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PUBLIC/PRIVATE KEY SYSTEM WITH
INCREASED SECURITY

CROSS-REFERENCE TO PRIOR
APPLICATIONS D

This application 1s the U.S. National Phase application
under 35 U.S.C. § 371 of International Application No.
PCT/EP2020/087868, filed on Dec. 24, 2020, which claims
the benefit of EP Patent Application No. EP 20167254.0, 10
filed on Mar. 31, 2020 and EP Patent Application No. EP
19219637.6, filed on Dec. 24, 2019. These applications are

hereby incorporated by reference herein.

FIELD OF THE INVENTION 15

The invention relates to a second cryptographic device, a

first cryptographic device, a public-key encryption method,
a private-key decryption method and a computer readable

medium. 20

BACKGROUND OF THE INVENTION

One way to address problems with key distribution 1s to
use so-called asymmetric cryptography. In asymmetric cryp- 25
tography, a key pair 1s used which comprises a public-key
and a private-key. For this reason, asymmetric cryptography
1s also called public-key cryptography.

The public keys may be disseminated widely, but private
keys are typically known only to few parties, e.g., only to its 30
owner. The public key can be used to encrypt messages
which can only be decrypted with the private key. In a public
key encryption system, any person can encrypt a message
using the receiver’s public key. The encrypted message can
only be decrypted with the receiver’s private key. It 1s 35
computationally impractical to find the private key from 1its
corresponding public key. The public key and private key
are referred to as a key pair.

Known public key encryption systems rely on crypto-
graphic algorithms based on mathematical problems that 40
currently admit no eflicient solution. For example, the RSA
public-key encryption system relies on the dithculty of
integer factorization. Public key encryption based on elliptic
curves relies on the difliculty of discrete logarithms.

Quantum computers pose a significant threat to modern 45
cryptography. The two most widely adopted public key
cryptosystems, namely, RSA and Elliptic Curve Cryptogra-
phy (ECC), will be broken by general purpose quantum
computers. Lattice based cryptography may be used as a
quantum-computer resistant alternative. Many lattice based 50
cryptography systems have been proposed.

For example, one such lattice based system 1s called
Round5. Round5 1s a submission in the second round of
NIST’s Post-Quantum Cryptography. A description of
Round5 can be found on the NIST page: https://csrc.nistgov/ 55
projects/post-quantum-cryptography/round-2-submissions.
The description document 1s titled “Round5: KEM and PKE
based on (Ring) Learning with Rounding”, dated Thursday
Mar. 28, 2019. A description of Round5 can also be found
on Cryptology cPrint archive: Report 2018/725, e.g., Ver- 60
sion: 20190126:102712. These documents are included
herein by reference. The former will be referred to as
‘Round?5’. Other lattice based cryptography documents are

FrodoKEM, “Frodo-KEM: Learning With Errors Key
Encapsulation”, dated March 30,2019, NTRU, “NTRU”, 65
dated Mar. 30, 2019 SABER, “SABER: Mod-LWR based

KEM (Round2 submission)”’, NewHope “New Hope”, ver-

2

sion 1.02, dated Mar. 15, 2019 and Crystals-Kyber “CRY S-
TALS-Kyber, (version 2.0), dated Mar. 30, 2019 description
of which can be found as second round NIST candidates at

the NIST page mentioned above. Descriptions of these are
included herein from the NIST second round candidate
proposals, as well.

For example, a second cryptographic device may be
configured to use a public key of a first cryptographic device
to derive a raw key. The raw key may be used to encapsulate
a key seed, or pre-key, which 1n turn may be used to protect
communication between the first and second cryptographic
device. A lattice based system may be set up such that both
devices can derive the same raw key, or at least raw keys that
are so close that they can nevertheless be used to encapsulate
and recover the same key seed.

SUMMARY OF THE INVENTION

The inventors found that these lattice based systems suiler
from weak-key problems. For example, i1 a first public-key
obtained at the second cryptographic device 1s weak, then
the key-seed 1s not protected suih

iciently for confidentiality.
As a result, all communication that 1s protected using that
key seed can be compromised. For example, the sensitive
communication of the second cryptographic device, which
was intended for the first cryptographic device may be read
by an eavesdropper. For example, a first public key may be
weak due to accident, e.g., programming error, transmission
problems or by malice, e.g., 1n order to set up a plausible
repudiation, or to create a problem for the second crypto-
graphic device, efc.

Similar problems may happen at the side of the first
cryptographic device. The first cryptographic device will use
the second public-key of the second cryptographic device to
recover the encapsulated key seed. A malicious choice of the
second public-key may allow some information of the first
cryptographic device’s first private key to be leaked. This
might not be noticed, since the second public key may be
ephemeral, so many different second public key are
expected. Accordingly, 1t may not be noticed that many
second public keys are tried to leak parts of the first private
key. For example, an attacker may notice whether the first
cryptographic device was able to derive the shared key, or 1f
the shared changed from a previous shared key.

