments
between the different levels. For example, based on the
relative segment heights shown in FIG. 6, the Level 1
segments 620 are greater 1n size than the Level 0 segments
610, and the size of the Level 2 segments 630 are greater 1n
s1ze than the Level 1 segments 620. In some embodiments,
the Level 2 segments 630 can be very large (e.g., 100 MB
or 10 GB), while the Level 0 segments 610 can be much
smaller (e.g., 5 MB).

As turther shown in FIG. 6, each segment 1n the LSM tree
data structure 600 comprises a corresponding Bloom filter,
denoted Fi_x, where 1 denotes a level index (e.g., 1=0, 1, 2)
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in the LSM tree data structure 600, and x denotes a segment
index (e.g., x=0, 1, 2,3, 4, 5, 6,7, 8) for a given segment 1n
the given level 1. In particular, 1n the exemplary embodiment
of FIG. 6, 1n Level the segments 610-0, 610-1, 610-2, 610-3,
610-4, 610-5, 610-6, 610-7, and 610-8 have corresponding
Bloom filters F0_0, FO_1, F0_2, F0_3, F0_4, F0_5, F0_e,
FO_7, and FO0_8, respectively. Further, in Level 1, the
segments 620-0, 620-1, 620-2, 620-3, 620-4, 620-5, 620-6,
620-7, and 620-8 have corresponding Bloom filters F1_0,
F1_1, F1_2, F1_3, F1_4, F1_5, F1_6, F1_7, and F1_8,
respectively. Similarly, in Level 2, the segments 630-0,
630-1, 630-2, 630-3, 630-4, 630-5, 630-6, 630-7, and 630-8
have corresponding Bloom filters F2_0, F2_1, F2_2, F2_3,
F2 4, F2 5, F2_6,F2 7 and F2_8, respectively. The Bloom
filters Fix comprise individual segment Bloom filters that are
configured to enable lookup operations i the associated
LSM segments.

In addition, the exemplary LSM tree data structure 600
comprises a merge set Bloom filter, denoted MFi_g (alter-
natively, group Bloom f{ilter) for each group (or merge set)
of segments 1n a given level, where 1 denotes a level 1index
(e.g., 1=0, 1, 2) 1n the LSM tree data structure 600, and g
denotes a group of segments (e.g., merge set) 1 the given
level 1. In particular, FIG. 6 shows dashed rectangular boxes
that surround respective groups ol segments (e.g., 3 seg-
ments), wherein each dashed rectangular box represents a
“merge set.” In the LSM tree data structure 600, a group of
segments from a given level 1 are merged into a single
segment 1n the next level 1+1 of the LSM tree data structure
600. While the number of segments that are merged together
(1.e., number of segments 1n a merge set) 1s implementation
specific, FIG. 6 illustrates an exemplary embodiment 1n
which each merge set includes 3 segments.

In the exemplary embodiment shown 1n FIG. 6, in Level
0 of the LSM tree data structure 600, the segments 610-0,
610-1, and 610-2 form a merge set M10 which comprises a
corresponding merge set Bloom filter MF0_0-2, wherein the
merge set Bloom filter MF0_0-2 1s generated based on all
the entries 1n the segments 610-0, 610-1, and 610-2. Further,
the segments 610-3, 610-4, and 610-5 form a merge set M2
which comprises a corresponding merge set Bloom filter
MF0_3-5, wherein the merge set Bloom filter MF0_3-5 1s
generated based on all the entries 1n the segments 610-3,
610-4, and 610-5. Sumilarly, the segments 610-6, 610-7, and
610-8 form a merge set M3 which comprises a correspond-
ing merge set Bloom filter MF0_6-8, wherein the merge set
Bloom filter MF0_6-8 1s generated based on all the entries
the segments 610-6, 610-7, and 610-8.

