12 United States Patent

Branson et al.

US011921724B2

US 11,921,724 B2
*Mar. 5, 2024

(10) Patent No.:
45) Date of Patent:

(54) WINDOWING ACROSS OPERATORS IN A
STREAMING ENVIRONMENT

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

(72) Inventors: Michael J. Branson, Rochester, MN
(US); Jay S. Bryant, Rochester, MN
(US); James E. Carey, Rochester, MN
(US); John M. Santosuosso, Rochester,
MN (US)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 1162 days.

This patent 1s subject to a terminal dis-
claimer.

(21) Appl. No.: 16/131,595

(22) Filed: Sep. 14, 2018

(65) Prior Publication Data
US 2019/0018882 Al Jan. 17, 2019
Related U.S. Application Data

(63) Continuation of application No. 14/751,742, filed on
Jun. 26, 2015, now Pat. No. 10,133,784, which 1s a

(Continued)
(51) Imt. CL
GO6F 16/2455 (2019.01)
GO6F 16/2453 (2019.01)
GO6F 16/28 (2019.01)
(52) U.S. CL
CPC .. GO6F 16/24568 (2019.01); GO6F 16/24542

(2019.01); GO6F 16/24549 (2019.01); GO6F
16/283 (2019.01)

SOURCE

S10)

(38) Field of Classification Search
CPC ... GO6F 16/24568; GO6F 16/24542; GO6F

16/24549; GO6F 16/283
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

11/2009 Amini
1/2010 Nishizawa

(Continued)

7,613,848 B2
7,644,110 B2

FOREIGN PATENT DOCUMENTS

WO 2013078682 Al 6/2013

OTHER PUBLICATTIONS

Ballard et al.,, “IBM InfoSphere Streams: Harnessing Data in

Motion,” IBM Redbooks, Sep. 2010, 360 pages, © Copyright
International Business Machines Corporation 2010.

(Continued)

Primary Examiner — Charles D Adams
(74) Attorney, Agent, or Firm — Jared C. Chaney

(57) ABSTRACT

A stream computing application may be configured to man-
age the tflow of tuples through a section of an operator graph.
A window may be generated over one or more stream
operators. The window may 1nclude breakpoint thresholds
that set the maximum flow of tuples within the window. The
stream operators within the window may be monitored to
determine the flow of tuples occurring within the window
using tuple flow counts. The tuple flow counts may be
compared to the breakpoint thresholds to determine whether
a breakpoint condition has occurred. If a breakpoint condi-
tion has occurred, a tuple flow change may be implemented
to reduce the flow of tuples within the window.

18 Claims, 8 Drawing Sheets

US 11,921,724 B2

Page 2
Related U.S. Application Data 2012/0311172 A1 12/2012 Branson
o o 2013/0080413 Al 3/2013 Chen
continuation of application No. 14/707,201, filed on 2013/0179591 A1 7/2013 Branson
May 8, 2015, now Pat. No. 10,042,891. 2013/0290489 Al 10/2013 Branson
2013/0305227 Al 11/2013 Branson
(56) References Cited 2014/0089929 Al* 3/2014 Branson HO4T. 69/22
718/102
- 2014/0095503 Al 4/2014 Branson
J.5. PAIENT DOCUMENTS 2014/0095506 A1l* 4/2014 Branson ...oeeeeveeviniins GO6F 16/20
. - 707/737
8,095,690 B2 1/2012 Kashivama | | | .
8.560.526 B2 10/2013 Santoguosso 2014/0181144 Al 6/2014 Kashiyama
0902788 Bl 32016 Kekie 2015/0248462 A1 9/2015 Theeten
0.853.878 B2 12/2017 Branson 2016/0241770 AL 82016 Su
10,042,891 B2* 872018 Branson GOG6F 16/24549 2016/0328464 Al 11/2016 Branson
10,133,784 B2* 11/2018 Branson GOG6F 16/283 2018/0069777 Al 3/2018 Branson
2006/0133678 Al 6/2006 Yokota
2008/0005392 A1 1/2008 Amini
2009/0238277 Al 9/2009 Meechan OTHER PUBLICATIONS
1 =k
201170239048 Al 92011 Andrade G’?fﬁ/éll/ﬁ?;g List of IBM Patents or Patent Applications Treated as Related,
2012/0179809 Al* 7/2012 Barsnesso...... HO041, 41/22 signed Sep. 13, 2018, 2 pgs.
709/224 | |
2012/0218268 Al 8/2012 Accola * cited by examiner

L)

+ % = d b A A+ o+ o+ F A+ FF A F A dFA A F A FF S d DA F S F A A+ F

COL WHLSAS
ANGNJOTAAI U T

nfad gyt aw ks s haddeyrdyr sy dhyy ey jay

S HdNOO

L I T

t 4+ + & o & 4 d

-+
LA . N RN B NN A RN E RS BN NN NN NN NN L LN N NN A

US 11,921,724 B2

T
Fa
*
*
+
*
&
+
[
-
-
ar
"
-
u
.
&
¥
’
+
.
+
a
=
!
[
#
'
"
.—_. ++._.._...__.._.._....._.._+++++._..—..__.__rr__....._.._....._+...++._.._.._.._.._.r__.._.._.r.._.._+.._++._.._..rrr.._.._.._.._.._.._.._.......—....
+
+
+
+
b+ 4t g an g] +
+
+
+ +
,
+ +
*
¥ +
L3
» a
.3
-
L
._._ T
r -
-
- +
-, +
. A F + F + F ok bk d o+ bk At At b F bk kb ek hochhoh okt b FF F F bk d ket kb b b b bk bk ok hdhohoh ot t R b b bk kb dAd A hh ot b bk kb bk bkt R+ A+ o+
f +
+
*
+
+
*
+
L3
+
1 +
+
ior
i i r
i{ =i
d - d
- L
L] e
- L
-4 &
ol
+ + +
+
- + +
+
+ LI +
+ +
+ +
+ +
+ +
+ +
+ +
+ *
R O I I O I R R O O B I T N I I O I I O R I R R O T I N R I O I L I B .
&L
" amy kd Fprp p P A TTTT A P r &R ol " s s s h sl kb pgm " w "y amer e r by rygy 8 m by hrT Rn kb kLR rpgE " " ERTTTTT AL rpyw hchh kT
+ -
P -
+ &+
+ k& L
+ +
+ +
+ &
+ +
+
+ +
+
¥
+ + % *F +
+
+ +
1
Ll +
r 3
LI +
LI
LI
L B
LI
FIEN]
-7
. b
N EEEEEEE R I R N S N Y Y Y I R E R E T T N N
-
" +
- +
+ +
+
+ +
b+ 4+t 44 s g k] + o+
+ + o+
+ + +
+ + + + 4+
+ o+ *
+
+
+
+
+ LEE IK; * T *
LR N - =g - £+
R L L L L L T R I L L R R I R R R L R L R R R R R R R R R R R R R R AR R RN,
LI LR LIE
+oa a -
-

AUON JLNdWO 0 AU OMIZN

r
r
r
]
r
]
]
s
E
3
E
E
X
]
]
]
r
r
r
]
b
b
]
s

A d rwrrrrrvyaxsasssa s tklaearderr

i b d L
-

Mar. 5, 2024

LI BB N BN NN LB BB BB EBEEBEEBEBEEBEEBEREBEEBEBEBNEERBEEEBENBEDBNEEEB.EBNEIRENBENLRIBNBIE.BENN.)

YOL L
SUON ALNaNOO

r b w b owr b rnmnynwmt Tk ddddnownchnchonmchohr e b brndowomchonchchoy b ddkd b how hoh

ok bk d o bW oa oA hoh ok kb ok kA h ok hoh kol kb ok ok ko bk kol d b hEh ok h

GOl L
A00N ALNdNG D

+ % % % FF+ +FFFFEFFFEF RSP F At F S FFEFEEFEERYEEREFEFF PR F R LA TF o FFFF R

bk drodr -+ F ko FF R A+

+* + F ¥ + + + + F 2 F R+ FFFFFEFFFFF
d

U.S. Patent

U.S. Patent Mar. 5, 2024 Sheet 2 of 8 US 11.921.724 B2

LI N N NN RSB EEE BB BB EEEEEBEEBEEBEEBEBEBEEBERBEBEEREBREEEBEREREERERBELEBEEREBEEBREREBIEREINEIEIENIENEIEINIL,

/O DEVICES COMMUNICATIONS
NETWORK

+ + + + + +

* kb d
* + + + + okt

X

+ + + + ¥ +F + F F A+ FFFFAFFAFFEFFEFFFEAFEFEFEFEFE A

+ + + + + F+ + + F + F F F FFFFFEFFFEFFFEFFEFEFFFEFFEFEFFEFEFFEFEFEFEFEFFEFEFFEFEFEFEFEFEFEFEFEFEFEFEFEFEFFEFEFEFEFEFEFEFEFFEFEFEFEEFEFEFE

+
+
++++ + * + + * + + F+ ++++t+ Attt ottt ottt ot
+ + + +
+ +
+ + +
+
+ +
+ +
L
+ +
+ + ¥+ +

+ + + + + + + + + + + + + + + + +F +F F + F F FF A+ FFFFFFFAFEFFAFEFFEFEFFEFEFFEFEFEFEAFEFFEFEFFEFEFFEFEFFEFEFFEFEFEFEFEFEFEFEFFEFEFFEFEFEFEFEFFEFEFFEFEFFEFEFEFEFEFEFEFEFFEFE + + + + + + + + + + + + + + + + + + + F +F + F F FFFFFFAFFAFAFFAFAFFAFAFFFEAFEFFEAFFFAFEFFEFEFFEFEFEFEFEFEFEFEFEFEFEFFEFEFEEFEFEFF + + + + + + + + + ¥ + + + F + + F + + F +F A FFFFF

+

+

+
+* + *+ + + + + + F F F F F FFFFFEFFFFFEFEFFFEFFEFEFFEFEFFE

+
+ + + + ¥+ + + + + + + F + F F F F FFFFFFFAFEFFFEFEFFEAFFEAFEFEFFEFEFEAFAFAFAFF
+ +*

+ +
+ + + + + + + + + + F F FFFFFFFEFFFFFFEFFEFEFEFEFEFEFEAFEFEFAFFEAFAFAF

+ + + + + ¥+ +
+* +* L +* +* +*
+ + + + + + +
+ + + + +
+* +* +* +*
+ + +
+ + + +
+* *
+
+ + +
+
+ + + + + + + + + + + +F + + +F A+ FFFEFFEFEAFFEFEFFE A F + + + + + F+ + + F + F F F FFFFFEFFFEFFFEFFFEFFFEFFEFEFFEFEFFEFEFFEFEFEFFEFFEFEFEFEFEFEFEFEFEFEFEFEFEFEFFEFEFFEFEFEFEFEFFEFEFFEFEFE + + + + + + + + + + F + + F + + F F FFF A FFFEFFAFEFFEAFEFFEAFEFEFEAFEFEFEFEFAH

/0 DEVICE
INTERFACE INTERFACE

*+ + + + + +F + F F A FFFFFEFFEFFEFEFEFFEFEFFEFEFEFEEFEEEFEFETE + + + + + + + + + + + + + + + + F + + + +F + F +F F F A FF A FAFAFAFAFAFFFAFFAFEAFEFFEAFFFEAFFFEAFEFFEFEFEFEFEFFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFFEFEFFF + + *+ + + F + + F + +F FF FFFFFEFEFFEFFFEFFEFEFEFEFEFEFEEFEFEEFEFEEEFET
+ + +

NETWORK

+ + + + + + + + + + + + A+ FFFF

+ + + + + + + + + + + + + + +F + + +F + + +F +F
+ + + + + + + + + + + + + F A+ F
L L IO DO DO DO DO DAL BOK DO DO BON DON DOE BOK DOL DO DOE DO BN BN BN BN
* * ko F
* F ko d
+ + + + + + + + + + ¥ + + ¥ + + + +F + + + +

+
+*
+
+*

+*
+
+*

+ +
+ +
+* +
+
+*
+ +
+* +
+
+*
+ +

+ + +
+ + + + + + + + + + + + + + +
+ + + +
+

+*
+
+
+
+
+*
+
+
+
+*
+

+*
+
+
+
+
+ +
+*
+
+ +
+* + +
+ +
+

+ +
+ + +
+ + + + + +
+ +
+ + +
+
+
+* + +
+
+*
+ +
+
+ + + +
+ +

+ +
+ +
 + F F FF o+ FFFFFEFFFFFF

+ +
 + F F FF o+ FFFFFEFFFFFF
+

+ + + + + + + + + + + + + + + + F A+ FFFFFFFFEFFEFEFFFEFFFEFFEFEFEFEFEFFEFEFEFEFEFEFEFEFFEFEFEFEFEFFEFEFEFEFEFFEFEFFEFEFFEFEFEFEFEFEFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFFEFFEFEFFEFEFFEFEFFEFEFFFFFFFFFFFFFFEFFFFEFFFFFFFFFEFFFEFFEFEFFFEFFFFFFFFFEFFFEFFFEFFFF A FFFEF A FFFFF A F T

INTERCONNECT (BUS 228

+* + *+ + + F + F FF FFFFFEFFFEFEFEFEFF
+ + *+ + + F + + F + +F F F FF o+ FEF

*+ + + + + F + F FFFF A FFEFFFFFEFEFFFEFEFEFEFFEFEFFEFEFFEEFEFEFEFEFEFEFEFEFEFEFEFFEFEFEFEFEFEFEFEFEFEFEFEFEFEFFEFEFFEFFFEFEFEFEFEFEFEFEFEFEFEFEFEFEFFEFEFFEFEFFEFEFFEFEFEFEFEFEFEFEFEFEFEFFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFE A F T

