12 United States Patent

US011922228B2

(10) Patent No.: US 11,922,228 B2

Weckwerth et al. 45) Date of Patent: Mar. 5, 2024
(54) HOST REQUEST PACING TO BALANCE (56) References Cited
RESOURCES AND THROUGHPU'T
U.S. PATENT DOCUMENTS
(71) Applicant: International Business Machines
Corporation, Armonk, NY (US) 8,856,424 B2 10/2014 Yoon
" " 9,311,230 B2 4/2016 Fitch
(72) Inventors: Rick A. Weckwerth, Oronoco, MN g’ggg’%g E% 1;%82 Igandun
: 658, 1 omem
(US); Daniel Frank Moertl, Rochester, 10275375 B2 4/2019 Ayoub
MN (US); Robert Edward Galbraith,
Rochester, MN (US); Matthew
Szekely, Austin, TX (US); Damir OTHER PUBLICATIONS
Anthony Jamsek, Austin, 1X (US) Gibson, Garth, “Petascale Data Storage Institute”, SciIDAC PDSI
(73) Assignee: International Business Machines Final Report, DOE Grant No. DEFCO206ER25767 (CMU), The
Corporation, Armonk, NY (US) Regents of the University of California, Santa Cruz, CA (United
States), 2013, 82 pages, <https://do1.org/10.2172/1120946>.
(*) Notice: Subject to any disclaimer, the term of this Mitchell et al., “Overlapped Checkpointing with Hardware Assist”,
patent 158 extended or adjusted under 35 2009 IEEE International Conference on Cluster Computing and
U.S.C. 154(b) by 296 days. Workshops, 10 pages, © 2009 IEEE.
Polte et al., “Enabling Enterprise Solid State Disks Performance”,
(21) Appl. No.: 17/350,389 1st Workshop on Integrating Solid-state Memory into the Storage
Hierarchy, Mar. 7, 2009, Washington DC, 7 pages.
(22) Filed: Jun. 17, 2021 Tallis, Billy, “Microchip Announces DRAM Controller for OpenC API
Memory interface”, AnandTech, Aug. 5, 2019, 7 pages, <https://
(65) Prior Publication Data www.anandtech.com/show/14706/microchip-announces-dram-
US 2022/0405150 A1 Dec. 22. 2027 controller-for-opencapi-memory-interface>.
(51) Int. CL Primary Examiner — Gregory A Kessler
GO6F 9/46 (2006.01) (74) Attorney, Agent, or Firm — Brandon L. Stephens
Go6r 1/10 (2006.01)
GOGF 9/48 (2006.01) (57) ABSTRACT
Goor 9/50 (2006-05-) Methods, computer program products, and/or systems are
GO6l 9/52 (2006.01) provided that perform the following operations: determining
(52) U.S. CL a pacing requirement for host requests based on one or more
CPC i GO6l 9/52 (2013.01); GOGF 1/10 thresholds; setting a pacing delay level based on the one or
(2013.01); GO6F 9/4887 (2013.01); GOOF more thresholds in response to the determination of the
9/5038 (2013.01) pacing requirement; and implementing a memory request
(58) Field of Classification Search flow for a host request based on the pacing requirement and

CPC . GO6F 9/52; GO6F 1/10; GO6F 9/4887; GOG6F
9/5038

See application file for complete search history.

25

the pacing delay level.

20 Claims, 7 Drawing Sheets

Ottain a host request

e o e e e

Determine a pacing requirement for host requests based | ..----- 5254
on a threshold
Determine/Set a pacing delay level {e.g., basedonthe | - 5256
pacing reguirement, defined thresholds, etc.}

I Send any new host request to a FIFO queue if pacing delay | — 5258

level {e.g., pace count, ete.) is greater than zero ;
Impiementf’mede a reguest flow for the host request S260

based on the pacing reguirement and the pacing delay

level

U.S. Patent Mar. 5, 2024 Sheet 1 of 7 US 11,922,228 B2

NETWORKED COMPUTERS SYSTEM 100

CLIENT 108

CLIENT 11

| SERVER SUB-SYSTEM 102

SERVER COMPUTER 200
- - PERSISTENT
| COMMUNICATION | | MEMORY 208 STORAGE 210

| UNIT 202

I — -], | PROGRAM
1} |1 CACHE 232 l 300

PROCESSOR K —
SET 204 || RAM 230

/O INTERFACE

SET 206
e me——
212 DEVICES

214

U.S. Patent Mar. 5, 2024 Sheet 2 of 7 US 11,922,228 B2

w e e e e e e el e e e e S e e e e e e e e el e el el el e e el e e el e e e e el el el e el e e e e e e e e e e e el el e e e e e e e e e S et el e el el el e e e e e e e e e e e e e el el e el e e e el e el e e e e el e e e el e e el e
W,

Determine a pacing requirement for host requests based ___________________ $254
on a threshold

Determine/Set a pacing delay level {e.g., based on the S5
pacing requirement, defined thresholds, etc.)

b :
w o W e e e e e el e el e et e el e el e e e e e el e e e e el e el e e el el e el e e e e e e e el e e e e e e e e e et e e e el el e e e e e e el e e e e el e e e e e e e e e e el e el e el e e e el e el e e e e e e e e e el e e e e e e e e el e e e e e e e e