These and other problems are addressed by embodiments
described herein. A second cryptographic device 1s provided
and a first cryptographic device. Using the second crypto-
graphic device a key seed can be transferred to the first
cryptographic device. The key seed may be used to encrypt
a message. Having access to the public-key thus allows
encryption of a message, but access to the private-key 1s
required for decryption of said encrypted message.

For example, a second cryptographic device may obtain a
first public key associated with the first cryptographic
device, generate a second private-key, and compute a second
public-key from the second private-key. For example, com-
puting a public key from a private key may comprise noisy
multiplying the private key with a shared object.

The first public key may be used to compute a second raw
shared key, which 1n turn may be used to encapsulate a key
seed. Because the first cryptographic device can obtain the
same or nearly the same raw key 1t can decapsulate this data
and so obtain the key seed. However, i1 the first public key
1s weak, the encapsulation does not sufliciently obscure the
key seed, so that 1t 1s not suitable for later cryptographic use.
For example, computing the raw key may comprise a noisy
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multiplication between the first public key and the second
private key; if the first public key 1s small than so 1s the raw
key.

For example, a first cryptographic device may receive
from the second cryptographic device a second public-key
and encapsulated data, compute a first raw shared key from
the second public-key and the first private-key and use 1t to
decapsulate the encapsulated data using at least part of the
first raw shared key. A malicious second cryptographic
device may send a specially crafted second public key
instead of a real public key, e.g., one that has been obtained
from a randomly generated second private key. The second
device may do this in the hope that this will reveal infor-
mation on the first private key. For example, an attacker may
use a key mismatch attack. In the key mismatch attack a
private key may be recovered for a participant’s who reuses
his public key by comparing whether the shared keys
between two participants match or not.

Accordingly, both the first cryptographic device and the
second cryptographic device have an interest to avoid work-
ing with a public key that i1s obtained for the other party
which does not correspond to the profile that one may expect
from a public key. In case of the second cryptographic
device, allowing a weak first public key may result in lower
confidentiality protection of the key seed and of any com-
munication that depends on it. In case of the first crypto-
graphic device, allowing a weak second public key may
result 1n madvertently revealing part of the first private key,
¢.g., by detecting a presence or absence of a key-mismatch.
Typically, the second cryptographic device will use an
ephemeral second private key and second public key so that
the problem of revealing information on the second private
key 1s not as pressing. However, 11 1t 1s desired to avoid
leaking information on the second private key, e.g., because
this key may have longer term uses, then validation of the
first public key may be performed.

In an embodiment, the second cryptographic device and/
or the first cryptographic device 1s configured to apply a
validation procedure to the obtained public key. It 1s pos-
sible, but not required, that both parties perform a validation
on an obtained public key, as 1t depends on which threat 1s
addressed.

In case of the second cryptographic device, 1t may be
determined 11 the public key 1s secure for encapsulation of a
key seed. If the obtained public key 1s not suitable, e.g.,
because the using it for encapsulation would reveal too
much of the key seed, then the second cryptographic device
can take appropriate action. For example, the validation
procedure may be performed before or during encapsulation,
and the encapsulation may not be performed or aborted if the
validation procedure was not successtul. For example, the
validation procedure may be performed after or during
encapsulation, and the encapsulation result may not be used,
¢.g., not transferred to the first cryptographic party it the
validation procedure was not successiul.

In case of the first cryptographic device, 1t may be
determined 11 the public key 1s secure for decapsulation of a
key seed. If the obtained public key 1s not suitable, e.g.,
because the using i1t for decapsulation would reveal too
much of the first private key, then the first cryptographic
device can take appropriate action. For example, the vali-
dation procedure may be performed before or during decap-
sulation, and the decapsulation may not be performed or
aborted 11 the validation procedure was not successtul. For
example, the validation procedure may be performed after or
during decapsulation, and the decapsulation result may not
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be used, e.g., a resulting key seed may be discarded, e.g., a
warning may be issued, the second cryptographic device
may be blocked, etc.

If key leakage 1s the objective, the bar for rejecting a key
may be set relatively high, but one may keep information on
devices that use suspected keys, e.g., keys that are near the
bar for rejection. For example, a first cryptographic device
may count how often a particular second cryptographic
device used a key that 1s suspect, e.g., for which the
statistical measure fall outside a likely range but not outside
a highly-unlikely range. If unlikely keys are often used, e.g.,
2 times or more, 4 times or more, etc., further keys from that
second cryptographic device may be rejected.

