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CARRY CHAIN FOR SIMD OPERATIONS

RELATED APPLICATIONS

This application 1s a continuation of U.S. application Ser.
No. 17/069,721 filed Oct. 13, 2020, now U.S. Pat. No.
11,520,582, which 1s a continuation of U.S. application Ser.
No. 14/940,538 filed Nov. 13, 2015, now U.S. Pat. No.
10,838,719, which claims the benefit of prionty of U.S.
Provisional Application No. 62/079,762 filed Nov. 14, 2014,
the disclosures of which are incorporated herein by refer-
ence 1n their entirety.

BACKGROUND

The term single instruction, multiple data (SIMD)
describes computers with multiple processing elements that
perform the same operation on multiple data elements
simultaneously. Most modern CPU designs, such as
ARMYVS, include SIMD mstructions in order to improve the
performance of multimedia use, like graphics or audio
processing; SIMD instructions can also be used to accelerate
digital signal processing in wireless communications sys-
tems and cryptographic applications. The data element
width or size can vary, depending on the application; 8-bait,
16-bit, 32-bit, and 64-bit elements are commonly supported.

SUMMARY

In accordance with an example, a method for performing
an operation on operands each including elements of a
selectable size 1s provided, which adapts to elements of
different sizes. The method includes determining a mask
based on a selected size of an element. The method further
includes selecting, at a multiplexer, based on the mask,
whether to carry a partial result of an operation performed on
corresponding first portions of a first operand and a second
operand into a next operation. The next operation being
performed on corresponding second portions of the first
operand and the second operand, and, based on the selection,
the partial result of the operation. The method further
includes storing, 1n a memory, a result formed from outputs
ol the operation and the next operation.

In accordance with another example, a system for per-
forming an operation on operands each including elements
of a selectable size 1s provided, which adapts to elements of
different sizes. The system includes a memory having com-
puter executable instructions therecupon and an arithmetic
logic unit (ALU) coupled to the memory. The computer
executable instructions when executed by the ALU causes
the ALU to determine a mask based on a selected size of an
element. The ALU further caused to select, based on the
mask, whether to carry a partial result of an operation
performed on corresponding first portions of a first operand
and a second operand into a next operation. The next
operation being performed on corresponding second por-
tions of the first operand and the second operand, and, based
on the selection, the partial result of the operation. The ALU
turther caused to store, 1n the memory, a result formed from
outputs of the operation and the next operation.

In accordance with yet another example, a tangible com-
puter-readable storage medium having computer readable
instructions stored therein for performing an operation on
operands each including elements of a selectable size is
provided, which adapts to elements of different sizes. The
computer readable 1nstructions when executed by an arith-
metic logic unit (ALU), the ALU caused to determine a
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mask based on a selected size of an element. The ALU
turther caused to select, based on the mask, whether to carry
a partial result of an operation performed on corresponding
first portions of a first operand and a second operand 1nto a
next operation. The next operation being performed on
corresponding second portions of the first operand and the
second operand, and, based on the selection, the partial
result of the operation. The ALU further caused to store, in
memory, a result formed from outputs of the operation and

the next operation.

In some examples, any of the aspects above can include
one or more of the following features.

In other examples of the method, each element includes a
least significant portion and the determining includes setting
the mask indicating that an a prior1 carry-in 1s carried into
the operation performed on corresponding least significant
portions of the first operand and the second operand.

Some examples of the method further include setting the
a priori carry-in to a value when the operation 1s any one of
subtracting, inverting, and comparing.

Other examples of the method further include setting the
a prior1 carry-in to a first value when the operation 1s an
absolute value operation on positive-signed operands and
setting the a prior1 carry-in to a second value when the
operation 1s an absolute value operation on negative-signed
operands.

In some examples of the method, each element includes
a least significant portion and a next-least significant por-
tion. The method further includes carrying an a priori
carry-1n into the operation performed on corresponding least
significant portions of the first operand and the second
operand, the output of the operation being a carry-out, and
carrying the carry-out into the next operation performed on
corresponding next-least significant portions ol the first
operand and the second operand.

In other examples of the method, a size of each of the first
portion and the second portion 1s equal to the selected size
of the element. The method further includes carrying a first
a priori carry-in ito an the operation performed on the
corresponding first portions of the first operand and the
second operand, and carrying a second a priori carry-in into
the next operation performed on the corresponding second
portions of the first operand and the second operand.

Some examples of the method further include calculating
an 1termediate partial result from the corresponding first
portions of the first operand and the second operand and
determining a carry-indicator for computing a carry-out of
the operation. The carry-indicator 1s indicative of whether
the carry-out 1s generated or a carry-in from a previous
operation 1s propagated. The method turther includes deter-
mining the carry-out based on the carry-indicator and the
carry-1n from the previous operation and determining the
partial result of the operation from the intermediate partial
result and the carry-in from the previous operation.

Other examples of the method include determining the
partial result of the operation by computing the partial result
from the intermediate partial result and the carry-in from the
previous operation.

Some examples of the method include determining the
partial result of the operation by selecting the partial result
using the intermediate partial result and the carry-in from the
previous operation.

Some examples of the method further include determinming,
the selected size of the element based on an instruction
stored 1n the memory. The struction 1s a construct includ-
ing the operation, first operand, and second operand.




US 11,947,964 B2

3

Other examples of the method further include modifying
the mask when the instruction 1s any one of lengthening,
narrowing, and widening.

Some examples of the method include selecting a mask
associated with a second element different than the element
when the 1nstruction 1s any one of lengthening, narrowing,
and widening. The second element being next larger in size
than the element.

In some examples of the method, the operation and the
next operation each include a round constant. These
examples further include selecting whether to carry into the
next operation a first partial result and a second partial result
of the operation performed on the round constant and the
corresponding first portions of the first and second operands.
The next operation being performed on the corresponding
second portions of the first and the second operands, and,
based on the selection, the first and second partial results. In
these examples, carrying the second partial result represents
carrying a two from the operation into the next operation.