Furthermore, 1n Level 1 of the LSM tree data structure
600, the segments 620-0, 620-1, and 620-2 form a merge set
M4 which comprises a corresponding merge set Bloom filter
MF1_0-2, wherein the merge set Bloom filter MF1_0-2 1s
generated based on all the entries 1n the segments 620-0,
620-1, and 620-2. In addition, the segments 620-3, 6204,
and 620-5 form a merge set MS which comprises a corre-
sponding merge set Bloom filter MF1_3-5, wherein the
merge set Bloom filter MF1_3-5 1s generated based on all
the entries 1n the segments 620-3, 620-4, and 620-5. Simi-
larly, the segments 620-6, 620-7, and 620-8 form a merge set
M6 which comprises a corresponding merge set Bloom filter
MF1_6-8, wherein the merge set Bloom filter MF1_6-8 1s

generated based on all the entries the segments 620-6, 620-7,
and 620-8.

Moreover, 1n Level 2 of the LSM tree data structure 600,
the segments 630-0, 630-1, and 630-2 form a merge set M7
which comprises a corresponding merge set Bloom filter

MF2_0-2, wherein the merge set Bloom filter MF2_0-2 1s
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generated based on all the entries 1n the segments 630-0,
630-1, and 630-2. In addition, the segments 630-3, 630-4,
and 630-5 form a merge set M8 which comprises a corre-
sponding merge set Bloom filter MF2_3-5, wherein the
merge set Bloom filter MF2_3-5 1s generated based on all
the entries in the segments 630-3, 630-4, and 630-5.

Similarly, the segments 630-6, 630-7, and 630-8 form a
merge set M9 which comprises a corresponding merge set
Bloom filter MF2_6-8, wherein the merge set Bloom filter
MF2_6-8 1s generated based on all the entries the segments
630-6, 630-7, and 630-8.

In the exemplary configuration of FIG. 6, each entry 1n the
LSM tree data structure 600 will reside in two Bloom filters
at any given time. In particular, a given entry in the LSM tree
data structure 600 will reside 1n (1) an individual segment
Bloom filter which 1s associated with a given segment which
contains the given metadata entry, and (1) a merge set
Bloom filter which 1s associated with the merge set that
includes the given segment. The merge set Bloom filters
serve to reduce the lookup cost for searching the LSM tree
data structure 600 for a given entry.

For example, to search the LSM tree data structure 600 for
a given entry, the lookup process begins with searching the
merge set Bloom filters (MF1_g), starting with searching the
Level 0 merge set Bloom filters, and then proceeding to
search the merge set Bloom filters in the next lower levels,
in sequence. In other words, the lookup process traverses the
L.SM tree data structure 600 from the shallowest level (e.g.,
Level 0) to the deepest level (e.g., Level 2) until a first match
1s found 1 a given merge set Bloom filter. Furthermore,
searching within a given level of the LSM tree data structure
600 begins with the newest merge set Bloom filter and
proceeds 1n sequence (e.g., from right to leit in FIG. 6) to the
oldest merge set Bloom filter, and terminates 1f a match 1s
found. As noted above, multiple entries with the same key
may exist 1n the LSM tree. However, a point lookup can
terminate safely after successtully finding the first entry with
a matching key, because any matching keys in older levels
(or older segments within a given level) are guaranteed to be
obsolete.

If the target entry 1s not found after querying all the merge
set Bloom filters of the LSM tree data structure 600, the
target entry 1s deemed to not exist in the LSM tree data
structure 600, and the 1individual segment Bloom filters are
not searched. In the exemplary embodiment of FIG. 6, the
cost of the lookup operation for given entry 1n the LSM tree
data structure 600 is reduced by a factor of 14, since only 9
merge set Bloom filters are searched, as opposed to having
to search the 27 individual segment Bloom f{ilters in the
exemplary LSM tree data structure 600. In other words, the
number of lookup operations using all the merge set Bloom
filters would be 33.33% of the original cost of having to
potentially perform lookup operations for all 27 individual
Bloom filters for the individual segments. Indeed, only when
there 1s a “hit” when searching a given merge set Bloom
filter, the lookup operation will proceed to search the indi-
vidual Bloom filters of the segments that are part of the
merge set associated with the given merge set Bloom filter
to determine which segment contains the targe metadata
entry.