The problem of weak keys 1s common in many lattice
based cryptography schemes, especially when based on a
so-called noisy multiplication.

For example, the shared object, first public key, first
private key, second public key and second private key may
be matrices over a finite field or ring. A noisy multiplication
may be a matrix multiplication, e.g., in the finite field or ring.
The matrix elements may be integers, €.g., modulo a modu-
lus, or polynomials modulo a modulus and a reduction
polynomial. The noisy multiplication may add noise to the
result, e.g., by scaling the resulting matrix elements down,
or generating noise and adding the noise to resulting matrix
clements.

For example, the shared object, the first public key, first
private key, second public key and second private key may
be polynomials over a finite field or ring. A noisy multipli-
cation may be a polynomial multiplication, e.g., modulo a
reduction polynomial. The noisy multiplication may add
noise to the result, e.g., by scaling the resulting polynomaal
coellicients down, or generating noise and adding the noise
to resulting polynomial coeflicients.

Scaling coeflicients or elements may comprise multiply-
ing with a scaling factor, adding a scaling coeflicient, and
flooring, rounding or ceiling operations.

In an embodiment, the key seed 1s random, and/or ephem-
eral and/or symmetric and/or independent from the first
public-key.

In normal use, a public key 1s generated as part of a
random process. Although restrictions of various kinds may
be imposed on a private key, depending on the particular
lattice based cryptography scheme, 1t will typically be
randomly selected, e.g., randomly selected subjected to
design constraints. For example, the private key may be
selected randomly subject to being balanced, having a
limited (absolute) magnitude of 1its values, e.g., ternary
values, and/or restrictions to 1ts weight, etc. The public key
may be obtained as a noisy multiplication between the
public key and the shared object.

Accordingly, a public key that statistically does not appear
to be the result of such a random process may be the result
of error, €.g., programming error, transmission error, etc., or
may be the result of an attack. The first and second devices
may be configured to check 1n advance 11 the public keys that
they generate will pass a test done by the other device.
However, 1t 1s not likely that this will be change much 1n
practice, as a genuinely generated public key will pass the
test with very high probability.

The validation process may compute a statistical measure
for the public key and reject the public key if the statistical
measure 1s outside an expected range for the statistical
measure.

A particular problem occurs 1f the public key 1s much
smaller than would be expected. For example, the validation
procedure may comprise determining 1f the magnitude of the
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obtained public key 1s below a threshold. For example, one
may mathematically calculate an expected range for the
magnitude, e.g., a range 1n which a public keys 1s expected
to lie with some high probability. For example, the prob-
ability may be set to 1-107°, or higher or lower depending
on the application.

On the other hand, one may calculate the expected amount
of information that will be leaked 11 the resulting raw key 1s
used for encapsulation. The latter method may be preferred,
but may be harder to perform. By rejecting unusually small
keys a similar eflect can be obtained though.

For example, a validation procedure may comprise deter-

mimng if a number of values below a first threshold 1n the
obtained public key and reject the key if the determined
number 1s smaller than a second threshold. Below a thresh-
old may be interpreted in absolute value. If public key has
values modulo p, the validation procedure may require that
the number of elements just below p 1s small; or even that
the number of elements 1n [0, t,)U[p—t,) 1s small, e.g., below
a threshold t,.
In particular, a validation procedure may comprise deter-
mimng 1f the obtained public key 1s all zero or near-all zero.
For example, 11 the number of non-zero elements 1s below a
threshold. A public key with many zeros may cause low
confidentiality in the encapsulated key seed.

In some cryptography schemes the public key may be
obtained in a transformed domain, e.g., 1n a frequency
domain. For example, the transform may be a Fourier
transform, e.g., a discrete Fourier transform (DFT). In this
case, the validation may comprise determining 1f a norm of
the public key 1n the transformed domain 1s below a thresh-
old. This test gives an indication that the sum of the squares
of the entries 1n the original domain 1s small. Alternatively
or additionally, one may compute a linear combination of
clements 1n the transformed domain and verify 1f 1t 1s below
a threshold. This test gives an indication that the sum of the
entries 1n the original domain 1s small. For example, this
may be used for the NTT used by e.g., CRYSTALS-Kyber
and NewHope. The linear combination of elements may be
selected randomly, e.g., to avoid that an attacker can prepare
for the test.

The validation procedure may comprise determining i the
number of values of the public key equal to each other
exceeds a threshold. Many equal values may be indicative of
a weak key. Especially 1n a cryptographic scheme 1in which
the private keys are balanced, e.g., have a fixed weight this
may be a problem. For example, this problem may occur it
ternary secret keys are used. For example, 1n a balanced
private key with a fixed weight secrets, e.g., the same
number 1 and -1 values, keys of the type above may be close
to zero.

