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AUTOMATION METHOD OF AI-BASED
DIAGNOSTIC TECHNOLOGY FOR
EQUIPMENT APPLICATION

CROSS-REFERENCE(S) TO RELATED
APPLICATIONS

This application claims the benefit of priority to Korean
Patent Application No. 10-2021-0063610, filed on May 17,
2021 1n the Korean Intellectual Property Oflice, the entire

contents of which 1s incorporated herein by reference.

TECHNICAL FIELD

Exemplary embodiments of the present disclosure relate
to an automation method of artificial intelligence (Al)-based
diagnostic technology for searching an Al model architec-
ture from a type of big data collected 1n a vehicle, that 1s,
feature extraction ol sensor measurement values of noise
and vibration and a controller area network (CAN) signal,
and more particularly, to an automation method of Al-based
diagnostic technology for equipment application.

BACKGROUND

Automated machine learning (also referred to as an auto-
mated ML or an Auto ML) 1s a process for automating a
time-consuming and repetitive task of developing a machine
learning model. Since the existing machine learning model
development uses a lot of resources, generating and com-
paring tens of machine learning models require significant
domain knowledge and time. When the automated machine
learning 1s used, it 1s possible to reduce a time for acquiring
a machine learning model.

Recently, with the development of Al, technologies
related to diagnosis and control using the automated
machine learning 1n industries are rapidly developing. How-
ever, the current level of Al diagnosis and control technol-
ogy 1s generating diagnostic models that depend on indi-
vidual abilities based on the experience of personnel
involved 1n artificial intelligence. That 1s, open analysis 1s
being applied to extract the required features for big data
collected from vehicles.

For diagnostic performance, since the open analysis
method develops a diagnostic model while repeating a trial
and error process, there 1s a problem 1n that a lot of times and
ellorts are required and it 1s diflicult to determine whether
the developed diagnostic model 1s the best performing
model. Automation means the immplement of automated
machine learning or deep learning with the open Auto ML
cloud-based platform service.

Recently, attempts have been made towards automated
machine learning (also referred to as an automated ML or an
Auto ML). The automated machine learning 1s a process for
automating a time-consuming and repetitive task of devel-
oping a machine learning model. Since the existing machine
learning model development uses a lot of resources, gener-
ating and comparing tens of machine learning models
require significant domain knowledge and time. That 1s, in
order to eflectively get the most out of machine learning, a
team of highly trained data scientists should be mobilized to
intervene each operation and build, apply, and optimize a
model.

When the automated machine learning 1s used, 1t 1s
possible to reduce a time for acquiring a model. However, in
order to apply the automated machine learning, there are
barriers to enable the automated machine learning, such as
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2

collection and characterization of data, selection and appli-
cation of an algorithm, and training and adjustment.

SUMMARY OF PRESENT DISCLOSUR

L1

An exemplary embodiment of the present disclosure is
directed to a general-purpose automation method of artificial
intelligence (Al)-based diagnostic technology, which 1s
available to anyone and 1s capable of automatically perform-
ing feature extraction of a type of big data collected 1n a
vehicle, that 1s, sensor measurement values of noise and
vibration and a controller area network (CAN) signal, auto-
matically searching not only machine learning but also a
deep learning architecture, and automatically generating a
file which 1s applicable to equipment which i1s to be
mounted.

Other objects and advantages of the present disclosure can
be understood by the following description and become
apparent with reference to the embodiments of the present
disclosure. Also, 1t 1s obvious to those skilled in the art to
which the present disclosure pertains that the objects and
advantages of the present disclosure can be realized by the
means as claimed and combinations thereof.

