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1
SODIUM AND BICARBONATE CONTROL

FIELD

Systems, components, and methods are provided {for
controlling the sodium and bicarbonate concentrations in a
dialysate. The systems, components, and methods can use
conductivity sensors to control the addition of water and
bicarbonate to accurately control the final concentrations of
both sodium and bicarbonate.

BACKGROUND

Sorbent-based recirculating dialysis systems often
remove urea from spent dialysate by first converting the urea
to carbon dioxide and ammonium 1ons, and then removing
the ammonium 1ons from solution. The formation of carbon
dioxide, which exists 1 equilibrium with bicarbonate,
makes control over the bicarbonate concentration of the
dialysate diflicult. In a typical regenerative dialysis sorbent
system sodium and bicarbonate are partially removed or
generated across a sorbent cartridge, usually to unpredict-
able levels. Therefore, the amount of sodium and bicarbon-
ate to add to the dialysate to achieve a desired prescription
level 1s unpredictable and can lead to mnaccurate levels.

Hence, there 1s a need for systems and methods for
controlling the bicarbonate and sodium concentrations 1n the

dialysate of a sorbent-based dialysis system. The need
extends to systems and methods that allow for accurate
control of sodium and bicarbonate without the need to
directly measure and adjust the bicarbonate concentration
prior to the dialysate reaching the dialyzer. There 1s a further
need for systems and methods that can control the bicar-
bonate and sodium concentration throughout an entire dialy-
s1s session, even as the pH and composition of the solution
leaving the sorbent cartridge changes.

SUMMARY OF THE INVENTION

The problem to be solved 1s controlling bicarbonate and
sodium concentration 1 a dialysate throughout a dialysis
session. The solution 1s to use a two-phase control, removing
substantially all of the bicarbonate from solution during a
first low pH phase, and then using information obtained
during the first phase to control the bicarbonate and sodium
concentration in a second, higher pH phase.

The first aspect relates to a system. In any embodiment,
the system can include a dialysate flow path; the dialysate
flow path fluidly connectable to a dialysate 1nlet of a dialyzer
and a dialysate outlet of the dialyzer; a sorbent cartridge 1n
the dialysate tlow path; a degasser 1n the dialysate tlow path
downstream of the sorbent cartridge; a bicarbonate source
fluidly connected to the dialysate flow path; a water source
fluidly connected to the dialysate flow path; a first conduc-
tivity sensor downstream ol the sorbent cartridge; and a
control system; the control system programmed to determine
a pH of a fluid exating the sorbent cartridge; wherein: while
pH of the fluid exiting the sorbent cartridge 1s below a preset
pH, the control system 1s programmed to control a sodium
concentration in the fluid based on a sodium prescription and
a conductivity measured by the first conductivity sensor; and
to control a bicarbonate concentration in the fluid based on
a bicarbonate prescription.

In any embodiment, the preset pH can be about 4.8.
In any embodiment, the sorbent cartridge can include
zircontum phosphate at a low pH.

5

10

15

20

25

30

35

40

45

50

55

60

65

2

In any embodiment, while the pH of the fluid exiting the
sorbent cartridge 1s below the preset pH, the control system
can be programmed to control the sodium concentration 1n
the fluid by adding water from a water source upstream of
the sorbent cartridge to a target post-sorbent conductivity
setpoint.

In any embodiment, while the pH of the fluid exiting the
sorbent cartridge 1s below the preset pH, the control system
can be programmed to control the bicarbonate concentration
in the fluid by adding bicarbonate from a bicarbonate source
downstream of the sorbent cartridge to a target conductivity
delta between a conductivity sensor after the sorbent car-
tridge and a conductivity sensor aiter the bicarbonate source.

In any embodiment, the system can include a hydrochlo-
ric acid source fluidly connected to the dialysate flow path

upstream of the sorbent cartridge.

In any embodiment, the system can include at least one
infusate source downstream of the sorbent cartridge.

In any embodiment, the control system can be pro-
grammed to detect release of sulfate 1ons from the sorbent
cartridge.

In any embodiment, wherein the control system can be
programmed to dilute the fluid during the release of sulfate
101S.

In any embodiment, while the pH of the fluid exiting the
sorbent cartridge 1s above a preset pH, the control system
can be programmed to control the sodium concentration 1n
the fluid by adding water from a water source upstream of
the sorbent cartridge to a target pre-sorbent conductivity
setpoint.

In any embodiment, the pre-sorbent conductivity can be
measured with a second conductivity sensor upstream of the
sorbent cartridge.

In any embodiment, the target pre-sorbent conductivity
setpoint can be a conductivity measured upstream of the
sorbent cartridge while the pH 1s below the preset pH.

In any embodiment, while the pH of the fluid exiting the
sorbent cartridge 1s above a preset pH, the control system
can be programmed to control the bicarbonate concentration
in the flmd by adding bicarbonate to reach a target post-
bicarbonate conductivity setpoint.

In any embodiment, the target post-bicarbonate conduc-
tivity setpoint can be based on the sodium and a bicarbonate
prescription.

In any embodiment, the pH of the fluid exiting the sorbent
cartridge can be measured with a pH sensor downstream of
the sorbent cartridge.

In any embodiment, the pH of the fluid exiting the sorbent
cartridge can be measured based on changes to a degasser
output.

In any embodiment, the pH of the fluid exiting the sorbent
cartridge can be measured based on a conductivity change
across the sorbent cartridge measured by the first conduc-
tivity sensor and a second conductivity sensor upstream of
the sorbent cartridge.

In any embodiment, the pH of the flmid exiting the sorbent
cartridge can be measured based on a volume of the water
added from the water source.

In any embodiment, the control system can be pro-
grammed to 1solate the sorbent cartridge prior to determin-
ing the pH of the fluid exiting the sorbent cartridge.

The features disclosed as being part of the first aspect can
be 1n the first aspect, either alone or in combination, or
follow any arrangement or permutation of any one or more
of the described elements. Similarly, any features disclosed
as being part of the first aspect can be 1n a second aspect
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described below, either alone or in combination, or follow
any arrangement or permutation of any one or more of the
described elements.