In an embodiment, the validation procedure 1s performed
on the public key instead of on the raw key directly. This has
the advantage that the test cannot reveal information on the
private key since the private key need not be involved 1n the
check. Alternatively, one could veniy it the raw key 1s small,
but 1t the accept/reject decision 1s visible this may give
information on the private key. Especially, if the private key
1s a long term key this 1s not desirable. In an embodiment,
a validation procedure for a second cryptographic device
comprises determining a magnitude, number of small val-
ues, etc., for the raw key.

More sophisticated evaluation of the public key 1s pos-
sible using a more sophisticated statistical measure. For
example, the validation procedure may comprise computing
a histogram of values in the obtamned public key and
comparing the computed histogram to an expected histo-
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gram. The expected histogram may be computed mathemati-
cally, but may also be established empirically.

A more stringent statistical test, without being tied to a
particular weakness, such being small, or having many small
values, has the advantage that it 1s likely to help against
future weaknesses as well. For example, 11 1t 1s found 1n the
future that a particular clever selection of a public key, e.g.,
with or without selecting a private key first may lead to a
problem, e.g., a weak encapsulation or may reveal informa-
tion about a private key.

For example, the validation procedure may comprise

determining 11 a bin of the computed histogram i1s smaller

than a threshold, and/or

determining 11 a bin of the computed histogram is larger

than a threshold, and/or

computing a distance between the computed histogram

and an expected histogram and determining 1f the
distance 1s above a threshold.

Betfore computing the histogram, the values in the public
key may be shifted upwards or downwards, e.g., by half a
bin-size. This has the effect that values that are 1n absolute
value near O are counted 1n the same bin of the histogram.

There are various distance measures between the deter-
mined histogram 1n the obtained public key and the expected
histogram, e.g., as mathematically or empirically estab-
lished. For example, distance measures may be a squared
distance, ¢.g., a sum of the square of the difference 1n size
of corresponding bins. Other measures that may be used
include the chi-squared test and the KS test, for example.

The second cryptographic device and the first crypto-
graphic device may be electronic devices. For example, they
may be a computer or a server, etc. They may be mobile
clectronic devices, e¢.g., a mobile phone, a smart card. The
second cryptographic device and the first cryptographic
device may be consumer electronics, e.g., a set-top box, a
television. Public key encryption device may be sensors.

Devices and methods according to an embodiment may be
applied 1n a wide range of practical applications. Such
practical applications include a number of cryptographic
protocols. Such practical applications include messaging
applications, sensor networks, data communication, finan-
cial applications, etc.

An embodiment of the method may be implemented on a
computer as a computer implemented method, or 1n dedi-
cated hardware, or 1n a combination of both. Executable
code for an embodiment of the method may be stored on a
computer program product. Examples of computer program
products 1include memory devices, optical storage devices,
integrated circuits, servers, online software, etc. Preferably,
the computer program product comprises non-transitory
program code stored on a computer readable medium for
performing an embodiment of the method when said pro-
gram product 1s executed on a computer.

In an embodiment, the computer program comprises
computer program code adapted to perform all or part of the
steps of an embodiment of the method when the computer
program 1s run on a computer. Preferably, the computer
program 1s embodied on a computer readable medium.

Another aspect of the invention provides a method of
making the computer program available for downloading.
This aspect 1s used when the computer program 1s uploaded
into, e.g., Apple’s App Store, Google’s Play Store, or
Microsolit’s Windows Store, and when the computer pro-
gram 1s available for downloading from such a store.

BRIEF DESCRIPTION OF THE DRAWINGS

Further details, aspects, and embodiments of the invention
will be described, by way of example only, with reference to
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the drawings. Elements in the figures are illustrated for
simplicity and clarity and have not necessarily been drawn

to scale. In the Figures, elements which correspond to
clements already described may have the same reference
numerals. In the drawings,

FIG. 1a schematically shows an example of an embodi-
ment of a first cryptographic device 100,

FIG. 15 schematically shows an example of an embodi-
ment of a second cryptographic device 200,

FIG. 1¢ schematically shows an example of an embodi-
ment of a cryptographic system 101,

FIG. 2a schematically shows an example of public-key
encryption and of private-key decryption,

FIG. 2b schematically shows an example of public-key
encryption and of private-key decryption,

FIG. 3 schematically shows an example of public-key
encryption and of private-key decryption,

FIG. 4 schematically shows an example of public-key
encryption and of private-key decryption,

FIG. 5 schematically shows an example of a crypto-
graphic system according to an embodiment,

FIG. 6a schematically shows an example of a public-key
encryption method according to an embodiment,

FIG. 6b schematically shows an example of a private-key
decryption method according to an embodiment,

FIG. 7a schematically shows a computer readable
medium having a writable part comprising a computer
program according to an embodiment,

FIG. 7b schematically shows a representation ol a pro-
cessor system according to an embodiment.