+ +
+* +*
+ + + +
+ +
L +* ¥
+ + + + + +
+ + + +
+* + + * + +
* + + + + + ¥+ +
+ +
+ +
+* +*
+ +
+ +
+* +*
+ +
+ +
+* +*
+ +
+ +
+* +* +* +
+
+ + +
+*
+ + +
+
+* +*
+ + + + + + ¥+ + +
+ + + + + +
L R
+ + + + + +
+ + +* + +
+ * o+ +*
+ + + + +
+ + +
+- +* o+
+ + +
+

L N L N N N L N L L O L L R L R I L D R L L D D O O

MEMORY

L N L L O I I R I D L D L R L R D D B L L O O R I N D B L R D D D L L U L

* + + F + + F A+ FFFFEFFFEFFFEFFFEFFFEFFFEFEFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFEFFEFEFFEFFEFEF A FF

BUFFER 200

* + + + F + ¥ F F+F F FFFFFFFFFFFEFEFEFEFEFEFEFEFEFEFEFEFFEFEFEFFEFEFFEEFEFEFFFH

+ + + + + + F F F F FFFFFFFFFFFFEFFFEFEFEFEFEFEFEFFFEFEFEFEFEFFEFFFEFFEFEFFFEFFFEFFEFEFFEFEFFEFFEFFEFEFFEFEFFFFEFFFFEEFFEEFFEFFFFEEF T

PROCESSING
ELEMENTS

* + + + + F F F FFFFFEFFFEFFFEFFEFEFEFEFEFFEFEFFEFEFEFEFEFFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEEFEFEEFEEFEEEEEE S

o TREAM
OPERATOR

+ + + F+ + + F + + F A+ FEFFFEH

&40

+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+

* + *+ + + F + +F F F FFFFFEFFFEFEFFEFFEEFEFEFEEFEEFEFEEFEEF
+ + + + + + + + + + ++ ++++++ ottt

* + F F F FF o FFFFFEFFEFEFFEFEFEFEFEFEFEFEFFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEEFEFEFEFEFEFEFFEFEFEFEEFEFEEFEEFFFF

* + + F F FFFFFFEFFEFFEFEFFEFEFFFEFEFEFEFEFFEFFFFF

+ + + F F FF o FFFFFFFEFEFFEFFEFEFEFFEEFEFEEFEFEFEFEFEFFEFEEFFEFFE

+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*

+ + + F+ + + F + +F F A FFEFFFEFFFEFFFEFFEFEFEFEFEFFEFEFFEFEFFEFEFFEFEFEFFEFFEFEFFFEFFEFEFFFEFFEFEFEFEFEFEFFEFEFE

L N N N L N L L L D N L R

+ + *+ + + F + + F F +F F A+ FFFFEFFFEFFFEFFFEFFEFEFFEFEFEFEFEFFEFEFFEFEFEFEFEFFFEFEFEFEFEFEFEFEFFEFEFEFEFEFEFEFFFEFFEFEFFFEFFFEFEFFEFFFEFEFFEFEFFEFFFEFFFEFEFFEFEFFEF S FF

+ + *+ + + F + + F + + F A+ FFEFFFEFFFEFFFEFFFEFFEFEFEFEFEFFEFEFFEFEFEFEFEFFEFEFFEFEFEFEFEFEFFEFEFEFEFEFEFEFEFEFEFEFEFEFFFEFFFEFFEFEFEFEFEFEFFEFFFEFFEFEFEFFEFFEFEFFE S EH
L L IO B DO DO DL DAL BOL DN DO DOL DL DO DOL DL DO DOE DL DON DOL DAL DON DOE NN DAL DON DOL DOL NN DOE DO DOL DOL DO NN DL DO DOL DOE DO DOE DOE DON BOL DOL DO DAL DOL DO DOE DOL DON DOL DN DOK DOE DNL DO DOE DOE DOL BOL DOT DO DOL DOL DOK DOL DOE DO DOL DOE NN BOL DL DOK BOL DL DO BOE DNE NN BOL NN DO DOE NN DO DOL NN DON BOL DOL DON DNE DOE DO BOL DN DOL BN B BNL BN BN J
L L I I DO DO DL DO DAL DL DO DOL DL DOL DON DL DO BON DL DO DOL DAL DON DOE NN DO BOL DOL DO BON DOE DO DOL DL DO DON DN DO DO NN DO DOL DOT DO DOL DOL DON DOL DOL NN DOL DOL NN BOL DN NN DOL DOE NN DOE DOL DO DOL DOE DAL DOE DOE DOK BOL DOE DOK DAL NN DON DL DOL DO BOL DOL NN BOL DL DOK BOL DN DO DOL DN DO DOE NN DOL BOL DOE DOL DOE DOK DO BNL BN DO BOL B B BN

+ + + + + + F F F FFFFFFFFFFEFFFEFFEFFFEFEFFEFEFEFEFEFEFEFEFFEFEFFEEFFEFEFEFEFEFEFEFEFEFEFEFEFEFEFFEFEFFEFEFEFEFEFFEFEFEFEFEFEFEFEFEEFEFEEF A F

COMPUTE NODE

+ + + + + +F + A+ FFEFFFEFFFEFFFEFEFEFEFFEFEFFEFFEFEFEFEFEFEFEFEFEFEFEFEFEEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEEFFEFEFFEFEFFEFEFFEFEFEFEFEFEFEFEFFEFEFEEFEFEFEEFEFFEFFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFFEFEFEFEFEFEFEFEFEFEFE T

+ + F+ + + F + F FF FFFFFEFFFEFFFEFFFEFEFFEFEFEFEFEFEFEFEFEFEFEFEEFEFEFEFEFFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFFEFEFFEFEFFEFEFFEFFFEFFFEFFFEFFFEFFFEFFFEFFFEFEFEFEFEFFEFEFEFEFEFFEFEFFEFEFEFEFEFEFEFEFFEFEFEFEFEFFEFEFFEFFEFEFEFEFEFEFFEFEFFEFEFEFEFEFFEFEFFEFEFFEFEFEFEFFFEFFEFEFEFEFEFEFFEFEFFEFEFFEFEFEFEFFFEFEFEFEFEFE A FFEFEFFEFEFEFEFEFEFEFEFFEFFFEFEFFEFEFFEFEFEFEFEF A FEFEFEFEFEFE A FEFFEFEFEFFEFEFE A FEFE T
+ + *+ + + F + + F + + F F F F A+ FFFFEFFFEFFEFEFFEFEFFEFEFFEFEFFEFFEFEFEFEFEFEFEFEFEFEFFEFEFFFEFEFEFEFEFFEFEFFEFEFFEFEFFEFFFEFEFFEFEFFEFEFFEFFFEFEFFEFEFFEFEFFEFEFFEFFFEFEFFEFEFFEFEFFEFEFFEFFFEFEFFEFEFFEFFFEFFFEFFFEFFFEFFFEFFFEFEFFEFFFEFEFFEFFFEFFFEFEFFEFEF A FFEFFFEFEFFEFF A FFEFFFEFFFEFFFEFFFEFEFFEFF S FEFFFEFFFEFEFFEFEF S FFEFF

L K L B B L L L L DAL N DL DAL DL DL BOE NE R BNE NE BNL BNE K R BEE DK DL BNE NE NE BAE DNE BNE DAL NN BOL BOE BNE NE B DNE BEE DAL OE L BOE BOL BNL DAL DNE L BOE NN BNE BNL NE BNE BOE BOE BNE JNE BNE NE DAL BNE BNL BNE BNE DNE DAL BNE L BOE NN DL DO BEE BNE DAL NNE BNE BOE BNE BEL DAL NE DNE DAL NK L BOL NE DL BNE N DNE BN BNE DL BN BNE BNR BOE L DL BNE K DAL DAL DAL DNE DAL DL DL BOE DNE NE BOE DNL DNR BNE DN NL BOE DNK BNL BNL NE DOE BNL N DL BOE BNL DL BOE BN L DAL NN BNE BOE NK BNE DAL BN L BNE BNE DR BNE BN L BNE N BNE BN BN BNE DAL BNL AR DAL BNE BNE JNE BNK R BEE NK BNE BNE BNE NL DAL DNL DL DOE DNE DL L BN NE DAL K BNE BN DK DL JNE NE BOE BNL BOE NL BNE NK DOE BN DO BNL DAL BN BNE BN BN DL BOE BOE BNE R NE BNL BOE BNE BNE BNE DL BNE DAL DNE DR DOE BN BEL DAL BOL BNE DAL NN BNL DNE BOE BNE DEL OE BNL BOE DNL L BNE BN BNE DL BN B BN J

S. Patent Mar. 5, 2024 Sheet 3 of 8 S 11.921.724 B2

+ +

* + + F F FFFFFFFFFFEFEFFEFFFEFEFEFEFEFFEFEFFEFEFEFEFEFEFEFEFEFEEFEFEEFEFEFEFEFEFFEFFEFEFFEFEFEEFEFFFFFFFF

TO
OMMUNICATIONS
NETWORK {50

+ + + ¥+ ¥ + +

L L N L N L L I I I O D L N L D R O O B L L

/O DEVICES

L N N NN N NN NN N N NN NN
L N N NN N NN N NN N NN N N N NN N

+ * + + + + + F+ ++ ottt

+
+ + + + + + + + + + + + + + +F + F +F A FFFFF A F

+ + + F+ + + + + +F FF F A+ FFFEFFFEFFEFEFEFFEFEFEFEFEFEFEF

+* +
+
+ +
+++++ 1-1-1-1-+++++++++++++1-1-1-++++++++++++++1-1-1-1-1-1-1-1-1-1-++++++++++++++++++++++++
+ + +
+ + + + +
+ +
+ +
+ +
+ + +
+ + +
+ + *
+ + + +

+ + + + + + + + + Ft+t +F+ Attt ottt ottt ettt ettt ottt ++

+ +
+

+
+ + + + + + + ++ ottt

* + +F + F F A+ FFFFFFFFEFFEFEFFEFEFFEFFFEAFEFEFEAFEFEFEFFEFEFEFEFEFEFFF
+

+
+ +

+ + + + + + + + + +
+ + + + + + + + +

+ + + + + + +
+ + + + + +

+ + +
+* +* +* +* ¥ +*
+ +

+ + + + + +

+*

+ " + + + +
+++++++++++++++++++++++++++++++++++++++ . + ++ + + + + + + *F + +t F+t+F Attt
+ + + + +

+ + +
+ + + + +
+ + +
+ + + + +
+ + +
+ + + + +
+* +* +*
+ + + + +
+ + +
+* +* +* +* +*
+ + +
+ + + + +
+ + +
+ + + + +
+ + +
+ + + + +
+ + +
+ + + + +
+ + +
+ + + + +
+ + +
+ + + + +
+ + +
+ + + + +
+* +* +*
+ + + + +
+ + +
+ + + + +
+ + +
+ + + +
+ + +
+ + + +
+ + +
+ + + +
+ + +
+ + + + + + + +
+ +
+ + + +
+ +
+* +* +* +*
+ +
+ + + +
+ + + + + + + ++ +++ ottt + + + + + + + F+ + Ft+t A+ttt ottt ettt ottt ottt + * + + * + + F+ ottt
+ +
+
+ + +
+ + + + +
+ + + +
+ + + + + +
+ + + + + +
+ + + + + + +
+ + + + + + + + +
+ + + + ¥ + + + ¥ + +
+++++ L L
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+ + +
+ + + + + + + + + +
+ + + + + + + + +
i+ + + + + * + + *
+ + + + + + +
+ + + + + +
i+ * + + + +
L + +
+ + +
i+ + +
+

L N N N L N N L R O L B L L R L R D O B L L L L R O L R I I R L N L L L R I L I L L R L O I L B L L I D B O D D D R I L B R L

INTERCONNECT (BUS 320

+ + + + + + F + A F
+* + + F F F FFFFFFFEFFFEFF A FF

L N N N D D N B L L N N O D D B N N N L O I N O N L R L T A A A I D D L O L L N O D A O N O L N L I R A B A I I A B O A O O L B A A I I A A N L B L D L N A A I I B N L N N N L N O A D N O N L N N D N O D O

+
+
+ +
+ + +
+ + +
+ + + +
+ + + +
+ + + + +
+ + + + + +
+ + + + ¥ + +
+ + + + + +
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ + + + +
+ + +
+ +
+ +
+ +
+ +
+ +
+ + + + ¥ + 4+ +
+ + + + + + *
+ + + + + + +
+ + + + + +
+ + + +
+ + + + +
+ + + +
+ + +
+ + +
+ +
+ + *
LA I B N N N N RN RN BN BB EEBE BB EEBEEEEBEEBEEBEBERBEBERBEBEREREBEERBEEREEEBEREBEEBEREEBEEBEBEEREBEREEBIEEBEREBEEEERBIEBEIEBEINEIEINEIEINEIEJEIZI, LB N B N N N RN R LR E R E B EEBE BB EEBEEBEEEBEEEBEEERBEEREEREBEREBEEEBEEBEREEBEEREBEBERBRBEREBERERBEBEEBEREBEREBEBREERBEEBEBIEREINEEIEIEIEIEINEEIN.,