The second aspect relates to a method. In any embodi-
ment, the method can include determining a pH of a fluid
exiting a sorbent cartridge of a sorbent dialysis system; and
while pH of the fluid exiting the sorbent cartridge 1s below
a preset pH, controlling a sodium concentration in the fluid
based on a sodium prescription and a conductivity measured
by a first conductivity sensor downstream of the sorbent
cartridge; and controlling a bicarbonate concentration 1n the
fluid based on a bicarbonate prescription.

In any embodiment, the preset pH can be about 4.8.
In any embodiment, the sorbent cartridge can include
zirconium phosphate at a low pH.

In any embodiment, while the pH of the fluid exiting the
sorbent cartridge 1s below a preset pH, the step of controlling
the sodium concentration 1n the fluid can include adding
water from a water source upstream of the sorbent cartridge
to a target post-sorbent conductivity setpoint.

In any embodiment, while the pH of the fluid exiting the
sorbent cartridge 1s below a preset pH, the step of controlling
the bicarbonate concentration in the fluid can include adding
bicarbonate from a bicarbonate source upstream of the
sorbent cartridge and degasser to a target post-bicarbonate
conductivity setpoint.

In any embodiment, the post-bicarbonate conductivity set
point can be based on a conductivity increase between tluid
downstream of the degasser and upstream of the bicarbonate
source and fluid downstream of the bicarbonate source.

In any embodiment, the method can include the step of
adding hydrochloric acid to the dialysate tlow path upstream
of the sorbent cartridge.

In any embodiment, while the pH of the fluid exiting the
sorbent cartridge 1s above a preset pH, the method can
include controlling the sodium concentration 1n the flmd by
adding water from a water source upstream of the sorbent
cartridge to a target pre-sorbent conductivity setpoint.

In any embodiment, target pre-sorbent conductivity set-
point can be a pre-sorbent conductivity measured while the
pH 1s below the preset pH.

In any embodiment, while the pH of the fluid exiting the
sorbent cartridge 1s above a preset pH, the step of controlling
the bicarbonate concentration in the fluid can include adding,
bicarbonate to reach a post-bicarbonate conductivity set-
point.

In any embodiment, the post-bicarbonate conductivity
setpoint can be based on the sodium and a bicarbonate
prescription.

The features disclosed as being part of the second aspect
can be 1n the second aspect, either alone or 1n combination,
or follow any arrangement or permutation ol any one or
more of the described elements. Similarly, any features
disclosed as being part of the second aspect can be 1n the first
aspect, either alone or 1 combination, or follow any

arrangement or permutation ol any one or more of the
described elements.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a simplified drawing of a dialysis system.

FIG. 2 1s a flow chart showing a method of controlling
sodium and bicarbonate during a low-pH phase.

FIG. 3 1s a flow chart showing a method of controlling
sodium and bicarbonate during a high-pH phase.
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FIG. 4 1s a graph showing sorbent pH, conductivity
changes, and sulfate level vs. dialysate volume for a simu-
lated dialysis session.

FIG. § 1s a graph showing sorbent outlet pH and bicar-
bonate pump rate vs. dialysate volume for a simulated
dialysis session.

FIG. 6 1s a graph showing sorbent outlet pH and water
pump rate vs. dialysate volume for a simulated dialysis
SESS101.

FIG. 7 1s a graph showing sorbent outlet pH and degasser
pump output vs. dialysate volume for a simulated dialysis
SESS101.

FIG. 8 1s a graph showing sorbent outlet pH, dialysate
sodium level, and dialysate bicarbonate level vs. dialysate
volume for a simulated dialysis session

DETAILED DESCRIPTION

Unless defined otherwise, all technical and scientific
terms used have the same meaning as commonly understood
by one of ordinary skill in the art.

The articles “a” and “an’ are used to refer to one to over
one (1.e., to at least one) of the grammatical object of the
article. For example, “an element” means one element or
over one element.

The term “adding,” to *“add,” or *“addition™ refers to
pumping additional fluid mto an existing fluid or into a
component or system.

The term “bicarbonate” refers to HCO3™ 10ns, as well as
any species existing 1 equilibrium with bicarbonate 1ons,
including carbonate 10ons and carbon dioxide.

The term “bicarbonate concentration™ refers to an amount
of bicarbonate dissolved 1n a solvent per a given amount of
solvent.

A “bicarbonate prescription” i1s an intended bicarbonate
concentration in the dialysate or blood.

The term “bicarbonate source” can refer to a source of
bicarbonate 1ons or bicarbonate predecessors. The bicarbon-
ate can be 1n acid or basic form, and can include substances
that react to form bicarbonate when used 1 a dialysis
system.

The term “blood flow rate” refers to a volume of blood
moving through a system per unit of time.

The term “comprising” includes, but 1s not limited to,
whatever follows the word “comprising.” Use of the term
indicates the listed elements are required or mandatory but
that other elements are optional and may be present.

The term “conductivity” refers to the inverse of the
clectrical resistance of a fluid.

The term “‘conductivity change across the sorbent car-
tridge” refers to a difference 1n conductivity of a fluid prior
to the flmd entering a sorbent cartridge and after the fluid
exits the sorbent cartridge.

The term “conductivity increase” refers to a positive
change in conductivity of a fluid as the fluid moves through
a system.

The term “conductivity sensor” refers to any component

capable of measuring the electrical conductance or the
electrical resistance of a fluid.

The term “consisting of” includes and 1s limited to
whatever follows the phrase “consisting of.” The phrase
indicates the limited elements are required or mandatory and
that no other elements may be present.

The term “consisting essentially of” includes whatever
follows the term “consisting essentially of” and additional
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elements, structures, acts, or features that do not aflect the
basic operation of the apparatus, structure or method
described.

The terms ““‘control,” “controlling,” or “controls” can refer
to the ability of one component to direct the actions of a
second component.

A “control system” 1s a device which monitors and aflects
the operational conditions of a given system. The opera-
tional conditions are typically referred to as output variables
of the system wherein the output variables can be aflected by
adjusting certain input variables.

A “degasser” refers to any device, component, or system
that can be used to remove one or more gases from a fluid.