It 1s to be noted that in other embodiments, the cost of the
lookup operation using the merge set Bloom filters can be
reduced to even less than 14 (as 1n the exemplary embodi-
ment of FIG. 6) by, e.g., increasing the number of segments
that are contained in each merge set while maintaining the
same number of merge sets in the levels. For instance, 1n the
exemplary embodiment of FIG. 6, 1f each level of the LSM
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tree data structure was modified to include 8 segments in
cach of the 3 merge sets per level, then the cost of the lookup
operation using the merge set Bloom filters would be
reduced by a factor of 9/72 (12.5%), since only a total of 9
merge set Bloom filters would be searched, as opposed to
having to search the 72 mdividual segment Bloom filters.

It 1s to be noted that the use of the merge set Bloom filters
may require additional RAM to hold the merge set Bloom
filters as well as the individual segment Bloom filters, but
the amount of such additional RAM 1s relatively small in
terms ol memory resources, especially as compared to the
reduced costs associated with the LSM search operations,
which 1s achieved by virtue of utilizing the merge set Bloom
filters.

It 1s to be noted that eventually, the segments of a given
merge set 1 a given level 1 of the LSM tree data structure
600 will end up being merged into a larger new segment 1n
a next level 1+1 of the LSM tree data structure 600, requiring
a new 1ndividual Bloom filter for the new segment. How-
ever, the merge operation does not require generating a new
individual Bloom filter for the new segment, because the
merge set Bloom filter of the given merge set of segments,
which 1s merged into the new segment, serves as the new
individual Bloom filter for the new segment. In this regard,
since the merge set Bloom filter 1s generated 1n advance of
the merge operation, and utilized to optimize the search of
a given set of segments as the segments are being populated
with entries, 1t 1s to be appreciated that no additional CPU
resources are needed to generate the merge set Bloom filters
for use 1n performing optimized lookup operations, as the
merge set Bloom filter essentially would have been created
at the time of the merge operation 1n which the segments 1n
a given merge set are merged into the new segment.

For example, FIG. 6 schematically illustrates a first merge
operation 640, which 1s represented by arrows 641, 642, and
643, 1n which (1) the segments 610-0, 610-1, and 610-2 of
the merge set M1 1n Level 0 are merged into the segment
620-0 of the merge set M4 1 Level 1, (1) the segments
610-3, 610-4, and 610-5 of the merge set M2 1n Level O are
merged 1nto the segment 620-1 of the merge set M4 1n Level
1, and (111) the segments 610-6, 610-7, and 610-8 of the
merge set M3 1n Level O are merged into the segment 620-2
of the merge set M4 m Level 1. In addition, FIG. 6
schematically illustrates a second merge operation 650,
which 1s represented by arrows 651, 652, and 6353, 1n which
(1) the segments 620-0, 620-1, and 620-2 of the merge set
M4 1 Level 1 are merged 1nto the segment 630-0 of the
merge set M7 1n Level 2, (11) the segments 620-3, 620-4, and
620-5 of the merge set M5 in Level 1 are merged into the
segment 630-1 of the merge set M7 1n Level 2, and (i11) the
segments 620-6, 620-7, and 620-8 of the merge set M6 1n
Level 1 are merged 1nto the segment 630-2 of the merge set
M7 1n Level 2.

Furthermore, as shown 1n FIG. 6, as part of the first merge
operation 640, the merge set Bloom filters MF0_0-2,
MFO0_3-5, and MF0_6-8 for the respective merge sets M1,
M2, and M3 m Level O are designated to be the 1nd1v1dual
Bloom filters F1_0, F1_1, and F1-2, respectively, of the
respective new segments 620-0, 620-1, and 620-2 of the
merge set M4 1n Level 1. Similarly, as part of the second
merge operation 630, the merge set Bloom filters MEF1_0-2,
MF1_3-5, and MF1_6-8 for the respective merge sets M4,
M5, and MS 1n Level 1 are designated to be the 1nd1v1dual
Bloom filters F2_0, F2_1, and F2-2, respectively, of the
respective new segments 630-630-1, and 630-2 of the merge
set M7 1n Level 2. Although not specifically shown 1n FIG.
6, as noted above, once the source segments of a given
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merge set are merged mto a new segment, the source
segments are removed from the LSM tree data structure 600.
As noted above, since the merge set Bloom filters for the
merge sets are reused as individual Bloom filters for the new
segments generated as a result of the merge operations, the
resources needed to manage the LSM tree structure do not
require additional CPU resources to generate the merge set
Bloom filters 1n advance of the merge operations.