MEMORY STORAGE

+ + + * + + *+ F+ + Ft+t +F Attt ottt rt

OPERATOR 3
GRAPH e

+ F + F F o+ FFFEF A F A FFFFFFEFFEFEFEFEFEFEE A FEFFEFFEFFEFE R FEFEFEFFEFFEFEFE RS

++

S TREAM
MANAGER

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

* + + + F F F FFFFFFFFEFFAFEFFFEFF

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+ + F F F F o F A FFEFFFEFFEEFEFEFEFEE A FEFEFEFE

OPERATING
SYoTEM

+ + + F + F FFFFFFFEFFEFFEFEFFFFFEFFFFEFFEFEFEFEFEFEFEFEFE

+ + + + + + + ++ + ++ + +F+++F+ o+ttt
LI B DAL B DL DL DAL DO DL DT B DL DAL DO DOL DOE DO DOE BOL BOL DAL BN

* = + kb kb kb kb kb kb kb bk ko kbbb kb

* + + + F F F FFFFFFFFFFEFFAFEAFFAFEAFEFFEFEFEAFEAFFEAFEAFEFEAFEAFEFEAFEAFEFAFEAFEFEAFEAFEFEAFEAFEFEFEAFEFEAFEAFEFEAFEFEFEAFEAFEFEAFEAFEFEFEAFEFEFEAFEFAFEAFEFEAFEAFEFEAFEAFEEFEAFEEFEFEFEFEFEFEFEFEFFFF
* = 4+ b bk kb kb kb kb kb kb kb kb kbt

+ + F F FF o F A FFEFFEFEFFEFEFEFEFEFE A FEEFFFEFFEFFEFEFF A FEFEFFFEFFEFEFE A FEFE A FFEFFEE A FEFE R + F +F F F o+ FF A FF A FFEFFFEFFEFEFFEFEFEFEFEFE A FFFEFEFEFFEFEFEFEFEFE R FEFEFFFEEFEFEFE R FEFEEFEFEFE

MANAGEMENT SYSTEM

L N N A N D I D L N R D D N N L N N A N I B L N L N I I A I D A B L I O L D I I D A B N L O L L A I I A A N A D O B N L N L A A A A A I I B R I O N A O I A A I N N B N N O O D A D A B N N O N N N N D D N N O O

+* + + F F F FFFFFFFEFFFEFFFEFFFEFFFEFFEFEFFEFEFFEFEFFFEFFEFEFFEFEFFEFEFFEFEFFEFEFEFEFEFFEFEFEFEFEFFEFEFFEFEFFFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFFEFFEFEFEFFEFFEFEAFFEFEFFEFEAFFFEAFFEFEFFEFEFFFEFFFEFFFEFFFEFFEFEFEFEFEAFFEFEAFFEFEAFFEFEFFEFEFFEFEAFFFEAFFFEAFFEFEAFFEFEAFFFEFFEFEAFFFEAFFFEFFFEAFFEFEAFFEFEAFFEFEAFFEFEFFEFEAFFEFEAFFEFEAFFE A FFEFEAFFFEAFFFFEFEFFEAFFFEFFEFEAFF A FFEFEAFFEF A F

U.S. Patent Mar. 5, 2024 Sheet 4 of 8 US 11.921.724 B2

TO
COMMUNICATIONS
NETWORK 10q

+ + ¥+ +

+ + + + + + + + F F FF FFFFFFEFFFEFFFEFFEFEFFEFEFFEFEFFEAFEFEFEFEFFEFEFEFEEFEFEFEFEEFEFEFEFEFEFEFEFEFEEFEEEFEFEEFEFEFEFEFEFEFEFEFEEFE A FF

/O DEVICES

L L IO DL DO DAL DAL DO DOL BOL DO DO BOR DO DOK DOL DO DOE BOE DO BN B BN J
* + + + + + okt

+ + + + + + + + + + + + + + + + +F + + + +F + F +F F F F A+ F A FAFAFFAFEAFFFAFEFAFEAFEAFFEAFFFEAFEFFAFEFFEFEFEFFEFFEFEFEFEFEFEFEFEFFEFEFEFEFEFEFEFEFFEFEFEF

+* + + + + +F F FFFFFFEFFFFFEFEFFFEFFEFEFFEFEAFFFFF

+*
+
+
++++
+++++ + + + ¥ + + ¥ F +F F FFFFFAFFFFFFFFF +++ +* + F ¥ + F F FFFFFEFFFEFEFFEFEFEFEFEFEFEFFEFEFEFEFEEFEFEEFEFFFEFFFF
+ + + +
+ + + +
+ + * ¥
+ + +
+
+ +
+ +
+ + +
+ +
+

+
+ + + + + +F + + F FF FFFFFFFFFFFEFFFEFFEFEFFEFEFFEEFEEFEFEFEEFEFEFEFEFEFEFEFEFEFEFEFEEFEFEFEFEFEFEFEFFEFEFEFEFEFEFEFEFEFEFEFEFEFEFFE T + + *+ + + F + + F + +F F F FFFFFEFFFEFEFEFEFFEFEFF

+
+ + + + + + + + +F F F FFFFFFFFEFFFEFFFEFFEFEFEFEFEAFEEEEFETE

+*
+ + + +++++ * + + + + + + + + + kS

+ + + + + +
+ + + + + + + + +
+ + + + + + +
+ + + + + +
+ + + + F F FFFFFFEFFFEFFE A FFEFAFFFEFEFEFFEFEFEFEF + + + +
+* +* ¥ + o+ +*
+ + L
+ +
+* +* +*
+
. + +
+ + + + + + + ¥ + F F FF At FFFFFEFFFEFFEFEAFFEFEFEFEFEFEFEEFEEFT " ++ + + + + + + F F F FFFFFFFEFFFEFFFEFFFEFFEFEFFEFEFEFEFEFEFEFEFEFEEFEFEFEFEFEFFEFEFEFEFEFEEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEEFEFEFEE * + + F + +F F A FFFFFEFEFFEFEFEFEFEFEFEFFEFEFEFEFEFEFEFEFEFEEFEEEEF
+ +
+ +
+ +
+ +
+ +
+ +
+* +*
+ +
+ +
+* +*
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+* +*
+ +
+ +
+ +
+ + + + + +
+ +
+ +
+ +
+ +
+ +
+ +
+ + + + +
+ + +
+
+ +
+*
+ +
* + + +
+ + *+ + + + + + + + +F + F F A+ FFEFFFFFAFEFFFEFFEAFEFFEFEFEFEFE + + + + + + + + +F F F F A+ FFEFFFEFFEFEFFEFEFFEFEFFFEFFFEFFEFEFEFEFEFFFEFFEFEFEFEFEFFFEFFEFEFFEFEFEFEFEFFEFEFEFEFEFEFFEFFEFEFEFE + + + + + + + + + + + + + + + + +F + F +F +F +F F +F A FFAFFAFEAFFAFAFF A
+ + +
+ +
+ + +
+ + + + + +
+ + + + + +
+ + + +
+ + + + + + + + +
+ + + + + + + + +
+* ¥ + +++ +* * + +
+
+
+
+
+
+
+
+
+
+
+ + + + + + + + +
+ + + + + + + + + +
+ + + + + + + + +
+ + + + + +
+ + + + + + +
+ + + +
+ + +
+ + + +
+ + +

+
+ + + + + + + + + F F FFFFFFFFEFFFEFFFEFFEFEFFEFEFFEFEFFEEFEFEFEEFFEFEFEFEFEFEFEFEFEFEFEFEFEFEFFEFEFFEFEFFE A FEFEFEFEFE T

INTERCONNECT (BUS) 420

+
+ + *+ + + + + +F + F F F FFFFFFEFFEFEFFFEFFEFEFFFEFEFEFEFFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEEFEEFEFEFEEFEEFEFEFEFEF A FFEFEFEFEFE A FEFE

+ +
+
+++ +++
+ + + +
+++++ +++++
+ + + + + +
+ + + + + +
+
+
+
+
+
+
+
+
+
+
+
+ + +
+ + +
+ * +
. +
+
+ + + + + +
++++++ ++++++ +
+ + + + +
++++ " ++++ +
+ + +
++ * ++ +
+
+ + + + + + + + + + + + + + + + + FF A+ FEE AR ++ ++ + + + + + + + + + F + + F + +F F A+ FFE +++ + + + + + + + + + + + + + ++
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ A+ A F A FEFAAFEF A A FEFE A
: : + + + + + + + + + + + + + ++ + + + + + +F + + +F+F++F+F+F+F+FFF T ++ :
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
* g e T T * + *
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + + + + + + + + + + F FFFF A FEFEFFEFEFEFEFE A FFEFE R EFE R + "l‘.'l.l']‘]‘.‘."‘. + +
+ + +
+ + +
+ + +
+ ++ +F + + +F ++ +F+F 4+ +F+F+FF+F T +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ + +
+ + + + + + + + + + + + + + + + + F + F+F++F+F+FFFFEFFFEFEFFFEAFEEFEFEEFEEEFEFEEFEEFEEFEEFEEEEEEEEEEEEFEEEEEEEEEEEEEEEEEEEEEEEEEEF +F + + +F+F+F +F+FF+F+F+FF T

DEVELOPMENT SYSTEM

+
+ + *+ + + + + + + F F F F FFFFFEFFFEFFEFEFEFEFEFFFEFFEFEFFEFEFFEFEFEFEFEFFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEEFEFEFEFEFEFEFEFEFEFEFFEEFEFEFEFEFEFEFFEFEFEFEFEFEFEFEFFEFEFEFEFEFFEFEFE A FEFEFEFEFEFFEFFFE

US 11,921,724 B2

WHHEEEEEW Ot

+ + + + + + + + + F +F + F A FFEFEFEFEEFEFEFEFEE

Sheet 5 of 8

+ + + F F F F FFFFFFEFFFEFFFEFFFF

+ + + + F + + F o+ F At FFEFFEFEFFEFE A E

+ + + + + + + + +F + F F o+ FFFEFFFEFFAFEFFEAFEFFEAFEFAFEAFEFFEFE A F

c0%
476108

+ + + + + + + +F + F F o+ FFFEFFFEFFFEFFEFEFFEAFEFFEAFEFFEFEF

+ + + + + + ¥ + + + + + +

+ +
+ + +
+ + + + + + + + + +
+ +
+

+ + + + +
+ + + +
+ + + + + +

+*

+

+ +
+ +
+ ¥ +
+ + +

+
+*
+
+
+
+*
+
+
+
+
+
+
+ + +
+
+
+*
3 PPN WP AFPPILIRLS
-+

+ + + + + + + + F + F FF o FFFFEFEFEFEFFFF

Mar. 5, 2024

++ + + + + +t++ +F ot E ot
EREEEEEXIEINEE

+ + + + + + + F+ +++F+ Attt

+ + + + + + + + F + t+ FF+ Attt
+ + + + + + + + + + + F + + + + + F + 4+ +
+
+
+

U.S. Patent

US 11,921,724 B2

Sheet 6 of 8

Mar. 5, 2024

U.S. Patent

T 4+ + + + + & & F ¥+ + ++ + + %0 F +%++ + + + + % b4 +=+ + + &

A & A 4 4 4 4 % R A E A 4 4 & B R R A S A 4
L I B B L N NN B O B N LN NN NN BN

r
e
+ % r
J.J.J.J.I.T.J.-.i.—.-—.a.l.a.aiii.—.i.—.fl.‘.
1
Ld nd gt hedbdrnmptrerdrsdyrnnrdrraw Wt
L J
E o+ 4 4+ %+ 4+ 4]
L
"
Ak hchch ot bk ddowow T ok koA
-T.LT |]

e
i
*
*
*
*
+
+
*
r
+
gt
+
*
*
*
+
L]
T
+
*
*
+

+ 4+ %= m a2 & & 4 4 4 4 R R E S A 4 f & B E RS

P o= & & & &+ & &k b= ko d =kt kd b

¥ & F P R L

F 4+ = = o4

+ + + F &~ += +

DOODOOOOODO0: HDOOOO000D00C: IONOOOO0D000 ADOODORDDDO0C T DOOOOOD00000 DOODOODOO00C AOODOO0O0000

e e

+
LR] + +
ERE + +
LB RN NN N NN N NN s T A N NN N LN,
LK L]
L7
o
ol T
[l
&
*
] +
-+ +
+
-
+ *
.
L]
] r
L]
-
= 4
> -
+ -
*
+
+ +
+
+
+ +
+ *
¥
-
1 +
L] +
*
r
r
-
-
-
- +
-+
-
A +
LEE I
._.._.._-..__.._.._._.._.._.__.._-.-._.._.._.._.l__.l‘.._.__
-
- .
-
r
-
*
L}
-
[-
* +
+
+
+ +
* +
+
+
* +
+
-
Iy "
. Fi
7
N -
L]
-
+ +
-
r
]
-
1
L
B s
EIE] + r
oA A E A e PR A RN O OO I MO
-+ + +
L]

Ly e T T

AMNNNARANENR 00 ARNANARARRENASR 280 GNARANSHNARNENAEN 0090 IAARANARRSNRENN 0 ASSRHAMNARESNIENNN 090 ASRHAMNARNANRNANF 0 O MAAARSRNENNNNS 0 (NIRRT