2

| Send any new host request to a FIFO queue if pacing delay { _.—— 5258
level {(e.g., pace count, etc.} is greater than zero
implement/Provide a request flow for the host request 960

based on the pacing requirement and the pacing delay
level

FIG. 2

U.S. Patent Mar. 5, 2024 Sheet 3 of 7 US 11,922,228 B2

. PROGRAM 300

Pacing Delay Module 325 I

Pacing Count Module 335

[-!F-'-'-'-IF--'-i'-!-'-I'-'-IF--'-I'-!F-I'-F-IF-l'-I'-!F-'-'-'-l'-!'-l'-!F-'-'-'-IF-l'-i'-!-'-'-'-'-IF-l'-I'-!F-I'-l'-lF--'-I'-!F-l'-l'-l'--'-I'#ﬂn‘#ﬂ#ﬂ#ﬂ'ﬂ#"ﬂ"ﬂ'ﬂ#ﬂ#ﬂn‘#ﬂ-"

FG. 3

U.S. Patent Mar. 5, 2024 Sheet 4 of 7 US 11,922,228 B2

| 402
| Start host request FIFO

3_ processing

B . i

404~

Host request -
~. FIFOisempty -~

Ye |

NO

406, Y .
“Dldest request™
- FIFO entry is a _

™~ read? 7

NO

NO

Write pace
count is 07

Yes T Yes

- Set write request pace count
to current write pacing delay

(could be zero if pacing is not
required}

Remove the oldest entry from |
FIFO and initiate normal |
request processing

FlG. 4

U.S. Patent

Mar. 5, 2024

00

g ingpingsingpingsingpinging -

502

Read has completed and ready

for response

Pacing not '
reguired OR

Sheet 5 of 7

US 11,922,228 B2

206

Add host read :respon:sef

. pacingshould
. be bypassed?

{ Yes

Send host read response

~ :ES-pO&nrs ~
__ FIFQ is .
N empty? 7

1 NO
6062

Pace

Yes

to the response FIFQ

{ No
608 -~

Pacecount

. required? 7

emove oldest entry from the-
response FIFO and send
response to the host

TN 807

610

Set read response pace count '
to Z

U.S. Patent Mar. 5, 2024 Sheet 6 of 7 US 11,922,228 B2

700

Garbage Collection (Non-Error, runtime)

RTU

b ; 3 3
P f . s
20% P! 1 :ﬁ *
g N SO S SUPUU—— S e T) Notlow on RTU VRUs
E P T M U DUSUSUUUV - Remove >85%
5 y o : :1 dirty VRUs only
. . ;] _
: tor ; . No krases
: i [k : 3 .
E P : ;- No Write Pacing
z o ; ?5
i R ; ; P <
: } ! K r
. i ;. .
; Co : : Low on RTU YRUs
§ S | :; » Remove dirtiest
;; tot ; e - VRUs
; LI oo S o ' N T « No Erases
i ¢ i | b - * No Write Pacing
| o i :- ~ ~
E ; k '
§ } i) : i
_ b ! :: - Veryilow on RTU VRUs
i ot : ‘ . Rermove dirtiest
g i (3 : ¥
. i) K i ! VRUS
i oyl i el * Erase RTE VRUs
| N ’ | - - — ¢ No Write Pacing
| } J K : 3 \\ :
R } t i i P
| t oty *]
| G : S
T - e e e . N DU e v o vm e e bm e w m et — vm et o rn s n o L e
: } I) ;
| S W S ‘ 4 |
T2%g~ - cm v mm v c }._-.a.a.-:;_ ________ S e i e gy v ik o o ki e B h e e ke (Swereiy'i:}wan RTU
| : : . ! : . ~ :_ - VRUs
) . I . - o [} . . -
FIC Y/ S U BB SN o e i e i T e e e o)+ Gradient write
: bt N . : St e m oo e radient 1
T4V N b S L * — ey oneror e e mf“gbetwfen
: ﬁﬁﬁﬁﬁﬁﬁﬁﬁ C R e e W wm e e Ee e "-:'-'-":""-'":?-r":":'.'t":":'f":‘:"?'!. TEE OTT TR TR T MY T O TR T MW ST OET OTE A A R ER e B Rl o e W e :"‘ *************** . TafuandTS/ﬁ _,)
oy T BTN U P e e F |
T5% - T T T SR

FiG. 7

U.S. Patent Mar. 5, 2024 Sheet 7 of 7 US 11,922,228 B2

]
A 806
__ - 808

Outstanding host reads

and writes

802b -y [Ty Medmd o
Outstanding host|
reads and writes |
Media1-7 | SU6EI8
FiG. 8B
340
802¢ —~
‘ 804
Outstanding host|
reads and writes |
____________________________________ e 806-818

\ Media 1-7 |

FiG. 8C

US 11,922,228 B2

1

HOST REQUEST PACING TO BALANCE
RESOURCES AND THROUGHPUT

BACKGROUND

The present mvention relates generally to the field of
system management, and more particularly to providing for
the use of request pacing to balance host throughput and
media resources.

SUMMARY

According to an aspect of the present invention, there 1s
a method, computer program product and/or system that
performs the following operations (not necessarily in the
tollowing order): determining a pacing requirement for host
requests based on one or more thresholds; setting a pacing
delay level based on the one or more thresholds 1n response
to the determination of the pacing requirement; and 1mple-
menting a read/write request flow for a host request based on
the pacing requirement and the pacing delay level.