In accordance with an exemplary embodiment of the
present disclosure, there 1s provided an automation method
of an artificial intelligence (Al)-based diagnostic technology
for equipment application, which includes recerving one or
more pieces of data mputted from among vibration data,
noise data, and controller area network (CAN) data which
are collected from a rotating body 1n a vehicle, a data input
processing operation of trimming the mmput one or more
pieces ol data, an operation of extracting features from the
trimmed one or more pieces of data, setting a setting value
of a hyper-parameter with respect to the one or more pieces
of data among the vibration data, the noise data, and the
CAN data, and generating a total of N models to include
both of machine learning (ML) and deep learning (DL) as N
individual models and generating ensemble prediction
model structures with respect to the N individual models. As
a parameter updating 1s being proceeded due to the hyper-
parameter so as to minimize values of cost functions of the
N individual models, a reward with respect to model accu-
racy performance 1s optimized and the ensemble prediction
model structures of the N individual models change.

In addition, 1n the data input processing operation, the

input data may be trimmed according to a problem fre-
quency band and a data time length.

In addition, the trimmed data may be classified into a
training dataset, a validation dataset, and a test dataset.

In addition, 1n the operation of extracting the features
from the trimmed data, one algorithm or two or more
algorithms for extraction of independent features may be
used according to a classification performance determina-
tion index, and an ensemble prediction model may be
selectively additionally applied.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram illustrating an overall configu-
ration of the present disclosure.

FIG. 2 1s a diagram 1llustrating an example of a hyper-
parameter.

FIG. 3 1s a diagram illustrating an individual artificial
intelligence (Al) model to which an ensemble prediction
model 1s applied.
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FIG. 4 1s a diagram 1illustrating a cost function of the
individual Al model to which the ensemble prediction model
of FIG. 3 1s applied.

FIG. 5 1s a diagram 1llustrating an exemplary embodiment
of storing a model, which 1s calculated through the present
disclosure, 1n a server and using the model.

FIG. 6 1s a diagram 1llustrating an exemplary embodiment
of storing a model, which 1s calculated through the present
disclosure, 1n portable equipment and using the model.

DESCRIPTION OF SPECIFIC

EMBODIMENTS

Exemplary embodiments of the present disclosure will be
described below 1n more detail with reference to the accom-
panying drawings, and these embodiments are examples of
the present disclosure and may be embodied 1n various other
different forms by those skilled 1n the art to which the
present disclosure pertains so that the present disclosure 1s
not limited to these embodiments.

The present disclosure 1s to extend and implement auto-

mated machine learming (Auto ML) to include deep learming,
(Auto ML/DL) and to realize automation through an opti-
mization process.

The automation may be roughly divided into three types
ol automation according to a calculation operation.

A first type of automation 1s feature engineering automa-
tion for selecting and encoding important features from data
so as to learn an artificial intelligence (Al) model. The
feature engineering automation 1s a process ol generating a
function, which aids to improve a function of an ML
algorithm, using domain information on data.

A second type of automation i1s automatically searching
for a human setting, that 1s, a hyper-parameter, required for
Al model learning.

There are various types of hyper-parameters required for
deep learning model learming. The hyper-parameters are
values, which may be set by a human, including, for
example, a learning rate for determining how many units for
updating parameters of a model are used, a mini-batch size
which 1s a unit for how much data 1s divided to learn the
data, a unit epoch for how many times to learn the data
repeatedly, momentum, the number of convolution filters,
and a stride. In many cases, deep learning frameworks
(TensorFlow, PyTorch, and the like) basically provide a
setting, which works well, as a default. However, when
learning 1s not performed well even with a default setting, an
experimental result 1s examined and then a hyper-parameter
should be slightly tuned.

A third type of automation is architecture search automa-
tion which searches a structure of an Al model 1n a more
ceilicient way. That 1s, the third type of automation 1s a
method of searching a hyper-parameter and an optimal
architecture. An architecture refers to a structure constituting
a model, and even when a human does not think how to
construct a model structure, 1t 1s possible to obtain an
optimal structure through an automatic search. When the
Auto ML 1s used, without the need for a human to think
about each structure and tune hyper-parameters, a machine
may decide the optimal environment 1n place of the human.
Generally, when the Auto ML 1s used, 1t i1s possible to
outperform a model devised by the human. This 1s because
the machine may try a setting or a structure of combinations
that the human has not thought of and the machine may not
be bound to the existing setting conventions or restrictions.

