12 United States Patent

Nakagami et al.

US011922579B2

(10) Patent No.: US 11,922,579 B2

(54) IMAGE PROCESSING APPARATUS AND
METHOD FOR IMAGE PROCESSING BY
DERIVING VOXEL AND MESH DATA TO
GENERATE POINT CLOUD DATA

(71) Applicant: SONY CORPORATION, Tokyo (JP)

(72) Inventors: Ohji Nakagami, Tokyo (JP); Koji
Yano, Tokyo (JP); Satoru Kuma,
Tokyo (IP); Tsuyoshi Kato, Kanagawa
(JP); Hirovyuki Yasuda, Saitama (JP)

(73) Assignee: SONY CORPORATION, Tokyo (JP)

*) Notice: Subject to any disclaimer, the term of this
J Y
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 18/086,027
(22) Filed: Dec. 21, 2022

(65) Prior Publication Data
US 2023/0126000 Al Apr. 27, 2023

Related U.S. Application Data

(63) Continuation of application No. 17/278,497, filed as
application No. PCT/JIP2019/036469 on Sep. 18,
2019, now Pat. No. 11,568,602.

(30) Foreign Application Priority Data
Oct. 2, 2018 (IP) oo, 2018-187482
Jun. 20, 2019 (IP) .o 2019-114627
(51) Imnt. CL
GO6T 17/20 (2006.01)
Go6T 9/00 (2006.01)
(Continued)

(52) U.S. CL

45) Date of Patent: Mar. 5, 2024
(38) Field of Classification Search
CPC GO6T 17/00; GO6T 17/20; GO6T 17/205;
GO6T 9/00; GO6T 9/001; GO6T 9/40;
(Continued)
(56) References Cited

U.S. PATENT DOCUMENTS

6,126,603 A 10/2000 Hatfield et al.
0,590,582 Bl 7/2003 Eo

(Continued)

FOREIGN PATENT DOCUMENTS

JP HO05-084638 A 4/1993
JP 2012-069762 A 4/2012
(Continued)

OTHER PUBLICATIONS

Baert, Jeroen, Ares Lagae, and Philip Dutre. “Out-of-core construc-
tion of sparse voxel octrees.” Proceedings of the 5th high-
performance graphics conference. 2013. (Year: 2013).*

(Continued)

Primary Examiner — Daniel F Hajnik

(74) Attorney, Agent, or Firm — Paratus Law Group,
PLLC

(57) ABSTRACT

There 1s provided an 1mage processing apparatus and an
image processing method that are capable of suppressing an
increase 1n loads when a point cloud 1s generated from a
mesh. Point cloud data 1s generated by positioning points at
intersection points between a surface of a mesh and vectors
cach including, as a start origin, position coordinates corre-
sponding to a specified resolution. For example, intersection
determination 1s performed between the surface of the mesh

CPC GO06T 17/205 (2013.01); GO6T 9/00 and each of the vectors, and 1n a case where the surface and
(2013.01); GO6T 9/001 (2013.01); GO6T 9/40 the vector are determined to intersect each other, the coor-
(2013.01); dinates of the intersection point are calculated. The present
(Continued) (Continued)
(' START DECODING PROCESSING)

ACQUIRE ElITSTREAM 3301

PERFORM LOSSLESS DE{UDING ON BITSTREAM 5302

CONSTRUCT Octree Aulrn RESTORE Voxel DATA 3303

RESTORE Mesh SHAlPE FROM Mesh DATA 5304

GENERATE Point clnuld FROM Mesh SHAPE 5305

DECODE Voxel DATA Awln GENERATE Point doud 5306

DEEDDElAttribute 5307

OUTPUT Fninlt cloud DATA 5308

i
(e)

US 11,922,579 B2
Page 2

disclosure can be applied to an 1mage processing apparatus,
clectronic equipment, an 1mage processing method, a pro-
gram, or the like.

24 Claims, 20 Drawing Sheets

(51) Int. CL
GO6T 9/40 (2006.01)
GO6T 17/00 (2006.01)
HO4N 19/70 (2014.01)
(52) U.S. CL
CPC oo GO6T 17/00 (2013.01); GO6T 17/20

(2013.01); HO4N 19/70 (2014.11); GO6T
2210/08 (2013.01); GO6T 2210/12 (2013.01):
GO6T 2210/21 (2013.01); GO6T 2210/56
(2013.01)

(58) Field of Classification Search
CPC GO6T 2210/08; GO6T 2210/12; GO6T
2210/21; GO6T 2210/56; HO4N 19/597;
HO4N 19/70; HO4N 19/96

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,173,616 B2* 2/2007 Boekhorst GO6T 15/06
382/128
8,502,818 Bl 8/2013 Mueller-Fischer
10,825,244 Bl 11/2020 Vorobyov et al.
2005/0195191 Al 9/2005 Lee
2007/0206006 Al 9/2007 Lee et al.
2008/0133632 Al 6/2008 Kim et al.
2011/0029329 Al 2/2011 Schweizer et al.
2012/0141949 Al1* 6/2012 Bodony GO1B 11/25
600/407

2013/0169638 Al 7/2013 Carbonera et al.
2014/0300595 A1 10/2014 Bakalash
2016/0125577 Al 5/2016 Wu et al.
2017/0109462 Al 4/2017 Palka et al.
2017/0206231 Al 7/2017 Binder et al.
2017/0330367 Al 11/2017 Chang et al.
2018/0240281 Al 8/2018 Vincelette
2018/0268570 Al 9/2018 Budagav et al.

FOREIGN PATENT DOCUMENTS

JP 2014-002696 A 1/2014
JP 2016-184245 A 10/2016
WO WO 03/031005 A2 4/2003

OTHER PUBLICATTIONS

Mekuria et al., Design, Implementation and Evaluation of a Point
Cloud Codec for Tele-Immersive Video, IEEE Transactions on

Circuits and Systems for Video Technology, Jan. 2016, pp. 1-14,

IEEE.

Nakagamu et al., Second Working Draft for PCC Categories 1, 3,
International Organization for Standardization, ISO/IEC JTC1/SC
29/WG 11, Coding of Moving Pictures and Audio, Apr. 2018, pp.
1-39, San Diego, US.

Mammou et al., PCC Test Model Category 13 v3, International
Organisation for Standardisation ISO/IEC JTC1/SC29/WG11, Jul.
2018, pp. 1-18, Ljubljana, Slovenia.

Chou et al., Point Cloud Compression Test Model for Category 1
(Nov. 23 version), International Organisation for Standardisation
ISO/IEC JTCL/SC29/WGI11, Oct. 2017, pp. 1-18, Macau.
Schwarz et al., Emerging MPEG Standards for Point Cloud Com-
pression, IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, Mar. 2019, pp. 133-148, vol. 9, No. 1, IEEE.

Berge et al., Generation and VR Visualization of 3D Point Clouds
for Drone Target Validation Assisted by an Operator, 8th Computer

Science and Electronic Engineering Conference (CEEC), 2016, pp.
66-70, IEEE.

* cited by examiner

U.S. Patent ar. 5, 2024 Sheet 1 of 20 US 11,922,579 B2

(Related Art)
FIG.1

US 11,922,579 B2

u._.v;w aL

—
-
T
0 00 -
8 AN N AN NS |
e SO
e __
) | AR A AN AR
| MM
: Doz I
X /
v D .
\f
-
o~
>

“ ‘IUIAmIIl|

¥

U.S. Patent

¢ 914

U.S. Patent Mar. 5, 2024 Sheet 3 of 20 US 11,922,579 B2

vZ
v

INTERSECTION
POINT P

ray

edge?

edgl

o
-

FIG.3

(o’
g

US 11,922,579 B2

L1

&
e NOLLO3S
N 'ONLLLIS ¥OLD3A
5
NOLLYWYO4NI ¥OLD3IA

. .
= NOLLO3S NOILLD3S
. . 'NOILD3S LNdLNO —— ONISSID0Yd | ONINIWY3L3C
X viva | SALYNIQYO0D | AWIIIXNY | SILYNIQYOOD | NOLLOISYIINI | VLVQ USok
5 PNOP JUI0¢ INIOd INIOd ._

vl NOLLOISYHILN] el NOLLOISHILNI Al

v Ol

U.S. Patent

U.S. Patent Mar. 5, 2024 Sheet 5 of 20 US 11,922,579 B2

" START POINT CLOUD GENERATION PROCESSING
ACOUIRE Mesh DATA 5101
SET VECTOR INCLUDING, AS START ORIGIN, S102

POSITION COORDINATES CORRESPONDING
TO SPECIFIED Voxel RESOLUTION

PERFORM INTERSECTION DETERMINATION BETWEEN VECTOR AND Mesh 5103

CALCULATE COORDINATE VALUES OF INTERSECTION POINTS [104
DELETE OVERLAPPING INTERSECTION POINTS 5100
PROCESS INTERSECTION POINTS OUTSIDE Bounding box | 100

OUTPUT INTERSECTION POINTS AS Point cloud DATA S107

END

US 11,922,579 B2

Sheet 6 of 20

Mar. 5, 2024

U.S. Patent

]