It 15 to be noted that the individual Bloom filters (segment
filters) and merge set Bloom filters (group filters) for the
exemplary LSM tree data structure 600 shown 1n FIG. 6 can
be implemented using any suitable type or variant of Bloom
filter, which 1s known to those of ordinary skall 1n the art. In
addition, the segment filters and group filters of the LSM
tree data structure 600 can be implemented using other
suitable types of filter structures (e.g., cuckoo filters) which
provide a space-eflicient probablhstlc data structure that can
be utilized to test whether a given element (e.g., metadata
entry) 1s a member of a given LSM segment. Accordingly,
the Bloom filters utilized 1n 1llustrative embodiments herein
are presented by way of example only. Additional or alter-
native filters can be used, as well as combinations of
different filters of different types. Terms such as “individual
filter,” “segment filter,” and “group filter”” as used herein are
therefore intended to be broadly construed.

FIG. 7 illustrates a flow diagram of a method for per-
forming lookup operations of a storage metadata structure,
according to an exemplary embodiment of the disclosure.
More specifically, FIG. 7 illustrates a lookup operation that
1s performed using a primary metadata structure comprising
a LSM tree data structure which implements merge set
Bloom filters to enhance the performance of the lookup
operations, according to an exemplary embodiment of the
disclosure. A storage control system receives an 1/O read
request from a host system or user to access data (block
700). In response to the read request, the storage control
system commences a lookup operation 1n the LSM tree data
structure (updates data structure) of the primary metadata
structure. In particular, the storage control system begins
searching the merge set Bloom filters of the LSM tree data
structure 1n order starting from the newest to the oldest
merge set Boom filter (block 701). As noted above, the LSM
tree data structure comprises one or more groups ol seg-
ments (e.g., merge sets) in which each group of segments
comprises a corresponding merge set Bloom filter which 1s
utilized to determine if a target metadata entry 1s potentially
contained 1n one of the segments of the segment group (or
merge set ol segments).

In the event that there 1s no hit as a result of searching all
of the merge set Bloom filters of the LSM tree data structure
(negative result in block 702), the storage control system
will proceed to perform a lookup operation 1n the B+ tree
data structure (core data structure) of the primary metadata
structure to find the target metadata entry (block 703), and
then access the target data using the target metadata entry
found 1n the B+ tree data structure (block 704). On the other
hand, in the event that the search of the merge set Bloom
filters results 1n a hit for a given merge set Bloom filter of
a given segment group (atflirmative result 1n block 702), the
storage control system will proceed to perform a lookup
operation using the individual segment Bloom filters of the
LSM segments of the given segment group associated with
the given merge set Bloom filter for which the hit was
returned (block 705). In the event that there 1s a hit for a
given segment Bloom filter (aflirmative result in block 706),
storage control system will proceed to search the metadata
entries of the target LSM segment associated with the given
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segment Bloom filter for which the hit was returned to find
the target metadata entry (block 707). In the event that the
target metadata entry 1s found 1n the target LSM segment
(athrmative result 1n block 708), the storage control system
will proceed to access the target data using the target
metadata entry found 1n the LSM segment (block 709).

In the event that there 1s no hit for a given segment Bloom
filter (negative result 1n block 706), or 1n the event that the
target metadata entry 1s not found 1n the target LSM segment
as a result of a false positive hit (negative result 1n block
708), a determination 1s made as to whether there 1s any
remaining merge set Bloom filters in the given level or in a
deeper level, which have not yet been searched (block 710).
If there are no remaining merge set Bloom filters to search
(negative determination 1n block 710), 1t will be determined
that the target metadata entry does not exist in the LSM tree
data structure, and the storage control system will proceed to
perform a lookup operation 1n the B+ tree data structure
(core data structure) of the primary metadata structure to
find the target metadata entry (block 703), and then access
the target data using the target metadata entry found 1n the
B+ tree data structure (block 704).