In other examples of the system, given the element
includes a least sigmificant portion, the ALU 1s further
caused to set the mask indicating that an a priori carry-in 1s
carried into the operation performed on corresponding least
significant portions of the first operand and the second
operand.

In some examples of the system, given the element
includes a least significant portion and a next-least signifi-
cant portion, the ALU 1s further caused to carry an a priori
carry-in 1nto the operation performed on corresponding least
significant portions of the first operand and the second
operand, the output of the operation being a carry-out. The
ALU 1s still further caused to carry the carry-out ito the
next operation performed on corresponding next-least sig-

nificant portions of the first operand and the second operand.

In other examples of the system, the ALU 1s further
caused to determine the selected size of the element from the
computer executable 1nstructions stored 1n the memory.

In some examples of the system, the ALU 1s further
caused to perform the next operation on corresponding
second portions of the first operand and the second operand,
and, based on the selection, the partial result of the opera-
tion.

In other examples of the tangible non-transitory com-
puter-readable storage medium, given the element includes
a least significant portion, the ALU 1s further caused to set
the mask indicating that an a prior1 carry-in 1s carried into
the operation performed on corresponding least significant
portions of the first operand and the second operand.

In some examples of the tangible non-transitory com-
puter-readable storage medium, given the element imncludes
a least significant portion and a next-least significant por-
tion, the ALU 1s further caused to carry an a priori carry-in
into the operation performed on corresponding least signifi-
cant portions of the first operand and the second operand, the
output of the operation being a carry-out. The ALU 1s still
turther caused to carry the carry-out into the next operation
performed on corresponding next-least significant portions
of the first operand and the second operand.

In other examples of the tangible non-transitory com-
puter-readable storage medium, the ALU 1s further caused to
determine the selected size of the element from the computer
executable instructions stored 1n the memory.

In some examples of the tangible non-transitory com-
puter-readable storage medium, the ALU 1s further caused to
perform the next operation on corresponding second por-
tions of the first operand and the second operand, and, based
on the selection, the partial result of the operation.
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4
BRIEF DESCRIPTION OF THE

DRAWINGS

The foregoing and other objects, features and advantages
will be apparent from the following more particular descrip-
tion ol the examples, as illustrated 1n the accompanying
drawings 1n which like reference characters refer to the same
parts throughout the different views. The drawings are not
necessarily to scale, emphasis instead being placed upon
illustrating the principles of the examples.

FIG. 1 1s a block diagram of example system with
memory and an arithmetic logical unit (ALU). The ALU
includes a carry chain.

FIG. 2 1s a block diagram of an example of the carry
chain.

FIG. 3 1s a block diagram of an example of the carry chain
including adders and multiplexers.

FIG. 4 1s a block diagram of an example of the carry chain
adding two 64-bit operands each including eight bytes.

FIG. 5 1s a block diagram of an example of the carry chain
adding two 64-bit operands each including two 32-words.
Each word includes four bytes.

FIG. 6 1s a block diagram of an example of a carry chain
for handling a *“carry-the-2 scenario.

FIG. 7 1s a flow chart of an example process carried out
by an example of the carry chain.

FIG. 8 1s a block diagram of an example of a pipelined

carry chain.

DETAILED DESCRIPTION

FIG. 1 shows an example system 100. The system 100
includes memory 105 and an arithmetic logic unit (ALU)
110. Datapaths 115a and 1155 connect the memory 105 and
the ALU 110 together. Other examples of the system 100
include other numbers of datapaths including one. Memory
105 stores instructions. An instruction 120 1s a construct
including, among other things, an operation 125, a {irst
operand 130, and a second operand 135 each provided
within a field of the mstruction 120. Some 1nstructions
include fewer operands (e.g., one) or more operands (e.g.,

three).

The ALU 110 reads the instruction 120 from memory 105.
The instruction 120 1s provided to the ALU 110 over the
datapath 115a. The ALU 110 performs the operation 125 on
the first and second operands 130, 135, and outputs a result
140. The ALU writes the result 140 to memory 105 at a
memory location specified in the mstruction 120. The result
140 15 provided from the ALU over the datapath 1155. Some
examples of the system 100 include a memory for results
separate from a memory for instruction.

Instructions for the ALU 110 can perform adds and
subtracts, and related operations like compare, complement,
absolute value, etc. For example, the ARM v8 SIMD 1nstruc-
tions can perform adds and subtracts for four different
clement a byte), 16-bit (also
known as a half-word), 32-bit (also known as a single word
or word), and 64-bit (also known as a double word)—on two
different datapath widths, 64-bit or 128-bit. The ALU 110
can see at one time, for example, an instruction that perform
sixteen 8-bit additions, and at another time, four 32-bit
additions.

To handle such a situation, one possible implementation
of the ALU 110 mvolves bulldlng a different adder for each
of the different element sizes, and then selecting among
them the different adders to perform the operation. The
drawback to this approach is that the area required on the
ALU 110 to implement the solution increases with the
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number of different element sizes. Compared to processing,
a single element size, processing, for example, the four
different element sizes of the ARM v8 SIMD 1nstructions
requires four times the area. Considering the trend toward
smaller sized ALU’s, using more processor area 1s undesir-
able. To address the foregoing shortcoming and other needs,
ALU 110 includes a carry chain 150 that adapts to support
different element sizes.

FIG. 2 shows an example of the carry chain 150. With
reference to FIG. 1, the carry chain 150 performs the
operation 125 on the first operand 130 and the second
operand 1335. The first and second operands 130, 135 include
a number of elements that are a selected size, e.g., 8, 16, 32
or 64-bits. The carry chain 150 includes a series of adders of
which two are shown, adder[0] 1554 and adder[1] 1555.