Each operation constituting the present disclosure will be
described with reference to FIG. 1.
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According to an exemplary embodiment of the present
disclosure, a controller (not shown) receives one or more
pieces of data mputted from among vibration data, noise
data, and controller area network (CAN) data which are
collected from a rotating body in a vehicle. Here, the rotating
body 1s a rotating body for power generation or power
transmission and means an engine, a transmission, a motor,
a reduction gear, or the like.

First, a data iput processing operation (S10) 1s per-
formed. In one embodiment of the present disclosure, only
an act of designating and allocating a data storage space 1n
advance 1s set by the human, and the other acts are auto-
mation operations according to a preset condition. It should
be noted that, in this field, securing the data storage space in
advance 1s only a simple human setting act such as login and
logout and 1s not a main content of the present disclosure.

Data trimming 1s automatically performed even 1mn a
trimming condition. That 1s, 1t may be divided 1nto the noise
or vibration data and the CAN data, which may be added to
cach of the noise data and the vibration data, according to
selection 1n a user interface area. The noise data, the
vibration data, and the CAN data are acquired from a noise
sensor, a vibration sensor, and CAN communication which
are 1nstalled 1n the rotating body 1n the vehicle. In the data
input processing operation (S10), data input processing for
trimming mput data 1s performed.

According to one exemplary embodiment of the present
disclosure, diagnosis types of the data acquired through the
sensors or the communication are classified aeeerdmg to
their properties. For example, data indicating On/Ofl or
True/False may become a simple diagnosis type having two
patterns, or the diagnosis type may be larger than two
diagnosis types. The diagnosis type of the data may be
automatically determined according to a preset rule from the
properties of the entire data, and the diagnosis type of the
data 1s classified into binary classification and multiple
classification according to the number of diagnosis types.
When the number of diagnosis types 1s two, 1t 1s binary
classification, and when the number of diagnosis types 1s
three or more, it 1s multiple classification. The data may be
organized such that the data i1s saved 1n a folder for each
type, which 1s generated 1n advance.

A reproduction mode and a data time may be commonly
defined 1n the noise data, the vibration data, and the CAN
data. In addition, a problem frequency band may be defined
with respect to the noise data and the vibration data. The
reproduction mode defines a mode that 1s repeated or
reproduced so as to minimize acquisition of repetitive data.
The data time defines a data acquisition time as a criterion
for collecting data when a problem type occurs. The repro-
duction mode or the data time, such as an engine speed and
a vehicle speed, 1s defined so that a scale of data acquisition
may be defined to be reduced. The problem frequency band
defines a time width or a length of time 1n which the problem
type occurs.

A data trimming condition performed in the data input
processing operation (S10) 1s a problem frequency band and
a length of a data time, and the data trimming 1s performed
on the acquired data by reflecting the data trimming condi-
tion.

The data collected from the rotating body 1n the vehicle
are classified 1nto a training dataset, a validation dataset, and
a test dataset for each diagnosis type according to the
criterion set 1n a pre-processor, and a processor receives the
training dataset, the validation dataset, and the test dataset to
perform a calculation operation for automation. A position
of the processor may be integrated with a sensor for dedi-
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catedly acquiring a dataset for an automation system or may
be separately placed 1n equipment located 1n equipment to
which a generative model 1s applied.

The training dataset 1s a dataset for learming a model. Only
the training dataset 1s used for learning the model.

The validation dataset 1s a dataset for validating the
learned model.

The test dataset 15 a dataset for evaluating performance of
the learned and validated model.

A concomitant feature of the validation dataset and the
test dataset 1s that the model 1s not updated, that 1s, trained,
through the datasets.

That 1s, the validation dataset updates, that 1s, does not
train, the model but 1s mvolved in the learning. The test
dataset 1s not involved in the learning at all and 1s used only
to evaluate “final performance.”

As described above, both the validation dataset and the
test dataset evaluate the learned model and do not train the
learned model.

According to one exemplary embodiment of the present
disclosure, a trimming format of each of the noise data and
the vibration data may be generated 1n two types of a wave
file format and an American Standard Code for Information
Interchange (ASCII) file format, and a trimming format of
the CAN data may be generated 1n two types of an ASCII file
format and a comma separated value (CSV) file format.