0¢

9 9Ol

U.S. Patent Mar. 5, 2024 Sheet 7 of 20 US 11,922,579 B2

o
T
N

FIG. 7/

U.S. Patent Mar. 5, 2024 Sheet 8 of 20 US 11,922,579 B2

US 11,922,579 B2

NOILJ4S

< INIAOO4d
~ VAR€ 21Ny
» PNOJD JUI0d
=N g9le
N
&
Yol NOLLISS
- INTUOLSTY
> m%fm SOl

cle

U.S. Patent

NOILOJS

IONIQOO4C
IBXON

Glg

NOILO3S

IONICQ0I4d
321100

CLE

NOILOAS

ONILVHEANSD
pNOJD JUI0d

143>

NOILO3S
ONIA0D4d
55315501

L1E

Gt
(¥

WVZdLS1I8

6 DI

U.S. Patent Mar. 5, 2024 Sheet 10 of 20 US 11,922,579 B2

FIG.10
ACQUIRE BITSTREAM 5301
PERFORM LOSSLESS DECODING ON BITSTREAM 5302
CONSTRUCT Octree AN RESTORE Voxel DATA 5303
RESTORE Mesh SHAPE FROM Mesh DATA 5304
| GENERwTEPomtcud FROMMeshSHAPE | 390
DECODE Voxel DATA AND GENERATE Point clouc 5306
DECODE ttribute 5307
OUTPUT Point dloud DATA 5308

END

@\
o0
m., 00§
m., el w
= 19lauejed apoous NOILD3S ONIQ0D3a Andwoas
v 9. |

NOILD3S | NOLLDAS NOILD3S - NOILD3S | | NOILD3S

ONIOD (ONIQ0D3A fe—{ ONLLVYINID | ONIMOLSTY f=— ONIQ0DAQ

ANALNY | | [9XOA pNoj Julod | 3dVHS YS9 | J9IP0
S P1g peS £ES 265 1€
& .
= NOILLD3S
3 ._ - ONLLYYINID
= WYFHLSLIE | WVIHISLIE

G1G ¢l3
3 NOILD3S ONIQ0J Aigawioa)
—
g
o NOILD3S NOILD3S NOILD3S NOILD3S
= 9NIQ0D ONLLYYINTD ONLLYYINTD ONILYYINID
> SSF1SS0T USOIA 391100 JOXON V1vQ
_ - pNo|D JuIod
£2s 225 125 118G

~
=
m la1sue.ied spoous
o
m FT D14

U.S. Patent Mar. 5, 2024 Sheet 12 of 20 US 11,922,579 B2

FIG.12
~ ACQUIRE Point cloud DATA T |S501
(GINERATEVowlDATA P04
GENERATE Octree ' $503
GETs - $504

PERFORM LOSSLESS CODING ON Mesh DATA TO GENERATE CODED DATA OF Geometry [S209

CONSTRUCT Octree AN RESTORE Voxel DATA 5506

RESTORE Mesh SHAPE FROM Mesh DATA o So07/

[GENERATE Point cloud FROM Mesh SHAPE 75508
DECODE Voxe DATA AD GENERATE Pt dowd 5909

CODE ribute SH510

GENERATE BITSTREAM Soll

OUTPUT BITSTREAM [s912

END

US 11,922,579 B2

¢03 709 ¥ ¢=qo
y = (0] OL INFTVAINOT ¥09
009 — { 0L INTYAINO3 009~ \ .
2
: t‘
-_‘.ﬁlm,, —O@ _ [t
= dnos .41 9911900

¢l Old

U.S. Patent

US 11,922,579 B2

Sheet 14 of 20

Mar. 5, 2024

U.S. Patent

0

10

@ _

9

Mmoo B MY v

W WL WA WNF .

¢09

A A AV A o

L

““ﬂ“ﬂ“hﬂﬂﬂﬂ“

¢09

Al e e A R ik

W WA A W e W

Lo I

o

mmmmgpmmm e T T e T

FMHHHH?MMMMMH

E I I R

WG W DN e

L R

P1 DI

US 11,922,579 B2

Sheet 15 of 20

Mar. 5, 2024

U.S. Patent

¢09

I D R H

pr Ml el A Fede SR At bl N e e b LU Ay Y el v Al aW U A PR e e e

e

Lot

A
3
_ ;
: ' 1
_ _ :
g
|

109

ST 'OI4

U.S. Patent Mar. 5, 2024 Sheet 16 of 20 US 11,922,579 B2

BRNEF AN aehilh AR

- T T
NeEEEEEEE
O
TN
N9
RS a4 %8

e
NS> 4ARE

et AR L

Wﬂfﬂ“ﬂﬁ

W e whe e
ERTT QTP ST TR Ty I TLRRT FTRRT TV g TS g T

HAE ARA MR A A

FIG.16

U.S. Patent Mar. 5, 2024 Sheet 17 of 20 US 11,922,579 B2

NPARNEEEE

COT
=TT
- Nelel ot
NP
HENOSAF%E
2Tt
C>Ilhl“Il

LD - [QO

FIG.17

US 11,922,579 B2

Sheet 18 of 20

Mar. 5, 2024

U.S. Patent

¢09

€09

S I
|
|
!
\
|

L2

119

M A Al PNf ke g Aeh e O I I

Hﬁgﬂm“ﬂ;ﬂn e W ME el T

709+

L I U L L Wy e B W e

109

g1 914

U.S. Patent Mar. 5, 2024 Sheet 19 of 20 US 11,922,579 B2

FIG.19

START POINT CLOUD GENERATION PROCESSING

ACQUIRE Mesh DATA S601

SET VECTOR INCLUDING, AS START ORIGIN, 602
POSITION COORDINATES CORRESPONDING
TO SPECIFIED RESOLUTION
PERFORM INTERSECTION DETERMINATION BETWEEN VECTOR AND Mesh [©0U3
CALCULATE COORDINATE VALUES OF INTERSECTION PoINTs |S004
DELETE OVERLAPPING INTERSECTION POINTS 5609
PROCESS INTERSECTION POINTS OUTSIDE Bounding box ~ [90U0

OUTPUT INTERSECTION POINTS AS Point cloud DATA 5607

END

om\m

US 11,922,579 B2

1 6 WNICIW TWAOWIY
V16 clLo ¢lo 11O

~ .) .)) §
- ClL6 2 AT NOILD3S NOILD3S NOLLD3S NOLLO3S
S NOLLYDINNIWIWOD JOVI0LS INdLNO | LNdNI
| .

OL6 JOV-H3LINI 1Nd.LNO/LNdNI
3 _ ﬁ
~ ¥
o
~ _ _
> 706 _

wvd | [wos | [ndo

06 206 106

0C 9OIld

U.S. Patent

US 11,922,579 B2

1

IMAGE PROCESSING APPARATUS AND

METHOD FOR IMAGE PROCESSING BY

DERIVING VOXEL AND MESH DATA TO
GENERATE POINT CLOUD DATA

CROSS REFERENCE TO PRIOR APPLICATION

This application 1s a continuation of U.S. patent applica-

tion Ser. No. 17/278,497 (filed on Mar. 22, 2021), which 1s
a National Stage Patent Application of PCT International
Patent Application No. PCT/JP2019/036469 (filed on Sep.
18, 2019) under 35 U.S.C. § 371, which claims priority to
Japanese Patent Application Nos. 2018-187482 (filed on
Oct. 2, 2018) and 2019-114627 (filed on Jun. 20, 2019),
which are all hereby incorporated by reference in their
entirety.

TECHNICAL FIELD

The present disclosure relates to an 1mage processing
apparatus and an 1image processing method, and 1n particular
to an 1mage processing apparatus and an image processing,
method that are capable of suppressing an increase 1 loads
when a point cloud i1s generated from a mesh.

BACKGROUND ART

In the related art, for example, coding with an Octree 1s
available as a method for coding 3D data representative of
a three-dimensional structure such as a point cloud (for
example, see NPL 1).

In recent years, there has been a proposal that, after a
target 3D object 1s voxelized, coding 1s performed by using
a combination of Octree coding and mesh coding (ITriangle
soup) (see, for example, NPL 2).

CITATION LIST
Non Patent Literature

[INPL 1]}

R. Mekuria, Student Member IEEE, K. Blom, P. Cesar.,
Member, IEEE, “Design, implementation and Evaluation of
a Point Cloud Codec for Tele-Immersive Video,” tcsvt_pa-
per_submitted_february.pdf
[NPL 2]

Ohj1 Nakagami, Phil Chou., raja Krivokuca, Khaled
Mammou, Robert Cohen, Vladyslav Zakharchenko, Gaelle
Martin-Cocher, “Second Working Drait for PCC Categories
1, 3,7 ISO/IEC JTC1/SC29/WG11, MPEG 2018/N17533,
Apnl 2018, San Diego, US

SUMMARY
Technical Problem

However, 1n known methods, when a point cloud 1s
generated from the mesh, points are densely sampled on
surfaces of the mesh to generate a high-density point cloud,
and subsequently, the point cloud 1s resampled 1nto voxel
data with a resolution comparable with the resolution of
input. This leads to high throughput and a large amount of
data to be processed, and loads may be increased when the
point cloud 1s generated from the mesh.

In view of such circumstances, an object of the present
disclosure 1s to enable suppression of an increase 1s loads
when the point cloud 1s generated from the mesh.

10

15

20

25

30

35

40

45

50

55

60

65

2

Solution to Problem

An 1mage processing apparatus according to an aspect of
the present technique 1s an i1mage processing apparatus
including a point cloud generating section that generates
point cloud data by positioming a point at an intersection
point between a surface of a mesh and a vector including, as
a start origin, position coordinates corresponding to a speci-
fied resolution.