BRIEF DESCRIPTION OF THE DRAWINGS

FI1G. 1 depicts a block diagram view of a first embodiment
of a system, according to the present invention;

FIG. 2 depicts a flowchart showing a first embodiment
method performed, at least 1n part, by the first embodiment
system;

FIG. 3 depicts a block diagram showing an example
machine logic (for example, soltware) portion of the first
embodiment system;

FIG. 4 depicts a flowchart of an example host memory
request flow, according to embodiments of the present
imnvention;

FIG. 5 depicts a flowchart of an example read response
flow, according to embodiments of the present invention;

FIG. 6 depicts a flowchart of an example read response
first 1n, first out tflow, according to embodiments of the
present mvention;

FI1G. 7 depicts a diagram of example write request pacing
thresholds, according to embodiments of the present inven-
tion; and

FIG. 8A through FIG. 8C depict block diagrams of
example read request pacing, according to embodiments of
the present invention.

DETAILED DESCRIPTION

According to aspects of the present disclosure, systems
and methods can be provided to allow for host request (e.g.,
read requests, write requests, etc.) pacing. In particular,
systems and methods of the present disclosure can provide
for implementing host request pacing, for example, based on
available resources, defined thresholds, end/or the like. The
systems and methods of the present disclosure can provide
for determining a need for pacing host requests, for example
to balance throughput, available resources, and/or the like.
In some embodiments, the systems and methods of the
present disclosure can provide for determining a pacing
level mdicating how long a host request should be delayed.
In some embodiments, the systems and methods of the
present disclosure can provide for managing the processing,
of host requests (e.g., request/response processing tlows,
etc.) based on the pacing level, for example, using one or
more queues.

10

15

20

25

30

35

40

45

50

55

60

65

2

In general, storage class memory (SCM) can connect to a
host system via interfaces such as open memory interface
(OMI), open coherent accelerator processor interface
(OCAPI), PCI Express (PCle) compute express link (CXL),
and/or the like. In some situations, if the SCM media, for
example, NAND flash and/or the like, 1s slower than
dynamic random-access memory (DRAM), new write
requests from the host can easily outpace the rate of garbage
collection (e.g., memory management, etc.) and consume all
available media resources.

Additionally, host read request may also be delayed by
media garbage collection or media error recovery. While
reads and writes could be performed to other media
resources, allowing them to execute at the maximum rate
could create a scenario where too many reads are 1ssued to
the media resource that 1s blocking reads. If the backlog of
reads gets too large, new host requests could be prevented
from completing and could cause host timeouts.

Accordingly, embodiments of the present disclosure can
provide pacing of host requests (e.g., reads, writes, etc.) to
assist 1n avoiding seriously low resource levels, request
backlogs, host timeouts, and/or the like.

Some embodiments of the present disclosure can assist in
balancing performance differences between a highspeed
host mterface and any media that 1s slower than DRAM, for
example, NAND Flash and/or the like. In some embodi-
ments, balancing performance differences may not require
foreground firmware intervention 1n the read and write tlow.
In some embodiments, the performance at the host interface
may not be affected until/unless pacing 1s required. Some
embodiments of the present disclosure can assist 1n prevent-
ing large backlogs of read requests to a media resource
allected by garbage collection, error recovery, and/or the
like that 1s managed entirely by hardware. In some embodi-
ments, systems and methods can provide for self-tuning to
any host workload.

In some embodiments, systems and methods of the pres-
ent disclosure can provide request pacing whereby each new
write request from a host can be delayed by a programmable
number of clock cycles. Hardware can perform the delay
before beginning the write processing. In some embodi-

ments, the necessary write request delay can be determined
based on available resources. In some embodiments, read
requests from the host would not be processed until all
previously delayed write requests are processed. This can
prevent data integrity problems 1f a write 1s delayed and the
host tries to read the same address.

In some embodiments, responses to host read requests can
be delayed if any other active read request 1s being delayed
by long media access times, for example. In some embodi-
ments, this delay function may be totally under hardware
control.

In some embodiments, a pace count (e.g., request pace
count, hardware pace count, etc.) can be used to count clock
cycles since the last paced event (e.g., request or response)
occurred. The pace count 1s decremented every clock cycle
if the pace count 1s non-zero (e.g., greater than zero (0), etc.).

This Detailed Description section i1s divided into the
following sub-sections: The Hardware and Software Envi-
ronment; Example Embodiments; Further Comments and/or
Embodiments; and Definitions.

-

T'he Hardware and Software Environment
The present mnvention may be a system, a method, and/or
a computer program product. The computer program prod-

uct may include a computer readable storage medium (or

US 11,922,228 B2

3

media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present mvention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1 each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program 1nstructions for carrying out
operations of the present invention may be assembler
istructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written 1n any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information

5

10

15

20

25

30

35

40

45

50

55

60

65

4

of the computer readable program instructions to personalize
the electronic circuitry, 1n order to perform aspects of the
present 1nvention.

Aspects of the present invention are described herein with
reference to flowchart i1llustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1mple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified 1n the tlowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer 1mple-
mented process, such that the mnstructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified 1n the tlow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams 1n the Figures 1llustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of 1nstructions, which comprises one or more
executable 1nstructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, i fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality mvolved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

An embodiment of a possible hardware and software
environment for software and/or methods according to the
present invention will now be described in detail with
reference to the Figures. FIG. 1 1s a functional block diagram
illustrating various portions of networked computers system
100, including: server sub-system 102; client sub-systems
104, 106, 108, 110, 112; communication network 114; server
computer 200; communication unit 202; processor set 204;
iput/output (I/0) nterface set 206; memory device 208;
persistent storage device 210; display device 212; external

US 11,922,228 B2

S

device set 214; random access memory (RAM) devices 230;
cache memory device 232; and program 300.