On the other hand, 11 1s determined that not every merge
set Bloom filters has been searched and that there 1s one or
more remaining merge set Bloom filters to search (athirma-
tive determination 1n block 710), the storage control system
will continue to search the remaining merge set Bloom filters
in order ({from the next newest to the oldest) to potentially
obtain another hit. The lookup process will proceed as
discussed above depending on whether there 1s a hit for one
of the remaining unsearched merge set Bloom filters (aili

1r-
mative result 1n block 702), or whether there 1s not hit that
results after searching the remaining unsearched merge set
Bloom filters (negative result in block 702). Eventually, the
target metadata entry will be found in either the LSM tree
data structure or the B+ tree data structure, and the target
metadata entry will be utilized to access the target data,
wherein the target data may reside a persistent write cached
in 1n primary storage.

In an alternative embodiment, depending on the system
configuration, in response to receiving the I/O read request
(in block 700), before searching the primary metadata struc-
ture (e.g., LSM and B+ tree data structures), the storage
control system can proceed to perform an imtial lookup
operation 1n the persistent write cache (and/or m-memory
butler) to determine if the target data 1s currently 1n the write
cache. In event of a write cache hit, the storage control
system will access the target data from the write cache and
return the data to the requesting host system or user. If the
target data 1s not resident 1n the write cache, the storage
control system will proceed to perform the lookup process
(blocks 701-711) 1n FIG. 7.

FIG. 8 schematically 1illustrates a framework of a server
node for hosting a storage node which comprises a metadata
management system, according to an exemplary embodi-
ment of the disclosure. The server node 800 comprises
processors 802, storage interface circuitry 804, network
interface circuitry 806, virtualization resources 808, system
memory 810, and storage resources 816. The system
memory 810 comprises volatile memory 812 and non-
volatile memory 814. The processors 802 comprise one or
more types ol hardware processors that are configured to
process program 1instructions and data to execute a native
operating system (OS) and applications that run on the
server node 800.

For example, the processors 802 may comprise one or
more CPUs, microprocessors, microcontrollers, application
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specific integrated circuits (ASICs), field programmable
gate arrays (FPGAs), and other types of processors, as well
as portions or combinations of such processors. The term
“processor”’ as used herein 1s mtended to be broadly con-
strued so as to include any type of processor that performs
processing functions based on software, hardware, firmware,
etc. For example, a “processor” 1s broadly construed so as to
encompass all types of hardware processors including, for
example, (1) general purpose processors which comprise
“performance cores” (e.g., low latency cores), and (11)
workload-optimized processors, which comprise any pos-
sible combination of multiple “throughput cores” and/or
multiple hardware-based accelerators. Examples of work-
load-optimized processors include, for example, graphics
processing units (GPUs), digital signal processors (DSPs),
system-on-chip (SoC), tensor processing umts (IPUs),
image processing units (IPUs), deep learming accelerators
(DLAs), artificial intelligence (Al) accelerators, and other
types of specialized processors or coprocessors that are
configured to execute one or more fixed functions.

The storage 1nterface circuitry 804 enables the processors
802 to interface and communicate with the system memory
810, the storage resources 816, and other local storage and
ofl-infrastructure storage media, using one or more standard
communication and/or storage control protocols to read data
from or write data to volatile and non-volatile memory/
storage devices. Such protocols include, but are not limited
to, NVMe, PCle, PATA, SATA, SAS, Fibre Channel, etc.
The network interface circuitry 806 enables the server node
800 to interface and communicate with a network and other
system components. The network interface circuitry 806
comprises network controllers such as network cards and
resources (e.g., network interface controllers (NICs) (e.g.,
SmartNICs, RDMA-enabled NICs), Host Bus Adapter
(HBA) cards, Host Channel Adapter (HCA) cards, 1/O
adaptors, converged Ethernet adaptors, etc.) to support com-
munication protocols and interfaces including, but not lim-
ited to, PCle, DMA and RDMA data transfer protocols, etc.

The virtualization resources 808 can be instantiated to
execute one or more services or functions which are hosted
by the server node 800. For example, the virtualization
resources 808 can be configured to implement the various
modules and functionalities of a storage control system and
a metadata management system as discussed herein. In some
embodiments, the virtualization resources 808 comprise
virtual machines that are implemented using a hypervisor
platform which executes on the server node 800, wherein
one or more virtual machines can be 1nstantiated to execute
functions of the server node 800. As 1s known 1n the art,
virtual machines are logical processing elements that may be
instantiated on one or more physical processing elements
(e.g., servers, computers, or other processing devices). That
1s, a “virtual machine” generally refers to a software 1mple-
mentation of a machine (1.e., a computer) that executes
programs in a manner similar to that of a physical machine.
Thus, different virtual machines can run different operating
systems and multiple applications on the same physical
computer.