An 1mage processing method according to an aspect of the
present technique 1s an 1mage processing method including
generating point cloud data by positioning a point at an
intersection point between a surface of a mesh and a vector
including, as a start origin, position coordinates correspond-
ing to a specified resolution.

In the 1mage processing apparatus and the image process-
ing method according to the aspect of the present technique,
the point cloud data 1s generated by positioning the point at
the 1ntersection point between the surface of the mesh and
the vector including, as the start origin, the position coor-
dinates corresponding to the specified resolution.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 illustrates diagrams of processing for generating a
point cloud from a mesh.

FIG. 2 1s a diagram 1illustrating processing for generating
the point cloud from the mesh.

FIG. 3 1s a diagram 1llustrating an example of a manner
in which intersection points are calculated.

FIG. 4 1s a block diagram illustrating an example of a
main configuration of a point cloud generating apparatus.

FIG. 5 1s a flowchart 1llustrating an example of a flow of
point cloud generation processing.

FIG. 6 1s a diagram 1illustrating an example of a manner
in which intersection points are derived.

FIG. 7 1s a diagram 1illustrating an example of a manner
in which 1ntersection points are derived.

FIG. 8 1s a diagram 1illustrating an example of a manner
in which intersection points are derived.

FIG. 9 1s a block diagram illustrating an example of a
main configuration of a decoding apparatus.

FIG. 10 1s a flowchart 1llustrating an example of a flow of
decoding processing.

FIG. 11 1s a block diagram illustrating an example of a
main configuration of a coding apparatus.

FIG. 12 1s a flowchart illustrating an example of a tlow of
coding processing.

FIG. 13 1s a diagram 1illustrating an example of a manner
in which a Triangle soup 1s made scalable.

FIG. 14 1s a diagram 1illustrating an example of a manner
in which points are generated.

FIG. 15 1s a diagram 1llustrating an example of a manner
in which points are generated.

FIG. 16 1s a diagram 1llustrating an example of a manner
in which points are generated.

FIG. 17 1s a diagram 1illustrating an example of a manner
in which points are generated.

FIG. 18 1s a diagram 1illustrating an example of a manner
in which points are generated.

FIG. 19 1s a flowchart illustrating an example of a tlow of
point cloud generation processing.

FIG. 20 1s a block diagram illustrating an example of a
main configuration of a computer.

DESCRIPTION OF EMBODIMENTS

Modes for carrying out the present disclosure (hereinafter
referred to as embodiments) will be described below. Note
that the description 1s given 1n the following order.

US 11,922,579 B2

3

1. Generation of Point Cloud

2. First Embodiment (Point Cloud Generating Apparatus)
3. Second Embodiment (Decoding Apparatus)

4. Third Embodiment (Coding Apparatus)

5. Fourth Embodiment (Making Triangle Soup Scalable)
6. Supplementary Feature

1. Generation of Point Cloud

<Documents and the Like Supporting Techmical Contents
and Terms>

The scope disclosed 1n the present disclosure includes, as
well as contents described in the embodiments, contents
disclosed 1n the following non-patent literature that were

known at the time of filing the application.
NPL 1: (described above)

NFL 2: (described above)
NPL 3: TELECOMMUNICATION STANDARDIZA-
TION SECTOR OF ITU (International Telecommunication
Union), “Advanced video coding for generic audiovisual
services,” H.264, April 2017

NPL 4: TELECOMMUNICATION STANDARDIZA-
TION SECTOR OF ITU (International Telecommunication
Union), “High efliciency video coding,” H.2635, December
2016

NPL 5: Jianle Chen, Elena Alshina, Gary J. Sullivan,
Jens-Rainer, Jill Boyce, “Algorithm Description of Joint
Exploration Test Model 4,” JVET-G1001_v1, Joimnt Video
Exploration Team (JVET) of ITU-T SG 16 WP 3 and
ISO/IEC JTC 1/8C 29/WG 11 7th Meeting: Torino, IT,
13-21 July 2017

In other words, the contents described in the non-patent
literature listed above constitute grounds for determination
of support requirements. For example, a Quad-Tree Block
Structure described 1n NPL 4 and a QTBT (Quad Tree Plus
Binary Tree) Block Structure described in NPL 5 are
intended to be within the disclosure range of the present
technique and to satisty support requirements 1n claims even
in a case where the embodiments include no description of
the structures. Similarly, technical terms such as parsing,
syntax, and semantics are itended to be within the disclo-
sure range of the present techmque and to satisfy support
requirements 1 claims even in a case where the embodi-
ments includes no description of the terms.
<Pomt Cloud>

In the related art, 3D data such as a point cloud and a mesh
has been available. Specifically, the point cloud represents a
three-dimensional structure by using position information,
attribute information, and the like regarding a point group,
and the mesh includes vertexes, edges, and surfaces and
defines a three-dimensional shape by using polygonal rep-
resentation.

For example, 1n a case of the point cloud, a three-
dimensional structure (an object in a three-dimensional
shape) 1s represented as a set of a large number of points
(point group). In other words, the data 1n the point cloud
(hereinafter also referred to as point cloud data) includes
position information and attribute information (for example,
colors and the like) regarding each of the points of the point
group. Thus, the data structure 1s relatively simple, and a
sufliciently large number of points are used to allow an
optional three-dimensional structure to be represented with
a suilicient accuracy.
<Quantization of Position Information Using Voxels>

Such point cloud data involves a relatively large amount
of data, and thus, a coding method using voxels has been
contrived for compression of the amount of data resulting

10

15

20

25

30

35

40

45

50

55

60

65

4

from coding and the like. The voxels are three-dimensional
regions for quantization of position information regarding an
object to be coded.

In other words, a three-dimensional region containing a
point cloud i1s split into small three-dimensional regions
referred to as voxels, and for each of the voxels, whether or
not points are contained 1n the voxel 1s indicated. This causes
the position of each point to be quantized in units of voxels.
Consequently, by converting point cloud data into such data
regarding voxels (also referred to as voxel data), an increase
in the amount of information can be suppressed (typically
the amount of information can be reduced).
<Octree>

Further, construction of an Octree using such voxel data
has been contrived. The Octree corresponds to a tree struc-
ture mnto which the voxel data 1s formed. The value of each
bit 1n the lowermost node of the Octree 1ndicates whether or
not points are present in each voxel. For example, the value
“1” 1indicates a voxel containing points, and the value “0”
indicates a voxel containing no points. In the Octree, one
node corresponds to eight voxels. In other words, each node
of the Octree includes &8-bit data, and the 8 bits indicate
whether or not points are present i1n the eight voxels.

An upper node in the Octree indicates whether or not
points are present in one region into which eight voxels
corresponding to the lower nodes belonging to the upper
node are organmized. In other words, organizing information
regarding the voxels for the lower nodes generates the upper
node. Note that, 1n a case where nodes have a value of “0,”
that 1s, 1n a case where none of the corresponding eight
voxels contain points, the nodes are deleted.

This allows construction of a tree structure (Octree)
including nodes with a value not being “0.” In other words,
the Octree can indicate whether or not points are present in
voxels with different resolutions. Consequently, 1n a case
where voxel data 1s formed into an Octree and the Octree 1s
coded, then, during decoding, voxel data with a variety of
resolutions can be more easily restored. In other words,
scalability of the voxels can be more easily achieved.

Additionally, omission of nodes with the value “0” as
described above enables a reduction 1n the resolution of
voxels 1 regions where no points are present, thus allowing
further suppression of an increase i the amount of infor-
mation (typically allowing a reduction in the amount of
information).
<Combination of Octree and Mesh>

In recent years, there has been a proposal that, after a
target 3D object 1s voxelized, coding 1s performed by using
a combination of Octree coding and mesh coding (Triangle
soup), as described in, for example, NPL 2.

For example, as 1llustrated in A of FIG. 1, Octree data 1s
decoded to generate voxel data. In the example 1n A of FIG.
1, avoxel 11-1, a voxel 11-2, and a voxel 11-3 are generated.

Then, as illustrated 1n, for example, B of FIG. 1, a mesh
shape (that 1s, a surface of the mesh) 1s restored from the
voxel data. In the example 1n B of FIG. 1, a surface 12 of the
mesh 1s restored on the basis of the voxel 11-1, the voxel
11-2, and the voxel 11-3.

Then, as i1llustrated 1n, for example, C of FIG. 1, points 13
are positioned 1n the surface 12 of the mesh with a resolution
of 1/(2*blockwdth). Note that blockwidth indicates the
longest side of a bounding box 1ncluding a mesh.

Then, as illustrated 1n, for example, D of FIG. 1, the points
13 are re-voxelized with a specified resolution d. At that
time, mesh data (surface 12 and the like) 1s removed. In
other words, when point cloud data with a desired resolution
1s generated from mesh data, sampling 1s performed so as to

US 11,922,579 B2

S

reduce the resolution of the points 13 (the number of points)
temporarily sampled with a high resolution.

However, such a method needs to perform sampling
twice, involving redundant processing. Additionally, a high-
density point cloud 1s sampled, leading to an increased
amount of data. Thus, loads may be increased when a point
cloud 1s generated from the mesh. Consequently, a process-
ing time may be extended, and the use of resources such as
memories may be increased.
<Control of Resolution of Point Cloud>

Thus, by utilizing the fact 1n which an output point cloud
has the same resolution as the resolution of a voxelized input
point cloud, the number of voxel determinations 1s limited to
allow a point cloud to be generated at high speed.