Sub-system 102 1s, 1n many respects, representative of the
various computer sub-system(s) in the present invention.
Accordingly, several portions of sub-system 102 will now be
discussed in the following paragraphs.

Sub-system 102 may be a laptop computer, tablet com-
puter, netbook computer, personal computer (PC), a desktop
computer, a personal digital assistant (PDA), a smart phone,
or any programmable electronic device capable of commu-
nicating with the client sub-systems via network 114. Pro-
gram 300 1s a collection of machine-readable instructions
and/or data that can be used to create, manage, and control
certain software functions, such as will be discussed in
detail, below, in the Example Embodiment sub-section of
this Detailed Description section. As an example, a program
300 can determine a need for host request pacing, determine
a pacing delay level (e.g., based on the need for pacing, etc.),
establish, manage, etc. a queue for host requests to provide
request pacing, manage request pacing, and/or the like.

Sub-system 102 1s capable of commumicating with other
computer sub-systems via network 114. Network 114 can be,
for example, a local area network (LAN), a wide area
network (WAN) such as the Internet, or a combination of the
two, and can include wired, wireless, or fiber optic connec-
tions. In general, network 114 can be any combination of
connections and protocols that will support communications
between server and client sub-systems.

Sub-system 102 1s shown as a block diagram with many
double arrows. These double arrows (no separate reference
numerals) represent a communications fabric, which pro-
vides communications between various components of sub-
system 102. This communications fabric can be imple-
mented with any architecture designed for passing data
and/or control information between processors (such as
microprocessors, communications and network processors,
etc.), system memory, peripheral devices, and any other
hardware components within a system. For example, the
communications fabric can be implemented, at least in part,
with one or more buses.

Memory 208 and persistent storage 210 are computer-
readable storage media. In general, memory 208 can include
any suitable volatile or non-volatile computer-readable stor-
age media. It 1s further noted that, now and/or 1n the near
tuture: (1) external device(s) 214 may be able to supply,
some or all, memory for sub-system 102; and/or (11) devices
external to sub-system 102 may be able to provide memory
for sub-system 102.

Program 300 1s stored 1n persistent storage 210 for access
and/or execution by one or more of the respective computer
processors 204, usually through one or more memories of
memory 208. Persistent storage 210: (1) 1s at least more
persistent than a signal 1n transit; (1) stores the program
(including its soit logic and/or data), on a tangible medium
(such as magnetic or optical domains); and (111) 1s substan-
tially less persistent than permanent storage. Alternatively,
data storage may be more persistent and/or permanent than
the type of storage provided by persistent storage 210.

Program 300 may include both machine readable and
performable 1nstructions and/or substantive data (that is, the
type of data stored 1n a database). For example, program 300
may include machine readable and performable 1nstructions
to provide for performance ol method operations as dis-
closed herein. In this particular embodiment, persistent
storage 210 includes a magnetic hard disk drive. To name
some possible variations, persistent storage 210 may include
a solid-state hard drive, a semiconductor storage device,

10

15

20

25

30

35

40

45

50

55

60

65

6

read-only memory (ROM), erasable programmable read-
only memory (EPROM), flash memory, or any other com-

puter-readable storage media that 1s capable of storing
program 1nstructions or digital information.

The media used by persistent storage 210 may also be
removable. For example, a removable hard drive may be
used for persistent storage 210. Other examples include
optical and magnetic disks, thumb drives, and smart cards
that are inserted into a drive for transfer onto another
computer-readable storage medium that 1s also part of per-
sistent storage 210.

Communications unit 202, in these examples, provides
for communications with other data processing systems or
devices external to sub-system 102. In these examples,
communications unit 202 includes one or more network
interface cards. Communications unit 202 may provide
communications through the use of either or both physical
and wireless commumnications links. Any software modules
discussed herein may be downloaded to a persistent storage
device (such as persistent storage device 210) through a
communications unit (such as communications unit 202).

I/O interface set 206 allows for input and output of data
with other devices that may be connected locally in data
communication with server computer 200. For example, I/0
interface set 206 provides a connection to external device set
214. External device set 214 will typically include devices
such as a keyboard, keypad, a touch screen, and/or some
other suitable input device. External device set 214 can also
include portable computer-readable storage media such as,
for example, thumb drives, portable optical or magnetic
disks, and memory cards. Software and data used to practice
embodiments of the present invention, for example, program
300, can be stored on such portable computer-readable
storage media. In these embodiments the relevant software
may (or may not) be loaded, in whole or 1in part, onto
persistent storage device 210 via I/O interface set 206. I/O
interface set 206 also connects 1 data communication with
display device 212.

Display device 212 provides a mechanism to display data
to a user and may be, for example, a computer monitor, a
smart phone/tablet display screen, and/or the like.

The programs described herein are 1dentified based upon
the application for which they are implemented 1n a specific
embodiment of the imnvention. However, 1t should be appre-
ciated that any particular program nomenclature herein 1s
used merely for convenience, and thus the imvention should
not be limited to use solely 1 any specific application
identified and/or implied by such nomenclature.

The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found 1n the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

Example Embodiments

FIG. 2 shows flowchart 250 depicting a computer-imple-
mented method, according to embodiment(s) of the present
invention. FIG. 3 shows a program 300 for performing at
least some of the method operations of flowchart 250.