The term “degasser output” can refer to an amount of gas
removed from a fluid by a degasser, or to the composition of
gases removed from the fluid.

The term “detect” refers to ascertaining a state of a system
Oor component.

The terms “determining,” “determines,” and the like,
generally refer to, i the broadest reasonable interpretation,
any process or method for obtaining or coming to a decision,
value, number, or finding, for any one or more value, output,
parameter, or variable, by any means applicable to the
relevant parameter being determined.

The term “dialysate” refers to any mixture that provides
for passing solutes of any type through a membrane of any
type. Typically, a dialysate contains a concentration of
solutes to exchange solutes across a gradient to and from the
dialysate during dialysis therapy.

The term “dialysate flow path” refers to a pathway
through which dialysate travels during dialysis therapy.

The term “dialysate flow rate” refers to a volume of
dialysate moving through a system per umt of time.

The term “dialysate 1nlet” refers to an opening or conduit
through which dialysate can enter a component.

The term “dialysate outlet” refers to an opening or conduit
through which dialysate can exit a component.

The term “dialyzer” can refer to a cartridge or container
with two flow paths separated by semi-permeable mem-
branes. One flow path can be for blood and one tlow path can
be for dialysate. The membranes can be 1n hollow fibers, flat
sheets, or spiral wound or other conventional forms known
to those of skill in the art. Membranes can be selected from
any one or combination of materials: polysulione, polyether-
sulfone, poly (methyl methacrylate), modified cellulose, or
other materials known to those skilled 1n the art.

The term “dialyzer size” refers to the amount of fluid that

can be contained within a dialyzer.

The term “dilute” means to lower a concentration of one
or more solutes in solution.

The term “downstream”™ refers to a position of a first
component in a flow path relative to a second component
wherein fluid, gas, or combinations thereof, will pass by the
second component prior to the first component during nor-
mal operation. The first component can be said to be
“downstream™ of the second component, while the second
component 1s “upstream’ of the first component.

The term “‘estimate” can refer to an approximation of a
value for a particular parameter.

The terms “exit” or “exiting” refer to a flmd leaving a
container or component.

The term “fluidly connectable” refers to the ability to
provide passage of tluid, gas, or combinations thereof, from
one point to another point. The ability to provide such
passage can be any mechanical connection, fastening, or
forming between two points to permit the tlow of tfluid, gas,
or combinations thereof. The two points can be within or
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between any one or more ol compartments, modules, sys-
tems, components, and rechargers, all of any type. Notably,
the components that are flmdly connectable, need not be a
part of a structure. For example, an outlet “fluidly connect-
able” to a pump does not require the pump, but merely that
the outlet has the features necessary for fluid connection to
the pump.

The term “fludly connected” refers to a particular state or
configuration of one or more components such that tluid,
gas, or combination thereof, can flow from one point to
another point. The connection state can also include an
optional unconnected state or configuration, such that the
two points are disconnected from each other to discontinue
flow. It will be further understood that the two “fluidly
connectable” points, as defined above, can form a “fluidly
connected” state. The two points can be within or between
any one or more of compartments, modules, systems, com-
ponents, all of any type.

The term “hydrochloric acid source™ refers to any source
from which hydrochloric acid, or HCI, can be obtained.

The term “infusate source” refers to one or more sources
of cations, such as potassium, calctum, or magnesium cat-
ions, for addition to a dialysate.

The term *“1solate” refers to configuring a system such that
a given component 1s not i fluid communication with a
second given component.

The term “low pH” refers to a pH low enough that waill
result in substantially all bicarbonate being converted to
carbon dioxide.

The term “measuring” or “to measure” can refer to
determining any parameter or variable. The parameter or
variable can relate to any state or value of a system,
component, tluid, gas, or mixtures of one or more gases or
fluids.

The term “patient bicarbonate level” refers to the bicar-
bonate concentration 1n the blood of a patient.

The term “patient size” refers to the mass or weight of a
patient.

The term “patient urea level” refers to the urea concen-
tration 1n the blood of a patient.

“pH” 1s a value equal to the negative log of the H™ ion
concentration in a fluid.

The term “pH sensor” refers to any sensor or set of
sensors that can be used to determine the pH of a flud.

The term “preset” refers to a value of a parameter or state
of a component or system that 1s determined 1n advance of
a dialysis session.

The term “programmed,” when referring to a processor,
can mean a series ol istructions that cause a processor to
perform certain steps.

The term “release” refers to one or more substances being,
added by a component to a tluid.

The term “sodium™ refers to Na 1ons 1n solution.
The term “sodium concentration” refers to an amount of
sodium 1ons dissolved 1n a given amount of solvent.

A “sodium prescription” 1s an intended sodium concen-
tration 1n a dialysate or blood.

The terms “‘sorbent cartridge” and ““‘sorbent container” can
refer to a cartridge containing one or more sorbent materials
for removing specific solutes from solution, such as urea.
The term “sorbent cartridge™ does not require the contents 1n
the cartridge be sorbent based, and the contents of the
sorbent cartridge can be any contents that can remove waste
products from a dialysate. The sorbent cartridge may include
any suitable amount of one or more sorbent materials. In
certain mstances, the term “sorbent cartridge™ can refer to a

cartridge which includes one or more sorbent materials 1n
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addition to one or more other maternials capable of removing
waste products from dialysate. “Sorbent cartridge” can

include configurations where at least some materials 1n the
cartridge do not act by mechanisms of adsorption or absorp-
tion. In any embodiment, a system may include a number of
separate cartridges which can be physically separated or
interconnected wherein such cartridges can be optionally
detached and reattached as desired. The term “‘sulfate 1ons™
refers to SO,” in acid or basic form, or with any counter
101S.

The term “‘target post-bicarbonate conductivity setpoint™
refers to a conductivity value, measured after bicarbonate
has been added to a fluid, that will result in an intended
prescription for a dialysate.

The term “target post-sorbent conductivity setpoint™
refers to a conductivity value, measured after a fluid has
passed through a sorbent cartridge, that will result 1n an
intended prescription for a dialysate.