A hypervisor 1s an example of what 1s more generally
referred to as “virtualization inirastructure.” The hypervisor
runs on physical infrastructure, e.g., CPUs and/or storage
devices, of the server node 800, and emulates the CPUs,
memory, hard disk, network and other hardware resources of
the host system, enabling multiple virtual machines to share
the resources. The hypervisor can emulate multiple virtual
hardware platforms that are 1solated from each other, allow-
ing virtual machines to run, e.g., Linux and Windows Server
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operating systems on the same underlying physical host
system. The underlying physical mirastructure may com-
prise one or more commercially available distributed pro-
cessing platforms which are suitable for the target applica-
tion.

In another embodiment, the virtualization resources 808
comprise containers such as Docker containers or other
types of Linux containers (LXCs). As 1s known 1n the art, in
a container-based application framework, each application
container comprises a separate application and associated
dependencies and other components to provide a complete
filesystem, but shares the kernel functions of a host operat-
ing system with the other application containers. Each
application container executes as an 1solated process 1n user
space of a host operating system. In particular, a container
system utilizes an underlying operating system that provides
the basic services to all containerized applications using
virtual-memory support for 1solation. One or more contain-
ers can be mnstantiated to execute one or more applications
or functions of the server node 800 as well as to execute one
or more of the various modules and functionalities of a
storge control system as discussed herein. In yet another
embodiment, containers may be used in combination with
other virtualization infrastructure such as virtual machines
implemented using a hypervisor, wherein Docker containers
or other types of LXCs are configured to run on virtual
machines 1n a multi-tenant environment.

In some embodiments, the constituent components and
modules of the storage nodes and storage control systems as
discussed herein, as well as the metadata management
methods as discussed herein, are implemented using pro-
gram code that 1s loaded into the system memory 810 (e.g.,
volatile memory 812), and executed by the processors 802
to perform respective functions as described herein. In this
regard, the system memory 810, the storage resources 816,
and other memory or storage resources as described herein,
which have program code and data tangibly embodied
thereon, are examples of what 1s more generally referred to
herein as “processor-readable storage media” that store
executable program code of one or more software programs.
Articles of manufacture comprising such processor-readable
storage media are considered embodiments of the disclo-
sure. An article of manufacture may comprise, for example,
a storage device such as a storage disk, a storage array or an
integrated circuit containing memory. The term *“article of
manufacture” as used hereimn should be understood to
exclude transitory, propagating signals.

The system memory 810 comprises various types of
memory such as volatile RAM, NVRAM, or other types of
memory, 1n any combination. The volatile memory 812 may
be a dynamic random-access memory (DRAM) (e.g.,
DRAM DIMM (Dual In-line Memory Module), or other
forms of volatile RAM. The non-volatile memory 814 may
comprise one or more of NAND Flash storage devices, SSD
devices, or other types ol next generation non-volatile
memory (NGNVM) devices. The system memory 810 can
be implemented using a hierarchical memory tier structure
wherein the volatile memory 812 1s configured as the
highest-level memory tier, and the non-volatile memory 814
(and other additional non-volatile memory devices which
comprise storage-class memory) 1s configured as a lower
level memory tier which 1s utilized as a high-speed load/
store non-volatile memory device on a processor memory
bus (i.e., data 1s accessed with loads and stores, 1nstead of
with I/O reads and writes). The term “memory” or “system
memory” as used herein refers to volatile and/or non-volatile
memory which 1s utilized to store application program
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instructions that are read and processed by the processors
802 to execute a native operating system and one or more
applications or processes hosted by the server node 800, and
to temporarily store data that 1s utilized and/or generated by
the native OS and application programs and processes
running on the server node 800. The storage resources 816
can include one or more HDDs, SSD storage devices, etc.