FFt+ Rtttk

0005

4+ + + + + + % d A + + + + + 1 F F o+ FFFFE A FFFFFEF A+

¥ ¥ R 2 &2 &2 &2 W F yf F B S a2 =2 ®mTWEFE L LA S a8

A 4 + F+ PSS S A A+ RSSO F AT

<08
40005

LALLM N NN RN NN E RN BN EB NSRS ENNNERNE NN

= & p P P WML LT LT RS A S EERN R Ry S A

f = r r -

U.S. Patent Mar. 5, 2024 Sheet 7 of 8 US 11.921.724 B2

+ + + + ¥ F F F FFFFFFFAFEFFFEFEFEFEFEFEFEFEFEFEFFEAFEFEFEFEFEFFF

SOURCE

+ + + + + ++ + + ++++++++F+F T

+ +
+ + 4
N N N N N N N N N N N N N N N N N N N S NN 2 M T
602]
L
OO R T I T T T T T I I T T oo
£
*
+
+
+
+
+
+ %
+
+
+
+
+
+
+
+
R R
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
*
+
+ +
+ +
+ +
+ + +
+ +
+ +
+ +
+ +
+ 4 +-
+
+ +
+
+ 4+ + e
L
£ b+
4+ 4+
bk ok F
o+ + b+ +
+ 4+ +
+ +
+ +
+ +
+ +
+
+ +
+
+
+ 4
+
+ +
o
T T I I I T T T T IO
+ +
+ + 4+
R N
+ +
+ +

004

+ + + + F + F F o+ FFFFAFFAFAFFFEFEFAFEFFEFEFEFEFEFEFAFEFEFEF

+ + + + + + + +++ ++ +++++F T

66

+
+ +
* + o+
+ + + +
+ + +
+*
+
+
+
+
+*
+ +
+ + +
+* ¥ +*
+ + +
+ + + + + F + F FFFFFFFAFEFFFEFFF
* +
+ + + +
+ + +
- +* +
+
+ +
+
+
+
+* +*
+
+ +
+* +-
+
+
=+
+
-+
+*
+
+
+
+
+
+
+
+
+*
+
+
+
g +
+
&+ L N
+ +
+
+*
+
+
+-
g+
+
+
+
+
+*
+
+
+
g+
+
+
+
+
+
+

+* * o+ o+
+ + + + F FF ok FFFFFFFEAFEFFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFFEFEEFEFEEFEF
+ + +
+* *
+

S. Patent Mar. 5, 2024 Sheet 8 of 8 S 11.921.724 B2

+* + + + + + + + F F F FFFFFFFFEFF T

+

+*
+ + +
+ + + + + + + + + FF S

+*

+* + + F F F o FFFFFFEFFEFEFFFEFFEFEFFEFEFEFEFEFFEFEFFEFEFEFEFEFFEFEFFEFEFFEFEFFEFEFEFEFEFFEFEFFEFEFFEFEAFFEFEAFFEFEFFEFEAFFEFEAFFEFEAFFEFEAFFEFEAFFEFEAFFEFEAFFEFEAFFEFEAFFEFEAFFEFEAFFEFEAFFEFEAFFEFEAF A F

GENERATE A WINDOW OVER ONE
OR MORE OPERATORS
80

+* + + F F F FFFFFFFEFFFEFFFEFFEFEFFEFEFEFEFEFFEFEFFEFEFEFEFEFFEFEFFEFEFFEFEFFEFEFEFEFEFFEFEFFEFEFFEFEAFFFEFFFEAFFEFEAFFEFEAFFFEAFFFEAFFEFEAFFEFEAFFEFEAFFEFEAFFEFEAFFEFFEAFFEFEAFFEFEAF A F
+*

* + + + +F F ¥ FFFFFFFFFFEFFFEFEFFEFFFFF

+
+* +
+ + +
+ + + + F A+ F S
+ + +
+ +
+

+

MONITOR THE ONE OR MORE
OPERATORS TO DETERMINE TUPLE
FLOW COUNTS FOR THE WINDOW
804

+ + + + F FF o FFFFFFFFAFEFFFEFFEAFEFFEFEFEFEFEFEAFEFFEAFEAFEFEFEAFEFFEFFEFEF

+ + + + F FFFFFFFFFFEAFEFFEFEFFEAFEFFEFEFFEAFEFEFEAFEFFFEFFFF

+
+

+
+ + F + kAt F

+
+ + + + + + + + + + + + + + +F + + F F FFF A FAFFFAFEAFFAFEAF A
+

BREAKPOINT
THRESHOLDS?
e1be!

+
+
+
+
+
+
+

MPLEMENT ONE OR MORE TUPLE
FLOW CHANGES

+ + + + F F o+ F FFFFFFFEAFEFFEAFEFFEAFEFFEF

+ +

+ +
++

+ +

+
+ + + + + + + F FF o+ F A F A FFFF L

G. 8

US 11,921,724 B2

1

WINDOWING ACROSS OPERATORS IN A
STREAMING ENVIRONMENT

BACKGROUND

The present disclosure relates generally to the field of
stream computing, and more particularly to computing
applications that receive streaming data and process the data
as 1t 1s received.

Database systems are typically configured to separate the
process of storing data from accessing, manipulating, or
using data stored in a database. More specifically, database
systems use a model 1n which data 1s first stored and indexed
in a memory before subsequent querying and analysis. In
general, database systems may not be well suited for per-
forming real-time processing and analyzing streaming data.
In particular, database systems may be unable to store,
index, and analyze large amounts of streaming data efhi-
ciently or in real time.

SUMMARY

Embodiments of the disclosure provide a method, system,
and computer program product for processing data. The
method, system, and computer program product receive two
or more tuples to be processed by a plurality of processing
clements operating on one or more computer processors.

Embodiments of the present disclosure include a method
for managing the flow of tuples through a section of an
operator graph using a window. A window may be generated
over one or more stream operators. The window may 1nclude
breakpoint thresholds that set the maximum flow of tuples
within the window. The stream operators within the window
may be monitored to determine the flow of tuples occurring,
within the window using tuple flow counts. The tuple flow
counts may be compared to the breakpoint thresholds to
determine whether a breakpoint condition has occurred. The
occurrence of a breakpoint condition may indicate that the
flow of tuples within the window has exceeded the maxi-
mum tolerable flow of tuples. If a breakpoint condition has
occurred, a tuple flow change may be implemented to reduce
the tlow of tuples within the window. Additional embodi-
ments of the present disclosure are directed to a system and
a computer program product for managing the tlow of tuples
through a section of an operator graph using a window.

The above summary 1s not intended to describe each
illustrated embodiment or every implementation of the pres-
ent disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

The drawings included in the present application are
incorporated into, and form part of, the specification. They
illustrate embodiments of the present invention and, along
with the description, serve to explain the principles of the
invention. The drawings are only illustrative of typical
embodiments of the invention and do not limit the invention.

FI1G. 1 illustrates a computing inirastructure configured to
execute a stream computing application, according to vari-
ous embodiments.

FI1G. 2 1llustrates a more detailed view of a compute node
of FIG. 1, according to various embodiments.

FI1G. 3 1llustrates a more detailed view of the management
system of FIG. 1, according to various embodiments.

FI1G. 4 1llustrates a more detailed view of the development
system of FIG. 1, according to various embodiments.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. § illustrates an operator graph for a stream comput-
ing application, according to various embodiments.

FIG. 6 illustrates an example of an operator graph of a
stream computing application 1n which 1llustrative embodi-
ments of the present disclosure may be implemented.

FIG. 7A illustrates a section of the operator graph of FIG.
6 after the stream manager implements tuple tlow changes,
in accordance with embodiments of the present disclosure.

FIG. 7B illustrates another section of the operator graph
of FIG. 6 after the stream manager implements tuple tlow
changes, 1n accordance with embodiments of the present
disclosure.

FIG. 8 1s a flowchart illustrating a method for controlling,
data flow 1n a stream computing application using windows,
in accordance with embodiments of the present disclosure.

DETAILED DESCRIPTION

The present disclosure relates to stream computing, and 1n
particular, to computing applications that receive streaming
data and process the data as 1t 1s received. While the present
disclosure 1s not necessarily limited to such applications,
various aspects of the disclosure may be appreciated through
a discussion of various examples using this context.

Stream-based computing and stream-based database com-
puting are emerging as a developing technology for database
systems. Products are available which allow users to create
applications that process and query streaming data before 1t
reaches a database file. With this emerging technology, users
can specily processing logic to apply to imbound data
records while they are “in flight,” with the results available
in a very short amount of time, often in fractions of a second.
Constructing an application using this type of processing has
opened up a new programming paradigm that will allow for
development of a broad variety of innovative applications,
systems, and processes, as well as present new challenges
for application programmers and database developers.

In a stream computing application, stream operators are
connected to one another such that data flows from one
stream operator to the next (e.g., over a TCP/IP socket).
When a stream operator receives data, 1t may perform
operations, such as analysis logic, which may change the
tuple by adding or subtracting attributes, or updating the
values of existing attributes within the tuple. When the
analysis logic 1s complete, a new tuple 1s then sent to the
next stream operator. Scalability 1s achieved by distributing
an application across nodes by creating executables (i.e.,
processing elements), as well as replicating processing ele-
ments on multiple nodes and load balancing among them.
Stream operators 1n a stream computing application can be
fused together to form a processing element that 1s execut-
able. Doing so allows processing elements to share a com-
mon process space, resulting in much faster communication
between stream operators than 1s available using inter-
process communication techniques (e.g., using a TCP/IP
socket). Further, processing elements can be inserted or
removed dynamically from an operator graph representing
the flow of data through the stream computing application.
A particular stream operator may not reside within the same
operating system process as other stream operators. In
addition, stream operators in the same operator graph may
be hosted on different nodes, e.g., on different compute
nodes or on diflerent cores of a compute node.

Data flows from one stream operator to another in the
form of a “tuple.” A tuple 1s a sequence of one or more
attributes associated with an entity. Attributes may be any of
a variety of different types, e.g., iteger, tloat, Boolean,

US 11,921,724 B2

3

string, etc. The attributes may be ordered. In addition to
attributes associated with an enfity, a tuple may include
metadata, 1.¢., data about the tuple. A tuple may be extended
by adding one or more additional attributes or metadata to 1t.
As used herein, “stream’ or “data stream” refers to a
sequence of tuples. Generally, a stream may be considered
a pseudo-infinite sequence of tuples.

Tuples are recerved and output by stream operators and
processing elements. An input tuple corresponding with a
particular entity that 1s received by a stream operator or
processing element, however, 1s generally not considered to
be the same tuple that 1s output by the stream operator or
processing element, even if the output tuple corresponds
with the same entity or data as the mput tuple. An output
tuple need not be changed 1n some way from the input tuple.

Nonetheless, an output tuple may be changed in some way
by a stream operator or processing element. An attribute or
metadata may be added, deleted, or modified. For example,
a tuple will often have two or more attributes. A stream
operator or processing element may receive the tuple having
multiple attributes and output a tuple corresponding with the
input tuple. The stream operator or processing element may
only change one of the attributes so that all of the attributes
of the output tuple except one are the same as the attributes
of the mput tuple.

Generally, a particular tuple output by a stream operator
or processing element may not be considered to be the same
tuple as a corresponding input tuple even 1f the mput tuple
1s not changed by the processing element. However, to
simplify the present description and the claims, an output
tuple that has the same data attributes or 1s associated with
the same entity as a corresponding mput tuple will be
referred to herein as the same tuple unless the context or an
express statement indicates otherwise.

Stream computing applications handle massive volumes
ol data that need to be processed efliciently and 1n real time.
For example, a stream computing application may continu-
ously ingest and analyze hundreds of thousands of messages
per second and up to petabytes of data per day. Accordingly,
cach stream operator 1n a stream computing application may
be required to process a received tuple within fractions of a
second. Unless the stream operators are located 1n the same
processing element, 1t 1s necessary to use an inter-process
communication path each time a tuple 1s sent from one
stream operator to another. Inter-process communication
paths can be a critical resource 1n a stream computing
application. According to various embodiments, the avail-
able bandwidth on one or more inter-process communication
paths may be conserved. Eflicient use of inter-process com-
munication bandwidth can speed up processing.

An operator graph can be an execution path for a plurality
ol stream operators to process a stream of tuples. In addition
to stream operators, the operator graph can refer to an
execution path for processing elements and the dependent
stream operators of the processing elements to process the
stream of tuples. Generally, the operator graph can have a
plurality of stream operators that produce a particular end
result, e.g., calculate an average. An operator graph may be
a linear arrangement of processing elements and/or opera-
tors, or 1t may include one or more distinct execution paths,
also known as sub-processes, methods, or branches.

As used herein, a “flow of tuples” refers to both the
transmission of tuples between stream operators or process-
ing elements and the creation of tuples within stream opera-
tors. The creation or transmission of a single tuple (or a
single group of tuples, if created or transmitted together) 1s
referred to as a “tuple tlow event.” A “breakpoint threshold”™

10

15

20

25

30

35

40

45

50

55

60

65

4

1s a threshold used to limit and control the tlow of tuples
within a section of an operator graph covered by a window.
For example, a breakpoint threshold may set the maximum
number of tuples that may be created by stream operators
within a window during the windowing period.

“Tuple flow counts” track the flow of tuples within a
window. Each tuple flow count may have a corresponding
breakpoint threshold. For example, if a breakpoint threshold
sets the maximum number of tuples created 1n a window, a
tuple flow count may be kept that records how many tuples
have actually been created by stream operators 1nside the
window. A “tuple tlow change” 1s a change to some portion
of the operator graph (e.g., to a stream operator or execution
path) to alter the flow of tuples within a window. For
example, 1n order to reduce the tlow of tuples inside a
window, an implemented tuple flow change may cause one
or more stream operators to stop transmitting tuples for a
period of time.