The term “target pre-sorbent conductivity setpoint” refers
to a conductivity value, measured before a fluid has passed
through a sorbent cartridge, that will result 1n an 1ntended
prescription for a dialysate.

The term ““ultrafiltration rate” refers to a volume of fluid
removed from the blood of a patient per unit of time.

The term “upstream” refers to a position of a first com-
ponent 1n a flow path relative to a second component
wherein fluid, gas, or combinations thereof, will pass by the
first component prior to the second component during nor-
mal operation. The first component can be said to be
“upstream” ol the second component, while the second
component 1s “downstream” of the first component.

A “water source” can be any fluid source from which
water can be obtained. The source can be any type of
reservoir, flud line, or receptacle. The water from the water
source can be water with or without any dissolved solutes,
including one or more buller or 1ons.

“Zirconium phosphate™ 1s a sorbent material that removes
cations from a flmd, exchanging the removed cations for
different cations.

Sodium and Bicarbonate Control

FIG. 1 1s a simplified diagram of a sorbent-based dialysis
system. A dialyzer 102 can be fluidly connected to an
extracorporeal flow path (not shown) and fluidly connect-
able to a dialysate flow path 101. Blood from a patient can
enter the dialyzer 102 through blood inlet 103 and exit the
dialyzer 102 through blood outlet 104. At the same time,
dialysate can enter the dialyzer 102 through dialysate inlet
106 and exiat through dialysate outlet 107. The dialysate and
blood are separated in the dialyzer 102 by semi-permeable
membrane 105. Solutes and fluid can pass between the blood
and the dialysate through semi-permeable membrane 105.

After exiting the dialyzer 102, the dialysate can be
pumped through dialysate flow path 101. One or more
pumps (not shown) can provide the driving force necessary
to control the movement of dialysate through the dialysate
flow path 101. A portion of the dialysate can be drawn off as
ultrafiltrate by ultrafiltration system 108. If necessary to
control sodium concentration, water can be added to the
dialysate from water source 110. The used dialysate can be
pumped through sorbent cartridge 112 to regenerate the
dialysate.

The sorbent cartridge 112 can include one or more sorbent
materials to remove solutes from the dialysate, allowing the
dialysate to be reused. In certain embodiments, the sorbent
cartridge 112 can include activated carbon to remove crea-
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tinine, glucose, uric acid, p2-microglobulin and other non-
ionic toxins, except urea, from the dialysate. The sorbent
cartridge can also include urease, which converts urea to
ammonium 1ons and carbon dioxide. Zircontum oxide 1n the
sorbent cartridge 112 can remove phosphate, fluoride, and
other anions from the dialysate. Zirconium phosphate 1n
sorbent cartridge 112 can remove the ammonium 1ons gen-
erated from the breakdown of urea by the urease, as well as
potassium, calcium, and magnesium cations. The cations
removed by the zirconium phosphate can be exchanged for
sodium and hydrogen ions.

Carbon dioxide present in the dialysate exiting the sorbent
cartridge 112 can be removed by degasser 113 located
downstream of the sorbent cartridge 112. Bicarbonate can be
added to the dialysate from bicarbonate source 115 and
cations, such as potassium, magnesium, and calcium, can be
added back into the dialysate from cation infusate source
117. In certain embodiments, bypass line 120 and bypass
valve 119 can be included to bypass either the dialyzer 102
or the sorbent cartridge 112.

One of skill in the art will understand that the system
illustrated 1 FIG. 1 1s a simplified system for illustrative
purposes only. Additional components can be included. For
example, additional pumps and valves can be included for
operation of the degassing system, as well as control over
ultrafiltration and addition of water, bicarbonate, and cation
infusate. The pumps and valves can be operated by a control
system (not shown). The control system can be programmed
to receive data from sensors at various positions in the
dialysate tlow path 101, to determine any parameters or
system state based on the received data, and to control the
components of the dialysis system. For example, conduc-
tivity sensor 109 can be included to determine the conduc-
tivity of the dialysate exiting the dialyzer 102. Conductivity
sensor 111 can be included to determine the conductivity of
dialysate after addition of water and prior to reaching the
sorbent cartridge 112. Conductivity sensor 114 can be
included to measure the conductivity of the dialysate after
the degasser and prior to addition of bicarbonate solution.
Conductivity sensor 116 can be used to measure the con-
ductivity of the dialysate after addition of bicarbonate and
prior to addition of cation infusate. Conductivity sensor 118
can be included to measure the conductivity after the addi-
tion of the cation infusate to ensure the final dialysate has a
proper composition prior to reaching the dialyzer 102.
Additional sensors (not shown), such as temperature sen-
sors, pressure sensors, pH sensors, or any other sensors can
be included.

In certain embodiments, the system can control the
sodium and bicarbonate concentrations in the dialysate using
a two-phase approach. FIG. 2 1s a flow chart showing control
over the sodium and bicarbonate concentration during the
first phase. In step 201, the process can begin. In the
beginning of a dialysis session, the sorbent cartridge 112 can
be a low-pH sorbent cartridge. The pH of the sorbent
cartridge can be controlled by controlling the initial hydro-
gen to sodium ratio of the zirconium phosphate. A higher
proportion of hydrogen 1ons will result 1n a lower pH of fluid
exiting the sorbent cartridge.

When the sorbent cartridge effluent pH 1s below a preset
pH, substantially all bicarbonate 1n the dialysate will be
converted to carbon dioxide and subsequently removed by
the degasser, eflectively reducing the total CO2 or bicar-
bonate to a level approaching 0-mM and allowing control
over both the sodium and bicarbonate concentration in the
dialysate. In step 202, the system can determine a post-
sorbent conductivity setpoint that will result in a desired
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sodium concentration. Knowing that the bicarbonate level 1s
near zero allows an accurate conductivity value to be
determined because the sorbent effluent will mainly depend
on the concentration of sodium and chloride. The post-
sorbent conductivity setpoint can be set based on both the
sodium and bicarbonate prescriptions. For example, 1f a
dialysate sodium of 140-mM and bicarbonate of 40-mM are
desired, the sodium chloride level needed at sorbent outlet
would be 100-mM and the conductivity set-point would
correspond to the conductivity of a 100-mM sodium chlo-
ride solution. The remaining 40 mM of sodium will be added
by addition of sodium bicarbonate after the dialysate passes
through the degasser 113. Water from water source 110 can
be added to the dialysate to dilute the dialysate if necessary
to reach the post-sorbent conductivity setpoint 1n step 203.
Although 1llustrated in FIG. 1 as upstream of the sorbent
cartridge 112, the water source 110 can alternatively be
positioned downstream of the sorbent cartridge 112.