It 1s to be understood that the above-described embodi-
ments of the disclosure are presented for purposes of illus-
tration only. Many variations may be made in the particular
arrangements shown. For example, although described in the
context of particular system and device configurations, the
techniques are applicable to a wide variety of other types of
information processing systems, computing systems, data
storage systems, processing devices and distributed virtual
infrastructure arrangements. In addition, any simplifying
assumptions made above 1n the course of describing the
illustrative embodiments should also be viewed as exem-
plary rather than as requirements or limitations of such
embodiments. Numerous other alternative embodiments
within the scope of the appended claims will be readily
apparent to those skilled 1n the art.

What 1s claimed 1s:

1. A method, comprising:

receiving, by a storage control system, an input/output

(I/0) read request to access target data; and
searching, by the storage control system, a primary meta-
data structure to find a metadata entry associated with
the target data, wherein the primary metadata structure
comprises a log-structured merge tree comprising at
least a first level of segments, wherein the at least first
level of segments comprises at least one group of
segments having an associated group filter which 1s
configured to enable a search of metadata entries of
segments within the at least one group of segments, and
individual filters associated with respective segments
of the at least one group of segments, wherein each
individual filter 1s configured to enable a search of
metadata entries ol a respective one of the segments
within the at least one group of segments, wherein
searching the primary metadata structure comprises:
performing a lookup operation using the group filter to
determine whether the metadata entry, which 1s asso-
ciated with the target data, 1s potentially present 1n a
given segment of the at least one group of segments;
and
performing a lookup operation using the individual
filters to 1dentily the given segment of the at least one
group ol segments which potentially includes the
metadata entry, 1n response to determining that the
metadata entry 1s potentially present in a given
segment of the at least one group of segments, as a
result of the lookup operation using the group filter.

2. The method of claim 1, wherein the primary metadata
structure further comprises a B+ tree data structure which 1s
configured to recerve metadata entries that are merged out
from a last level of the log-structured merge tree, and to
enable random-access to the metadata entries using index
keys.

3. The method of claim 2, wherein searching the primary
metadata structure further comprises performing, by the
storage control system, a lookup operation using the B+ tree
data structure to find the metadata entry which 1s associated
with the target data, when the storage control system deter-
mines that the log-structured merge tree data structure does
not have the metadata entry associated with the target data.
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4. The method of claim 2, wherein a size of the log-
structured merge tree 1s significantly smaller than a size of
the B+ tree data structure.
5. The method of claim 1, further comprising:
merging, by the storage control system, the at least one
group ol segments into a new segment on a second
level of the log-structured merge tree; and

designating, by the storage control system, the group filter
associated with the at least one group of segments, as
an individual filter for the new segment.
6. The method of claim 5, further comprising generating,
by the storage control system, a new group filter associated
with a new group of segments which comprises at least the
new segment.
7. The method of claim 1, wherein:
the log-structured merge tree 1s configured to receive and
accumulate metadata, which 1s written to a write cache,
and organize the accumulated metadata in segments of
metadata entries that are sorted by index keys; and

the write cache 1s implemented in one of (1) a non-volatile
memory device of primary memory ol a storage node
and (1) primary storage in which data 1s stored.

8. The method of claim 1, wherein one or more of the
individual filters and the group filter each comprise a Bloom
filter.

9. An article of manufacture comprising a non-transitory
processor-readable storage medium having stored therein
program code of one or more soiftware programs, wherein
the program code 1s executable by one or more processors to
implement a method which comprises:

receiving, by a storage control system, an input/output

(I/0) read request to access target data; and
searching, by the storage control system, a primary meta-
data structure to {ind a metadata entry associated with
the target data, wherein the primary metadata structure
comprises a log-structured merge tree comprising at
least a first level of segments, wherein the at least first
level of segments comprises at least one group of
segments having an associated group filter which 1s
configured to enable a search of metadata entries of
segments within the at least one group of segments, and
individual filters associated with respective segments
of the at least one group of segments, wherein each
individual filter 1s configured to enable a search of
metadata entries of a respective one of the segments
within the at least one group of segments, wherein
searching the primary metadata structure comprises:

performing a lookup operation using the group filter to
determine whether the metadata entry, which 1s asso-
ciated with the target data, 1s potentially present 1n a
grven segment of the at least one group of segments;
and