More specifically, point cloud data 1s generated by posi-
tioning points at intersection points between a surface of a
mesh and vectors each including, as a start origin, position
coordinates corresponding to a specified resolution.

For example, an 1mage processing apparatus includes a
point cloud generating section that generates point cloud
data by positioning points at intersection points between a
surface of a mesh and vectors each including, as a start
origin, position coordinates corresponding to a specified
resolution.

This allows voxel data equivalent to an input resolution to
be generated from a mesh by a single step of processing.
Consequently, a possible increase in loads can be suppressed
when a point cloud 1s generated from a mesh. Thus, an
extended processing time and an 1ncreased use of resources
such as memories can be suppressed. Typically, the process-
ing time can be shortened, and the use of resources such as
memories can be reduced. Additionally, a point cloud can be
generated at higher speed.
<Derivation of Point Cloud>

Next, a method for deriving a point cloud will be
described more specifically. First, as illustrated in FIG. 2,
vectors Vi that have the same direction and length as those
of the sides of a bounding box including data to be coded are
generated at an interval k*d. In FIG. 2, for a surface 22 of
a mesh present 1in the bounding box. 21, the vectors Vi as
illustrated by arrows 23 are set. “d” denotes a quantization
s1ze used when the bounding box 1s voxelized. “K” 1s any
natural number. In other words, the vectors Vi are set each
of which includes, as a start origin, position coordinates
corresponding to the specified resolution.

Then, intersection determination 1s performed between
the decoded surface 22 of the mesh (that 1s, a triangular
mesh) and the set vectors Vi (arrow 23). In a case where the
vectors V1 intersect the triangular surface 22, the coordinate
values of intersection points 24 between the vectors Vi1 and
the triangular surface 22 are calculated.

Note that, as the directions of the vectors Vi, two direc-
tions corresponding to positive and negative directions can
be set for each of an x-direction, a y-direction, and a
z-direction that are perpendicular to one another (directions
parallel to the respective sides of the bounding box). In other
words, intersection determination may be performed on the
respective vectors Vi extending in the six types of directions.
In such a manner, 1ntersection determination 1s performed 1n
more directions, allowing intersection points to be more
reliably detected.

Note that the start point of each of the vectors Vi may be
limited within the range of three vertexes of a triangular
mesh. This enables a reduction 1n the number of vectors Vi
to be processed, allowing suppression of a possible increase
in loads (for example, allowing processing to be executed at
higher speed).

5

10

15

20

25

30

35

40

45

50

55

60

65

6

Additionally, as auxiliary processing, in a case where the
coordinate values of intersection points overlap between
different vectors or meshes, all overlapping points may be
deleted except one. Removing overlapping points 1n such a
manner allows an 1ncrease 1n unnecessary processing and in
loads to be suppressed (for example, enables faster process-
ng).

Additionally, as auxiliary processing, in a case where the
coordinate values of as intersection point are outside the
bounding box, clip processing may be used to clip (move)
the position of the intersection point into the bounding box.
Alternatively, the intersection point may be deleted.

Points with coordinate values determined as described
above are output as decode results. In other words, points are
positioned at the determined coordinate values. This allows
voxel data equivalent to an mput resolution to be generated
from a mesh by a single step of processing. Consequently, a
possible increase 1n loads can be suppressed when a point
cloud is generated from a mesh.
<Intersection Determination and Calculation of Coordinate
Values>

Note that methods for intersection determination and
calculation of the coordinate values are optional. For
example, Cramer’s rule may be used for determination as
illustrated 1n FI1G. 3. For example, assuming that “P” denotes
the coordinates of an intersection point, “origin” denotes the
coordinates of ray, “ray” denotes a direction vector, and “t”
denotes a scalar value, an intersection point passing through
ray 1s represented as follows by using a linear expression.

P=origin+ray*¢

Additionally, “vo” denotes vertex coordinates of a tri-
angle, “edgel” denotes a vector obtained by subtracting
coordinates v0 from coordinates vl, and “edge2” denotes a
vector similarly obtained by subtracting coordinates v0 from
coordinates v2. A point P 1s represented by u (scalar value)
from v0 1n a vector edgel direction, and an intersection point
on a triangle 1s expressed as follows by using the vectors of
the edges.

P=edgel *u+edge2 *v

Joining the two equations results 1n simultaneous equa-
tions.

origin+ray*f=v0+edgel *u+edge2 *v

The equations can be organized and expressed as follows.
edgel *u+edge2 *v-ray*r=origin-v0

As described above, a simultaneous linear equation with
three unknowns 1s obtained and can thus be automatically
calculated as a determinant by using the Cramer’s rule.

2. First Embodiment

<Point Cloud Generating Apparatus>

Next, a configuration will be described that implements
processing as described above. FIG. 4 1s a block diagram
illustrating an example of a configuration of a point cloud
generating apparatus as an aspect ol an 1mage processing
apparatus to which the present technique 1s applied. A point
cloud generating apparatus 100 illustrated in FIG. 4 1s an
apparatus that generates a point cloud from a mesh as
described 1 <1. Generation of Point Cloud>.

Note that FIG. 4 illustrates main components such as
processing sections and data flows and that not all the
components of the point cloud generating apparatus 100 are
illustrated 1 FIG. 4. In other words, in the point cloud

US 11,922,579 B2

7

generating apparatus 100, processing sections may be pres-
ent that are not illustrated as blocks 1n FIG. 4, or processing

or data tlows may be present that are not illustrated as arrows
or the like 1n FIG. 4.

As 1llustrated in FIG. 4, the point cloud generating
apparatus 100 includes a vector setting section. 111, an
intersection determining section 112, an auxiliary processing
section 113, and an output section 114.

The vector setting section 111 sets (generates) vectors Vi
for intersection determination as described above, {for
example, 1n <Denvation of Point Cloud>. The vectors Vi
have the same direction and the same length as those of sides
of a bounding box including data to be coded, as described
above. The vector setting section 111 feeds the intersection
determining section 112 with vector information indicating
the set vectors Vi.

The intersection determining section 112 acquires mesh
data iput to the point cloud generating apparatus 100 and
turther acquires vector information fed from the vector
setting section 111. The intersection determining section 112
performs intersection determination between a surface of a
mesh 1indicated by the acquired mesh data and the vectors Vi
indicated by the vector information, as described above, for
example, mm <Derivation of Point Cloud>, <Intersection
Determination and Calculation of Coordinate Values>, and
the like. In a case that intersection points are detected, the
intersection determiming section 112 calculates the coordi-
nate values of the intersection points. The intersection
determining section 112 feeds the calculated coordinate
values of the intersection points (intersection point coordi-
nates) to the auxilary processing section 113.

The auxiliary processing section 113 acquires the inter-
section point coordinates fed from the intersection deter-
mimng section. 112 and executes auxiliary processing on the
intersection points as described above, for example, 1n
<Dernvation of Point Cloud>. The auxiliary processing
section 113 feeds the intersection point coordinates at which
the auxiliary processing has been executed, to the output
section 114, as necessary.

The output section 114 outputs the intersection point
coordinates fed from the auxiliary processing section 113, to
the outside of the point cloud generating apparatus 100 as
(position mformation 1n) point cloud data. In other words,
point cloud data with points positioned at derived 1ntersec-
tion point coordinates 1s generated and output.

Note that the processing sections (vector setting section
111 to output section 114) have optional configurations. For
example, each of the processing sections may include a logic
circuit that implements the above-described processing.
Additionally, each processing section may, for example,
include a CPU (Central Processing section.), a ROM (Read
Only Memory), a RAM (Random Access Memory), and the
like and use the CPU and the memories to execute a
program, implementing the above-described processing.
Needless to say, each processing section may have both of
the above-described configurations to implement a part of
the above-described processing by using a logic circuit,
while implementing the remaining part of the processing by
using a program. The processing sections may be configured
independently of one another. For example, some processing
sections may implement a part of the above-described
processing by using a logic circuit, other processing sections
may implement the above-described processing by execut-
ing a program, and the other processing sections may
implement the above-described processing by using both a
logic circuit and execution of a program.

10

15

20

25

30

35

40

45

50

55

60

65

8

Such a configuration allows the point cloud generating
apparatus 100 to produce eflects as described 1n <1. Gen-
eration of Point Cloud>. For example, voxel data equivalent
to an input resolution can be generated from a mesh by
executing a single step of processing. Thus, an 1ncrease 1n
loads mvolved in generation of point cloud data can be
suppressed. Consequently, for example, point cloud data can
be generated at higher speed. Additionally, for example,
manufacturing costs of the point cloud generating apparatus
100 can be reduced.
<Flow of Point Cloud Generation Processing>

Next, an example of a flow of point cloud generation
processing executed by the point cloud generating apparatus
100 will be described with reference to a tlowchart 1n FIG.
5.

When the point cloud generation processing 1s started, the
intersection determining section 112 acquires mesh data 1n
step S101.

In step S102, the vector setting section 111 sets the vectors
V1 each including, as a start origin, position coordinates
corresponding to a specified voxel resolution (the vector
having the same direction and the same length as those of
cach side of a bounding box including data to be coded).

In step S103, the intersection determining section 112
performs intersection determination between the vectors Vi
set 1n step S102 and a surface (triangle) of a mesh indicated
by the mesh data acquired 1n step S101.