The bicarbonate concentration of the dialysate 1s con-
trolled 1n step 204. As described, during phase 1 control, the
pH of the sorbent cartridge effluent 1s low enough to convert
substantially all bicarbonate to carbon dioxide, which 1s
removed by degasser 113. To accurately control bicarbonate
concentration 1n the dialysate, sodium bicarbonate from
bicarbonate source 115 can be added. The system can
control the addition of bicarbonate to achieve a post-bicar-
bonate conductivity setpoint as measured by conductivity
sensor 116. The post-bicarbonate conductivity setpoint can
be a fixed value based on the sodium and bicarbonate
prescription. Alternatively, the post-bicarbonate conductiv-
ity setpoint can be based on achieving a target conductivity
delta between the post-degasser conductivity sensor 114 and
the post-bicarbonate conductivity sensor 116. For example,
a bicarbonate prescription ol 40-mM would require the
addition of 40-mM bicarbonate from the bicarbonate source,
which corresponds to a certain conductivity increase
between conductivity sensor 114 and 116. Therefore, the
bicarbonate source can be added to achieve the desired
conductivity increase at sensor 116 relative to sensor 114.
After the bicarbonate 1s added to the dialysate, a cation
infusate can be added to control the potassium, calcium, and
magnesium concentrations. In certain embodiments, the
cation infusate can also include sodium. In such embodi-
ments, the post-sorbent conductivity set point can be
adjusted to account for the additional sodium.

As described, the phase 1 control over sodium and bicar-
bonate can continue while the sorbent effluent pH 1s low
enough to convert substantially all the bicarbonate to carbon
dioxide. In step 203, the system can monitor the sorbent
cartridge eflluent pH, and determine whether the sorbent
cartridge eflluent pH i1s below a preset pH. If the sorbent
cartridge eftluent pH 1s below the preset pH, the method can
continue 1 step 203, with control over both sodium and
bicarbonate. If the pH exceeds the preset pH, some level of
bicarbonate can remain in the dialysate after passing through
the sorbent cartridge 112 and degasser 113. The system can
then switch to a phase 2 control method 1n step 206. In
certain embodiments, the preset pH for the sorbent cartridge
cifluent pH can be about 4.8, which will result in substan-
tially all the bicarbonate being removed from the dialysate.

One of skill in the art will understand that several options
for determining when to switch to phase 2 control can be
used. Optionally, the system can use a pH sensor at the outlet
of the sorbent cartridge to measure the effluent pH. Alter-
natively, the system can monitor the degasser output to
determine changes 1n the sorbent effluent pH. As the pH
rises, there will be less CO, to degas, and the degasser output

10

15

20

25

30

35

40

45

50

55

60

65

10

will decrease. In certain embodiments, the system can detect
the sorbent cartridge efiluent pH state based on conductivity
changes across the sorbent cartridge. As the pH of the
sorbent cartridge increases, the bicarbonate concentration,
and corresponding sodium concentration, 1ncreases, result-
ing i a smaller conductivity change across the sorbent
cartridge. The system can also detect the sorbent cartridge
cilluent pH state based on changes in the water addition rate
needed to maintain the sorbent outlet conductivity target
during phase one control. As the pH rises and the sodium
bicarbonate concentration increases, the sorbent outlet con-
ductivity will increase and require an increase in water
dilution to maintain the post-sorbent conductivity setpoint.
Periodic 1solation of the sorbent cartridge from the dialyzer
and measurement of the above parameters can also be used
to predict the sorbent cartridge pH state. Isolation of the
dialyzer removes unknown contributions to the dialysate
from the patient and results on a more accurate prediction of
the pH state. To isolate the sorbent cartridge from the
dialyzer, dialysate can be pumped through a bypass line,
such as bypass line 120 1n FIG. 1, recirculating the dialysate
through the sorbent cartridge 112 without passing through
the dialyzer 102. Refinement of the pH state determination
using the described methods can be achieved by using more
than one method listed, either to refine detection with a
single-method or used together. Also, detection can be
refined based on early conductivity changes across the
dialyzer and/or across the sorbent cartridge. These early
conductivity changes can be indicative of patient levels and
used to further refine detection of the dialysate pH. In
addition, integration of the conductivity change across the
sorbent cartridge can be used as a measure of the cumulative
bicarbonate exposure to the sorbent cartridge, and transition
to phase two control can be done when the cumulative
exposure reaches a preset value.