Each adder i the carry chain 150 works on part of the
clement called a “portion” and performs a “slice” of the
operation. In FIG. 2, 1n slice[0], adder[0] 155a adds a first
portion 160q of the first operand 130 and a first portion 163a
of the second operand 1335 together. The first portions 160a
and 1635a are “‘corresponding portions” of the first and
second operands 130, 135. The carry chain 150 outputs a
result[0] 140qa. The carry chain 150 writes (stores) the output
ol each adder, of which result[0]140a and result[1]1405 are
shown, 1n memory 105. Collectively, the stored results
represent the result 140 of the operation 130.

In slice[0], the carry chain 150 *“carries” part of result[0]
140a, called a “carry-out” from slice[0] (a prior slice of the
operation) into slice[1] (a next slice of the operation). The
next adder in the carry chain 150, adder[1] 15355, perform
the next slice of the operation. The adder[1] 1555 adds
together corresponding second portions 1605,16556 of the
first and second operands 130,135 and the carry-out from
slice[0], referred to as a “carry-in.” This 1s shown in the
figure as carry-out/carry-in 170.

The carry chain 150 continues carrying the carry-out from
one slice of the operation into the next and processing each
portion of the element. When the carry chain reaches a first
portion of a next element, the carry chain stops carrying the
carry-out from the prior slice of the operation and the carry
chain restarts (described later 1n greater detail).

The carry chain 150 1s set to stop carrying after perform-
ing N slices of operations on N number of portions of an
clement. For example, the carry chain 150 can be set to stop
carrying aiter performing one slice of the operation on one
portion of the element; two slices of the operation on two
portions of the element; four slices of the operation on four
portions of the element; and eight slices of the operation on
eight portions of the element. Setting where in a carry chain
to stop carrying a carry-out into a next operation and insert
a carry-in 1s beneficial because it enables examples of the
carry chain 150 to adapt to elements of diflerent sizes.

FIG. 3 shows a convenient example of the carry chain.
The carry chain includes adders and multiplexers of which
three adders and two multiplexers are shown. The adders
and multiplexers are arranged with one multiplexer between
two adders. Inputs to a multiplexer include a carry-out, an a
prior1 carry-in, and a selector. As discussed above, the
carry-out 1s part of a result computed 1n a previous slice of
the operation. The value of the a prior1 carry-in provided to
the carry chain can be computed in accordance with any
number of well-known techniques. In a convenient example
of the carry chain, in general, the value of the a prior
carry-1n 1s one for subtracting, comparing, and inverting
operations; one or zero for absolute value operations
depending on the sign of the operands; and zero for other
operations, such as adding (described below 1n greater detail
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below). The foregoing 1s only an example set of operations
to which examples of the carry chain can be applied. The
principles of the carry chain described 1n this disclosure can
be applied to other operations, such as complementing and
negating, and instructions that return the sum of two mput
operands, divided-by-2, with rounding.

The multiplexer selects whether the carry chain carries the
carry-out or the a prionn carry-in mto a next slice of the
operation based on the selector. In a convement example, the
selectors for the multiplexers form a bit mask 175. Each bit
in the mask 175 corresponds to the carry chain 150 per-
forming a slice of the operation on a portion of the operand.
It should be readily apparent to those skilled 1n the art that
a different number of bits (e.g., two or three) can be used to
index or reference the slice of the operation performed by
the carry chain 150.

An element includes a least significant portion and,
depending on the size of the element, one or more next-least
significant portions. For example, given an 8-bit portion, a
32-bit element includes one least significant portion and
three next-least significant portions. In the example shown,
corresponding least significant portions of the operands are
referenced, collectively, as 162 and corresponding next-least
significant portions of the operands are referenced, collec-
tively, as 164.

The mask 173 includes mask bit 1754 corresponding to a
slice of the operation performed on the corresponding next-
least significant portions 164. The mask bit 1754 1s set to 0
and the multiplexer selects a carry-out CO[0] from a previ-
ous slice of the operation, slice[0]. This causes the carry
chain 150 to carry COJ[0] into a next slice of the operation
slice[1], which 1s shown 1n the figure as “CI[1]=CO[0].” The
adder adds together CI[1] and the corresponding next-least
significant portions 164.

Continuing with the example shown in FIG. 3, mask bit
175b corresponds to a slice of the operation performed on
the corresponding least significant portion 162. The mask bit
17556 1s set to 1 and the multiplexer selects a prior carry-
in[1]. This causes the carry chain to stop carrying a carry-out
and 1nsert an a priori carry-in instead, shown in the figure as
“CI[2]=a priori carry-1n[1].” The adder adds together a priori
carry-in|1] and the corresponding least significant portions
162.

FIG. 4 shows an example of the carry chain performing an
operation adding two 64-bit operands, referred to in the
figure as operand[0] and operand[1]. Each operand includes
cight elements that are each eight bits 1n size. Each element
includes one 8-bit portion, referred to in the figure as byte[ 0]
through byte[7]. The size of the element and size of the
portion are the same. Each element includes a least signifi-
cant portion and no next-least significant portion. The carry
chain completes the adding operation 1n eight slices, referred
to 1n the figure as slice[0] through slice[7].

In this example, a mask includes eight bits, referred to 1n
the figure as mask[0] through mask[7]. Mask|[0] through
mask[7] correspond to the eight slices of the operation. Each
bit 1n the mask 1s set to 1 indicating that the carry chain
carries an a priori carry-in into a slice of the operation. Each
a priori carry-in, referred to in the figure as, a priorn1 CI[0]
through a prior1 CI[7], has a value of one.