According to one exemplary embodiment of the present
disclosure, the data input processing operation (S10) may be
a semi-automation operation of classitying the data collected
from the vehicle for each type and trimming the data. A
difference between the automation operation and the semi-
automation operation depends on whether the human 1is
combined. Semi-Automation 1s performed 1n the processor
due to combined human-machine activity which 1s coordi-
nated by a computer controller. A semi-automated manufac-
turing process 1s coordinated by the computer controller
which usually transmits a message at a point of time when
an operation should be performed. The computer controller
typically waits for feedback indicating that a human-per-
formed operation 1s completed through a human-machine
interface or an electronic sensor distributed in the process.

In a semi-automated process, the computer controller may
directly control a machine or transmit a signal to a machine
distributed 1n the process. The above process 1s referred to
as the semi-automated manufacturing process in consider-
ation of a part which 1s set or determined by the human.

Second, an automated machine learning and deep learning
operation (S20) of automatically extracting and optimizing
features from input data 10 1s performed. That 1s, the
automated machine learming and deep learning operation
(S20) 1s an operation of extracting features from the trimmed
data. Although 1t 1s diflicult to classify data before the
extraction of the features from the mput data 10, 1t 1s easy
to classity the data for each type after the extraction of the
features from the input data 10. A signal processing algo-
rithm applied for feature extraction may include a signal
analysis technique used 1n Al diagnosis, and sound quality
metrics which 1s a noise, vibration, and harshness (NVH)
signal analysis technique expressing an auditory sense of the
human may also be included in the Al diagnosis.

A signal analysis technique used in the Al diagnosis
includes time analysis and frequency analysis. First, factors
related to time analysis include Max, a root mean square
(RMS), Varience, Skewness, Kurtosis, a Zero crossing rate,
and the like.

In one embodiment, a signal analysis technique for
extracting features through the frequency analysis includes
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6

Spectrogram, Mel filterbank, Harmonic Percussive separa-
tion, Spectral centroid, Spectral flatness, wavelets, and the
like.

In one embodiment, 1n a signal analysis technique which
includes an NVH signal analysis technique expressing
human hearing in Al diagnosis and which extracts features,
factors related to an algorithm relating to sound quality
analysis are as follows. That 1s, loudness 1s an 1dex 1ndi-
cating an intensity of a sound perceived by a human ear,
sharpness 1s an index indicating sharpness of the sound, and
fluctuate strength 1s an 1ndex indicating a subjective percep-
tion of slower amplitude modulation of the sound up to 20
Hz, tonality 1s a pitch 1n a sound spectrum obtained by
comparing a total level of the sound with a level of each
frequency component, impulsiveness 1s an impact strength
of the sound, and modulation means transformation of the
sound.

Data of about 20%, which i1s a predetermined fraction of
the training dataset, 1s used and an algorithm applied for
feature extraction 1s applied, thereby extracting features
from the mput data 10. When only a portion of the data 1s
used, a calculation time and a space may be saved by as
much as the remaiming portion of the used data.

The above exemplified algorithm applied for feature
extraction 1s applied to extract features from the input data
10, and reinforcement learning 1s applied to perform a
reward on the basis of a classification performance deter-
mination index. The purpose of the reinforcement learning 1s
to maximize the sum of the reward, that 1s, a cumulative
reward, received 1n the process.

The reward 1s an evaluation of how well the process 1s
performed. The classification performance determination
index 1s also referred to as a classification performance
evaluation index, and accuracy, a confusion matrix, preci-
sion, and a recall are frequently used as performance evalu-
ation indexes.

Therefore, the rewarding on the basis of the classification
performance evaluation index means evaluation of how well
a calculation 1s performed from classification performance
evaluation indexes such as accuracy, an error matrix, pre-
cision, and a recall.