LIST OF REFERENCE NUMERALS 1a-5, 7a-7a

10 a first cryptographic device

20 a second cryptographic device
31 an enrollment phase

32 an encryption phase

33 a decryption phase

11, 12 a message

100 a first cryptographic device
130 a communication interface
191 a computer network

192 a storage intertace

194 a processor

196 a memory

200 a second cryptographic device
230 a communication interface
292 a storage interface

294 a processor

296 a memory

300 a first cryptographic device
301 a cryptographic system

302 a public key depository

305 a communication interface
315 a public/private key generator
320 an error corrector

325 a Dithe-Hellman unit

335 a reconciliation unit

340 a decapsulation unit

350 a second cryptographic device
355 a communication interface
360 a public key obtainer

365 a public/private key generator
370 a code word generator

375 a Diihie-Hellman unait

380 a reliable bit generator

385 a reconciliation data generator
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390 an encapsulation unit
1000 a computer readable medium

1010 a writable part

1020 a computer program

1110 integrated circuit(s)

1120 a processing unit

1122 a memory

1124 a dedicated integrated circuit
1126 a communication element
1130 an interconnect

1140 a processor system

DETAILED DESCRIPTION OF TH.
EMBODIMENTS

L1l

While this mvention 1s susceptible of embodiment 1n
many different forms, there are shown in the drawings and
will herein be described in detail one or more specific
embodiments, with the understanding that the present dis-
closure 1s to be considered as exemplary of the principles of
the invention and not intended to limit the invention to the
specific embodiments shown and described.

In the following, for the sake of understanding, elements
of embodiments are described 1n operation. However, 1t will
be apparent that the respective elements are arranged to
perform the functions being described as performed by
them.

Further, the invention 1s not limited to the embodiments,
and the invention lies 1n each and every novel feature or
combination of features described herein or recited 1n mutu-
ally different dependent claims.

Some embodiments are directed to a second crypto-
graphic device and a first cryptographic device. The first and
second cryptographic devices may be configured to transfer
a key seed. The key seed may be protected using a public
key from one party and a private key from the other party.
For example, a public key may be obtained from a private
key through a noisy multiplication. At least one of the first
and second cryptographic device may validate an obtained
public key, e.g., to avoid leakage of the key seed or of a
private key.

FIG. 1a schematically shows an example of an embodi-
ment of a first cryptographic device 100. FIG. 15 schemati-
cally shows an example of an embodiment of a second
cryptographic device 200. The first cryptographic device
may also be referred to as the first device, or first crypto-
graphic device. The second cryptographic device may also
be referred to as the second device, or second cryptographic
device. FIG. 1c¢ schematically shows an example of an
embodiment of a cryptographic system 101 comprising a
first cryptographic device 100 and a second cryptographic
device 200. First cryptographic device 100, and second
cryptographic device 200 may comprise one or more of a
storage nterface 192, 292, a processor 194, 294, and a
memory 196, 296, respectively. First cryptographic device
100 1s configured to generate a public/private key pair. The
public key and private key may comprise a public-key
matrix and a private-key matrix respectively. The public key
and private key may comprise a public-key polynomial and
a private-key polynomial respectively. The second crypto-
graphic device 200 1s configured to use a public-key and use
it to enable a key seed to be transierred to the first crypto-
graphic device. For example, the key seed may be used
directly as a key, typically as a symmetric key, to encrypt and
later decrypt a message which is to be transferred from the
second cryptographic device to the first cryptographic
device.
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The first cryptographic device may be configured to use
its private-key to obtain the same key seed. For example, the
key seed may also be used to derive a communication key
from. For example, the key seed may be hashed, possibly
with other information to obtain the communication key. For
example, the other information may comprise the initial
and/or the replying protocol messages exchanged between
the first and second cryptographic device.

The key seed could be used as an mput to a further key
negotiation, e.g., the key seed may be combined with one or
more further key inputs, e.g., to derive a final key, e.g., using,
a key derivation function taking the key seed and the further
key inputs. The further key inputs may comprise a further
key seed derived from a protocol in which the second
cryptographic device and first cryptographic device change
places, taking the opposite roles 1n the various protocols
described herein.