In slice[0], adder[0] adds together a priorn CI[0], byte[0]
of operand[0], and byte[0] of operand[1]. The carry chain
stores the output, referenced in the figure as result[0], 1n
memory (e.g., memory 105 of FIG. 1). Part of result[0] 1s
carry-out CO[0]. In slice[1], mask[1] 1s set to 1 and multi-
plexer selects a prioni CI[1] over CO[0] as carry-in CI[1].
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Adder[1] adds CI[1], byte[1] of operand[1], and byte[1] of

operand[2] together. The carry chain stores the output,
result[1], in memory.

The adding operation continues with the carry chain,
based on the mask, carrying an a prior1 carry-in into a next
slice of the operation instead of a carry-out from a previous
slice of the operation; adding the a prion carry-in to corre-
sponding next bytes of operand[0] and operand|2] together;
and storing the results 1n memory. Collectively, result[0]
through result[7] form the result of the adding operation.

FI1G. 5 shows an example of the carry chain performing an
operation adding two 64-bit operands, referred to in the
figure as operand[0] and operand[1]. Each operand includes
two elements, referred to in the figure as (single) word[0]
and (single) word[1] that are each thirty-two bits 1n size.
Each word includes four 8-bit portions, referred to in the
figure as byte[0].word[0] through byte[3].word[0] and byte
[0].word[1] through byte[3].word[1]. Byte[0] 1s the least
significant byte of the word. Byte[1], byte[2], and byte[3]
are next-least significant bytes. The carry chain completes
the adding operation in eight slices, referred to in the figure
as slice[0] through slice[7].

In this example, a mask includes eight bits, referred to in
the figure as mask[ 0] through mask[7], corresponding to the
eight slices of the operation. Mask[0] corresponds with the
carry chain performing slice[0] of the operation on byte[ 0],
which 1s the least significant portion of word[0]. Mask|[4]
corresponds with the carry chain performing slice[4] of the
operation on byte[4], which 1s the least significant portion of
word[1]. Mask[0] and mask[4] are set to 1 to 1indicate that
the carry chain carries a priori carry-in CI[0] mto slice[0]
and a priori carry-in CI[0] into slice[4]. Mask|1], mask]|2],
mask][3], mask[5], mask]|6], and mask[7] are each set to O.
This indicates that the carry chain carries a carry-out into
slice[1], slice[2], slice[3], slice[5], slice[6], and slice[7].

In slice[ 0], the carry chain adds together a prioni CI[0] and
corresponding byte[0].word[0] of operand[0] and operand
[1]. The carry chain stores the output, referenced in the
figure as result[0], in memory (e.g., memory 105 of FIG. 1).
Part of result[0] 1s carry- -out CO[0].

In slice[1], mask[1] 1s set to O and the multlplexer selects
CO[0] from slice[0] over a prior1 CI[1] as carry-in CI[1].
The adder adds together CI[1] and corresponding byte[1].
word[0] of operand[0] and operand[1]. The carry chain
stores the output, result[1], 1n memory. Part of result[1] 1s
carry-out CO[1].

In slice[2], mask][2] 1s set to O and the multiplexer selects
COJ1] from slice[1] over a prior1 CI|2] as carry-in CI[2].
The adder adds together CI[2] and corresponding byte[2].
word[0] of operand[0] and operand[1l]. The carry chain
stores the output, result[2], 1n memory. Part of result[2] 1s
carry-out CO|2].

In slice[3], mask|[3] 1s set to 0 and multlplexer selects
COJ2] from slice[2] over a prior1 CI|3] as carry-in CI[3].
The adder adds together CI[3] and corresponding byte[2].
word[0] of operand[0] and operand[1]. The carry chain
stores the output, result[3], in memory. Part of result|[3] 1s
carry-out CO|3].

In slice[4], mask[4] 1s set to 1 and multiplexer selects a
prior1 CI[4] over COJ[3] as carry-in CI[4]. The adder adds
together CI[4] and corresponding byte[1].word[1] of oper-
and[0] and operand[1]. The carry chain stores the output,
result[4], in the memory. Part of result[4] 1s carry-out[4].

With mask[5], mask[6], and mask][7] set to O, the carry
chain continues and carries carry-out CO[4] into slice[5],
carries carry-out COJ[S] into slice[6], and carries carry-out
COJ[6] mto slice[7]. The carry chain stores the outputs,

10

15

20

25

30

35

40

45

50

55

60

65

8

result[S], result][6], and result[7], in memory. Collectively,
result[0] through result[7] form the result of the adding
operation.

Some examples of the carry chain determine the selected
size of the element from an 1nstruction stored in memory.
The carry chain reads the element size from the instruction
(s1ze field) and sets the mask. For example, given an element
s1ize ol eight bits (byte) the carry chain sets the mask to
11111111; given an element size of 16 bits (halt-word) the
carry chain sets the mask to 01010101 ; and given an element
s1ze of 32 bits (single word) the carry chain sets the mask to
00010001.

Other examples of the carry chain modify the mask based
on an instruction. In a convement sample, when the carry
chain processes a lengtheming, widenming or narrowing
instruction, the carry chain sees the element size as one size
larger than the element si1ze described 1n the size field of the
instruction. For example, the carry chain receives a length-
ening mstruction with an operation to add two operands each
having eight bytes. The carry chain sets the mask to
01010101, the mask for a halt-word, which 1s the next larger
clement than a byte. Advantageously, this approach enables
the carry chain to adapt to a variety of diflerent types of
instructions.

Some 1nstructions cause a “carry-the-2” scenario. These
instructions pertorm an add (or subtract), round out of the
lower half of each result, and return only the upper half of
cach result. The output element size i1s one-half the 1nput
clement size. For these instructions, there may already be a
carry-out (first partial result) of the lower half of the result
and rounding can create another carry-out (second partial
result). This has the effect of carrying a 2’ out of the lower
half-element and into the upper halt-element. The fact that
a ‘2’ has been carried into an element means that a 2’ can
be carried out of any portion (e.g., byte) within the element,
even though rounding 1s not active for those portions.