US 11,922,228 B2

7

Regarding FIG. 2, one or more flowchart blocks may be
identified with dashed lines and represent optional steps that
may additionally be included, but which are not necessarily
required, in the depicted embodiments. This method and
assoclated software will now be discussed, over the course
of the following paragraphs, with extensive reference to
FIG. 2 (for the method operation blocks) and FIG. 3 (for the
soltware blocks).

As 1llustrated 1n FIG. 2, 1n some embodiments, operations
for host request pacing may optionally begin at operation
S252, where a computing system (e.g., server computer 200
of FIG. 1 or the like) can identily and/or obtain a host
request (e.g., read request, write request, etc.). As an
example, an 1nput/output module 340 of FIG. 3, pacing
determination module 320, and/or the like can provide for
identifying and/or obtaiming host requests.

Processing proceeds to operation S254, where the com-
puting system (e.g., server computer 200 of FIG. 1 or the
like) can determine a pacing requirement, for example,
based on one or more thresholds. As an example, a pacing
determination module 320 and/or the like can provide for
determining whether a pacing requirement 1s needed for host
requests or events (e.g., write requests, read, requests, read
responses, etc.) In some embodiments, the pacing determi-
nation module 320 and/or the like can provide for determin-
Ing a pacing requirement based on one or more thresholds
such as available resources, media access times, and/or the
like.

For example, 1n some embodiments, write request pacing,
requirements can be determined based on levels of available
media resources. As an example, a set of ready-to-use (RTU)
thresholds can be established and matched to policy for
performing garbage collection. These thresholds can also
determine 1I write pacing 1s needed as well as the level of
write pacing needed to avoid using up all available resources
(e.g., RTU=0%).

In some embodiments, as another example, read response
pacing requirements can be determined based on media
access times (e.g., reads, etc.). For example, a determination
can be made for pacing read responses to the host to prevent
the host from potentially 1ssuing new reads that require the
media resources allected by garbage collection, error recov-
ery, and/or the like. In some embodiments, a first threshold
(e.g., long media access time threshold) can be defined to
determine 1f read response pacing may be required, when
sending a response to each host read. For example, if any
host reads are still active (e.g., pending read response, etc.)
and are taking longer than a defined number (e.g., X) of
clock cycles (e.g., long media access time threshold), read
response pacing can be initiated. In some embodiments, X
(e.g., long media access time threshold) should be sufli-
ciently large to prevent pacing until absolutely required.

Processing proceeds to operation S2356, where the com-
puting system (e.g., server computer 200 of FIG. 1 or the
like) can set a pacing delay level. The computing system can
determine and/or set a pacing delay level based on a pacing
requirement determination, one or more thresholds (e.g.,
available resources, access times, etc.), and/or the like. As an
example, a pacing module 325 of FIG. 3 and/or the like may
determine and/or set a pacing delay level for requests/events
(e.g., write requests, read requests, read responses, etc.).

For example, in some embodiments, a write pacing delay
(e.g., pacing delay level) can be used to determine how long
to delay between processing new write requests from a host.
In some embodiments, a delay value of zero can disable
write request pacing. In some embodiments, a set of ready-

to-use (RTU) thresholds can be established and matched to

10

15

20

25

30

35

40

45

50

55

60

65

8

policy for performing garbage collection and/or the like.
These thresholds can also determine the level of write
pacing (e.g., pacing delay level, etc.) needed to avoid using
up all available resources (e.g., RTU=0%).

As another example, in some embodiments, a fixed delay
(e.g., Z) can be defined to determine how long to delay a
read response (e.g., pacing delay level, etc.) for read
response pacing, for example, when there 1s an active read
taking longer than X clock cycles.

Optionally, 1n some embodiments, processing may con-
tinue to operation S258, where the computing system (e.g.,
server computer 200 of FIG. 1 or the like) can send new host
requests (e.g., read requests, write requests, etc.) to a first in,
first out queue when request/event pacing 1s needed (e.g.,
requests/responses should be delayed to balance resources,
etc.). As an example, a queuing module 330 of FIG. 3 and/or
the like may provide for implementing and/or managing
queues, such as a first 1n first out (FIFO) queue, to facilitate
request pacing. In some embodiments, for example, 1n some
embodiments, the computing system (e.g., a hardware host
interface, etc.) can place new host requests mto a FIFO
queue. The requests are processed 1n the order received and
remain in the FIFO queue until any required pacing delay 1s
completed. In some embodiments, while a read request 1tself
1s not paced, a read request will be delayed 1f writes 1ssued
before the read request are delayed.

As another example, 1n some embodiments, if there 1s an
active read taking longer than X clock cycles, all read
responses 1o the host that have not taken longer than Y clock
cycles (e.g., pacing bypass threshold, etc.) will be sent to a
read response FIFO queue. A second defined threshold (e.g.,
Y) can be used to determine whether a given host response
should be delayed or it pacing should be bypassed. The
computing system can remove and process a read response
from the FIFO queue every Z clock cycles (e.g., pacing
delay level, etc.) while the read response FIFO queue 1s not
empty.