The first cryptographic device 100, and second crypto-
graphic device 200, ¢.g., the various devices of system 101,
may communicate with each other over a computer network
191. The computer network may be an internet, an intranet,
a LAN, a WLAN, etc. Computer network 191 may be the
Internet. The computer network may be wholly or partly
wired, and/or wholly or partly wireless. For example, the
computer network may comprise Ethernet connections. For
example, the computer network may comprise wireless
connections, such as Wi-Fi, ZigBee, and the like. The
devices comprise a connection interface which 1s arranged to
communicate with other devices of system 101 as needed.
For example, the connection interface may comprise a
connector, €.g., a wired connector, ¢.g., an Ethernet connec-
tor, or a wireless connector, €.g., an antenna, €.g., a Wi-F1,
4G or 5G antenna. For example, first cryptographic device
100, and second cryptographic device 200 may comprise
communication interface 130, 230 respectively. Computer
network 191 may comprise additional elements, e.g., a
router, a hub, etc.

The execution of the first cryptographic device 100, and
second cryptographic device 200 may be implemented in a
processor, €.g., a processor circuit, examples of which are
shown herein. The first cryptographic device 100, in par-
ticular the processor of first cryptographic device 100, may
implement the functions of the first cryptographic device 10
as shown 1 FIGS. 2a-2b, 3 and 4. The second cryptographic
device 200, in particular the processor of second crypto-
graphic device 200, may implement the functions of the
second cryptographic device 20 in these figures. For
example, these functions may be wholly or partially imple-
mented 1 computer instructions that are stored at device
100, or 200, e.g., 1n an electronic memory of the device, and
are executable by a microprocessor of the device. In hybnd
embodiments, functional units are implemented partially 1n
hardware, e.g., as coprocessors, €.g2., Crypto Coprocessors,
and partially in software stored and executed on device 100,
or 200.

Devices 100 and 200 may comprise a storage interface to
store and/or retrieve messages, possibly encrypted mes-
sages. For example, the storage interface may be imple-
mented locally, e.g., as an 1nterface to a memory comprised
in the device, e.g., memory 196, or 296, respectively. The
storage interface may also interface with oflline, e.g., non-
local, storage, e.g., cloud storage, e.g., a storage such as a
memory or a drive located 1n another device. If cloud storage
1s used the devices may comprise a local storage as well,
¢.g., a memory. For example, the memory may be used to
store computer programming instructions, temporary stor-
age of files and the like.
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In the various embodiments of devices 100 and 200, the
communication interface may be selected from wvarious
alternatives. For example, the interface may be a network
interface to a local or wide area network, e.g., the Internet,
a storage interface to an internal or external data storage, an
application interface (API), etc. In an embodiment, the
second cryptographic device and the first cryptographic
device are implemented in the same device. This can be
helptul to both encrypt and decrypt messages. For example,
the communication interface may be a storage interface in
which case, the device may be used to store messages in
encrypted form, and later retrieve and decrypt them.

The devices 100 and 200 may have a user interface, which
may include well-known elements such as one or more
buttons, a keyboard, display, touch screen, etc. The user
interface may be arranged for accommodating user interac-
tion for mitiating a key agreement protocol, responding to a
key agreement protocol, sending a message encrypted with
a public key, decrypting a message with a public key, etc.

Storage may be implemented as an electronic memory,
say a flash memory, or magnetic memory, say hard disk or
the like. Storage may comprise multiple discrete memories
together making up storage. Storage may also be a tempo-
rary memory, say a RAM.

Typically, the devices 100 and 200 each comprise a
microprocessor which executes appropriate software stored
at the devices 100 and 200; for example, that software may
have been downloaded and/or stored in a corresponding
memory, €.g2., a volatile memory such as RAM or a non-
volatile memory such as Flash. Alternatively, the devices
100 and 200 may, in whole or 1n part, be implemented 1n
programmable logic, e.g., as field-programmable gate array
(FPGA). Devices 100 and 200 may be implemented, in
whole or 1n part, as a so-called application-specific inte-
grated circuit (ASIC), e.g., an itegrated circuit (IC) cus-
tomized for their particular use. For example, the circuits
may be mmplemented 1n CMOS, e.g., using a hardware
description language such as Verilog, VHDL etc.

In an embodiment, devices 100 and 200 may comprise
one or more circuits to implement one or more or all of the
functions of the respective device. The circuits may imple-
ment the corresponding functions described herein. The
circuits may be a processor circuit and storage circuit, the
processor circuit executing instructions represented elec-
tronically in the storage circuits.

A processor circuit may be implemented 1n a distributed
fashion, e.g., as multiple sub-processor circuits. A storage
may be distributed over multiple distributed sub-storages.
Part or all of the memory may be an electronic memory,
magnetic memory, etc. For example, the storage may have
volatile and a non-volatile part. Part of the storage may be
read-only. The circuits may also be, FPGA, ASIC or the like.

FIG. 2a schematically shows an example of public-key
encryption and of private-key decryption. The public-key
encryption side 1s performed by second cryptographic
device 20. The private-key decryption side 1s performed by
first cryptographic device 10. The protocols of FIGS. 2a-4
may be executed by a second cryptographic device 200
and/or a first cryptographic device 100, e¢.g., as described
above.