FIG. 6 shows an example carry chain 200 for handling an
operation involving “carry-the-2.” The carry chain 200
includes adders and multiplexers of which adders, adder| N-
1] and adder[N], and multiplexers, MUX-A and MUX-B,
are shown. The adders and multiplexers are arranged with
two multiplexers between every two adders. Describing
adder[N] 1n greater detail (recognizing that the following
description applies to adder[N-1] and the other adders 1n the
carry chain 200) inputs to adder[N] include portion[N] of a
first operand, portion|[N] of a second operand, and round
constant[N]. Adder[N] also receives carry-in signals cin[IN]

and c2in[N]. The c21in signal represents carrying a two from
adder[N-1] to adder[N], which 1s described below 1n greater

detail.

Adder[N] performs a slice of the operation on correspond-
ing portions[N] of the first and second operands, round
constant[N], and the signals cin[N] and ¢c2in[N]. Adder[N]
outputs the result of the operation as result|N]. Adder[N]
sends carry-out signals, cout[N] and c2out[N]. The signals
cout|N] and c2out|N] represent, respectively, first and sec-
ond parts of result[N], 1.e., first partial result and second
partial result.

The mputs to MUX-A include an a prior1 carry-in (a priori
CI[N], cout|[N] signal, and a selector (mask[N]). The mputs
to MUX-B 1nclude zero, c2out[N] signal, and the selector
(mask[N]). The output of MUX-A 1s the cin[N] signal and
the output of MUX-B 1s the c2in|[N] signal. The values of
cin[N] and c2in[N] depend on the value of mask[N]. For
example, when mask[N] is set to zero, the multiplexer sets
(selects) the values of cin|[N] and c2in[N] to the values of
cout[N-1] and c2out[N-1], respectively. In this example, a
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selector value of zero indicates that the carry chain carries
cout[N-1] and c2out|[N-1] from adder[N-1] to adder|N]. It
should be readily apparent to those skilled 1n the art that such
a carry-out indication can be associated with a selector
having a different value, such as one.

With continued reference to FIG. 6, consider the follow-
ing example, which for ease of discussion 1s described using
decimal math. Adder[N-1] and adder[N] are each 8-bit
adders. The carry chain 200 completes the operation in N
slices, of which slice[N-1] and slice[N] are shown. In
slice[N-1], the corresponding|N—-1] portions of the first and
second operands both have a value of 192. Round constant
[N-1] has a value of 128. The round constant value depends
on the size of an element and on the slice of the operation
being performed. In some instances, the value of a round
constant 1s zero. The round constant value per given slice
can be determined using any number of well-known tech-
niques.

Adder[N-1] performs slice[N-1] of the operation. The
basic sum of the corresponding portions[N] 1s 384, which
can be written 1n shorthand notation as 1*256+128. Because
adder[ N-1] outputs an 8-bit number, in a different example,
the carry chain 200 carries a “1” out of adder[N-1] and 1nto
adder[N]. This 1s represented as 1*256 1n the notation above.
In the present example, however, adder[N-1] still needs to
add round constant[N-1], so the carry chaimn 200 does not
carry the 1, which 1s shown 1n the figure as cout|N-1]=0.

Adder[N-1] adds round constant[N-1] (128) to the sum
of the corresponding [N-1] portions (384 ). The basic sum of
adding 128 and 384 1s 512, which can be written 1n short-
hand notation as 2*256. Because adder[N-1] outputs an
8-bit number, the carry chain 200 carries a “2” out of
adder[N-1] and 1nto adder[IN]. This 1s represented as 2%256
in the notation above. The outputs of adder[N-1] include
resultfN-1]=0, cout|[N-1]=0, and c2out|[N-1]=1. In this
example, c2out[N-1]=1 represents carrying out a two.

Mask[N] 1s set to zero indicating that the carry chain 200
carries cout|[N-1] and c2out|[N-1] out from adder[N-1] and
into adder[N]. Mask|[N] with a value of zero 0O selects
cout[N-1] and c2out[N-1]. In turn, MUX-A passes
cin[N]=0 and MUX-B passes c2in[N]=1 to adder[N]. In this
example, c2in[N]=1 represents carrying in the two.

In slice[N], the corresponding [N] portions of the first and
second operands, and round constant [N] have a value of 0.
Adder[N] receives cin[N]=0 and cin[N]=1. Adder[N] per-
forms slice[N] of the operation on these mputs and outputs
result{N]=2. The foregoing demonstrates a feature of the
carry chain 200. Suppose the initial size of an element 1s
sixteen bits and an operation returns an 8-bit result (e.g., as
in a narrowing instruction). There are no bits set 1n the upper
cight bits of the 16-bit element. The carry chain 200 effec-
tively carries a 2 out of the lower eight bits into the upper
eight baits.

In the example described above, the carry chain 200
carries the 2 where the round constant 1s applied. Other
examples of the carry chain 200 carry a 2 where the round
constant 1s not applied. In these examples, because the carry
chain 200 can carry a 2 out of any one of a number of
operation slices, the carry chain 200 1s advantageously
configured to carry the 2 into any of the operation slices.

FIG. 7 shows an example process 300 performed by an
example of the carry chain 150. The process 300 starts 305.
The process 300 determines (310) a mask based on a
selected size of an element. The process 300 selects (315),
based on the mask, whether to carry a partial result of an
operation performed on corresponding first portions of a first
operand and a second operand 1nto a next operation. The
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next operation 1s performed on corresponding second por-
tions of the first operand and the second operand, and, based
on the selection, the partial result of the operation. The
process 300 stores (320), 1n a memory (€.g., memory 105 for
FIG. 1), a result formed from outputs of the operation and
the next operation. The process 300 ends (325).