A stream computing application may include one or more
windows to manage the flow of tuples 1n specific sections of
an operator graph. A “window,” as referred to in this
description and the claims, 1s a logical container for pro-
cessing elements or stream operators. A window may allow
for the creation of subsets or groups of processing elements
or stream operators, and may be used to establish a set of
rules that apply to the subset of processing elements or
stream operators iside the window.

A window may be a tumbling or sliding window. Both
tumbling and sliding windows may be specified by a reset
policy. The reset policy determines the size of the window,
also known as the windowing period. When the reset policy
for a tumbling window 1s met, the tuple flow counts are reset
for the window. With respect to a tumbling window, the
“conclusion” of the window, in this description and the
claims, may refer to when the reset policy for a tumbling
window 1s met or triggered. For example, a reset policy for
a tumbling window may indicate that the window will last
for 5 minutes. Once it has been 5 minutes since the tumbling
window was generated, the window may conclude and the
tuple flow counts may be reset.

The reset policy of a tumbling window may be based on
a time 1nterval (e.g., the window lasts for 5 minutes), a delta,
or punctuation. A delta 1s a time difference between con-
secutive tuple tlow events. For example, 1f 3 minutes passes
between tuple flow events inside a tumbling window, the
reset policy may be triggered and the tuple flow counts may
be reset. A punctuation 1s a control signal that appears
interleaved with the tuples 1n a stream. Punctuation appears
in the data flow and may, for example, notily a stream
operator of the grouping of tuples to be processed.

The reset policy for a sliding window may define the
sliding window’s windowing period. In contrast to a tum-
bling window, a sliding window does not reset the tuple flow
counts when a reset policy 1s met. Instead, a sliding window
may dynamically adjust the tuple flow counts such that at
any given point, the tuple tlow counts may indicate the tlow
of tuples within the window over the last X minutes, where
X 1s the windowing period as defined by the reset policy. In
this way, a sliding window maintains the size of the window
as specified by the windowing period. For example, a stream
manager may create a sliding window over two stream
operators. The sliding window may have a windowing
period of 3 minutes. Tuple tlow counts may be kept for the
window. At any given moment, the tuple flow counts for the
window may indicate how many tuples were generated by,
or transmitted to/from, the stream operators within the
window over the previous 3 minutes.

US 11,921,724 B2

S

A window may be defined by a set of windowing condi-
tions. “Windowing conditions,” as used 1n this description
and the claims, may include conditions used to describe the
type of window (e.g., tumbling or sliding), the reset policy,
and the set of rules that apply to the subset of processing
clements or stream operators inside the window (e.g., the
breakpoint thresholds). Windowing may be specified 1n any
number of ways. For example, an application programmer
may define one or more specific windowing conditions.

Additionally, the system may provide a set of windowing
conditions.

A stream operator subject to the windowing conditions
(e.g., the breakpoint thresholds) 1s considered inside the
window, while a stream operator that 1s not subject to the
windowing conditions 1s considered outside the window.
The creation of a tuple by a stream operator 1s considered to
have occurred inside a window 1f the stream operator 1s
inside the window. Likewise, the creation of a tuple by a
stream operator outside the window 1s considered to occur
outside the window. A tuple transmitted from a stream
operator outside the window to a stream operator inside the
window 1s considered to “enter” the window. A tuple trans-
mitted from a stream operator 1nside the window to a stream
operator outside the window 1s considered to “exit” the
window. A tuple transmitted between two stream operators
outside of the window 1s considered to occur outside the
window, while a tuple transmitted between two stream
operators mside the window 1s considered to occur 1nside the
window.

FI1G. 1 illustrates one exemplary computing infrastructure
100 that may be configured to execute a stream computing
application, according to some embodiments. The comput-
ing infrastructure 100 mncludes a management system 103
and two or more compute nodes 110A-110D—i.e., hosts—
which are commumnicatively coupled to each other using one
or more communications networks 120. The communica-
tions network 120 may include one or more servers, net-
works, or databases, and may use a particular communica-
tion protocol to transfer data between the compute nodes
110A-110D. A development system 102 may be communi-
catively coupled with the management system 103 and the
compute nodes 110 either directly or via the communica-
tions network 120.

The commumnications network 120 may include a variety
of types of physical communication channels or “links.” The
links may be wired, wireless, optical, or any other suitable
media. In addition, the communications network 120 may
include a variety ol network hardware and software for
performing routing, switching, and other functions, such as
routers, switches, or bridges. The communications network
120 may be dedicated for use by a stream computing
application or shared with other applications and users. The
communications network 120 may be any size. For example,
the communications network 120 may include a single local
area network or a wide area network spanning a large
geographical area, such as the Internet. The links may
provide different levels of bandwidth or capacity to transier
data at a particular rate. The bandwidth that a particular link
provides may vary depending on a variety of factors, includ-
ing the type of communication media and whether particular
network hardware or software 1s functioning correctly or at
tull capacity. In addition, the bandwidth that a particular link
provides to a stream computing application may vary ii the
link 1s shared with other applications and users. The avail-
able bandwidth may vary depending on the load placed on
the link by the other applications and users. The bandwidth

10

15

20

25

30

35

40

45

50

55

60

65

6

that a particular link provides may also vary depending on
a temporal factor, such as time of day, day of week, day of
month, or season.

FIG. 2 1s a more detailed view of a compute node 110,
which may be the same as one of the compute nodes
110A-110D of FIG. 1, according to various embodiments.
The compute node 110 may include, without limitation, one
or more processors (CPUs) 205, a network interface 215, an
interconnect 220, a memory 225, and a storage 230. The
compute node 110 may also include an I/O device interface
210 used to connect IO devices 212, e.g., keyboard, display,
and mouse devices, to the compute node 110.

Each CPU 205 retrieves and executes programming
instructions stored i the memory 225 or storage 230.
Similarly, the CPU 205 stores and retrieves application data
residing in the memory 225. The interconnect 220 1s used to
transmit programming instructions and application data
between each CPU 205, I/O device mterface 210, storage
230, network interface 215, and memory 225. The intercon-
nect 220 may be one or more busses. The CPUs 205 may be
a single CPU, multiple CPUs, or a single CPU having
multiple processing cores 1n various embodiments. In one
embodiment, a processor 205 may be a digital signal pro-
cessor (DSP). One or more processing elements 235 (de-
scribed below) may be stored in the memory 225. A pro-
cessing element 235 may include one or more stream
operators 240 (described below). In one embodiment, a
processing element 233 1s assigned to be executed by only
one CPU 2035, although in other embodiments the stream
operators 240 of a processing element 235 may include one
or more threads that are executed on two or more CPUs 205.
The memory 225 1s generally included to be representative
of a random access memory, e.g., Static Random Access
Memory (SRAM), Dynamic Random Access Memory
(DRAM), or Flash. The storage 230 1s generally included to
be representative of a non-volatile memory, such as a hard
disk drive, solid state device (SSD), or removable memory
cards, optical storage, flash memory devices, network
attached storage (NAS), or connections to storage area
network (SAN) devices, or other devices that may store
non-volatile data. The network interface 213 1s configured to
transmit data via the communications network 120.

A stream computing application may include one or more
stream operators 240 that may be compiled into a “process-
ing clement” container 235. Two or more processing ele-
ments 235 may run on the same memory 225, each process-
ing element having one or more stream operators 240. Each
stream operator 240 may include a portion of code that
processes tuples flowing mnto a processing element and
outputs tuples to other stream operators 240 in the same
processing element, 1n other processing elements, or 1n both
the same and other processing elements 1n a stream com-
puting application. Processing elements 235 may pass tuples
to other processing elements that are on the same compute
node 110 or on other compute nodes that are accessible via
communications network 120. For example, a processing
clement 235 on compute node 110A may output tuples to a
processing element 235 on compute node 110B.

The storage 230 may include a bufler 260. Although
shown as being 1n storage, the bufller 260 may be located 1n
the memory 225 of the compute node 110 or in a combina-
tion of both memories. Moreover, storage 230 may include
storage space that 1s external to the compute node 110, such
as 1n a cloud.

The compute node 110 may include one or more operating,
systems 262. An operating system 262 may be stored
partially 1n memory 225 and partially 1n storage 230. Alter-

US 11,921,724 B2

7

natively, an operating system may be stored entirely in
memory 225 or entirely in storage 230. The operating
system provides an interface between various hardware
resources, including the CPU 205, and processing elements
and other components of the stream computing application.
In addition, an operating system provides common services
for application programs, such as providing a time function.

FIG. 3 1s a more detailed view of the management system
105 of FIG. 1 according to some embodiments. The man-
agement system 103 may include, without limitation, one or
more processors (CPUs) 305, a network interface 315, an
interconnect 320, a memory 325, and a storage 330. The
management system 105 may also include an I/O device
interface 310 connecting I/O devices 312, e.g., keyboard,
display, and mouse devices, to the management system 105.

Each CPU 305 retrieves and executes programming,
mstructions stored in the memory 325 or storage 330.
Similarly, each CPU 305 stores and retrieves application
data residing in the memory 325 or storage 330. The
interconnect 320 1s used to move data, such as programming
instructions and application data, between the CPU 305, I/O
device interface 310, storage unit 330, network interface
315, and memory 3235. The mterconnect 320 may be one or
more busses. The CPUs 305 may be a single CPU, multiple
CPUs, or a single CPU having multiple processing cores 1n
various embodiments. In one embodiment, a processor 305
may be a DSP. Memory 325 1s generally included to be
representative of a random access memory, €.2., SRAM,
DRAM, or Flash. The storage 330 1s generally included to
be representative of a non-volatile memory, such as a hard
disk drive, solid state device (SSD), removable memory
cards, optical storage, Flash memory devices, network
attached storage (NAS), connections to storage area-net-
work (SAN) devices, or the cloud. The network interface
315 is configured to transmit data via the communications
network 120.

The memory 325 may store a stream manager 134.
Additionally, the storage 330 may store an operator graph
132. The operator graph 132 may define how tuples are
routed to processing elements 235 (FIG. 2) for processing.

The management system 105 may include one or more
operating systems 332. An operating system 332 may be
stored partially in memory 325 and partially in storage 330.
Alternatively, an operating system may be stored entirely in
memory 325 or enftirely 1n storage 330. The operating
system provides an interface between various hardware
resources, including the CPU 305, and processing elements
and other components of the stream computing application.
In addition, an operating system provides common services
for application programs, such as providing a time function.

FI1G. 4 1s a more detailed view of the development system
102 of FIG. 1 according to some embodiments. The devel-
opment system 102 may include, without limitation, one or
more processors (CPUs) 405, a network interface 415, an
interconnect 420, a memory 425, and storage 430. The
development system 102 may also include an I/O device
interface 410 connecting I/O devices 412, e.g., keyboard,
display, and mouse devices, to the development system 102.

Each CPU 405 retrieves and executes programming
istructions stored in the memory 425 or storage 430.
Similarly, each CPU 405 stores and retrieves application
data residing in the memory 425 or storage 430. The
interconnect 420 1s used to move data, such as programming
instructions and application data, between the CPU 4035, I/O
device interface 410, storage unit 430, network interface
415, and memory 4235. The iterconnect 420 may be one or
more busses. The CPUs 405 may be a single CPU, multiple

10

15

20

25

30

35

40

45

50

55

60

65

8

CPUs, or a single CPU having multiple processing cores 1n
various embodiments. In one embodiment, a processor 405
may be a DSP. Memory 425 1s generally included to be
representative of a random access memory, €.g2., SRAM,
DRAM, or Flash. The storage 430 1s generally included to
be representative of a non-volatile memory, such as a hard
disk drive, solid state device (SSD), removable memory
cards, optical storage, flash memory devices, network
attached storage (NAS), connections to storage area-net-
work (SAN) devices, or to the cloud. The network interface
415 1s configured to transmit data via the communications
network 120.

The development system 102 may include one or more
operating systems 432. An operating system 432 may be
stored partially in memory 425 and partially in storage 430.
Alternatively, an operating system may be stored entirely in
memory 4235 or enftirely i1n storage 430. The operating
system provides an interface between various hardware
resources, including the CPU 405, and processing elements
and other components of the stream computing application.
In addition, an operating system provides common services
for application programs, such as providing a time function.

The memory 4235 may store a compiler 136. The compiler
136 compiles modules, which include source code or state-
ments, ito the object code, which imncludes machine nstruc-
tions that execute on a processor. In one embodiment, the
compiler 136 may translate the modules 1nto an intermediate
form before translating the intermediate form into object
code. The compiler 136 may output a set of deployable
artifacts that may include a set of processing elements and
an application description language file (ADL file), which 1s
a configuration file that describes the stream computing
application. In some embodiments, the compiler 136 may be
a just-in-time compiler that executes as part of an interpreter.
In other embodiments, the compiler 136 may be an opti-
mizing compiler. In various embodiments, the compiler 136
may perform peephole optimizations, local optimizations,
loop optimizations, inter-procedural or whole-program opti-
mizations, machine code optimizations, or any other opti-
mizations that reduce the amount of time required to execute
the object code, to reduce the amount of memory required to
execute the object code, or both. The output of the compiler
136 may be represented by an operator graph, e.g., the
operator graph 132 of FIG. 1.