The notation 1n FIGS. 2a-4 1s as follows:

a represents a public object, e.g., matrix, e.g., a matrix

with elements 1in the integers or a ring, field, etc., e.g.,
a polynomial, e.g., a polynomial with coetfhicients ring,
field. The elements may be integers modulo a modulus,
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e.g., a power of 2. We will use ‘values’ or ‘elements’ to
refer both to the coefficients of a polynomial or to the
elements of a matrix

The elements of the public object may be polynomials
modulo a modulus, e.g., a power of 2, and a polyno-
mial. A matrix public object a 1s typically a square dxd
matrix. Matrices modulo a modulus are referred to as a
non-ring configuration. Matrices with polynomal
entries modulo a polynomial and a modulus are
referred to as a module configuration.

s and r represent the private keys of the first cryptographic
device and the second cryptographic device, respec-
tively. Like the public object, the private keys may be
a matrix. The private keys may be a polynomial.

b and u represent the public key matrices of the first
cryptographic device and the second cryptographic
device illustrated as the product of a*r or a*s. Like the
public object, the public keys may be a matrix. The
public keys may be a polynomial.

The operation * represents the one-way function of the
underlying problem. The star (*) operation derives a new
mathematical object, e.g., a new matrix, from two underly-
ing matrices, while introducing some noise, e.g., a new
polynomial, from two underlying polynomials, while intro-
ducing some noise. For example, noise may be introduced
explicitly by adding noise to the elements, or implicitly, e.g.,
by rounding.

Examples of star operations can be found 1n (R)LWE or
(R)LWR or a module version of them. For instance, a*r may
mean Round((A*r(mod q)), p, q). e.g., as in LWR. This
means the product of r times the square matrix A modulo q.
Then the result 1s rounded with 1ntegers p and g where p<qg
by performing p/q (A*r(mod q). A rounding operating may
be an operator

b
Ry () = (b (x + h)‘)

b

In the latter formula, the angle brackets denote a modulo
operation, in this case modulo b. The floor operation, in this
case 1s downward flooring, but this could be replaced to a
ceiling or true rounding operation. The value h may be used,
e.g., to reduce bias. For example, one may use h=a/2b.
Typically, we have that b<a. In an embodiment, both a and
b are powers of 2.
c represents the encapsulated key seed K
encapsulate(k, K) means that the key seed K 1s encapsu-
lated with k. For example, if k lives in Z_q, then K may
be represented in 7Z,_q too. If k lives in Z_2, then this
may be an XOR. Encapsulation may be done element-
wise, e.g., interpreting the k and K as a matrix as:

c=k+K*(g/2)Y(mod g).

For example, an encapsulation function may mask a key
seed K using a key k such that an error 1n k has a hhmited
effect on m, e.g., a linear effect. For example, the bits 1n a
key seed K may be mapped to Z_q, e.g., by multiplying the
elements 1n K by an element in Z_q; 1f g 1s even than g/2 1s
good choice. Next the elements of key k, which may also be
elements of Z_q, are added to the mapped elements of K.
Encapsulation of K may be regarded as an encryption of K
with key k, but wherein a small error in the key k, e.g., a
small number of bit errors, still allow successful decryption
of K from c. Note that in the above example encapsulation,
not all values of k need to be used. For example, if k 1s a
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matrix or polynomial, a subset of 1ts values may be used, or
even part of the value, e.g., a number of bits from a number
of values.

decapsulate(k, ¢) means that the ciphertext ¢ 1s decapsu-

lated using key k returning a bit string.

Reference 1s made to:

RLWE: “On Ideal Lattices and Learning with Errors
Over Rings”, by Vadim Lyubashevsky, Chris Peikert,
and Oded Regev,

RLWR: “Pseudorandom Functions and Lattices”, by
Abhishek Banerjee, Chris Peikert, and Alon Rosen,

LWE: “On Lattices, Learning with Errors, Random
Linear Codes, and Cryptography”, by Oded Regev.

LWR: “Pseudorandom Functions and Lattices”, by
Abhishek Banerjee, Chris Peikert, and Alon Rosen,

Hila5: “HILAS: On Reliability, Reconciliation, and
Error Correction for Ring-LWE Encryption”, by
Markku-Juham O. Saarinen

The star operation may be a noisy matrix multiplication,
e.g., a regular matrix multiplication followed by adding
noise, e.g., a regular polynomial multiplication followed by
adding noise. Adding noise may also be integrated with the
multiplication. Adding noise in the star operation may be
done 1n multiple ways. One example of adding noise, 1s by
adding explicit noise, e.g., by generating and adding a noise
matrix or polynomial. An advantage of adding explicit noise
1s that the noise 1s under complete control of the cryptog-
rapher, and can be fine-tuned, e.g., to obtain precise control
over the failure rate of the system versus 1its security.
Furthermore, adding explicit noise has the advantage that all
matrices or polynomials may be over the same ring, or field,
etc., thus simplifying analysis.