FIG. 8 shows an example of a pipelined carry chain 800.
The pipelined carry chain 800 includes adders and multi-
plexers of which two adders 802,804 and two multiplexers
806, 808 are shown. The adders and multiplexers are
arranged with one multiplexer between two adders. The
pipelined carry chain 800 further includes logic for pipelin-
ing, which makes the pipelined carry chain 800 faster than
other implementations of a carry chain, such as the carry
chain 150 described above with reference to FIG. 3.

An operation 1s performed on operand-1 810 and oper-
and-2 812, of which slice 1 and slice 2 of the operation are
shown. In the example shown, each operand 1s divided nto
a first portion and a second portion, which, as described
above, can correspond with least and next least significant
portions ol an operand. In slice 1 of the operation, the adder
802 calculates an intermediate partial result 818 based on
corresponding first portions of operand-1 and operand-2,
labeled 814a and 8145, respectively. The result 1s considered
an intermediate result because at this point the pipelined
carry chain 800, a carry-in from a previous slice of the
operation 1s not considered.

The adder 802 also determines a carry-indicator 820
based on the corresponding first portions of operand-1 and
operand-2 814a, 814bH. The carry-indicator 820 1s used to
calculate a carry-out of slice 1 of the operation, labeled 1n the
FIG. 8 as CO[1]. The carry-indicator 820 1s indicative of
whether the carry-out CO[1] will be generated 1n slice 1 of
the operation or will be propagated from a carry-in from a
previous slice of the operation, labeled 1n the FIG. 8 as
CI[1]. Any one of a number of well-known techmiques can
be used to determine carry-indicator 820. In a convenient
example, the intermediate partial result 818 and the carry-
indicator 820 are stored 1n a pipeline register or other
temporary memory.

The logic implemented by pipelined carry chain 800
includes, for each slice of the operation, logic for determin-
ing a carry-out and a partial result of the slice of the
operation. For ease of reference and for purposes of explain-
ing examples of the pipelined carry chain 800, the logic 1s
shown 1n the example of FIG. 8 as determination block-A
and determination block-B. In slice 1 of the operation, a
determination block-A 822 determines the carry-out CO[1]
based on the carry-indicator 820 and the carry-in CI[1] from
the previous operation.

A determination block-B 824 determines a partial result
826 of slice 1 of the operation from the intermediate partial
result 818 and the carry-in CI[1] from the previous opera-
tion. In one example, the pipelined carry chain 800 com-
putes the partial result 826 from the intermediate partial
result 818 and the carry-in CI[1] 820. For ease of discussion,
this approach 1s called the “simple-adder” approach. In
another example, the pipelined carry chain 800 selects one
of several possible partial results as the partial result 826
using the carry-in CI[1]. For ease of discussion, this
approach 1s called the “carry-select” approach.

The choice of a particular approach may be dictated by the
area on a chip needed to implement the approach, the power
used in carrying out the approach, the time needed to
perform the approach, and other constraints. For example,
the “simple-adder” approach calculates (and 1 some
examples, stores 1n a pipelined carry chain) one intermediate
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partial result. As such, the simple-adder approach can
require less areca and consume less power than other
approaches, such as the “carry-select” approach. The
simple-adder approach can incur, for example, a delay of an
“8-bit ripple” and, as such, can be slower than other
approaches, such as the “carry-select” approach.

One example of the “carry-select” approach requires a
mux using carry-in information as a select and, as such, can
be faster than other approaches, such as the “simple-adder”
approach. The “carry-select” approach calculates (and 1n
some examples, stores 1 a pipelined carry chain) multiple
potential (possible) intermediate partial results and, as such,
can require more area and can consume more power than
other approaches, such as the “simple-adder” approach.

The several possible partial results can be readily com-
puted from the intermediate partial result 818 according to
any one of number of well-known techniques. These results
are consider possible results because they are not determined
using the carry-in CI[1].

The carry-out COJ[1] from slice 1 of an operation, as
determined, by the foregoing logic 1s then provided to the
multiplexer 806 as an input. Other inputs to the multiplexer
806 include an a prionn carry-in CI[1], and a selector
mask[1]. The multiplexer 806 selects whether the pipelined
carry chain 800 carries the carry-out CO[1] or the a prion
carry-in CI[1] into slice 2 of the operation (labeled 1n the
FIG. 3 as CI[2]) based on the selector mask[1l]. In a
convenient example, the selectors for the multiplexers form
a bit mask (similar to the mask 175 described above with
reference FIG. 3). The pipelined carry chain 800 proceeds to
the next slice of the operation, slice 2, and the foregoing
process repeats with corresponding second portions of the
operand 1 and operand 2, labeled 8164 and 81656 1n FIG. 8,
respectively.

The foregoing examples of a pipelined approach allow a
carry-1n to a next slice of an operation to be calculated 1n
what 1s essentially one level of logic mstead of having to
“ripple” across 8-bits of an adder, as 1s case with the carry
chain 150 described above with reference to FIG. 3. Advan-
tageously, the pipelined carry chain 800 is faster than other
implementations of a carry chain, such as the carry chain
150 described above with reference to FIG. 3. Those skilled
in the art will readily recognize that the described pipelining
technique can also be applied to an operation mmvolving
“carry-the-2,” which was discussed above with reference to
FIG. 6.

The above-described systems and methods can be imple-
mented in digital electronic circuitry, 1n computer hardware,
firmware, and/or software. The implementation can be as a
computer program product. The implementation can, for
example, be in a machine-readable storage device, for
execution by, or to control the operation of, data processing
apparatus. The implementation can, for example, be a pro-
grammable processor, a computer, and/or multiple comput-
ers.

A computer program can be written 1 any form of
programming language, including compiled and/or inter-
preted languages, and the computer program can be
deployed 1n any form, including as a stand-alone program or
as a subroutine, element, and/or other unit suitable for use in
a computing environment. A computer program can be
deployed to be executed on one computer or on multiple
computers at one site.