Processing proceeds to operation S260, where the com-
puting system (e.g., server computer 200 of FIG. 1 or the
like) can implement a memory request (e.g., read request,
write request, read response, etc.) flow (e.g., request pro-
cessing flow, etc.) based on the pacing requirement, pacing
delay level, and/or the like. As an example, a pacing count
module 335, a queuing module 330 of FIG. 3, and/or the like
can provide for assisting request/response process tlows
when a pacing requirement 1s determined for host requests.
For example, a pacing count module 335 can manage a pace
count indicating clock cycles since a last paced event,
manage the pacing delay between write requests (e.g., 1n
FIFO queue, etc.), manage the pacing delay between read
responses (e.g., 1n read response FIFO queue, etc.), and/or
the like.

For example, 1n some embodiments, when write pacing 1s
required, the computing system (e.g., hardware host inter-
face, etc.) can place new host requests mto a FIFO queue
and/or the like. The queued requests are processed in the
order received and remain in the FIFO queue until any
required pacing delay has been completed. While a read
request 1tself 1s not paced, it will be delayed if writes 1ssued
betfore read request are delayed.

As another example, 1n some embodiments, when read
response pacing 1s required (e.g., an active read taking
longer than X clock cycles, etc.) all read responses to the
host that have not taken longer than Y clock cycles (e.g.,
pacing bypass threshold) can be sent to a read response FIFO
queue and/or the like. The computing system can remove
and process a read response ifrom the FIFO every defined

US 11,922,228 B2

9

number (e.g., Z) of clock cycles while the FIFO 1s not empty.
When the computing system detects that there are no longer
any active host reads that require read pacing, the read
response FIFO can be drained without delays and read
pacing will be effectively disabled until another host read
crosses the long media access time threshold (e.g., X).

Further Comments and/or Embodiments

FIG. 4 depicts a flowchart 400 of an example host
memory request flow, according to embodiments of the
present nvention. In some embodiments, a host request
FIFO queue 1s used to place new read requests and write
requests during request pacing. The requests would be
processed 1n the order received. A write pacing delay (e.g.,
pacing delay level, etc.) provides the pacing delay between
processing write requests and, 1n some embodiments, can be
set based on resource utilization. A write pacing count can
be used by the computing system to count clock cycles until
the next paced request can be processed. The pacing count
can be decremented every clock cycle when the pacing
count 1s non-zero (e.g., greater than zero).

The write pacing delay can be a firmware input to
hardware that 1s used to determine how long to delay
between processing new write requests from the host. A
value of zero disables write request pacing.

A set of ready-to-use (RTU) thresholds can be established
and matched to policy for performing garbage collection
and/or the like. These thresholds can also be used to deter-
mine the level of write pacing needed to avoid using up all
available resources (e.g., RTU=0%).

The computing system (e.g., hardware host interface) can
place new host requests into a FIFO. The requests are
processed 1n the order recerved and remain in the FIFO until
any required pacing delay 1s completed. While a read request
itsell 1s not paced, it will be delayed 11 writes 1ssued before
the read request are delayed.

As 1llustrated in FIG. 4, host request FIFO processing
begins at operation 402. Processing proceeds to operation
404 where a determination 1s made whether the host request
FIFO queue 1s empty. If the host request FIFO queue 1s
empty, processing returns to operation 404.

If the host request FIFO queue 1s not empty, processing,
proceeds to operation 406 where a determination 1s made
regarding the oldest request entry 1n the FIFO queue. If, at
operation 406, the oldest request entry in the FIFO queue 1s
a read request, processing proceeds to operation 412. At
operation 412, the oldest entry from the FIFO queue (e.g.,
read request) 1s removed and normal request processing 1s
initiated. Processing then returns to operation 404.

If, at operation 406, the oldest request entry in the FIFO
queue 1s not a read request (e.g., 15 a write request),
processing proceeds to operation 408. At operation 408, a
determination of the write pace count 1s made. If the write
pace count 1s not zero (0), processing returns to operation
404. If the write pace count 1s zero (0), processing proceeds
to operation 410 where the write pace count 1s set to a
current write pacing delay. Processing proceeds to operation
412 where the oldest entry from the FIFO queue (e.g., write
request) 1s removed and normal request processing 1s 1niti-
ated. Processing then returns to operation 404.

FIG. 5§ depicts a flowchart 500 of an example read
response tlow, according to embodiments of the present
invention. As illustrated in FIG. 5, host read response
processing flow begins at operation 3502, where a read
request has been completed and a read response 1s ready for
the host.

10

15

20

25

30

35

40

45

50

55

60

65

10

Processing proceeds to operation 504, where a determi-
nation 1s made whether pacing 1s not required or 1f pacing
should be bypassed. If, at operation 504, pacing 1s not
required or pacing 1s to be bypassed, processing proceeds to
operation 308. At operation 508, the ready host read
response 1s sent as normal.

I1, at operation 504, pacing 1s required (e.g., pending read
response exceeding threshold, etc.) and pacing 1s not to be
bypassed, processing proceeds to operation 506. At opera-
tion 506. The host read response 1s added to a response FIFO
queue to implement read response pacing. The read response

pacing flow using the FIFO queue will be described with

regard to FIG. 6.

FIG. 6 depicts a flowchart 600 of an example read
response first 1n, first out flow, according to embodiments of
the present invention. Read response FIFO illustrates the
interface between the read response processing and the FIFO
processing.

Read response pacing count 1s used by hardware (e.g.,
computing system, etc.) to count clock cycles until the next
paced response can be sent. The read response pacing count
1s decremented every clock cycle i1f non-zero (e.g., greater
than zero, etc.).

A pacing required determination 1s made if any active
read operation has exceeded X clock cycles (e.g., defined
long access time threshold). In some embodiment, threshold
X can be programmable (e.g., 2M clocks).