Alternatively, the detection of sorbent outlet pH can be
determined based on the conductivity change across the
sorbent cartridge normalized to the water dilution rate
needed to achieve the target post-sorbent conductivity set-
point by using equation (1): (SCS-PCS)/(1-Q-H,O/Q,_, ),
wherein SCS 1s the conductivity measured by conductivity
sensor 114, PCS 1s the conductivity measured by conduc-
tivity sensor, Q-H,O 1s the water addition rate from water
source 110, and Q,_ . 1s the dialysate flow rate at the
dialyzer outlet 107. In addition, the SCS and PCS values
used 1n equation (1) can be offset 1n time due to the volume
of the sorbent cartridge and the time it takes fluid to tlow
from the inlet of the cartridge to the outlet. For example, a
sorbent cartridge with a void volume of 4 liters will require
8 minutes for fluid to flow from the inlet to outlet at a tlow
rate of 500-mL/min. Therefore, the SCS value at 8 minutes
should be compared to the PCS value at O minutes. The
conductivity delta across the sorbent cartridge, SCS-PCS, 1s
mainly influenced by the concentration of sodium bicarbon-
ate entering the sorbent cartridge, which 1s determined by
the prescription and patient parameters. In the low pH phase,
all of the sodium bicarbonate entering the cartridge is
removed resulting 1n a conductivity decrease. Because the
SCS-PCS, or conductivity delta across the sorbent cartridge,
can vary in the low pH phase due to difference 1n prescrip-
tion or patient parameters, a plateau value can be calculated
and subsequent conductivity deltas across the sorbent car-
tridge can be compared to the plateau value to determine
when the pH has increased to the preset value. The plateau
value can be determined by averaging the SCS-PCS values
over a certain time, or dialysate volume, and starting at a
particular dialysate volume. For example, after 40-liters of
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dialysate volume the SCS-PCS values, or the values calcu-
lated mn Eq (1), can be averaged from to 50-liters. Then the
conductivity delta across the sorbent cartridge (SCS-PCS)
can be compared to the average plateau value to determine
when the pH value has exceeded the preset value. For
example, an increase 1 SCS-PCS of 0.44-mS/cm relative to
the plateau value can indicate the pH has risen to a value
exceeding 4.8. Values other than an increase of 0.44-mS/cm
can be used depending on properties of the sorbent cartridge
used or other factors such as dialysate prescription or patient
parameters. The volume to start the averaging for the plateau
value should start before the sorbent cartridge pH begins to
rise. The volume can be based on the dialysate bicarbonate
prescription. In a sorbent cartridge utilizing a zirconium
phosphate sorbent as the pH controlling builer source, the
accumulation of bicarbonate through the sorbent cartridge
will eventually exceed the bullering capacity of the zirco-
nium phosphate and result 1n a rising pH. Therefore, a higher
bicarbonate prescription will result 1n a sorbent cartridge pH
rise sooner than a lower bicarbonate prescription. A bicar-
bonate prescription of 30-mM could start the plateau aver-
aging at 60-liters and a bicarbonate prescription of 40-mM
could start the plateau averaging at 40-liters, for example.

In certain embodiments, the sorbent cartridge effluent pH
may remain below the preset pH value for the entire dialysis
session. In such cases, the system can control the dialysate
sodium and bicarbonate concentrations using the phase 1
method illustrated 1n FIG. 2 throughout the dialysis session.
In certain embodiments, an acid source, such as a hydro-
chloric acid source, can be included upstream of the sorbent
cartridge to acidity the dialysate prior to reaching the
sorbent cartridge. Acidifying the dialysate can keep the
sorbent cartridge eflluent pH low, prolonging the time during
which phase 1 control can be used. The low sorbent effluent
pH can also be maintained by using a suflicient amount of
zircontum phosphate at low pH, or by limiting the total
volume of dialysate used during the dialysis session. In
certain embodiments, the zirconium phosphate pH can refer
to a slurry pH, which i1s the measured pH of zirconium
phosphate slurried 1n water. A “low pH” zircontum phos-
phate can refer to zircontum phosphate having a slurry pH
of below about 5.

As the pH nises above the preset pH, the amount of
bicarbonate, post-degassing, can increase to greater than 1
mM, and potentially up to prescription levels of 30 to 40
mM, depending on the pH at sorbent outlet and the total CO,
level 1n the spent dialysate entering the sorbent cartridge.
During this second phase, the unpredictable bicarbonate
level at sorbent outlet makes controlling to an accurate
sodium and bicarbonate prescription level more dithcult.
FIG. 3 1s a flow chart illustrating the phase 2 method of
sodium and bicarbonate control in the dialysate with a
higher pH 1n the dialysate exiting the sorbent cartridge. As
described, the method can begin in step 301 using phase 2
control, after the sorbent cartridge etfluent pH has exceeded
the preset value.

In contrast to the phase 1 control illustrated in FIG. 2, the
phase 2 control of FIG. 3 can use a pre-sorbent conductivity
set point. In step 302, the system can determine the pre-
sorbent conductivity set point as measured by conductivity
sensor 111 illustrated 1in FIG. 1. The pre-sorbent conductiv-
ity set point 1s based on learning the sorbent inlet conduc-
tivity value used towards the end of the first phase of control.
Over the course of a therapy session, the patient blood and
the dialysate will approach equilibrium with each other, and
the dialysate outlet conductivity measured by conductivity
sensor 109 and subsequent sorbent inlet conductivity mea-
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sured by conductivity sensor 111 will reach a stable value.
Therefore, 11 the first phase of control occurs over a signifi-
cant volume, 1.e., greater than 30-liters, the pre-sorbent
conductivity value can be assumed to have reached a stable
value and can be used as the pre-sorbent conductivity set
point for the second phase of control. In addition, the rate of
change 1n the pre-sorbent conductivity (PCS), or PCS pro-
file, can be learned during the first phase of control and used
to control to a PCS profile 1n the second phase of control. For
example, a steadily changing PCS value can be {it to a curve
or a line and the PCS values to target as a function of
dialysate volume can be extrapolated based on the fit during
phase 2. Using the pre-sorbent conductivity set point deter-
mined 1n step 302, the system can control the water addition
rate to achieve the pre-sorbent conductivity set point 1n step
303.

The phase 2 control can also rely on a predictable change
in chloride concentration across the sorbent cartridge. In the
case ol the REDY type sorbent system, the chloride con-
centration can be assumed to be unchanged across the
sorbent cartridge. Theretfore, the PCS value determined 1n
phase 1 1s equal to the PCS value needed to achieve the
desired chloride level, based on the dialysate prescription, at
the sorbent inlet and subsequently the sorbent outlet, relying
on the unchanging chloride concentration across the sorbent
cartridge. The second aspect of control during the second
phase mvolves adding sodium bicarbonate post-sorbent car-
tridge at a rate Q-Base to a conductivity value (BCS), which
1s the conductivity measured by conductivity sensor 116,
based on the sodium and bicarbonate prescription value in
step 304. Because the composition of dialysate needed after
addition of sodium bicarbonate 1s accurately known based
on the prescription, the composition error 1s minimized
using this approach. Depending on the sorbent outlet pH and
the total CO, exiting the sorbent cartridge, the bicarbonate
concentration can vary be between 1 mM and 40 mM 1n
concentration. Typically, in phase 2 the sorbent outlet pH
will increase steadily resulting 1n a gradual increase of the
bicarbonate concentration exiting the sorbent cartridge.
Therefore, the amount of sodium bicarbonate that must be
added to achieve the post-bicarbonate conductivity setpoint
may vary. In step 3035, the dialysis session can continue until
the end of the session using the phase 2 control.