In step S104, the intersection determining section 112
calculates the coordinates of intersection points detected 1n
step S103.

In step S105, the auxiliary processing section 113 deletes
overlapping intersection points except one.

In step S106, the auxiliary processing section 113 pro-
cesses 1ntersection points outside the bounding box (for
example, executes clip processing on the intersection points
or deletes the intersection points).

In step S107, the output section 114 outputs, as point
cloud data (position information), the coordinates of the
intersection points determined as described above.

When step S107 of processing ends, the point cloud
generation processing ends.

Note that the respective steps of processing described
above are executed as 1s the case with the example described
above 1 <1. Generation of Point Cloud>. Thus, by execut-
ing the respective steps of processing described above, the
point cloud generating apparatus 100 can produce eflects as
described 1n <1. Generation of Point Cloud>. For example,
voxel data equivalent to an 1nput resolution can be generated
from a mesh by executing a single step of processing. Thus,
an increase 1n loads ivolved in generation of point cloud
data can be suppressed. Consequently, for example, point
cloud data can be generated at higher speed. Additionally,
for example, the manufacturing costs of the point cloud
generating apparatus 100 can be reduced.
<Reduction of Intersection Points on Surface Relative to
Center>

Note that, in the intersection determination as described
above, the itersection determination may be performed on
a portion of a surface relative to the center by using sparser
vectors Vi1 than that used in the case of the intersection
determination performed on the ends of the surface. For
example, as 1s the case with an example 1 FIG. 6, inter-
section determination may be performed on a surface 201 by
using vectors Vi 202-1 to 202-8. In this example, the
intervals between the vectors Vi 202-1 to 202-8 are set such
that the intervals between the vectors Vi1 202-1 to 202-3 and
the intervals between the vectors Vi 202-6 to 202-8 are

US 11,922,579 B2

9

small. In other words, the intervals between the vectors Vi
202-3 to 202-6 are set larger than the intervals between the

other vectors Vi. Specifically, the vectors Vi 202-1 to 202-3
and the vectors Vi1 202-6 to 202-8, which are used to perform
intersection determination on the ends of the surface 201,
have intervals set smaller (the vectors are dense), whereas
the vectors Vi 202-3 to 202-6, which are used to perform
intersection determination on a portion of the surface 201
relative to the center, have intervals set larger (the vectors
are sparse).

As described above, on a portion of the triangle relative
to the center, collision detection 1s performed on the vectors
V1 by intentionally using larger intervals (the intervals
between the start origins are increased), enabling a reduction
in the number of points generated on the portion of the
triangle relative to the center. Consequently, an increase in
the coding bit rate of attribute information (color informa-
tion and the like) regarding the point cloud can be sup-
pressed.
<Omuission of Intersection Determination>

Additionally, the coordinates on which intersection deter-
mination has been performed once may be prevented from
being calculated again. For example, in a case where a
plurality of surfaces (surface 212 and surface 213) of a mesh
1s present for one vector Vi 211 as 1illustrated 1n an example
in FIG. 7, intersection determination 1s simultaneously per-
formed on the one vector Vi1 211 to allow processing to be
executed at higher speed.
<Addition of Denoise Processing>

Additionally, as 1llustrated in FIG. 8, 1n a case where one
vector Vi 221 intersects a plurality of triangles (surface 222
and surface 223) and where a space 1s present between the
triangles, points (in the figure, black points) may be gener-
ated 1n the space to fill the gap (denoise). This allows a more
accurate point cloud to be generated. In other words, deg-
radation of image quality of the display image can be
suppressed (typically, the image quality can be improved).
<Parallelization of Processing>

Note that, for the intersection determination as described
above, a plurality of steps of processing may be executed 1n
parallel. For example, intersection determination for a plu-
rality of vectors for one surface of a mesh may be processed
in parallel (steps of processing may be executed in parallel).
In other words, processing may be executed independently
for each vector. This allows intersection determination to be
performed at higher speed.

Additionally, for example, intersection determination may
be performed on a plurality of surfaces for one vector in
parallel (steps of processing may be executed in parallel). In
other words, processing may be executed independently for
cach surface of the mesh. This allows intersection determi-
nation to be achieved at higher speed.

3. Second Embodiment>

<Decoding Apparatus>

FIG. 9 1s a block diagram illustrating an example of a
configuration of a decoding apparatus as an aspect ol an
image processing apparatus to which the present technique
1s applied. A decoding apparatus 300 illustrated in FIG. 9
corresponds to a coding apparatus 5300 1n FIG. 11 described
later and, for example, decodes a bitstream generated by the
coding apparatus 500 to restore point cloud data.

Note that FIG. 9 illustrates main components such as
processing sections and data tlows and that not all the
components of the decoding apparatus 300 are 1llustrated 1n
FIG. 9. In other words, 1 the decoding apparatus 300,

10

15

20

25

30

35

40

45

50

55

60

65

10

processing sections may be present that are not illustrated as
blocks 1n FIG. 9, or processing or data flows may be present
that are not illustrated as arrows or the like 1n FIG. 9.

As 1llustrated in FIG. 9, the decoding apparatus 300
includes a lossless decoding section 311, an Octree decoding
section 312, a Mesh shape restoring section 313, a Point
cloud generating section 314, and an Attribute decoding
section 313.

The lossless decoding section 311 acquires a bitstream
input to the decoding apparatus 300 and decodes the bait-
stream to generate Octree data. The lossless decoding sec-
tion 311 feeds the Octree data to the Octree decoding section
312.

The Octree decoding section 312 acquires the Octree data
fed from the lossless decoding section 311, constructs an
Octree from the Octree data, and generates voxel data from
the Octree. The Octree decoding section 312 feeds the
generated voxel data to the Mesh shape restoring section
313.

The Mesh shape restoring section 313 uses the voxel data
fed from the Octree decoding section 312 to restore a mesh
shape. The Mesh shape restoring section 313 feeds gener-
ated mesh data to the Point cloud generating section 314.

The Point cloud generating section 314 generates point
cloud data from the mesh data fed from the Mesh shape
restoring section 313 and feeds the generated point cloud
data to the Attribute decoding section 315. The Point cloud
generating section 314 1s configured similarly to the point
cloud generating apparatus 100 (FIG. 4) and executes pro-
cessing similar to the processing executed by the point cloud
generating apparatus 100. Specifically, the Point cloud gen-
erating section 314 generates point cloud data from mesh
data by using a method as described above 1n <1. Generation
of Point Cloud> and <2. First Embodiment>.

Thus, the Point cloud generating section 314 can produce
cllects similar to the effects of the point cloud generating
apparatus 100. For example, the Point cloud generating
section 314 can generate, from a mesh, voxel data equivalent
to an mput resolution by executing a single step of process-
ing. Thus, the Point cloud generating section 314 can
suppress an increase 1n loads mvolved 1n generation of point
cloud data. Consequently, the Point cloud generating section
314 can, for example, generate point cloud data at higher
speed. Additionally, for example, the manufacturing costs of
the Point cloud generating section 314 can be reduced.

The Attribute decoding section 315 executes processing
related to decoding of attribute information. For example,
the Attribute decoding section 315 decodes attribute infor-
mation corresponding to the point cloud data fed from the
Point cloud generating section 314. Then, the Attribute
decoding section 315 includes the decoded attribute infor-
mation 1n the point cloud data fed from the Point cloud
generating section 314 and outputs the point cloud data to
the outside of the decoding apparatus 300.

Note that these processing sections (lossless decoding
section 311 to Attribute decoding section 315) have optional
configurations. For example, each of the processing sections
may 1include a logic circuit that implements the above-
described processing. Additionally, each processing section
may, for example, include a CPU, a ROM, a RAM, and the
like and use the CPU and the memories to execute a
program, 1mplementing the above-described processing.
Needless to say, each processing section may have both of
the above-described configurations to implement a part of
the above-described processing by using a logic circuit,
while implementing the remaining part of the processing by
using a program. The processing sections may be configured

US 11,922,579 B2

11

independently of one another. For example, some processing
sections may implement a part of the above-described
processing by using a logic circuit, other processing sections
may implement the above-described processing by execut-
ing a program, and the other processing sections may
implement the above-described processing by using both a
logic circuit and execution of a program.

Such a configuration allows the decoding apparatus 300 to
produce eflects as described mn <1. Generation of Point
Cloud> and <2. First Embodiment >. For example, the
decoding apparatus 300 can generate voxel data equivalent
to an 1input resolution from a mesh by executing a single step
of processing and can thus suppress an increase in loads
involved 1n generation of point cloud data.

Consequently, for example, the decoding apparatus 300
can generate point cloud data at higher speed. Additionally,
for example, manufacturing costs of the decoding apparatus
300 can be reduced.

<Flow of Decoding Processing>

Next, an example of a flow of decoding processing
executed by the decoding apparatus 300 will be described
with reference to a flowchart in FIG. 10.

When decoding processing 1s started, in step S301, the
lossless decoding section 311 acquires a bitstream.

In step S302, the lossless decoding section 311 performs
lossless decoding on the bitstream acquired in step S301.

In step S303, the Octree decoding section 312 constructs
an Octree and restores voxel data.

In step S304, the Mesh shape restoring section 313
restores a mesh shape from the voxel data restored 1n step
S303.