performing a lookup operation using the individual
filters to 1dentify the given segment of the at least one
group ol segments which potentially includes the
metadata entry, 1n response to determining that the
metadata entry 1s potentially present mm a given
segment of the at least one group of segments, as a
result of the lookup operation using the group filter.
10. The article of manufacture of claim 9, wherein the
primary metadata structure further comprises a B+ tree data
structure which 1s configured to receive metadata entries that
are merged out from a last level of the log-structured merge
tree, and to enable random-access to the metadata entries

using index keys.
11. The article of manufacture of claim 10, wherein the
program code for searching the primary metadata structure
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further comprises program code for performing, by the
storage control system, a lookup operation using the B+ tree
data structure to find the metadata entry which 1s associated
with the target data, when the storage control system deter-
mines that the log-structured merge tree data structure does
not have the metadata entry associated with the target data.
12. The article of manufacture of claim 10, wherein a size
of the log-structured merge tree 1s significantly smaller than
a si1ze of the B+ tree data structure.
13. The article of manufacture of claim 9, further com-
prising program code which 1s executable by the one or more
processors to implement a method which comprises:
merging, by the storage control system, the at least one
group ol segments 1nto a new segment on a second
level of the log-structured merge tree; and

designating, by the storage control system, the group filter
associated with the at least one group of segments, as
an individual filter for the new segment.
14. The article of manufacture of claim 13, further com-
prising program code for generating a new group filter
associated with a new group of segments which comprises
at least the new segment.
15. The article of manufacture of claim 9, wherein:
the log-structured merge tree 1s configured to receive and
accumulate metadata, which 1s written to a write cache,
and organize the accumulated metadata 1in segments of
metadata entries that are sorted by index keys; and

the write cache 1s implemented 1n one of (1) a non-volatile
memory device of primary memory of a storage node
and (1) primary storage in which data 1s stored.

16. The article of manufacture of claim 9, wherein one or
more of the individual filters and the group filter each
comprise a Bloom filter.

17. An apparatus comprising:

at least one processor; and

memory configured to store program code, wherein the

program code 1s executable by the at least one proces-
sor to mstantiate a storage control system, wherein the
storage control system 1s configured to:

receive an input/output (I/0) read request to access target

data; and

search a primary metadata structure to find a metadata

entry associated with the target data, wherein the pri-
mary metadata structure comprises a log-structured
merge tree comprising at least a first level of segments,
wherein the at least first level of segments comprises at
least one group of segments having an associated group
filter which 1s configured to enable a search of metadata
entries of segments within the at least one group of
segments, and individual filters associated with respec-
tive segments of the at least one group of segments,
wherein each individual filter 1s configured to enable a
search of metadata entries of a respective one of the
segments within the at least one group of segments,
wherein 1n searching the primary metadata structure,
the storage control system 1s configured to:
perform a lookup operation using the group filter to
determine whether the metadata entry, which 1s asso-
ciated with the target data, 1s potentially present 1n a
given segment of the at least one group of segments;
and
perform a lookup operation using the individual filters
to identify the given segment of the at least one
group ol segments which potentially includes the
metadata entry, 1n response to determining that the
metadata entry 1s potentially present in a given
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segment of the at least one group of segments, as a
result of the lookup operation using the group filter.

18. The apparatus of claim 17, wherein:

the primary metadata structure further comprises a B+

tree data structure which 1s configured to receive meta-
data entries that are merged out from a last level of the
log-structured merge tree, and to enable random-access
to the metadata entries using mndex keys; and

in searching the primary metadata structure, the storage

control system 1s further configured to perform a
lookup operation using the B+ tree data structure to find
the metadata entry which 1s associated with the target
data, when the storage control system determines that
the log-structured merge tree data structure does not
have the metadata entry associated with the target data.

19. The apparatus of claim 17, wherein the storage control
system 1s further configured to:

merge the at least one group of segments mmto a new

segment on a second level of the log-structured merge
tree; and

designate the group filter associated with the at least one

group ol segments, as an individual filter for the new
segment.

20. The apparatus of claim 19, wherein the storage control
system 1s further configured to generate a new group filter
associated with a new group of segments which comprises
at least the new segment.
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