Method steps can be performed by one or more program-
mable processors executing a computer program to perform
functions of the mvention by operating on mput data and
generating output. Method steps can also be performed by
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and an apparatus can be implemented as special purpose
logic circuitry. The circuitry can, for example, be a FPGA
(field programmable gate array) and/or an ASIC (applica-
tion-specific integrated circuit). Subroutines and software
agents can refer to portions of the computer program, the
processor, the special circuitry, software, and/or hardware
that implement that functionality.

Processors suitable for the execution of a computer pro-
gram include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor receives
instructions and data from a read-only memory or a random
access memory or both. The essential elements of a com-
puter are a processor for executing instructions and one or
more memory devices for storing instructions and data.
Generally, a computer can include, can be operatively
coupled to receive data from and/or transier data to one or
more mass storage devices for storing data (e.g., magnetic,
magneto-optical disks, or optical disks).

Data transmission and instructions can also occur over a
communications network. Information carriers suitable for
embodying computer program instructions and data include
all forms of non-volatile memory, including by way of
example semiconductor memory devices. The information
carriers can, for example, be EPROM, EEPROM, flash
memory devices, magnetic disks, internal hard disks, remov-
able disks, magneto-optical disks, CD-ROM, and/or DVD-
ROM disks. The processor and the memory can be supple-
mented by, and/or incorporated in special purpose logic
circuitry.

To provide for interaction with a user, the above described
techniques can be implemented on a computer having a
display device. The display device can, for example, be a
cathode ray tube (CRT) and/or a liquid crystal display
(LCD) monitor. The interaction with a user can, for example,
be a display of information to the user and a keyboard and
a pointing device (e.g., a mouse or a trackball) by which the
user can provide input to the computer (e.g., interact with a
user 1nterface element). Other kinds of devices can be used
to provide for interaction with a user. Other devices can, for
example, be feedback provided to the user in any form of
sensory feedback (e.g., visual feedback, auditory feedback,
or tactile feedback). Input from the user can, for example, be
received 1 any form, including acoustic, speech, and/or
tactile iput.

The above described techniques can be implemented 1n a
distributed computing system that includes a back-end com-
ponent. The back-end component can, for example, be a data
server, a middleware component, and/or an application
server. The above described techniques can be implemented
in a distributing computing system that includes a front-end
component. The front-end component can, for example, be
a client computer having a graphical user interface, a Web
browser through which a user can interact with an example
implementation, and/or other graphical user interfaces for a
transmitting device. The components of the system can be
interconnected by any form or medium of digital data
communication (e.g., a communication network). Examples
of communication networks include a local area network
(LAN), a wide area network (WAN), the Internet, wired
networks, and/or wireless networks.

The system can include clients and servers. A client and
a server are generally remote from each other and typically
interact through a communication network. The relationship
of client and server arises by virtue ol computer programs
running on the respective computers and having a client-
server relationship to each other.
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Packet-based networks can include, for example, the
Internet, a carnier internet protocol (IP) network (e.g., local
area network (LAN), wide area network (WAN), campus
areca network (CAN), metropolitan area network (MAN),
home area network (HAN)), a private IP network, an IP
private branch exchange (IPBX), a wireless network (e.g.,
radio access network (RAN), 802.11 network, 802.16 net-
work, general packet radio service (GPRS) network, Hiper-
LLAN), and/or other packet-based networks. Circuit-based
networks can include, for example, the public switched
telephone network (PSTN), a private branch exchange
(PBX), a wireless network (e.g., RAN, bluetooth, code-
division multiple access (CDMA) network, time division
multiple access (TDMA) network, global system for mobile
communications (GSM) network), and/or other circuit-
based networks.

The transmitting device can include, for example, a
computer, a computer with a browser device, a telephone, an
IP phone, a mobile device (e.g., cellular phone, personal
digital assistant (PDA) device, laptop computer, electronic
mail device), and/or other communication devices. The
browser device includes, for example, a computer (e.g.,
desktop computer, laptop computer) with a world wide web
browser (e.g., Microsolt® Internet Explorer® available
from Microsoft Corporation, Mozilla® Firefox available
from Mozilla Corporation). The mobile computing device
includes, for example, a Blackberry®.

Comprise, include, and/or plural forms of each are open
ended and include the listed parts and can include additional
parts that are not listed. And/or 1s open ended and includes
one or more of the listed parts and combinations of the listed
parts.

One skilled 1 the art will realize the invention may be
embodied in other specific forms without departing from the
spirit or essential characteristics thereof. The foregoing
embodiments are therefore to be considered 1n all respects
illustrative rather than limiting of the invention described
herein. Scope of the invention is thus indicated by the
appended claims, rather than by the foregoing description,
and all changes that come within the meaning and range of
equivalency of the claims are therefore intended to be
embraced therein.

What 1s claimed 1s:

1. A method for performing an operation on operands of
an instruction, the method comprising:

accessing a mask, wherein the mask comprises a sequence

of bit values, wherein the mask 1s based on a size of
clements of the operands, and wherein the bit values
correspond to slices of the operation;

selecting, based on a bit value of the bit values, one of: 1)

carrying a result of performing a first slice of the
operation on a first element of a first operand of the
operands and a corresponding first element of a second
operand ol the operands, mto a second slice of the
operation, and 11) carrying an a priori carry-in into the
second slice, wherein the second slice 1s performed on
a second element of the first operand and a correspond-
ing second element of the second operand according to
a result of said selecting; and

outputting results of performing the first and second

slices.

2. The method of claim 1, wherein the first element of the
first operand comprises the least significant element of the
first operand, wherein the first element of the second oper-
and comprises the least significant element of the second
operand, and wherein a bit of the mask 1s set to indicate that
the a prior1 carry-in 1s carried ito the second slice.
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3. The method of claim 1, further comprising setting the
a prior1 carry-in to a first value when the operation 1s an
operation selected from the group consisting of: a subtract-
Ing operation, an inverting operation, and a comparing
operation.