To this end, feature performance to which only an inde-
pendent algorithm for extracting one feature 1s applied 1s
determined first. That 1s, 1t 1s possible to determine whether
extraction of feature performance 1s performed well even
using one independent feature extraction algorithm. Second,
it 1s possible to determine whether the extraction of feature
performance 1s performed well by combining two or more
independent feature extraction algorithms. In this case, a
weight value of 1:1 may be assigned to the two or more
independent feature extraction algorithms. Third, the two or
more independent feature extraction algorithms may be
combined to extract feature performance and 1t 1s possible to
determine whether the extraction of feature performance 1s
performed well by applying ensemble prediction. In this
case, the sum of weight values with respect to the combi-
nation of the two or more independent feature extraction
algorithms becomes 1.0. The ensemble prediction means
ensemble learning which 1s a learning scheme for deriving
more accurate prediction by using multiple algorithms and
combining predictions in Al

A Teature extraction scheme, which exhibits the highest
performance on the basis of the reward, 1s determined, and
the mput data 10 1s automatically saved 1n a folder for each
type by applying a scheme which extracts fixed features
from all of the training dataset, the test dataset, and the
validation dataset.
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Third, an operation of optimizing the hyper-parameter
(S30) 1s performed.

The operation of optimizing the hyper-parameter (S30) 1s
an operation of automating a setting of the hyper-parameter
among the performance factors of the diagnostic model. The
hyper-parameter 1s a factor required for model construction
and 1s exemplified in FIG. 2 as a parameter which aflects
performance. The operation of optimizing the hyper-param-
cter (S30) sets a setting value of a hyper-parameter with
respect to one or more pieces of data among the vibration
data, the noise data, and the CAN data.

Examples of the hyper-parameter include a batch size, a
maximum epoch (the maximum number of literation), a
learning rate, regularization parameters (a drop out rate, L1
& L2 regularization, and the like), weight & bias 1nitializa-
tion values, the number of layers, the number of nodes, the
number of filters as factors of the DL/ML models, a filter
s1ze, a stride, padding, a dilation rate, a pooling rate (ratio)
when various pooling techniques are applied, a type of an
activation function, and a weight value of each ensemble
model while an ensemble model 1s configured.

When data for each classification type generated in the
data mput processing operation (5S10) 1s recerved, the mput
data 10 may be automatically processed. A process for the
above description determines whether the input data 10 1s
the vibration data or the noise data first. In this case, whether
the mput data 10 1s the CAN data may be additionally
determined (step 1). Then, an appropriate hyper-parameter
setting value 1s applied to a type of the vibration data or the
noise data (additionally the CAN data) (step 2). Thereafter,
the hyper-parameter 1s updated while model optimization 1s
iteratively performed (step 3). A final model parameter
update 1s automatically performed through the model to
which the final hyper-parameter value 1s applied (step 4).
After that, accuracy of the final model 1s extracted through
the validation dataset of the model (step 5). Finally, the
model 1s verified through the test dataset (step 6).

In an operation of preparing the Auto ML after the data
preprocessing, when a frequency filtering technique and a
signal processing technique are applied and 1n an operation
of visualizing the preprocessed data (a basic analysis plot),
the hyper-parameter 1s automatically determined for each
task (automated setting hyper parameters). That 1s, for
binary classification or multiple classification with respect to
the noise data, the vibration data, and additionally the CAN
data, a batch size, a learning rate, and a drop out of the
hyper-parameter are automatically determined through the
above steps 1 to 6.

Fourth, an automated machine learning and deep learming
operation ol searching the model (S40) 1s performed.

First, a case in which a structure of the model consists of
only an individual model. As an example of the individual
model, a performance evaluation result for an individual
deep learning/machine learning models among various pre-
diction values of a support vector machine (SVM), a con-
volution network, a DensNet algorithm, and other algo-
rithms and a diagnostic result of the individual model may
be different from each other, even with respect to the same
input value, as True or False such as in the example (only the
DensNet algorithm 1s False). That 1s, there 1s a high prob-
ability in that the individual model exhibits the diagnosis
result as True or False with respect to the same mnput.