Pacing bypass 1s determined i1f the current read being
responded to has already exceeded Y clock cycles (e.g.,
defined pacing bypass threshold). In some embodiments, a
threshold Y can be programmable (e.g., 512K clocks).

Pacing delay defines the number of clock cycles (e.g., 7)
between delayed read responses. In some embodiments,
delay Z can be programmable (e.g., 256).

As 1llustrated 1n FIG. 6, host read response FIFO pro-
cessing tlow begins at operation 602. Processing proceeds to
operation 604 where a determination 1s made whether the
response FIFO 1s empty. If the response FIFO 1s empty
processing returns to operation 604. If the response FIFO 1s
not empty, processing proceeds to operation 606, where a
determination 1s made whether pacing 1s required.

If pacing 1s not required, processing proceeds to operation
612, where the response pace count 1s set to zero (0).
Processing proceeds to operation 614 where the oldest entry
from the response FIFO 1s removed and the response 1s sent
to the host. Processing then returns to operation 604.

If pacing 1s required, processing proceeds to operation
608, where a pace count determination 1s made. If the pace
count 1s not zero (0), processing returns to operation 604. If
the pace count 1s zero (0), processing proceeds to operation
610, where the read response pace count 1s set to 7Z (e.g.,
defined delay value). Processing then proceeds to operation
614 where the oldest entry from the response FIFO 1s
removed and the response 1s sent to the host. Processing then
returns to operation 604.

FIG. 7 depicts a diagram of example write request pacing,
thresholds 700, according to embodiments of the present
invention. A set of ready-to-use (RTU) thresholds are estab-
lished and matched to policy for performing garbage col-
lection. These thresholds will also determine the level of
write pacing needed to avoid using up all available resources
(RTU=0%).

When not low on RTU resources, e.g., >13%, no write
pacing 1s performed. Garbage collection may be occurring
but there are enough RTU resources to complete new host
write requests at the maximum rate possible.

US 11,922,228 B2

11

When severely low on RTU resources, e.g., <I3%, firm-
ware will set the level of write pacing based on the RTU
percentage. Firmware will increase the level of pacing as the
RTU percentage continues to decrease. The maximum write
pacing level at T5% will allow the rate of garbage collection
to outpace the rate of new host writes but 1s still low enough
to prevent the host from timing out writes.

Firmware will gradually decrease the level of write pacing,
as the RTU percentage increases again and will eventually
disable 1t until needed again. Hardware will delay each new
write request based on the pacing value set by firmware.

FIG. 8A through FIG. 8C depict block diagrams of
example read request pacing, according to embodiments of
the present invention. As illustrated in FIG. 8A through FIG.
8C, outstanding host requests 802a, 80256, and 802¢ are
targeted to media resources 804-818 for read and/or write
operations.

As illustrated 1n FIG. 8A, diagram 800, ideally, all media

resources (e.g., media resources 804-818) will be targeted
evenly (e.g., NAND Flash accesses would be spread evenly
across all dies). This results 1n equal host interface resources

(e.g., outstanding host requests 802a) targeting each media
resource.

As 1llustrated mn FIG. 8B, diagram 830, certain media
operations (e.g., NAND Flash Erases) or media error recov-
ery could add significant delays to media reads. This can
result in more host resources (e.g., outstanding host requests
802bH) tied up for the aflected media resource (e.g., media
resource 804). Host iterface timeouts could occur 1if the
backlog gets too large.

As 1llustrated 1n FIG. 8C, diagram 840, as reads complete,
they could be replaced by a host request (e.g., from 802¢)
accessing the affected media resource (e.g., media resource
804).

Embodiments of the present disclosure assist in minimiz-
ing the maximum size of a backlog by delaying individual
read responses to the host until the long reads complete.
Responses are only delayed while long reads are active. This
will not aflect performance during normal operations.

Definitions

Present invention: should not be taken as an absolute
indication that the subject matter described by the term
“present mvention” 1s covered by either the claims as they
are filed, or by the claims that may eventually 1ssue after
patent prosecution; while the term “present mvention™ 1s
used to help the reader to get a general feel for which
disclosures herein are believed to potentially be new, this
understanding, as indicated by use of the term “present
invention,” 1s tentative and provisional and subject to
change over the course of patent prosecution as relevant
information 1s developed and as the claims are potentially
amended.

Embodiment: see definition of “present 1nvention”
above—similar cautions apply to the term “embodiment.”

and/or: 1inclusive or; for example, A, B “and/or” C means
that at least one of A or B or C 1s true and applicable.

Including/include/includes: unless otherwise explicitly
noted, means “including but not necessarily limited to.”

Data communication: any sort of data communication
scheme now known or to be developed in the future,
including wireless communication, wired communication
and communication routes that have wireless and wired
portions; data communication 1s not necessarily limited to:
(1) direct data communication; (1) indirect data communi-
cation; and/or (111) data communication where the format,

4

10

15

20

25

30

35

40

45

50

55

60

65

12

packetization status, medium, encryption status and/or pro-
tocol remains constant over the entire course of the data
communication.

Receive/provide/send/input/output/report: unless other-
wise explicitly specified, these words should not be taken to
imply: (1) any particular degree of directness with respect to
the relationship between their objects and subjects; and/or
(11) absence of intermediate components, actions and/or
things interposed between their objects and subjects.