In step S305, the Poimnt cloud generating section 314
executes point cloud generation processing (FIG. 5) and
uses a method as described above 1 <1. Generation of Point
Cloud> and <2. First Embodiment> to generate a point
cloud from the mesh shape restored 1n step S304.

In step S306, the Attribute decoding section 3135 decodes
attribute information.

In step S307, the Attribute decoding section 315 includes,
in the point cloud data, the attribute information decoded 1n
step S306 and outputs the point cloud data.

When step S307 of processing ends, the decoding pro-
cessing ends.

By executing each step of processing as described above,
the decoding apparatus 300 can produce effects as described
in <1. Generation of Point Cloud> and <2. First Embodi-
ment>.

4. Third Embodiment

<Coding Apparatus>

FIG. 11 1s a block diagram illustrating an example of a
configuration of a coding apparatus as an aspect of an 1mage
processing apparatus to which the present technique 1s
applied. The coding apparatus 500 illustrated 1n FIG. 11 1s
an apparatus that codes 3D data such as a point cloud by
using voxels and Octrees.

Note that FIG. 11 illustrates main components such as
processing sections and data flows and that not all the
components of the coding apparatus 500 are illustrated 1n
FIG. 11. In other words, in the coding apparatus 500,
processing sections may be present that are not 1llustrated as
blocks 1n FI1G. 11, or processing or data flows may be present
that are not 1llustrated as arrows or the like 1n FIG. 11. This
also applies to other figures for describing the processing
sections and the like 1n the coding apparatus 500.

10

15

20

25

30

35

40

45

50

55

60

65

12

The coding apparatus 500 1llustrated 1n FIG. 11 includes
a Voxel generating section 511, a Geometry coding section
512, a Geometry decoding section 513, an Attribute coding
section 514, and a bitstream generating section 515.

The Voxel generating section 511 acquires point cloud
data mput to the coding apparatus 500, sets a bounding box
for a region including the acquired point cloud data, and
turther splits the bounding box to set voxels, quantizing
position nformation in the point cloud data. The Voxel
generating section 311 feeds voxel data thus generated to the
Geometry coding section 512.

The Geometry coding section 512 codes voxel data fed
from the Voxel generating section 511 to code the position
information regarding the point cloud. The Geometry coding
section 512 feeds the bitstream generating section 315 with
generated coded data of the position information regarding
the point cloud. Additionally, the Geometry coding section
512 feeds the Geometry decoding section 513 with Octree
data generated when the position information regarding the
point cloud 1s coded.

The Geometry decoding section 513 decodes the Octree
data to generate the position information regarding the point
cloud. The Geometry decoding section 313 feeds the gen-
erated point cloud data (position information) to the Attri-
bute coding section 514.

On the basis of mput encode parameters, the Attribute
coding section 514 codes attribute information correspond-
ing to the point cloud data (position information). The
Attribute coding section 514 feeds generated coded data of
the attribute information to the bitstream generating section
515.

The bitstream generating section 315 generates a bit-
stream 1ncluding the coded data of the position information
fed from the Geometry coding section 312 and the coded
data of the attribute information fed from the Attribute
coding section 514, and outputs the bitstream to the outside
of the coding apparatus 500.
<Geometry Coding Section>

The Geometry coding section 312 includes an Octree
generating section 521, a Mesh generating section 522, and
a lossless coding section 523.

The Octree generating section 521 uses voxel data fed
from the Voxel generating section 511 to construct an Octree
and generates Octree data. The Octree generating section
521 feeds the generated Octree data to the Mesh generating
section 522.

The Mesh generating section 522 uses Octree data fed
from the Octree generating section 521 to generate mesh
data and feeds the mesh data to the lossless coding section
523. Additionally, the Mesh generating section 522 feeds the
Octree data to the Geometry decoding section 513.

The lossless coding section 523 acquires mesh data fed
from the Mesh generating section 322. Additionally, the
lossless coding section 523 acquires an encode parameter
input from the outside of the coding apparatus 500. The
encode parameter 1s information designating the type of
coding to be applied, and the encode parameter 1s input by
a user operation or fed from an external apparatus or the like.
The lossless coding section 523 codes mesh data by using a
type designated by the encode parameter to generate coded
data of position information. The lossless coding section 523
feeds the position information to the bitstream generating
section 515.
<Geometry Decoding Section>

The Geometry decoding section 513 includes an Octree
decoding section 331, a Mesh shape restoring section 532,
and a Point cloud generating section 533.

US 11,922,579 B2

13

The Octree decoding section 531 decodes the Octree data
ted from the Geometry coding section 512 to generate voxel
data. The Octree decoding section 531 feeds the generated
voxel data to the Mesh shape restoring section 532.

The Mesh shape restoring section 332 uses the voxel data
fed from the Octree decoding section 531 to restore a mesh
shape, and feeds resultant mesh data to the Point cloud
generating section 333,

The Point cloud generating section 533 generates point
cloud data from mesh data fed from the Mesh shape restor-
ing section 332, and feeds the generated point cloud data to
the Attribute coding section 514. The Point cloud generating,
section 533 1s configured similarly to the point cloud gen-
crating apparatus 100 (FIG. 4) and executes processing
similar to the processing executed by the point cloud gen-
crating apparatus 100. Specifically the Point cloud generat-
ing section 533 generates point cloud data from the mesh
data by using a method as described 1n <1. Generation of
Point Cloud> and <2. First Embodiment>.

Thus, the Point cloud generating section 333 can produce
cllects similar to the eflects of the point cloud generating
apparatus 100. For example, the Point cloud generating
section 333 can generate voxel data equivalent to an 1nput
resolution from a mesh by executing a single step of
processing. Thus, the Point cloud generating section 533 can
suppress an increase 1n loads mvolved 1n generation of point
cloud data. Consequently, the Point cloud generating section
533 can, for example, generate point cloud data at higher
speed. Additionally, for example, the manufacturing costs of
the Point cloud generating section 533 can be reduced.

Note that these processing sections (Voxel generating
section 511 to Attribute coding section 514, Octree gener-
ating section 521 to lossless coding section 523, and Octree
decoding section 331 to Point cloud generating section 533)
have optional configurations. For example, each of the
processing sections may include a logic circuit that imple-
ments the above-described processing. Additionally, each
processing section may, for example, include a CPU, a
ROM, a RAM, and the like and use the CPU and the
memories to execute a program, implementing the above-
described processing. Needless to say, each processing sec-
tion may have both of the above-described configurations to
implement a part of the above-described processing by using
a logic circuit, while implementing the remaining part of the
processing by using a program. The processing sections may
be configured independently of one another. For example,
some processing sections may implement a part of the
above-described processing by using a logic circuit, other
processing sections may implement the above-described
processing by executing a program, and the other processing,
sections may 1mplement the above-described processing by
using both a logic circuit and execution of a program.

Such a configuration allows the coding apparatus 500 to
produce eflects as described mm <1. Generation of Point
Cloud> and <2. First Embodiment>. For example, the
coding apparatus 500 can generate voxel data equivalent to
an 1mput resolution from a mesh by executing a single step
ol processing, and can thus suppress an increase in loads
involved 1n generation of point cloud data. Consequently,
the coding apparatus 500 can, for example, generate a
bitstream at higher speed. Additionally, for example, the
manufacturing costs of the coding apparatus 300 can be
reduced.
<Flow of Coding Processing>

Next, an example of a flow of coding processing executed
by the coding apparatus 500 will be described with reference

to a flowchart in FIG. 12.

10

15

20

25

30

35

40

45

50

55

60

65

14

When coding processing 1s started, the Voxel generating
section 511 acquires point cloud data 1n step S501.

In step S502, the Voxel generating section 311 uses the
point cloud data to generate voxel data.

In step S3503, the Octree generating section 521 uses the
voxel data to construct an Octree and generates Octree data.

In step S504, the Mesh generating section 522 generates
mesh data on the basis of the Octree data.

In step S5035, the lossless coding section 523 performs
lossless coding on the mesh data to generate coded data of
position mformation regarding a point cloud.

In step S506, the Octree decoding section 531 uses the
Octree data generated 1n step S503 to restore voxel data.

In step S507, the Mesh shape restoring section 3532
restores a mesh shape from the voxel data.

In step S508, the Point cloud generating section 3533
executes point cloud generation processing (FIG. §) to
generate point cloud data from the mesh shape by using a
method as described in <1. Generation of Point Cloud> and
<2. First Embodiment>.

In step S509, the Attribute coding section 514 uses the
point cloud data to code attribute information.

In step S510, the bitstream generating section 315 gen-
crates a bitstream including the coded data of the position
information generated 1n step S503 and the coded data of the
attribute information generated 1n step S509.

In step S511, the bitstream generating section 515 outputs
the bitstream to the outside of the coding apparatus 500.

When step S511 of processing ends, coding processing,
ends.

By executing each step of processing as described above,
the coding apparatus 500 can produce eflects as described in
<1. Generation of Point Cloud> and <2. First Embodiment>.

5. Fourth Embodiment

<Making Triangle Soup Scalable>

In the above description, in a Triangle soup, point cloud
data 1s generated by generating points at intersection points
between a surface of a mesh and vectors each including, as
a start origin, position coordinates corresponding to a speci-
fied voxel resolution. The present invention 1s not limited to
this configuration, and point cloud data may be generated
from a mesh with an optional resolution.