The compiler 136 may also provide the application
administrator with the ability to optimize performance
through profile-driven fusion optimization. Fusing operators
may 1mprove performance by reducing the number of calls
to a transport. While fusing stream operators may provide
faster communication between operators than i1s available
using iter-process communication techniques, any decision
to fuse operators requires balancing the benefits of distrib-
uting processing across multiple compute nodes with the
benefit of faster iter-operator commumnications. The com-
piler 136 may automate the fusion process to determine how
to best fuse the operators to be hosted by one or more
processing elements, while respecting user-specified con-
straints. This may be a two-step process, including compil-
ing the application in a profiling mode and running the
application, then re-compiling and using the optimizer dur-
ing this subsequent compilation. The end result may, how-
ever, be a compiler-supplied deployable application with an
optimized application configuration.

FIG. 5 1illustrates an exemplary operator graph 500 for a
stream computing application beginning from one or more
sources 302 through to one or more sinks 304, 506, accord-
ing to some embodiments. This flow from source to sink

US 11,921,724 B2

9

may also be generally referred to herein as an execution
path. In addition, a flow from one processing element to
another may be referred to as an execution path in various
contexts. Although FIG. 5 1s abstracted to show connected
processing elements PE1-PE10, the operator graph 500 may
include data flows between stream operators 240 (FIG. 2)
within the same or different processing elements. Typically,
processing elements, such as processing element 235 (FIG.
2), recerve tuples from the stream as well as output tuples
into the stream (except for a sink—where the stream termi-
nates, or a source—where the stream begins). While the
operator graph 500 includes a relatively small number of
components, an operator graph may be much more complex
and may include many individual operator graphs that may
be statically or dynamically linked together.

The example operator graph shown 1n FIG. 5 includes ten
processing elements (labeled as PE1-PE10) running on the
compute nodes 110A-110D. A processing clement may
include one or more stream operators fused together to form
an independently running process with its own process 1D
(PID) and memory space. In cases where two (or more)
processing elements are running independently, inter-pro-
cess communication may occur using a “transport,” e.g., a
network socket, a TCP/IP socket, or shared memory. Inter-
process communication paths used for inter-process com-
munications can be a critical resource 1n a stream computing,
application. However, when stream operators are fused
together, the fused stream operators can use more rapid
communication techniques for passing tuples among stream
operators 1n each processing element.

The operator graph 500 begins at a source 502 and ends
at a sink 504, 506. Compute node 110A includes the pro-
cessing, elements PE1, PE2, and PE3. Source 502 tlows into
the processing elemen‘[PEl which in turn outputs tuples
that are received by PE2 and PE3. For example, PE1 may
split data attributes received 1n a tuple and pass some data
attributes 1n a new tuple to PE2, while passing other data
attributes 1n another new tuple to PE3. As a second example
PE1 may pass some received tuples to PE2 while passing
other tuples to PE3. Tuples that flow to PE2 are processed
by the stream operators contained 1n PE2, and the resulting
tuples are then output to PE4 on compute node 110B.
Likewise, the tuples output by PE4 tlow to PE6 before being
transmitted to a sink 504. Similarly, tuples tlowing from PE3
to PES also reach PE6 and are sent to a sink 504. Thus, PE6
could be configured to perform a join operation, combining
tuples received from PE4 and PES, before sending the data
to the sink 504. This example operator graph also shows
tuples tlowing from PE3 to PE7 on compute node 110C,
which 1tself shows tuples tlowing to PE8 and looping back
to PE7. Tuples output from PE8 flow to PE9 on compute
node 110D, which 1n turn outputs tuples to be processed by
operators in PE10 before being sent to a sink 506.

The tuple received by a particular processing element 235
(FIG. 2) 1s generally not considered to be the same tuple that
1s output downstream. Typically, the output tuple 1s changed
in some way. An attribute or metadata may be added,
deleted, or changed. However, it 1s not required that the
output tuple be changed 1n some way. Generally, a particular
tuple output by a processing element may not be considered
to be the same tuple as a corresponding mput tuple even 1t
the mput tuple 1s not changed by the processing element.
However, to simplify the present description and the claims,
an output tuple that has the same data attributes as a
corresponding mnput tuple may be referred to herein as the
same tuple.

10

15

20

25

30

35

40

45

50

55

60

65

10

Processing elements 235 (FIG. 2) may be configured to
receive or output tuples in various formats, e.g., the pro-
cessing elements or stream operators could exchange data
marked up as XML, documents. Furthermore, each stream
operator 240 within a processing element 235 may be
configured to carry out any form of data processing func-
tions on received tuples, including, for example, writing to
database tables or performing other database operations such
as data joins, splits, reads, etc., as well as performing other
data analytic functions or operations.

The stream manager 134 of FIG. 1 may be configured to
monitor a stream computing application running on compute
nodes, e.g., compute nodes 110A-110D, as well as to change
the deployment of an operator graph, e.g., operator graph
132. The stream manager 134 may move processing ele-
ments from one compute node 110 to another, for example,
to manage the processing loads of the compute nodes
110A-110D 1n the computing infrastructure 100. Further,
stream manager 134 may control the stream computing
application by inserting, removing, fusing, un-fusing, or
otherwise moditying the processing elements and stream
operators (or what tuples flow to the processing elements)
running on the compute nodes 110A-110D.

Because a processing element may be a collection of
fused stream operators, it 1s equally correct to describe the
operator graph as one or more execution paths between
specific stream operators, which may include execution
paths to diflerent stream operators within the same process-
ing element. FIG. 3 illustrates execution paths between
processing elements for the sake of clarity.

Referring now to FIG. 6, shown 1s an example of an

operator graph 600 of a stream computing application 1n
which illustrative embodiments of the present disclosure
may be implemented. The stream computing application
shown 1n FIG. 6 1s a simple application used for illustrative
purposes. Embodiments of the present disclosure may be
implemented 1n stream eemputing applications with greater
complexity than shown 1n FIG. 6.
The operator graph 600 consists of two sources 602, 604
eight stream operators OP1-8, a window 606, and two smks
608, 610. A window 606 1s shown encompassing four stream
operators OP3-6. That 1s to say, the two sources 602 and 604,
the two sinks 608 and 610, and the first, second, seventh, and
eight stream operators OP1, OP2, OP7, and OP8 are outside
of the window 606, while the third, fourth, fifth, and sixth
stream operators OP3-6 are 1nside the window.

Information enters the stream computing application
through the two sources 602 and 604. The information may
be any form of data, whether structured or unstructured, e.g.,
sensor data or image data. The first source 602 may output
tuples of data to the first stream operator OP1 and the second
source 604 may output tuples of data to the second stream
operator OP2. The first and second operators OP1 and OP2
may be configured to perform an operation on the tuples they
receive from their respective source, and then to output
tuples to third stream operator OP3. Tuples of data output
from the first or second stream operators OP1 and OP2 to the
third stream operator OP3 may be viewed as entering the
window 606 because the first and second operators are
outside of the window, while the third stream operator 1s
inside the window.

The third stream operator OP3 may perform an operation
on the tuples 1t receives and output tuples to the fourth
stream operator OP4. The fourth stream operator OP4 may
split the tuples, sending copies to the fifth stream operator
OPS5 and to the sixth stream operator OP6. All of the creation
and transmission of tuples that occurs between the third

US 11,921,724 B2

11

stream operator OP3 creating tuples and the fifth and sixth
stream operators OP5 and OP6 recerving, processing, and
generating tuples may be considered as happening within the
window 606 because the third through sixth stream opera-
tors OP3-6 are inside the window.

The fifth stream operator OPS may perform an operation
on the tuples 1t receives from the fourth stream operator OP4
before outputting tuples of data to the seventh stream
operator OP7. The tuples transmitted from the fifth stream
operator OP3 to the seventh stream operator OP7 may be
considered as exiting the window 606 because the fifth
stream operator 1s inside the window while the seventh
stream operator 1s outside the window. The seventh stream
operator OP7 may then perform an operation on the tuples
it receives and output tuples to the first sink 608. The
creation of tuples by the seventh stream operator OP7 and
the transmission of the tuples to the first sink 608 are
considered to have occurred outside of the window 606
because neither the seventh stream operator nor the first sink
are 1nside the window.

The sixth stream operator OP6 may perform an operation
on the tuples 1t receives from the fourth stream operator OP4
betfore outputting tuples of data to the eighth stream operator
OP8. The tuples transmitted from the sixth stream operator
OP6 to the eighth stream operator OP8 may be considered
as exiting the window 606 because the sixth stream operator
1s 1nside the window while the eighth stream operator is
outside the window. The eighth stream operator OP8 may
then perform an operation on the tuples 1t receives and
output tuples to the second sink 610. The creation of tuples
by the eighth stream operator OP8 and the transmission of
the tuples to the second sink 610 are considered to have
occurred outside of the window 606 because both the eighth
stream operator and the second sink are outside the window.

Referring now to FIG. 7A, shown 1s a section of the
operator graph of FIG. 6 after the stream manager imple-
ments tuple tlow changes, 1n accordance with embodiments
of the present disclosure. The section of the operator graph
shown includes the two sources 602 and 604, and the first
three stream operators OP1-3. The third stream operator
OP3 1s inside the window 606, part of which 1s shown 1n
FIG. 7A.

After the tuple flow changes are implemented, the execu-
tion path between the second stream operator OP2 and the
third stream operator OP3 may be severed. All other execu-
tion paths may be unchanged. The second stream operator
OP2 may continue to receive tuples from the second source
604, and 1t may continue to process the received tuples. It
may also continue to generate tuples as part of 1ts process-
ing, but any generated tuples will be dropped (e.g., deleted
from memory) without being transmitted downstream. The
first stream operator OP1 may continue to operate normally,
as may the third stream operator OP3. For example, if the
third stream operator OP3 aggregates and sums tuples from
both the first and second operators OP1 and OP2, it may
have no problems continuing without tuples from the second
stream operator.

In some embodiments, the third stream operator OP3 may
need to be reconfigured to properly function without receiv-
ing tuples from the second stream operator OP2. For
example, 1f the third stream operator OP3 aggregates tuples
from the first and second stream operators OP2 and OP3,
and computes the sum when 1t has at least 5 tuples from each
upstream operator, the third stream operator may need to be
modified to compute work while receiving only one data
stream.

10

15

20

25

30

35

40

45

50

55

60

65

12

Referring now to FIG. 7B, shown 1s another section of the
operator graph of FIG. 6 after the stream manager imple-
ments tuple flow changes, 1n accordance with embodiments
of the present disclosure. The section of the operator graph
shown 1ncludes three stream operators OP4, OPS, and OP6.
All three stream operators OP4, OP5, and OP6 are inside the
window 606, part of which 1s shown 1n FIG. 7A.

After the tuple flow changes are implemented, the fourth
stream operator OP4 no longer transmaits all of the tuples that
it generates to downstream operators. Instead, the fourth
stream operator only transmits 50% of the tuples 1t generates
to the fifth stream operator OP5 and 75% of the tuples 1t
generates to the sixth stream operator OP6. Any remaining
generated tuples are dropped (e.g., removed from memory)
without being transmitted.

Referring now to FIG. 8, shown 1s a flowchart 1llustrating,
a method 800 for controlling data flow 1n a stream comput-
ing application using windows, in accordance with embodi-
ments of the present disclosure. In some embodiments, the
method 800 may be performed by a stream manager 134
(shown 1n FIG. 1). In some embodiments, the method 800
may be performed by a stream operator or processing
clement. In some embodiments, the method 800 may be
performed by a combination of stream operators, processing
clements, and the stream manager. The method may begin at
operation 802, wherein a stream manager may generate a
window over one or more stream operators. In some
embodiments, multiple windows may exist 1n the operator
graph. The windows may cover completely diflerent sec-
tions of the operator graph, or they may overlap. A window
overlaps with another window 1 both windows share a
stream operator or processing element.

The window may be defined by a set of windowing
conditions. The windowing conditions may indicate that the
window 1s either tumbling or sliding. The windowing con-
ditions may also include a reset policy that determines the
windowing period of the window. Additionally, the window-
ing conditions may include a set of breakpoint thresholds for
the one or more stream operators within the window. The
windowing conditions may also indicate which operators or
processing elements within the operator graph are inside the
window, and therefore subject to the breakpoint thresholds.

The set of breakpoint thresholds are used to control the
flow of tuples within a section of the operator graph covered
by the window. There are numerous thresholds that may be
set for stream operators or processing elements within the
window to control the flow of tuples. For example, the set of
breakpoint thresholds may include a threshold that corre-
sponds to the maximum number of tuples that may enter the
window (1.e., maximum number of tuples transmitted by a
stream operator outside the window to a stream operator
inside the window). As another example, the set of break-
point thresholds may include a threshold defining the maxi-
mum number of tuples that may exit the window (i.e.,
maximum number of tuples transmitted by a stream operator
inside the window to a stream operator outside the window).
A third breakpoint threshold may set the maximum number
of tuples that may be generated inside the window (i.e.,
generated by a stream operator or processing element nside
the window). The set of breakpoint thresholds may also, in
some embodiments, include a threshold that sets the maxi-
mum number ol tuples that may be created by a stream
operator 1n the window, enter the window, or exit the
window.

In some embodiments, the set of breakpoint thresholds
may include thresholds establishing the maximum rate at
which tuples are generated by, or transmitted to/from, stream

US 11,921,724 B2

13

operators or processing elements inside the window. For
example, the set of breakpoint thresholds may include a
threshold that sets the maximum rate (e.g., tuples per min-
ute) at which tuples may enter the window. Another thresh-
old may set the maximum rate at which tuples may exit the
window, and a third threshold may set the maximum rate at
which tuples may be generated inside the window. Any
combination of the above mentioned thresholds may be
combined.