In order to overcome the above problem, it 1s necessary to
apply an ensemble scheme. FIG. 3 shows an example 1n
which the SVM, the convolution network, and other algo-
rithms are True denoted as “1” and the DensNet algorithm
1s False denoted as “2,” and when ensemble prediction 1s
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applied, the overall results become True of “1.” That 1s, the
performance of the individual models 1s deduced and com-
bined and the weight values are assigned so that one
integrated model may be obtained and the performance may
be improved. The DensNet algorithm functions 1n the over-
all models but assigns a low weight value. The reason 1s that
there 1s a possibility 1n that the accuracy of diagnosis for a
specific condition 1s 1ncreased.

The SVM, which 1s proposed as an example, 1s one among,
techniques for searching a group classification rule with
respect to a given sample group. A convolution neural
network (CNN) 1s one type network of multi-layer feed-
forward artificial neural networks used to analyze a visual
image. The SVM 1s a machine learning algorithm, and the
CNN and the DensNet algorithm are deep learning algo-
rithms.

In particular, the CNN 1s classified as a deep neural
network 1n the deep learning, and the DensNet algorithm,
which 1s mainly applied to visual image analysis, means a
dense convolution network. That 1s, both of the ML algo-
rithm and the DL algorithm are included in N individual
functions.

In the automated machine learning and deep learning
operation of searching the model (540), a total of N models
are generated to include both of the machine learning and the
deep learning as N individual models, and ensemble pre-
diction model structures are generated with respect to the N
individual models. Here, N may represent a natural number.

Fiith, model structure optimization operations (S30 and
S40) are performed.

The model structure optimization operations (S30 and
S40) are operations of generating a deep learning architec-
ture after setting hyper-parameters and are operations of
generating automatic model structures of the deep learning
and the machine learming. In the process of determining the
optimal hyper-parameter through tuning from the operation
of optimizing the hyper-parameter (530), 1t 1s possible to
determine an optimal model parameter through training of
the model, that 1s, through the training dataset. Conse-
quently, a weight parameter and a bias parameter are
updated for each layer.

The parameter updating proceeds such that a cost function
of the model 1s minimized from the calculation result in the
model. That 1s, as a result of model learning through forward
and backward calculations, an optimized model 1s estab-
lished with a value which is set 1n the automation system and
parameters are automatically updated due to the hyper-
parameters so that the model structure 1s changed.

Optimization of the hyper-parameters 1s performed by an
automation algorithm such as grid search, random search, or
random Latin hypercube.

When the hyper-parameters are optimized, 1t 1s very
helptful 1n 1mproving model performance. Grid search
receives a plurality of hyper-parameter values specified as a
list and evaluates model performance with respect to all
combinations, thereby searching a combination of the opti-
mal hyper-parameters. The grid search (lattice search) 1s a
search method of sequentially inputting values which may
be put into model hyper-parameters and then searching
hyper-parameters which exhibit the highest performance.
The grid search literally corresponds to a method of making
all cases 1mnto a table and searching all cases of the table,
whereas random search randomly enters hyper-parameter
values and then generates a model using hyper-parameters
exhibiting excellent values. The random Latin hypercube 1s
an algorithm for complementing the grid search and the
random search.
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According to the related art, the updating of the Auto ML
model and the hyper-parameters 1s performed by inputting
models and other setting values on the basis of developer’s
experience, but according to an exemplary embodiment of
the present disclosure, when the automatic model structure
1s generated, the automatic model structure 1s automatically
generated through an accuracy reward on the basis of the
validation dataset.

Sixth, cost function optimization operations (S350 and
S60) are performed. In FIG. 4, a mean square error (MSE),
cross entropy, a focal loss, and parameters of various other
diagnostic models are factors which aflect the performance
of the model, and all the parameters are updated in a
direction 1 which a value of a cost (loss) function 1is
minimized, that 1s, 1n a direction 1n which the loss function
1s optimized. That 1s, 1n the performance results of N cost
functions, performance of an individual cost function 1is
evaluated, and the result may be affected by True with a cost
(loss) of “1,” or by False with the cost (loss) of “2.” Thus,
when an ensemble cost function 1s applied to the perfor-
mance of the individual cost function, a weight value 1s
given to the result of the mndividual cost function so that 1t
1s possible to prevent an overfitting phenomenon, which
may occur when one cost function 1s applied, and to con-
figure a robust model.