For example, as 1llustrated in FIG. 13, 1t 1s assumed that
an Octree 1s applied to layers with lower resolutions (LoD=0
to 2) and that a Triangle soup 1s applied to layers with higher
resolutions. For the layers to which the Octree 1s applied, the
scalability of the resolution can be implemented during
decoding (one of the layers in which point cloud data 1s to
be generated 1s selected on the basis of the different reso-
lutions of the layers).

For the lower layers, the intervals d between the vectors
V1 are set such that d=1, and the Trnangle soup allows
acquisition of point cloud data with a resolution equivalent
to LoD=4. For example, 1n a case of FIG. 13, a voxel 601
equivalent to LoD=2 (rightmost voxel 601 in the figure)
contains a triangular surface 602 of a mesh.

Then, vectors V1 603 are set each of which includes a start
origin corresponding to a surface of the voxel 601 and 1is
perpendicular to the surface, the vectors Vi 603 dividing
cach side of the voxel 601 into four pieces (d=1). In FIG. 13,
a reference sign 1s assigned to only one arrow. However, all
arrows 1n the voxel 601 (including the ends of the voxel 601)
correspond to the vectors Vi 603.

Then, points 604 are derived that are located at the
intersection points between the surface 602 of the mesh and

US 11,922,579 B2

15

the vectors Vi1 603. In FIG. 13, a reference sign 1s assigned
to only one point. However, all points in the voxel 601
(including the ends of the voxel 601) correspond to the
points 604.

This allows acquisition of point cloud data with a reso-
lution equivalent to LoD=4.

In other words, when the vectors Vi1 are set each of which
includes, as a start origin, the position coordinates corre-
sponding to the specified voxel resolution, point cloud data
with the final resolution i1s obtained. The final resolution
indicates a predetermined highest resolution. For example,
in a case of coding and decoding, the highest resolution
indicates the resolution of point cloud data that has not been
coded yet by using an Octree, a mesh, or the like.

Here, 1nstead of the above operation, when the intervals d
between the vectors Vi 603 are set to d=2 (that 1s, the
intervals between the vectors Vi 603 are doubled), the points
604 (surface 602 and vectors Vi1 603) are derived as 1n a case
of the second rightmost vowel 601 1 FIG. 13. In other
words, point cloud data with a resolution equivalent to
LoD=3 1s acquired.

FI1G. 14 1llustrates the state of the voxel 601 1n a plan view
tor simplification of description. In the vowel 601 (including
the ends of the vowel 601), all solid lines and dotted lines
parallel to any one of the four sides of the vowel 601 indicate
vectors V1 603 at intervals (d=1) corresponding to the final
resolution (for example, LoD=4). Points 604 are derived that

are located at the intersection points between the surface 602
of the mesh and the vectors Vi 603.

In FIG. 14, vectors Vi1 603 illustrated by solid lines and
vectors Vi 603 illustrated by dotted lines are alternately
arranged. In other words, the intervals d between the vectors
V1 603 1illustrated by solid lines are d=2. In other words, the
vectors Vi 603 illustrated by solid lines are the vectors Vi
603 a layer (for example, LoD=3) immediately above the
final resolution. Accordingly, increasing the intervals d
reduces the number of the vectors Vi1 603, thus reducing the
number of the points 604 located at the intersection points.
In other words, the resolution of the point cloud data is
reduced.

As described above, the intervals d between the vectors Vi
enables point cloud data with an optional resolution to be
derived. Thus, the resolution of the Triangle soup can be
made scalable.

The intervals d between the vectors Vi can be set to an
optional value. For example, the intervals d between the
vectors Vi may be set to a power of 2. This makes the
resolution scalable for each layer of the Octree. In other
words, point cloud data can be derived that has a resolution
corresponding to each layer of the Octree. For example,
assuming that a difference between a desired layer (derived
layer) of the Octree and the lowermost layer (layer with the
final resolution) 1s L (L 1s a non-negative integer), setting
d=2" enables derivation of point cloud data with the reso-
lution corresponding to the desired layver.

Note that L may be a negative value. Setting L to a
negative value enables derivation of point cloud data with a
resolution higher than the final resolution.

Additionally, the value of the intervals d between the
vectors Vi may be a value other than the power of 2. The
intervals d between the vectors Vi may be an integer or a
decimal as long as the number 1s positive. For example,
when the mtervals d between the vectors Vi are set to a value
other than the power of 2, point cloud data can be derived
that has a resolution other than the resolutions corresponding,
to the layers of the Octree. For example, when the value of

10

15

20

25

30

35

40

45

50

55

60

65

16

the intervals d between the vectors Vi 1s set to 3, point cloud
data 1s acquired that has a resolution between LoD=2 and
LoD=3.

<Making Position of Start Origin Independent™

For example, 1n a case of FIG. 14, for both the vectors Vi
603 in the vertical direction in the figure and the vectors Vi
603 1n the horizontal direction 1n the figure, the vectors Vi
603 having 1dentification numbers 0, 2, 4, 6, and 8 illustrated
in the figure are adopted as vectors Vi 603 in the layer
immediately above. In other words, 1n the layer immediately
above, the vectors V1 603 having identification numbers 1,
3, 5, and 7 1llustrated 1n the figure (vectors Vi 603 1llustrated
by dotted lines) are decimated.

As described above, the vectors Vi 603 adopted in the
layer immediately above (that 1s, vectors Vi 603 to be
decimated) may be set independently 1n each direction of the
vectors Vi 603 (that 1s, 1n each of three axial directions
perpendicular to one another (X, y, z directions)). In other
words, the positions of the start origins of the vectors Vi 603
may be independent of one another 1n each of the three axial
directions perpendicular to one another (x, y, z directions).

For example, 1n a case of FIG. 15, for the vectors Vi1 603
in the vertical direction in the figure, the vectors Vi 603
having the 1dentification numbers 1, 3, 5, and 7 illustrated in
the figure are adopted as vectors Vi 603 in the layer
immediately above. In contrast, for the vectors Vi 603 in the
horizontal direction in the figure, the vectors Vi 603 having
the 1dentification numbers 0O, 2, 4, 6, and 8 1llustrated 1n the
figure are adopted as vectors V1 603 1n the layer immediately
above.

In other words, in the layer immediately above, the
vectors Vi1 603 arranged 1n the vertical direction 1n the figure
and having identification numbers 0, 2, 4, 6, and 8 1llustrated
in the figure (vectors Vi1 603 1llustrated by dotted lines) are
decimated. In contrast, in the layer immediately above, the
vectors Vi1 603 arranged in the horizontal direction 1n the
figure and having identification numbers 1, 3, 5, and 7
illustrated 1n the figure (vectors Vi1 603 111ustrated by dotted
lines) are decimated.

This allows the points 604 to be generated at positions
different from the positions 1n a case of FIG. 14 without
changing the resolution of the derived point cloud data.
<Making Intervals between Start Origins Independent>

For example, 1n a case of FIG. 14 and FIG. 15, 1n the layer
immediately above, for both the vectors Vi 603 1n the
vertical direction 1n the figure and the vectors Vi 603 1n the
horizontal direction 1n the figure, half the vectors are deci-
mated. In other words, the intervals d between the vectors Vi
are the same for the vertical and horizontal directions 1n the
figure.

As described above, the number of vectors Vi1 603 adopted
for the layer immediately above (that 1s, the vectors Vi 603
to be decimated) may be set independently for each direction
of the vectors Vi1 603 (that 1s, for each of the three axial
directions perpendicular to one another (the x, y, and z
directions)). In other words, the mtervals between the start
origins of the vectors Vi1 603 1n the three axial directions
perpendicular to one another (X, v, and z directions) may be
independent of one another for each of the directions.

For example, 1n a case of FIG. 16, assuming that only the
vectors V1 603 illustrated by solid lines are adopted (the
vectors Vi1 603 1llustrated by dotted lines are decimated), for
the vectors Vi1 603 in the vertical direction 1n the figure, all
the vectors Vi 603 having the identification numbers 0 to 8
are adopted, whereas, for the vectors Vi1 603 1n the horizontal
direction 1n the figure, only the vectors Vi 603 having the
identification numbers 0, 2, 4, 6, and 8 are adopted. In other

US 11,922,579 B2

17

words, the intervals d between the vectors Vi 603 1in the
vertical direction 1n the figure differ from the intervals d
between the vectors Vi 603 1n the horizontal direction 1n the
figure. Thus, the intervals between the points generated 1n
the vertical direction 1n the figure differ from the 1ntervals
between the points generated 1n the horizontal direction in
the figure. In other words, the resolution of the point cloud
data differs between the vertical direction 1n the figure and
the horizontal direction in the figure.

In other words, this enables the resolution of the point
cloud data to be set independently for each direction of the
vectors V1 603 (that 1s, each of the three axial directions
perpendicular to one another (X, y, and z directions)).
<(Generation of Points at Some of Intersection Points>

Note that points may be generated at some of the inter-
section points between the surface of the mesh and the
vectors V1. In other words, generation of a point may be
omitted even for intersection points. In other words, a
reduced resolution of the point cloud may be achieved (that
1s, the scalability of the resolution may be achieved) by
reducing the number of intersection points at which points
are generated.

A method for selecting intersection points at which points
are to be generated (or points are not to be generated) 1s
optional. For example, as illustrated 1n FIG. 17, points may
be generated 1n a staggered arrangement (points are gener-
ated at every other intersection point for each of the three
axial directions).