4. The method of claim 1, further comprising:

setting the a prior1 carry-in to a first value when the

operation 1s an absolute value operation on positive-
signed operands; and

setting the a prior1 carry-in to a second value diflerent than

the first value when the operation 1s an absolute value
operation on negative-signed operands.

5. The method of claim 1, wherein the first element of the
first operand comprises the least significant element of the
first operand, wherein the first element of the second oper-
and comprises the least significant element of the second
operand, wherein each of the first operand and the second
operand further comprises a respective next-least significant
clement, and wherein the method further comprises:

carrying the a prionn carry-in into the second slice,

wherein a result of the second slice comprises a carry-
out; and

carrying the carry-out into a next slice performed on the

respective next-least significant element of the first
operand and the respective next-least significant ele-
ment of the second operand.

6. The method of claim 1, further comprising carrying an
a priori carry-in into the first slice.

7. The method of claim 1, wherein each of the first slice
and the second slice comprises a respective round constant,
and wherein said selecting comprises:
determining whether to carry into the second slice a first

result and a second result of the first slice performed on
the round constant and on the first element of the first
operand and the corresponding first element of the
second operand, said determining based on a selection
of the first result and the second result, wherein carry-
ing the second result represents carrying a two from the
first slice 1nto the second slice.

8. The method of claim 1, further comprising:

calculating an intermediate result from the first element of

the first operand and the corresponding first element of
the second operand;
determining a carry-indicator that indicates whether a
previous slice of the operation 1s propagated;

determining a carry-out of the first slice based on the
carry-indicator and the carry-in from the previous slice;
and

determining a result of the first slice from the intermediate

result and the carry-in from the previous slice.

9. The method of claim 8, wherein said determining the
result of the first slice comprises computing the result of the
first slice from the intermediate result and the carry-in from
the previous slice.

10. The method of claim 8, wherein said determining the
result of the first slice comprises selecting the result of the
first slice using the intermediate result and the carry-in from
the previous slice.

11. A system for performing an operation on operands of
an 1nstruction, the system comprising:

memory having computer-executable instructions stored

therein; and

an arithmetic logic unit (ALU) of a plurality of ALUs

coupled to the memory, wherein the computer-execut-
able 1nstructions, when executed by the ALU, cause the

AlLU to:

e
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access a mask from the memory, wherein the mask
comprises a sequence of bit values, wherein the
mask 1s based on a size of elements of the operands,
and wherein the bit values correspond to slices of the
operation;

select, based on a bit value of the bit values, one of: 1)
carrying a result of performing a first slice of the
operation on a first element of a first operand of the
operands and a corresponding {first element of a
second operand of the operands, into a second slice
of the operation, and 11) carrying an a prior1 carry-in
into the second slice, wherein the second slice 1is
performed on a second element of the first operand
and a corresponding second element of the second
operand according to a result of the select; and

output results of performing the first and second slices.

12. The system of claim 11, wherein the first element of
the first operand comprises the least significant element of
the first operand, wherein the first element of the second
operand comprises the least significant element of the sec-
ond operand, and wherein a bit of the mask 1s set to indicate
that the a prior1 carry-in 1s carried into the second slice.

13. The system of claim 11, wherein the computer-
executable instructions, when executed, further cause the
ALU to set the a priori carry-in to a first value when the
operation 1s an operation selected from the group consisting
of: a subtracting operation, an inverting operation, and a
comparing operation.

14. The system of claim 11, wherein the computer-
executable instructions, when executed, further cause the
ALU to:

set the a priori carry-in to a first value when the operation

1s an absolute value operation on positive-signed oper-
ands; and

set the a prion carry-in to a second value different than the

first value when the operation i1s an absolute value
operation on negative-signed operands.

15. The system of claim 11, wherein the first element of
the first operand comprises the least significant element of
the first operand, wherein the first element of the second
operand comprises the least significant element of the sec-
ond operand, wherein each of the first operand and the
second operand further comprises a respective next-least
significant element, and wherein the computer-executable
istructions, when executed, further cause the ALU to:
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carry the a prion carry-in into the second slice, wherein a
result of the second slice comprises a carry-out; and

carry the carry-out into a next slice performed on the
respective next-least significant element of the first
operand and the respective next-least significant ele-
ment of the second operand.

16. The system of claim 11, wherein the computer-
executable instructions, when executed, further cause the
ALU to carry an a priori carry-in 1nto the first slice.

17. The system of claim 11, wherein each of the first slice
and the second slice comprises a respective round constant,
and wherein the computer-executable instructions, when
executed, further cause the ALU to:

determine whether to carry imto the second slice a first

result and a second result of the first slice performed on
the round constant and on the first element of the first
operand and the corresponding first element of the
second operand, based on a selection of the first result
and the second result, wherein carrying the second
result represents carrying a two from the first slice into
the second slice.

18. The system of claim 11, wherein the computer-
executable instructions, when executed, further cause the
ALU to:

calculate an intermediate result from the first element of

the first operand and the corresponding first element of
the second operand;

determine a carry-indicator that indicates whether a pre-

vious slice of the operation 1s propagated;

determine a carry-out of the first slice based on the

carry-indicator and the carry-in from the previous slice;
and

determine a result of the first slice from the intermediate

result and the carry-in from the previous slice.

19. The system of claim 18, wherein the computer-
executable instructions, when executed, further cause the
ALU to determine the result of the first slice by computing
the result of the first slice from the intermediate result and
the carry-in from the previous slice.

20. The system of claim 18, wherein the computer-
executable instructions, when executed, further cause the
ALU to determine the result of the first slice by selecting the
result of the first slice using the intermediate result and the
carry-1n ifrom the previous slice.
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