In certain embodiments, the system can use phase 1
control as long as possible before the sorbent cartridge
cllluent pH exceeds the preset value. Delaying the transition
to phase 2 control as long as possible allows for further
equilibration between the patient and dialysate and deter-
mination of a more accurate sorbent inlet conductivity
setpoint or profile to be used during phase two control.

In some cases, there may be a need for an additional phase
of control, between the first and second phases, due to
release of sulfate from the sorbent cartridge. Some sorbent
cartridge designs can remove sulfate when the sorbent
cartridge 1s 1n a low pH phase, but as the pH rises (above 4.5
for example), the sulfate may be released. The release of
sulfate will also result 1n the release of sodium, to maintain
charge balance. At pH values above 3, sulfates primarily
exist as a divalent amion and will require two sodium 10ns for
charge balance. The release of sodium sulfate will result 1n
a sorbent outlet conductivity increase that will require
additional dilution water (Q-H20) to maintain the sorbent
outlet conductivity at the phase 1 set-point. However,
because sulfate will be present 1n the sorbent outlet, an
adjusted conductivity setpoint can be determined based on
the methods used for phase one control, except with a
non-zero level for sulfate, because although sulfate 1s being
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released due to slightly higher sorbent outlet pH, while the
pH 1s still less than 4.8, the bicarbonate concentration 1s still
negligible. Therefore, the sodium bicarbonate addition rate
can be controlled using the phase 1 control illustrated in
FIG. 2. However, the increased dilution water needed during
sulfate release will result 1n a lower sorbent 1nlet conduc-
tivity (PCS) value, which 1s not indicative of the value
needed for phase two control. Therefore, 11 sulfate release
occurs, the pre-sorbent conductivity set-point used for phase
two control should be based on the value, or profile, pre-
ceding the sulfate release. The sulfate release can be
detected by monitoring changes in the dilution water rate
and/or changes 1n the conductivity change across the sorbent
cartridge. The sulfate release can be detected using the
methods described above using the average plateau conduc-
tivity value and an increase relative to the average plateau
value of 0.2-mS/cm. Values other than an increase of 0.2-
mS/cm can be used depending on properties of the sorbent
cartridge used or other factors such as dialysate prescription
or patient parameters. The end of the sulfate release phase
and the start of the second control phase can also be based
on dilution water changes and/or sorbent cartridge conduc-
tivity changes, or can be based on a fixed volume, such as
5 or 10 liters of dialysate. In the case of using sorbent
conductivity changes to determine the end of the sulfate
release phase, the sorbent conductivity delta can continue to
be monitored relative to the average plateau value and when
it 1ncreases to a value of 0.44-mS/cm above the plateau
value the sulfate release phase can be considered complete
and the pH value above the phase 1 preset value. Any of the
methods described for monitoring changes 1n sorbent car-
tridge effluent pH can also be used to determine 11 or when
sulfate release occurs.

An example of the control approach utilized a prototype
hemodialysis test system configured the same as FIG. 1,
with the addition of a pH sensor between the sorbent
cartridge and degasser. A simulated patient 18-liter patient
tank was connected to the dialyzer (Clearum HSI13) and
recirculated through inlet 103 and outlet 104 at a rate of
500-mL/min. The dialysate was recirculated at a flow rate of
600-mL/min through the dialyzer at inlet 106 and outlet 107.
The dialysate was controlled to a prescription composition
target of 145-mM sodium, 40-mM bicarbonate, 2-mM
potassium, 1.5-mM calcium and 0.375-mM magnesium.
The patient had a composition of 131-mM sodium, 34.1-mM
bicarbonate, 3.6-mM sulfate, 5-mM potassium, 0.4-mM
magnesium, 1.3-mM calcium and 33-mM urea. The sorbent
cartridge used contained activated carbon, urease, activated
alumina, zirconium phosphate and hydrous zirconium oxide.
A 200-minute simulated therapy was performed. FIG. 4
shows the sorbent outlet pH profile versus the cumulative
dialysate volume during the simulated therapy. The pH
stayed below 5 for the first 80-liters of dialysate and then
increased to 6.5 by the end of therapy at 120-liters of
dialysate. Also, shown 1n FIG. 4 1s the delta conductivity
across the sorbent cartridge calculated using equation 1.
Finally, the sulfate level 1n the dialysate 1s shown over the
course of therapy, where levels start to increase at 70-liters,
peak at 97-liters and then start to decrease. For this simu-
lated therapy, a plateau delta conductivity value of -2.59-
mS/cm was calculated by averaging the delta conductivity
from 60 to 65-liters. In order to determine when sulfate
release occurred, and adjust the SCS conductivity target, a
value of 0.2-mS/cm was used to compare to the plateau delta
condo value. Using this value, the sulfate release was
detected at 77-liters, which corresponds to a level of 1.5-mM
sulfate as shown 1n FIG. 4. In order to determine when the
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pH exceeded a preset value of 4.9, and switch to phase 2
control, a value of 0.44 was used to compare to the plateau
delta conductivity value. Using this value, a pH of 4.9 was
predicted to occur at 88-liters, compared to the measured pH
of 5.0 at 88-liters. The phase two control started at 88-liters
and the bicarbonate metering rate (1000-mM solution of
sodium bicarbonate shown as Q-Base in FIG. 1) over the
course of therapy 1s shown 1n FIG. 5, along with the sorbent
outlet pH profile. As shown in FIG. 5, the bicarbonate pump
rate steadily decreases after the start of phase 2 control due
to the increasing sorbent outlet pH and the increase of
bicarbonate at sorbent outlet, requiring less bicarbonate to
be metered in to meet the prescription of 40-mM bicarbon-
ate. The bicarbonate metering rate 1s relatively constant
during the low pH phase from O to 88-liters. FIG. 6 shows
the water pump metering rate (Q-H,O 1n FIG. 1) and sorbent
outlet pH profile versus dialysate volume. As can be seen, as
the pH starts to rise and the sulfate release starts to occur at
75-liters, the water metering starts to increase more rapidly.
This increased water metering rate could also be used to
predict when the sulfate release and preset pH value are
reached. FIG. 7 shows the degasser pump output along with
the sorbent outlet pH profile over the course of therapy.
When the pH starts to rise above 4.9, the degasser output %
decreases rapidly from about 50% to 40% when the pH
increases from about 4.9 to 35.5. This change in degasser
output could also be used to indicate when the preset pH
value has been exceeded. FIG. 8 shows the measured
dialysate sodium and bicarbonate levels along with the pH
profile over the course of therapy. The target sodium level of
145-mM and the target bicarbonate (HCO3) level of 40-mM
were achieved throughout therapy within 3% or better of
target. Even during the rapid pH increase out of the sorbent
cartridge starting at 83-liters, when the bicarbonate level
leaving the sorbent cartridge starts to increase.