This enables the scalability of the resolution to be
achieved without depending on the intervals between the
vectors Vi (or the number of vectors Vi).
<Addition of Points>

Points not located at the intersection points between the
surface of the mesh and the vectors Vi1 may be generated and
included 1n the point cloud data. For example, as 1llustrated
in FIG. 18, mstead of intersection points, points 611 may be
generated at positions on vectors Vi that are close to the
respective sides of the surface 602 (triangle) of the mesh and
may be included 1n the point cloud data. In FIG. 16, while
a reference sign 1s assigned to only one point, the points
illustrated by white circles are all points 611 generated as
described above.

Note that a method for determining positions at which
points are to be generated (1n a case of the example i FIG.
18, a method for determining points close to each side) 1s
optional.

This enables points to be added without depending on the
positions of the intersection points, allowing the resolution
of a desired portion to be more easily improved. For
example, 1n a case of FIG. 18, points close to each side of
the surface 602 are included 1n the point cloud data to allow
the resolution to be made higher around each side of the
surface 602 than that in the other areas. This allows the
configuration of each side of the surface 602 to be more
accurately expressed 1n the point cloud data. Consequently,
a three-dimensional structure expressed by mesh can also be
expressed 1n the point cloud data more accurately.
<Combination=>

Any plural number of the techniques described above 1n
the present embodiment can be combined together for
application. Additionally, each of the techniques described
above 1n the present embodiment can be combined, for
application, with any of the techniques described above 1n
<(Generation of Point Cloud>.
<Selection of Method>

Additionally, a desired technique (or a combination of
desired techniques) may be selected from among some or all

10

15

20

25

30

35

40

45

50

55

60

65

18

of the techniques described above herein, and then be
applied. In that case, a method for selecting the technique 1s
optional. For example, all application patterns may be
evaluated, and the best one may be selected. This allows
point cloud data to be generated by using a technique most
suitable for the three-dimensional structure or the like.
<Application to Point Cloud Generating Apparatus=

Similarly to the techniques described 1n <1. Generation of
Point Cloud>, the techniques described above in the present
embodiment can be applied to the point cloud generating
apparatus 100 described above 1n the first embodiment. In
that case, the configuration of the point cloud generating
apparatus 100 1s similar to the configuration in the case
described with reference to FIG. 4.

An example of a tlow of point cloud generation process-
ing executed by the point cloud generating apparatus 100 1n
the above-described case will be described with reference to
a flowchart 1n FIG. 19.

When the point cloud generation processing 1s started, the
intersection determining section 112 acquires mesh data 1n
step S601.

In step S602, the vector setting section 111 sets vectors Vi
cach including, as a start origin, position coordinates on each
surface of a voxel corresponding to a resolution specified by,
for example, the user or the like, the vector Vi being
perpendicular to each surface of the voxel (parallel to each
side of the voxel).

In step S603, the intersection determining section 112
performs intersection determination between a surface (tri-
angle) of a mesh indicated by the mesh data acquired 1n step
S601 and the vectors Vi set 1n step S602.

Respective steps S604 to S607 of processing are executed
similarly to steps S104 to S107 of processing.

When step S607 of processing ends, the point cloud
generation processing ends.

Note that the above-described processing 1s executed, for
example, as 1s the case with the example described above 1n
the present embodiment. Thus, by executing each step of
processing described above, the point cloud generating
apparatus 100 can produce, for example, eflects as described
in the present embodiment. For example, voxel data with an
optional resolution can be generated from a mesh by execut-
ing a single step of processing. In other words, the scalability
of the resolution of the point cloud data can be achieved.

In addition, an increase 1n loads involved 1n generation of
point cloud data can be suppressed. Thus, for example, the
point cloud data can be generated at higher speed. Addi-
tionally, for example, the manufacturing costs of the point
cloud generating apparatus 100 can be reduced.
<Application to Decoding Apparatus>

Additionally, similarly to the techniques described 1n <1.
Generation of Point cloud>, the techniques described above
in the present embodiment can be applied to the decoding
apparatus 300 described above 1n the second embodiment.
The configuration of the decoding apparatus 300 1n that case
1s similar to the case described with reference to FIG. 9.

The Point cloud generating section 314 1s configured
similarly to the point cloud generating apparatus 100
described above 1n the present embodiment, and generates
point cloud data from mesh data as described above 1n the
present embodiment.

Thus, the Point cloud generating section 314 can produce
cllects similar to the effects of the point cloud generating
apparatus 100 of the present embodiment. For example, the
Point cloud generating section 314 can generate vowel data
with an optional resolution from a mesh by executing a

US 11,922,579 B2

19

single step of processing. In other words, the scalability of
the resolution of the point cloud data can be achieved.

In addition, the Point cloud generating section 314 can
suppress an increase in loads mvolved in generation of point
cloud data. Thus, the Point cloud generating section 314 can,
for example, generate point cloud data at higher speed.
Additionally, for example, the manufacturing costs of the
Point cloud generating section 314 can be reduced.

Note that, 1n this case, the Attribute decoding section 315
may decode attribute information in a scalable manner. In
other words, for the attribute information, the scalability of
the resolution may also be achieved.

Additionally, the decoding processing executed by the
decoding apparatus 300 in this case 1s executed according to
a flow similar to the flow in the second embodiment (FIG.
10). Consequently, the decoding apparatus 300 can produce
cllects similar to the eflects described above 1s the present
embodiment (for example, similar to the effects of the point
cloud generating apparatus 100).

6. Supplementary Feature

<Computer>

The series of steps of processing described above can be
executed by hardware or by software. In a case where the
series ol processing 1s executed by soltware, a program
constituting the software 1s installed in a computer. The
computer as used herein includes a computer integrated nto
dedicated hardware, and, for example, a general-purpose
computer that can execute various functions when various
programs are installed 1n the computer.

FIG. 20 1s a block diagram illustrating a configuration
example of hardware of a computer executing the series of

steps of processing described above according to a program.
In a computer 900 illustrated 1n FIG. 20, a CPU (Central

Processing Unit) 901, a ROM (Read Only Memory) 902,
and a RAM (Random Access Memory) 903 are connected
together via a bus 904.

An 1nput/output interface 910 1s also connected to the bus
904. The input/output interface 910 connects to an input
section 911, an output section 912, a storage section 913, a
communication section 914, and a drive 915.

The mput section 911 includes, for example, a keyboard,
a mouse, a microphone, a touch panel, an input terminal, and
the like. The output section 912 includes, for example, a
display, a speaker, an output terminal, and the like. The
storage section 913 includes, for example, a hard disk, a
RAM disk, a nonvolatile memory, and the like. The com-
munication section 914 includes, for example, a network
interface. The drive 915 drives a removable medium 921
such as a magnetic disk, an optical disc, a magneto optical
disc, or a semiconductor memory.

In the computer configured as described above, for
example, the CPU 901 loads a program stored in the storage
section 913, into the RAM 903 via the mput/output interface
910 and the bus 904, and executes the program to perform
the series of steps of processing described above. The RAM
903 also stores, as appropriate, data or the like required for
the CPU 901 to execute various steps of processing.

The program executed by the computer (CPU 901) can be,
for example, recorded in the removable medium 921, used
as a package medium or the like, for application. In that case,
the program can be installed 1n the storage section 913 via
the mmput/output interface 910 by attaching the removable
medium 921 to the drive 915.

Additionally, the program can be provided via a wired or
wireless transmission medium such as a local area network,

10

15

20

25

30

35

40

45

50

55

60

65

20

the Internet, or digital satellite broadcasting. In that case, the
program can be received by the communication section 914
and installed 1n the storage section 913.

Besides, the program can be pre-installed in the ROM 902
or the storage section 913.
<Object to which Present Technique 1s Applied>

Application of the present technique to coding and decod-
ing of point cloud data has been described. However, the
present technique 1s not limited to these examples and can be
applied to coding and decoding of 3D data in conformaity
with an optional standard. In other words, specifications of
various types ol processing such as coding and decoding
schemes and specifications of various types of data such as
3D data and metadata are optional unless the specifications
are mnconsistent with the present technique described above.
Additionally, part of the above-mentioned processing or the
specifications may be omitted unless the omission 1s mncon-
sistent with the present technique.

The present technique can be applied to an optional
configuration. The present technique may be applied to, for
example, a transmitter and a receiver (for example, a tele-
vision receiver and a cellular phone) in wired broadcasting
such as satellite broadcasting or cable TV, 1n distribution on
the Internet, in distribution to a terminal through cellular
communication, and the like, or may be applied to various
types of electronic equipment such as apparatuses (for
example, a hard disk recorder and a camera) that record
images in media such as an optical disc, a magnetic disk, and
a flash memory and that reproduce images from these
storage media.

Additionally, the present technique can be implemented
as, for example, a partial configuration of an apparatus such
as a processor (for example, a video processor) used as a
system LSI (Large Scale Integration) or the like, a module
(for example, a video module) using a plurality of processors
or the like, a unit (for example, a video unit) using a plurality
of modules or the like, or a set (for example, a video set)
corresponding to a unit with additional functions.

Additionally, the present technique can be applied to, for
example, a network system including a plurality of appara-
tuses. The present technique may be implemented as, for
example, cloud computing in which processing 1s shared and
cooperatively executed by a plurality of apparatuses via a
network. The present technique may be implemented 1n, for
example, a cloud service t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>