The above mentioned thresholds are used for illustrative
purposes, and one of ordinary skill 1n the art will recognize
other thresholds that may be established to control data tlow
in a section of a streams computing application. Accord-
ingly, the disclosure should not be limited to the specific
thresholds described. After generating a window over one or
more operators per operation 802, the stream manager may
monitor the one or more operators to determine a set of tuple
flow counts for the window at operation 804.

The set of tuple flow counts track the actual creation of
tuples by, and the transmission of tuples to/from, stream
operators within the window. The set of tuple tlow counts
may correspond to the set of breakpoint thresholds. For
example, 11 the set of breakpoint thresholds includes a
breakpoint threshold setting the maximum number of tuples
that may enter the window, a tuple tflow count that indicates
the number of tuples that have entered the window may be
stored and tracked. Likewise, 1f a breakpoint threshold sets
the maximum number of tuples that may exit the window, a
tuple flow count indicating the number of tuples that have
exited the window may be tracked. Additional tuple flow
counts may be stored, as needed, to track the number of
tuples generated 1n the window, the rate at which tuples enter
the window, the rate at which tuples exit the window, and the
rate at which tuples are generated by stream operators inside
the window.

After determining the set of tuple tlow counts for the
window per operation 804, the stream manager may deter-
mine whether a breakpoint condition has occurred by com-
paring the set of tuple tlow counts to the set of breakpoint
thresholds at operation 806. The occurrence of a breakpoint
condition indicates that the tlow of tuples within the window
has exceeded the maximum allowed, and that one or more
tuple flow changes should be implemented to reduce the
flow of tuples 1nside the window. If none of the tuple tlow
counts meet or exceed their corresponding breakpoint
thresholds, a breakpoint condition has not occurred and the
method 800 may end. If, however, one or more tuple flow
counts meet or exceed a corresponding breakpoint threshold,
a breakpoint condition has occurred and, 1n response, the
stream manager may implement one or more tuple flow
changes at operation 808.

Tuple tlow changes are modifications to stream operators,
processing elements, or execution paths to reduce the flow
of tuples 1nside the window. For example, 1n some embodi-
ments the stream manager may halt processing at, or “turn
olil,” a stream operator to reduce the flow of tuples 1side the
window. The stream operator may be inside the window
(e.g., the third stream operator OP3 1n FIG. 6) or outside the
window (e.g., the first stream operator OP1 in FIG. 6). If the
stream operator 1s outside the window, it may be upstream
of the window (e.g., OP1) or downstream of the window
(e.g., OP8). In some embodiments, the stream manager may
turn ol stream operators both inside and outside the win-
dow. In some embodiments, the stream manager may tem-
porarily turn ofl or suspend operation at all stream operators
in the operator graph, stopping each of the stream operator
from processing tuples. Fach of the stream operators or

10

15

20

25

30

35

40

45

50

55

60

65

14

processing elements may be prionitized according to the
importance of the stream operator or 1ts associated job, the
amount of data being sent by the stream operator, or how
downstream operators use the data sent by the stream
operator.

Each stream operator may be priornitized individually or
by 1ts association with a job. For example, a stream operator
may be part of a job that processes information submitted by
a client, and as such, may be given a higher priority than a
stream operator that performs routine system maintenance
that may be delayed or executed at a diflerent time. Alter-
natively, the priority of each job or stream operator may be
set by a system administrator. The stream manager may then
halt processing at the stream operator with the lowest
priority.

The stream operators may be prioritized based on the
amount of data sent on a respective data path. For example,
a first stream operator and a second stream operator may
both send tuples to a third stream operator. All three stream
operators may be in the same window. The first stream
operator may send three times as many tuple as the second
stream operator. Therefore, 1n some embodiments, the first
stream operator may be given a higher priority because the
third stream operator may not receive enough data to operate
properly if the first stream operator 1s turned ofl. In another
embodiment, the first stream operator may be turned off
because 1t 1s transmitting the most data and 1s likely the
greatest cause of the tuple flow 1nside the window exceeding
maximum thresholds.

The stream operators may be prioritized based on how
their output tuples are used by downstream operators. For
example, tuples sent by a {first stream operator may be used
by several downstream operators. Meanwhile, tuples sent by
a second stream operator may only be used by a single
downstream operator. Accordingly, the first stream operator
may be given a greater priority than the second stream
operator. In some embodiments, however, the opposite may
be true because shutting off the first stream operator may
cause a greater reduction 1n the flow of tuples inside the
window. This may be because, e.g., stream operators down-
stream from the first stream operator may be configured to
process tuples from the first stream operator and generate
additional tuples, increasing the flow of tuples within the
window.

Any combination of the above mentioned prioritization
methods may be combined 1 a weighted formula. Further-
more, the listed methods of prioritizing stream operator,
processing clements, and data paths are for illustrative
purposes only. Any method that prioritizes stream operators,
processing elements, and data paths, and 1s compatible with
the functionality described herein, 1s contemplated by this
disclosure.

In some embodiments, the tuple flow changes may cause
one or more stream operators to drop tuples (e.g., remove
received tuples from memory or refuse to receive new
tuples) without processing them. In some embodiments, the
tuples may be dropped according to some algorithm or
pattern (e.g., every third tuple 1s dropped). In some embodi-
ments, certain types of tuples may be dropped. For example,
if stream operator receives and processes both data and
metadata, the tuple flow change may indicate that the stream
operator drops the metadata tuples without processing them.
In some embodiments, individual stream operators may be
reconiigured to drop tuples at diflerent rate. For example, a
first stream operator in the operator graph may drop 50% of
the tuples sent to 1t, while a second stream operator 1n the
same operator graph may drop 25% of tuples sent to it.

US 11,921,724 B2

15

The stream operator that 1s reconfigured to drop tuples
may be inside the window (e.g., the third stream operator
OP3 1n FIG. 6) or outside the window (e.g., the first stream
operator OP1 1n FIG. 6). If the stream operator 1s outside the
window, 1t may be upstream of the window (e.g., OP1) or
downstream of the window (e.g., OP8). In some embodi-
ments, the tuple flow changes may dictate that stream
operators both inside and outside the window drop tuples.

In some embodiments, the implemented tuple flow
changes may cause one or more stream operators to not
generate tuples that they are otherwise configured to gener-
ate. The stream operator may determine which tuples should
not be generated tuples according to an algorithm or pattern.
For example, the stream operator may only generate two
thirds of 1ts normal output. Therelore, the stream operator
may determine that 1t should not generate every third tuple
that it normally would. In some embodiments, the stream
operator may only generate tuples carrying certain informa-
tion, while not generating tuples that carry different infor-
mation. For example, if a stream operator 1s configured to
process 1mage data and generate a first tuple that carries a
black-and-white version of the image, and a second tuple
that carries metadata (e.g., information about the camera that
took the image), the tuple tlow change may dictate that only
the black-and-white image data should be generated. The
tuple of metadata would therefore not be generated by the
stream operator.

In some embodiments, individual stream operators may
be reconfigured to generate different percentages of their
normally generated tuples. For example, implementation of
the tuple tlow changes may cause a first stream operator in
the operator graph to only generate 33% of the tuples 1t
normally generates, while a second stream operator in the
same operator graph may only generate 25% of tuples 1t
normally generates.

The stream operator that i1s reconfigured to not generate
all of 1ts tuples may be inside the window (e.g., the third
stream operator OP3 1n FIG. 6) or outside the window (e.g.,
the first stream operator OP1 1 FIG. 6). If the stream
operator 1s outside the window, 1t may be upstream of the
window (e.g., OP1) or downstream of the window (e.g.,
OP8). In some embodiments, the stream manager may
dictate that stream operators both inside and outside the
window should not generate as many tuples as they would
under normal operations.

In some embodiments, the tuple flow changes may
include limiting the number of tuples transmitted by a
stream operator. The stream operator may determine which
tuples will not be transmitted according to an algorithm or
pattern. For example, the stream operator may only transmit
two thirds of its normal output. Therefore, the stream
operator may determine that 1t should not transmit every
third tuple that 1t generates. In some embodiments, the
stream operator may only transmit tuples carrying certain
information, and not transmit tuples that carry different
information. For example, 11 a stream operator 1s configured
to process 1mage data and generate a {irst tuple that carries
a black-and-white version of the 1mage, and a second tuple
that carries metadata (e.g., information about the camera that
took the image), the tuple tlow change may dictate that only
the black-and-white image data should be transmitted down-
stream. The tuple of metadata may still be generated by the
stream operator, but 1t would not be transmitted.

In some embodiments, individual stream operators may
be reconfigured to transmit different percentages of their
generated tuples. For example, implementation of the tuple
flow changes may cause a first stream operator in the

10

15

20

25

30

35

40

45

50

55

60

65

16

operator graph to only transmit 33% of the tuples 1t gener-
ates, while a second stream operator in the same operator
graph may only transmit 25% of the tuples 1t generates. In
some embodiments, a stream operator that transmits tuples
to two downstream operators may transmit a diflerent per-
centage of 1ts generated tuples to each of the downstream
operators. An example of the implementation of this type of
tuple flow change 1s discussed 1n reference to FIG. 7B.

The stream operator that 1s reconfigured to not transmit all
of 1ts tuples may be 1nside the window (e.g., the third stream
operator OP3 1n FIG. 6) or outside the window (e.g., the first
stream operator OP1 in FIG. 6). If the stream operator 1s
outside the window, 1t may be upstream of the window (e.g.,
OP1) or downstream of the window (e.g., OP8). In some
embodiments, the tuple flow changes may dictate that
stream operators both iside and outside the window should
not transmit all of the tuples that they generate.

The tuple tlow changes may also include replacing one or
more stream operators with a “light” version of the stream
operators. The light version of a stream operator may
perform similar operations as the standard version, but the
light version may be configured to generate fewer tuples. For
example, a stream operator may import data from a digital
camera. The stream operator may be configured to perform
some operation on the tuples received, and then output two
tuples: one tuple of 1image data and one tuple of metadata.
The light version of the stream operator may be configured
to only generate and transmit the 1image data.

The stream operator that 1s set to run as a light version
may be inside the window (e.g., the third stream operator
OP3 1n FIG. 6) or outside the window (e.g., the {irst stream
operator OP1 1n FIG. 6). I1 the stream operator 1s outside the
window, it may be upstream of the window (e.g., OP1) or
downstream of the window (e.g., OP8). In some embodi-
ments, the tuple flow changes may include setting stream
operators both inside and outside the window to run as light
versions.

In some embodiments, the tuple flow changes may
include removing, or severing, one or more execution paths.
In these cases, all of the stream operators may continue to
work without modification, except that the stream operators
that are configured to transmit tuples along the severed
execution path may no longer do so. For example, a first
stream operator may be configured to perform an operation
on a tuple and to output two tuples, one to a second stream
operator and one to a third stream operator. If the execution
path between the first and third stream operators 1s severed,
the first stream operator may continue to perform the opera-
tion on the tuples 1t receives and send tuples to the second
stream operator. The only change may be that the first stream
operator will no longer transmit tuples to the third stream
operator. An example of an execution path being severed 1s
discussed in reference to FIG. 7A.

The execution path that 1s removed may be inside the
window (e.g., the execution path between the third stream
operator OP3 and the fourth stream operator OP4 in FIG. 6),
outside the window (the execution path between the first
source 602 and the first stream operator OP1 in FIG. 6), or
cross over the window boundary (e.g., the execution path
between the first stream operator OP1 and the third stream
operator OP3). If the removed execution path 1s outside the
window, it may be upstream of the window (e.g., between
the first source 602 and the first stream operator OP1) or
downstream of the window (e.g., between the seventh
stream operator OP7 and the first sink 608). In some

US 11,921,724 B2

17

embodiments, the tuple flow changes may dictate that
execution paths both imside and outside the window be
severed.

Any combination of the above mentioned tuple flow
changes may be combined. For example, the changes shown
in FIGS. 7A and 7B may be implemented together to alter
the streams computing application shown 1n FIG. 6. Fur-
thermore, the listed tuple flow changes are discussed for
illustrative purposes only. Any change to a stream operator,
processing element, or data path that reduces data flow
within the window and i1s otherwise compatible with the
functionality described herein 1s contemplated by this dis-
closure. After the tuple tflow changes have been imple-
mented, the method 800 may end.

In some embodiments, all the tuple flow changes may be
implemented when a tuple flow count exceeds 1ts corre-
sponding breakpoint threshold. In other embodiments, one
or more, but not all, of the tuple flow changes may be
implemented when a tuple flow count exceeds its corre-
sponding breakpoint threshold. In these embodiments, the
stream manager may implement some of the tuple flow
changes, reset the window, and, after resetting the window,
begin monitoring the tuple tflow counts. If the implemented
tuple tlow changes have reduced the flow of tuples inside the
window, the method 800 may end. If, however, a tuple flow
count again exceeds 1ts corresponding threshold, the stream
manager may implement more of the tuple flow changes.
This process may be repeated until the tuple flow counts no
longer exceed their corresponding thresholds, or until all of
the tuple flow changes have been implemented.

In some embodiments, all tuple flow changes may be
temporary. For example, the implemented tuple flow
changes may be undone at the end of the windowing period,
or at the conclusion of a tumbling window. Alternatively, the
tuple flow changes may exist for the duration of two or more
windowing periods. In some embodiments, the tuple flow
changes may continue until the stream computing applica-
tion 1s restarted, or until an administrator reverts the
changes. In some embodiments, some of the tuple tlow
changes may be temporary and may be undone at the end of
a window, while others may only be reverted by an admin-
istrator, or when the stream computing application 1is
restarted.