The loss function represents an error with respect to a
correct answer as a number and, as being close to an
incorrect answer, the loss function yields a large value. In
contrast, as being close to the correct answer, the loss
function yields a small value. The most commonly used loss
functions are an MSE, a cross entropy error (CEE), and a
focal loss.

A performance improvement technique of the cost func-
tion 1s possible through individual performance verification
of three representative cost functions. In order to generate an
ensemble model comprised of the cost function, an automa-
tion algorithm may be applied. In this case, when perfor-
mance of the inference model 1s significantly aflected due to
a first-order individual cost function, it 1s required to apply
an ensemble algorithm to the cost function.

As the parameter updating 1s performed due to the hyper-

parameter so as to minimize a value of the cost function of

the N individual models, structures of the N individual
models, which constitute the ensemble prediction model
structure while a reward 1s optimized, are changed. Here, the
reward means a reward for model accuracy performance.
After the result of each of the N individual models 1s
compared with the result of applying the ensemble model

and then verification 1s performed on an accuracy output of
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repeated individual models may be randomly selected, and
a weight value 1n the ensemble prediction model may also be
randomly selected.

In summary, the mput data 10 1s collected by applying
input data measured in real-time through equipment and
pre-stored separate data (S10), a signal of the data input 10
from a data input unit 1s analyzed to extract features (S20),
hyper-parameters are set (S30), an Al 1s set (S30), a loss
function 1s derived (540), and the derived loss function 1s
mimmized to optimize an Al DL/ML structure (S50). A
circulation block of a reference numeral 40 refers to a
circulation block 40 that 1s automatically optimized while
the above process in which the AI DL/ML model 1s opti-
mized 1s repeatedly circulated.

Further, 1n the circulation block 40, the models generated
by the traiming dataset and the validation dataset are traimned
and verified, and accuracy of the diagnostic model, which 1s
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complicated 1n tramning and verification in the circulation
block 40 (S80), 1s diagnosed using a test dataset 30 classified
in the pre-processor (S90). If the diagnostic model 1s deter-
mined to be correct as the diagnosis results, a file capable of
executing a diagnosis technique may be generated (S100).
The entire process from the input data to the file generation

1s referred to as a diagnostic model generation block 20.

Retferring to FIG. 5, the diagnostic model of which the
features are automatically extracted in the diagnostic model
generation block 20 1s 1nstalled 1 a diagnostic device, that
1s, diagnostic equipment, and a diagnostic result may be
output using input data collected from data measured 1n an
actual vehicle. In this case, the diagnostic model of which
the features are automatically extracted in the diagnostic
model generation block 20 may be transmitted to a diag-
nostic device server which 1s prepared for the diagnostic
device. The input data collected from the data measured
from the actual vehicle i1s transmitted to the diagnostic
device server so that the diagnostic result may be received
from the diagnostic device server to be outputted.

Referring to FIG. 6, the diagnostic model of which the
features are automatically extracted in the diagnostic model
generation block 20 1s converted into a low level language
file, and the low level language file 1s extracted/distributed
and mounted on portable equipment. It 1s also possible to
directly output the diagnosis result in real time using the
portable equipment without transmitting the input data col-
lected from the data measured 1n the actual vehicle to the
diagnostic device server.

In other words, another objective of the present disclosure
1s to automatically generate an expert-level model result by
configuring the diagnosis result using basic soitware on the
basis of a low-level languages (C, C++, or JAVA) and
standardizing an input/output of the diagnosis result. That 1s,
it 1s possible to automatically set features suitable for a type
of pre-processed data and to generate products of which a
deep learning architecture i1s automatically designed. The
reason why a configuration of the basic software on the basis
of the low-level language 1s necessary 1s to configure the
standardized data input/output format to perform compiling
in the form of an applicable format and to allow generation
ol a portable application file (APK).