One of skill 1in the art will understand the data used 1n
FIGS. 4-8 are from a simulated patient and provided for
illustrative purposes only. The same methods can be used
with any patient to accurately control the sodium and
bicarbonate content of the dialysate.

One skilled 1n the art will understand that various com-
binations and/or modifications and variations can be made in
the described systems and methods depending upon the
specific needs for operation. Various aspects disclosed
herein may be combined in different combinations than the
combinations specifically presented i1n the description and
accompanying drawings. Moreover, features illustrated or
described as being part of an aspect of the disclosure may be
used 1n the aspect of the disclosure, either alone or in
combination, or follow a preferred arrangement of one or
more of the described elements. Depending on the example,
certain acts or events of any of the processes or methods
described herein may be performed 1n a different sequence,
may be added, merged, or left out altogether (e.g., certain
described acts or events may not be necessary to carry out
the techniques). In addition, while certain aspects of this
disclosure are described as performed by a single module or
unmt for purposes of clarity, the techniques of this disclosure
may be performed by a combination of units or modules
associated with, for example, a medical device.

What 1s claimed 1s:

1. A system, comprising;

a dialysate flow path; the dialysate flow path fluidly
connectable to a dialysate inlet of a dialyzer and a
dialysate outlet of the dialyzer;

a sorbent cartridge in the dialysate flow path;
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a degasser 1n the dialysate tlow path downstream of the
sorbent cartridge;

a bicarbonate source fluidly connected to the dialysate
flow path;

a water source fluidly connected to the dialysate flow
path;

a first conductivity sensor downstream of the sorbent
cartridge; and

a control system; the control system programmed to
determine a pH of a flmd exiting the sorbent cartridge;
wherein:

while pH of the fluid exiting the sorbent cartridge 1s below

a preset pH, the control system 1s programmed to
control a sodium concentration in the tfluid based on a

sodium prescription and a conductivity measured by
the first conductivity sensor; and to control a bicarbon-
ate concentration in the fluid based on a bicarbonate
prescription; and

while pH of the fluid exiting the sorbent cartridge 1s above

a preset pH, the control system controls a sodium
concentration 1n the fluid based on a sodium prescrip-
tion and a conductivity measured by a second conduc-
tivity sensor upstream of the sorbent cartridge.

2. The system of claim 1, wherein the preset pH 1s about
4.8.

3. The system of claim 1, wherein the sorbent cartridge
includes zirconium phosphate at a low pH.

4. The system of claim 1, wherein while the pH of the
fluid exiting the sorbent cartridge 1s below the preset pH, the
control system 1s programmed to control the sodium con-
centration 1n the fluid by adding water from a water source
upstream of the sorbent cartridge to a target post-sorbent
conductivity setpoint.

5. The system of claim 1, wherein while the pH of the
fluid exiting the sorbent cartridge 1s below the preset pH, the
control system 1s programmed to control the bicarbonate
concentration in the fluid by adding bicarbonate from a
bicarbonate source upstream of the sorbent cartridge to a
target post-bicarbonate conductivity setpoint.

6. The system of claim 1, further comprising a hydro-
chloric acid source fluidly connected to the dialysate tlow
path upstream of the sorbent cartridge.
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7. The system of claim 1, further comprising at least one
infusate source downstream of the sorbent cartridge.

8. The system of claim 1, wherein the control system 1s
programmed to detect release of sulfate ions from the
sorbent cartridge.

9. The system of claim 8, wherein the control system 1s
programmed to dilute the fluid during the release of sulfate
101S.

10. The system of claim 1, wherein while the pH of the
fluid exiting the sorbent cartridge 1s above the preset pH, the
control system 1s programmed to control the sodium con-
centration in the fluid by adding water from a water source
upstream of the sorbent cartridge to a target pre-sorbent
conductivity setpoint.

11. The system of claim 10, wherein the target pre-sorbent
conductivity setpoint 1s a conductivity measured upstream of
the sorbent cartridge while the pH 1s below the preset pH.

12. The system of claim 10, wherein while the pH of the
fluid exiting the sorbent cartridge 1s above the preset pH, the
control system 1s programmed to control the bicarbonate
concentration in the fluid by adding bicarbonate to reach a
target post-bicarbonate conductivity setpoint.

13. The system of claim 12, wherein the target post-
bicarbonate conductivity setpoint is based on the sodium and
a bicarbonate prescription.

14. The system of claim 1, wherein the pH of the fluid
exiting the sorbent cartridge 1s measured with a pH sensor
downstream of the sorbent cartridge.

15. The system of claim 1, wherein the pH of the fluid
exiting the sorbent cartridge 1s measured based on changes
to a degasser output.

16. The system of claim 1, wherein the pH of the fluid
exiting the sorbent cartridge 1s measured based on a con-
ductivity change across the sorbent cartridge measured by
the first conductivity sensor and a second conductivity
sensor upstream of the sorbent cartridge.

17. The system of claim 4, wherein the pH of the fluid
exiting the sorbent cartridge 1s measured based on a volume
of the water added from the water source.

18. The system of claim 1, the control system pro-
grammed to 1solate the sorbent cartridge prior to determin-
ing the pH of the fluid exiting the sorbent cartridge.
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