As discussed 1in more detail herein, 1t 1s contemplated that
some or all of the operations of some of the embodiments of
methods described herein may be performed in alternative
orders or may not be performed at all; furthermore, multiple
operations may occur at the same time or as an internal part
of a larger process.

The present invention may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory

10

15

20

25

30

35

40

45

50

55

60

65

18

(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program 1nstructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1 each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
istructions, instruction-set-architecture (ISA) instructions,
machine 1nstructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written 1n any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
istructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLLA) may execute the computer
readable program 1nstructions by utilizing state information
of the computer readable program instructions to personalize
the electronic circuitry, 1in order to perform aspects of the
present mvention.

Aspects of the present invention are described herein with
reference to flowchart 1llustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the mvention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1mple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the

US 11,921,724 B2

19

instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified 1n the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer 1mple-
mented process, such that the mstructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified 1n the flow-
chart and/or block diagram block or blocks.

The tflowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of 1nstructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
tfunctions noted 1n the block may occur out of the order noted
in the Figures. For example, two blocks shown 1n succession
may, i1n fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart i1llustration, can be implemented by
special purpose hardware-based systems that perform the

specified functions or acts or carry out combinations of

special purpose hardware and computer instructions.

The terminology used herein 1s for the purpose of describ-
ing particular embodiments only and 1s not intended to be
limiting of the various embodiments. As used herein, the
singular forms “a,” “an,” and “the” are itended to include
the plural forms as well, unless the context clearly indicates
otherwise. It will be further understood that the terms
“includes™ and/or “including,” when used in this specifica-
tion, specily the presence of the stated features, integers,
steps, operations, elements, and/or components, but do not
preclude the presence or addition of one or more other
features, 1integers, steps, operations, elements, components,

and/or groups thereof. In the previous detailed description of

exemplary embodiments of the various embodiments, ret-
erence was made to the accompanying drawings (where like
numbers represent like elements), which form a part hereotf,
and 1n which 1s shown by way of illustration specific
exemplary embodiments 1n which the various embodiments
may be practiced. These embodiments were described in
suilicient detail to enable those skilled in the art to practice
the embodiments, but other embodiments may be used and
logical, mechanical, electrical, and other changes may be
made without departing from the scope of the various
embodiments. In the previous description, numerous spe-
cific details were set forth to provide a thorough understand-
ing the various embodiments. But, the various embodiments

10

15

20

25

30

35

40

45

50

55

60

65

20

may be practiced without these specific details. In other
instances, well-known circuits, structures, and techniques
have not been shown in detail in order not to obscure
embodiments.

Different instances of the word “embodiment” as used
within this specification do not necessarily refer to the same
embodiment, but they may. Any data and data structures
illustrated or described herein are examples only, and 1n
other embodiments, different amounts of data, types of data,
fields, numbers and types of fields, field names, numbers and
types of rows, records, entries, or organizations of data may
be used. In addition, any data may be combined with logic,
so that a separate data structure may not be necessary. The
previous detailed description 1s, therefore, not to be taken in
a limiting sense.

The descriptions of the various embodiments of the
present disclosure have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill 1in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found 1n the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

Although the present invention has been described 1in
terms of specific embodiments, it 1s anticipated that altera-
tions and modification thereof will become apparent to the
skilled 1n the art. Therefore, 1t 1s intended that the following
claims be interpreted as covering all such alterations and
modifications as fall within the true spirit and scope of the
invention.

What 1s claimed 1s:

1. A method for controlling the flow of tuples 1n a stream
computing application, the method comprising:

recerving a stream of tuples to be processed by the stream

computing application deployed on a network, the
stream computing application including a plurality of
stream operators executing on one or more computer
processors, the plurality of stream operators being
arranged according to an operator graph for the stream
computing application;

generating a window over two of more stream operators

of the plurality of stream operators, the window includ-
ing a breakpoint threshold;
determining a tuple flow count for the window, the tuple
flow count corresponding to the breakpoint threshold;

determining that a breakpoint condition has occurred by
comparing the tuple flow count to the breakpoint
threshold;

moditying, during runtime, in response to determining

that the breakpoint condition has occurred, the stream
computing application by dynamically editing process-
ing elements and the stream operators of the stream
computing application; and

implementing, on the network in response to modifying,

the processing elements and stream operators to actuate
a tuple flow change to the stream computing applica-
tion; and

moditying a {irst stream operator to process a {irst portion

of tuples received by the first stream operator and not
process a second portion of tuples received by the first
stream operator, wherein the first portion of tuples
includes tuples of a first type and the second portion of
tuples includes tuples of a second type,

US 11,921,724 B2

21

wherein implementing the tuple flow change comprises
severing an execution path between two stream opera-
tors, and
wherein stream operators that are configured to transmit
tuples along the severed execution path no longer transmit 53
tuples along the severed execution path.

2. The method of claim 1, wherein the window 1s defined
by a set of windowing conditions, the set of windowing
conditions including the breakpoint threshold and a reset
policy, the method further comprising: 10

determining that the reset policy has triggered; and

resetting, in response to determining that the reset policy
has triggered, the tuple flow count for the window.

3. The method of claim 2, the method further comprising
undoing, 1n response to determining that the reset policy has 15
triggered, the modification to the stream computing appli-
cation.

4. The method of claim 2, wherein the reset policy 1s a
time 1nterval, and the determining that the reset policy has
triggered comprises determining that an amount of time 20
since generating the window exceeds the time interval.

5. The method of claim 1, wherein the breakpoint thresh-
old sets a maximum number of tuples that are permitted to
exit the window during a windowing period, wherein the
tuple tlow count 1s a number of tuples that have exited the 25
window during the windowing period, and wherein deter-
mimng that the breakpoint condition has occurred includes
determining that the number of tuples that have exited the
window during the windowing period exceeds the maximum
number of tuples. 30

6. The method of claim 1, wherein the breakpoint thresh-
old sets a maximum number of tuples that the two or more
stream operators inside the window are permitted to gener-
ate during a windowing period.

7. The method of claim 6, wherein the tuple flow count 35
includes a number of tuples generated by the two or more
stream operators inside the window during the windowing
pertod, and wherein the determining that the breakpoint
condition has occurred comprises:

comparing the number of tuples generated by the two or 40

more stream operators to the maximum number of
tuples that the two or more stream operators 1nside the
window are permitted to generate during the window-
ing period; and

determining that number of tuples generated by the two or 45

more stream operators exceeds the maximum number
of tuples that the two or more stream operators nside
the window are permitted to generate.
8. The method of claim 1, wherein the operator graph
includes the first stream operator, a second stream operator, 50
and a third stream operator, each of the first, second, and
third stream operators being inside the window, the first and
second stream operators being configured to transmit tuples
to the third stream operator,
wherein the third stream operator 1s configured to receive 55
tuples from the first stream operator and from the
second stream operator, aggregate the received tuples,
and perform an operation on the aggregated tuples, and

wherein the modifying the stream computing application
Comprises: 60

severing an execution path between the first stream opera-
tor and the third stream operator; and

modilying the third stream operator to perform the opera-
tion 1n response to aggregating a third number of tuples
from the second stream operator, wherein the modified 65
third stream operator 1s configured to perform the
operation without tuples from the first stream operator.

22

9. The method of claim 1, wherein the modifying the
stream computing application comprises replacing a second
stream operator with a light version of the second stream
operator.

10. A system for controlling the flow of tuples 1n a stream
computing application to reduce bottlenecking comprising:

two or more processors; and
a memory communicatively coupled to the two or more
processors, the memory including program code that,
when executed, causes at least one of the two or more
Processors to:

receive a stream of tuples to be processed by the stream
computing application deployed on a network, the
stream computing application including a plurality of
stream operators executing on one or more computer
processors, the plurality of stream operators being
arranged according to an operator graph for the stream
computing application;

generate a window over two or more stream operators of

the plurality of stream operators, the window being
defined by a set of windowing conditions, the set of
windowing conditions including a set of breakpoint
thresholds:

determine a set of tuple flow counts for the window, the
set of tuple flow counts corresponding to the set of
breakpoint thresholds;
determine that a breakpoint condition has occurred by
comparing the set of tuple flow counts to the set of
breakpoint thresholds;
moditying, during runtime, in response to determining
that the breakpoint condition has occurred, the stream
computing application by dynamically editing process-
ing c¢lements and the stream operators of the stream
computing application; and
implementing, on the network in response to modilying,
the processing elements and stream operators to actuate
a tuple tflow change to the stream computing applica-
tion; and
modifying a first stream operator to process a first portion
of tuples recetved by the first stream operator and not
process a second portion of tuples received by the first
stream operator, wherein the first portion of tuples
includes tuples of a first type and the second portion of
tuples includes tuples of a second type,
wherein implementing the tuple flow change comprises
severing an execution path between two stream
operators, and
wherein stream operators that are configured to transmit
tuples along the severed execution path no longer transmit
tuples along the severed execution path.
11. The system of claim 10, wherein the set of windowing
conditions further includes a reset policy, wherein the pro-
gram code, when executed, further causes the at least one
processor to:
determine that the reset policy has triggered; and
reset, 1n response to determining that the reset policy has
triggered, the set of tuple tlow counts for the window.
12. The system of claim 10, wherein a first breakpoint
threshold of the set of breakpoint thresholds defines a
maximum number of tuples that the two or more stream
operators are permitted to generate during a windowing
period,
wherein a first tuple flow count of the set of tuple tlow
counts 1s a number of tuples that the two or more stream
operators have generated during the windowing period,
and

US 11,921,724 B2

23

wherein determining that the breakpoint condition has
occurred includes determining that the number of
tuples that the two or more stream operators have
generated during the windowing period exceeds the
maximum number of tuples.

13. The system of claim 10, wherein implementing the

tuple tlow change comprises:

determining, for the first stream operator 1n the operator
graph, a first priority, wherein the first priority 1s based
on an amount of data sent by the first stream operator
to downstream stream operators;

determining, for a second stream operator 1n the operator
graph, a second priority, wherein the second priority 1s
based on an amount of data sent by the second stream

operator to downstream stream operators;

comparing the first priority to the second priority;

determining, based on the comparing, that the first stream

operator has a higher priority than the second stream
operator; and

modilying, in response to determining that the first stream

operator has a higher priority than the second stream
operator, the second stream operator.

14. A computer program product for processing a stream
of tuples 1n a stream computing application, the computer
program product comprising a computer readable storage
medium having program code embodied therein, the pro-
gram code comprising computer readable program code
configured to cause one or more computer processors to
perform a method comprising:

receiving a stream of tuples to be processed by the stream

computing application deployed on a network, the
stream computing application including a plurality of
stream operators executing on the one or more com-
puter processors, the plurality of stream operators being,
arranged according to an operator graph for the stream
computing application;

generating a window over two or more stream operators

of the plurality of stream operators, the window includ-
ing a breakpoint threshold;
determining a tuple flow count for the window, the tuple
flow count corresponding to the breakpoint threshold;

determining that a breakpoint condition has occurred by
comparing the tuple flow count to the breakpoint
threshold;

modilying, during runtime, 1n response to determining

that the breakpoint condition has occurred, the stream
computing application by dynamically editing process-
ing elements and the stream operators of the stream
computing application; and

implementing, on the network 1n response to modifying,

the processing elements and stream operators to actuate
a tuple tlow change to the stream computing applica-
tion; and

10

15

20

25

30

35

40

45

50

24

modifying a first stream operator to process a first portion
of tuples received by the first stream operator and not
process a second portion of tuples received by the first
stream operator, wherein the first portion of tuples
includes tuples of a first type and the second portion of
tuples 1ncludes tuples of a second type,
wherein implementing the tuple flow change comprises
severing an execution path between two stream

operators, and
wherein stream operators that are configured to transmit

tuples along the severed execution path no longer transmit
tuples along the severed execution path.

15. The computer program product of claim 14, wherein
the breakpoint threshold sets a maximum rate at which the
two or more stream operators nside the window are per-
mitted to generate tuples during a windowing period.

16. The computer program product of claim 14, wherein
the implementing the tuple flow change comprises:

determining, for the first stream operator in the operator

graph, a first priority, wherein the first priority 1s based
on a number of stream operators downstream from the
first stream operator;

determining, for a second stream operator 1n the operator

graph, a second priority, wherein the second priority 1s
based on a number of stream operators downstream
from the second stream operator;

comparing the first priority to the second prionity;

determiming, based on the comparing, that the first stream

operator has a higher priority than the second stream
operator; and

modifying, 1n response to determining that the first stream

operator has a higher priority than the second stream
operator, the second stream operator.

17. The computer program product of claim 14, wherein
the implementing the tuple flow change comprises stopping
processing at the first stream operator.

18. The computer program product of claim 14, wherein
the implementing the tuple flow change comprises:

determining that the first stream operator 1n the operator

graph and a second stream operator in the operator
graph are configured to transmit tuples to a third stream
operator in the operator graph;

determiming that the third stream operator requires data

from the first stream operator to operate;

determiming that the third stream operator does not require

data from the second stream operator to operate;
assigning, i response to determining that the third stream
operator requires data from the first stream operator and
that the third stream operator does not require data from
the second stream operator, the first stream operator a
higher priority than the second stream operator; and
moditying the second stream operator based on the pri-
orities of the first and second stream operators.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