As an exemplary embodiment to which the above descrip-
tion 1s applied, the automation method of Al-based diagnos-
tic technology for equipment application, which 1s the
present disclosure, 1s operated 1n equipment of a develop-
ment part and may be applied 1n a server or cloud scheme.

As another exemplary embodiment, automatic implemen-
tation of the model optimization 1s the same, but the auto-
mation method 1s converted using the low-level language so
as to be directly applied to portable equipment instead of a
high-performance server. A complicated DL/ML model 1s
converted 1nto the low-level language, information succes-
sion with respect to the input signal and the output signal
with respect to the model result are defined, and an Al
diagnostic model library in the form of being operable 1n
Android and ISO environments, which are operating sys-
tems of the portable equipment, may be generated, distrib-
uted, and applied.

While the present disclosure has been described with
reference to the accompanying drawings, it will be apparent
to those skilled in the art that various changes and modifi-
cations can be made without departing from the spirit and
scope of the present disclosure without being limited to the
exemplary embodiments disclosed herein. Accordingly, 1t
should be noted that such alternations or modifications fall
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within the claims of the present disclosure, and the scope of
the present disclosure should be construed on the basis of the
appended claims.

What 1s claimed 1s:

1. An automation method of an artificial intelligence 5
(Al)-based diagnostic technology for equipment application,
the automation method comprising:

receiving one or more pieces of data inputted from among

vibration data, noise data, and controller area network
(CAN) data, which are collected from a rotating body
in a vehicle:

a data mput processing operation of trimming the input

one or more pieces ol data;

an operation of extracting features from the trimmed one

or more pieces of data;
setting a setting value of a hyper-parameter with respect
to the mput one or more pieces of data among the
vibration data, the noise data, and the CAN data; and

generating a total of N models to include both of machine
learning (ML) and deep learning (DL) as N individual
models and generating ensemble prediction model
structures with respect to the N 1ndividual models,

wherein, as a parameter updating 1s being proceeded due
to the hyper-parameter so as to mimmize values of cost
functions of the N individual models, a reward with
respect to model accuracy performance 1s optimized
and the ensemble prediction model structures of the N
individual models change.

2. The automation method of claim 1, wherein, 1n the data
input processing operation, the input one or more pieces of
data 1s trrmmed according to a problem frequency band and
a data time length.

3. The automation method of claim 2, wherein the
trimmed one or more pieces ol data 1s classified mnto a
training dataset, a validation dataset, and a test dataset.

4. The automation method of claim 3, wherein, in the
operation ol extracting, one algorithm or two or more
algorithms for extraction of independent features are used
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according to a classification performance determination
index, and an ensemble prediction model 1s selectively
additionally applied.
5. The automation method of claim 4, wherein:
when the two or more algorithms for extraction of the
independent features are used, each of the two or more
algorithms for extraction of the independent features
has a weight value of 1:1; and
when the ensemble prediction model 1s selectively addi-

tionally applied, a sum of the weight values 1s one.

6. The automation method of claim 1, wherein:

optimizing the hyper-parameter 1s performed by a gnd

search, a random search, or a random Latin hypercube
automation algorithm; and

as the hyper-parameter 1s updated, an Auto ML/DL model

structure 1s optimized.

7. The automation method of claim 6, wherein, when the
Auto ML/DL model structure, to which a final hyper-
parameter 1s applied, 1s optimized, model verification 1s
performed using a validation dataset, and evaluation of a
final model 1s performed using a test dataset.

8. The automation method of claim 7, wherein cost
functions of the N individual models are confirmed, and then
a robust model configuration 1s obtained by applying the
cost Tunctions of the N individual models to the ensemble
prediction model structures, respectively.

9. The automation method of claim 8, wherein a weight
value 1s assigned to an individual cost function constituting
a corresponding one of the cost functions applied to the
ensemble prediction model structures.

10. The automation method of claim 1, wherein the
rotating body 1s a rotating body for power generation or
power transmission.

11. An equipment to which the automation method of an
artificial intelligence (Al)-based diagnostic technology for
equipment application according to claim 1 1s applied.
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