Module/Sub-Module: any set of hardware, firmware and/
or software that operatively works to do some kind of
function, without regard to whether the module 1s: (1) 1n a
single local proximity; (11) distributed over a wide area; (111)
in a single proximity within a larger piece of software code;
(1v) located within a single piece of software code; (v)
located 1n a single storage device, memory or medium; (v1)
mechanically connected; (vi1) electrically connected; and/or
(vinn) connected 1n data communication.

Computer: any device with significant data processing
and/or machine readable instruction reading capabilities
including, but not limited to: desktop computers, mainframe
computers, laptop computers, field-programmable gate array
(FPGA) based devices, smart phones, personal digital assis-
tants (PDAs), body-mounted or inserted computers, embed-
ded device style computers, application-specific integrated
circuit (ASIC) based devices.

What 1s claimed 1s:

1. A computer-implemented method comprising:

determiming a pacing requirement for host requests based

on one or more thresholds:

setting a pacing delay level based on the one or more

thresholds 1n response to the determination of the
pacing requirement;

implementing a memory request flow for a host request

based on the pacing requirement and the pacing delay
level; and

processing the host request based on the implemented

memory request flow.

2. The computer-implemented method of claim 1,
wherein setting the pacing delay level comprises setting a
pace count indicative of a number of clock cycles to delay
the host request, and wherein the pace count 1s decremented
every clock cycle when the pace count 1s greater than zero.

3. The computer-implemented method of claim 1,
wherein the host requests include a write request and
wherein the pacing requirement 1s determined based on
available resources.

4. The computer-implemented method of claim 3,
wherein the one or more thresholds represent a level of
available resources.

5. The computer-implemented method of claim 4,
wherein the pacing delay level 1s increased as the level of
available resources decreases.

6. The computer-implemented method of claim 3,
wherein new host requests are added to a first 1n, first out
queue 1n response to the pacing delay level being greater
than zero.

7. The computer-implemented method of claim 3,
wherein new read requests are delayed until previously
delayed write requests are processed.

8. The computer-implemented method of claim 1,
wherein the host requests include a read request and wherein
the pacing requirement 1s based on exceeding a threshold
long access time for an active read request.

9. The computer-implemented method of claim 8, further
comprising, i1n response to determining the active read
request has exceeded the threshold long access time:

US 11,922,228 B2

13

sending a pending read response that has not exceeded a
pacing bypass threshold to a first 1n, first out queue; and

setting the pacing delay level to a defined number of clock
cycles when the first 1n, first out queue includes one or
more pending read responses,

wherein the memory request flow for the host request

includes processing an oldest read response from the
first 1n, first out queue based on the pacing delay level.

10. A computer program product comprising a computer-
readable storage medium having stored thereon:

program 1nstructions programmed to determine a pacing

requirement for host requests based on one or more
thresholds:

program 1nstructions programmed to set a pacing delay

level based on the one or more thresholds in response
to the determination of the pacing requirement;
program 1nstructions programmed to 1mplement a
memory request flow for a host request based on the
pacing requirement and the pacing delay level; and

program 1nstructions programmed to process the host
request based on the implemented memory request
flow.

11. The computer program product of claim 10, wherein
setting the pacing delay level comprises setting a pace count
indicative of a number of clock cycles to delay the host
request, and wherein the pace count i1s decremented every
clock cycle when the pace count 1s greater than zero.

12. The computer program product of claim 10, wherein
the host requests include a write request and wherein the
pacing requirement 1s determined based on available
resources.

13. The computer program product of claim 12, wherein
the one or more thresholds represent a level of available
resources and wherein the pacing delay level 1s increased as
the level of available resources decreases.

14. The computer program product of claim 12, wherein
new host requests are added to a first 1n, first out queue in
response to the pacing delay level being greater than zero.

15. The computer program product of claim 10, wherein
the host requests include a read request and wherein the
pacing requirement 1s based on exceeding a threshold long
access time for an active read request.

16. The computer program product of claim 15, the
computer-readable storage medium having further stored
thereon:

10

15

20

25

30

35

40

14

program instructions programmed to, 1n response to deter-
mining the active read request has exceeded the thresh-
old long access time, send a pending read response that
has not exceeded a pacing bypass threshold to a first in,
first out queue; and

program instructions programmed to set the pacing delay

level to a defined number of clock cycles when the first
in, first out queue includes one or more pending read
responses;

wherein the memory request flow for the host request

includes processing an oldest read response from the
first 1n, first out queue based on the pacing delay level.

17. A computer system comprising:

a processor set; and

a computer-readable storage medium;

wherein:

the processor set 1s structured, located, connected and
programmed to run program instructions stored on
the computer-readable storage medium; and
the stored program instructions include:
program 1nstructions programmed to determine a
pacing requirement for host requests based on one
or more thresholds;
program 1nstructions programmed to set a pacing
delay level based on the one or more thresholds 1n
response to the determination of the pacing
requirement;
program 1nstructions programmed to implement a
memory request flow for a host request based on
the pacing requirement and the pacing delay level;
and
program 1nstructions programmed to process the
host request based on the implemented memory
request flow.

18. The computer system of claim 17, wherein the host
requests include a write request and wherein the pacing
requirement 1s determined based on available resources.

19. The computer system of claim 17, wherein new host
requests are added to a first 1n, first out queue 1n response to
the pacing delay level being greater than zero.

20. The computer system of claim 17, wherein the host
requests 1nclude a read request and wherein the pacing
requirement 1s based on exceeding a threshold long access
time for an active read request.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