Another example of adding noise 1s scaling down. For
example, the matrices a, r, and s may have elements modulo
a modulus g, e.g., integers or polynomials modulo g; the star
operation may round the result of a matrix operation down
from modulo g to modulo p, e.g., by multiplying with p/q
and rounding, e.g., rounding up, or rounding down, or
rounding to the nearest integer, etc.

In this application small letters will be used for matrices
or polynomials, with the understanding that matrices may
need to be transposed whenever needed, e.g., as required by
the dimensions of the matrices, and by the requirement that
the raw key at both sides should be approximately equal.
Typically, there 1s more than one way to do this; for example,
by transposing all matrices 1n an embodiment, an alternative
working embodiment may be obtained. Using polynomials
has the advantage that the multiplication 1s commutative, so
that no transpose operations are needed.

Below one example 1s given in which the matrix objects
are given 1n capital letters, and wherein transposing 1s
included. The secret-keys are defined as matrices

Se L and R e L4 note that such secret-key matrices
actually contain respectively n and m independent secret-
key vectors. A raw key matrix equals S’ A’R and is

1n ZE}‘E, except for errors introduced by noisy multiplica-
tion. From each of the entries of the raw key, the B most
significant bits are extracted so that a total raw key of length
n*m*B can be generated. The raw key is referred to as ‘raw’,
since there 1s a probability that the raw keys derived at the

second cryptographic device and at the first cryptographic
device are not exactly equal. Below an example 1s given,
using matrices:
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In an enrollment phase 31:

First cryptographic device selects a public matrix object A
and a first private-key matrix S.

First cryptographic device computes first public-key
matrix B=AS+E, for some error matrix E.

First cryptographic device sends: A, B

In an encryption phase 32:

Second cryptographic device selects second private-key
matrix: R

Second cryptographic device computes second public-key
matrix; U=A’R+E'; for some error matrix E’

Second cryptographic device computes second raw key
B’R, note that B‘'R=S’A‘R+E’R:

Second cryptographic device generates a key seed K and
computes the encapsulated key seed as

C=(£B)K+BTR.
)

For example, the key seed K may have enfries 1in
{0,1, ..., 2°-1}

Second cryptographic device sends: U, C

In encryption phase 32, the second cryptographic device
may apply a validation procedure to the received public key.
This may be denoted as Validate(B) and may be 1mple-
mented as part of the encryption phase 32. Validate(B) may
be performed before or after or during the encapsulation, but
if the outcome of the validate(B) procedure 1s not successful,
e.g., B 1s not validated, then the encapsulation result C 1s not
transferred to the first cryptographic device. Examples, of
validation procedures are given herein. For example, Vali-
date(B) may verify that B 1s not zero. If B were zero, then
the outcome would be unsuccessful, e.g., no validation.

In a decryption phase 33:

First cryptographic device computes first raw key S’U,
note that S* U=S'A'R+S’E'.

First cryptographic device decapsulates by computing
C—S’U, and rounding the result to multiples of

Next the key seed K may be obtained from the rounding,
e.g., by dividing by

In decryption phase 33, the first cryptographic device may
apply a validation procedure to the received public key. This
may be denoted as Validate(U) and may be implemented as
part of the decryption phase 33. Validate(U) may be per-
formed before or after or during the encapsulation, but if the
outcome of the validate(U) procedure 1s not successful, e.g.,
U 1s not validated, then the encapsulation result C 1s not
decapsulated, or the result of the decapsulation, e.g., K, 1s
discarded.

In the above example, the matrices: A, B, S, U, and R,
may be over Z_p. The value B in the exponent 27 indicates
the number of most significant bits taken from the raw keys
to encapsulate K. In this example, the remaining lesser
significant bits may be used as reconciliation data. For
example, B=4 bits may be taken for encapsulation. For
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example, the modulus may be chosen as p=2"~. The key seed
may be encoded as a matrix, with entries in Z_2"B, e.g., with
entries chosen from {0,1, ... .,2"B—1}. Matrices E and E
may be matrices for which the entries are small modulo p.
For example, they may be chosen from the set

{0,1, ..., w—1 yul{p—(w—1).p—(w—-1)+1, . . ., p—1}

with small w. The size of w 1s chosen to balance the
security with the failure rate of the system. Low values of w
decrease the failure rate of the system.

Matrix C may be computed modulo p. For bandwidth
efficiency reasons, the second cryptographic device may
compute and send

C

‘ T
(—B)K+B Rmod 1
2

where t divides p. In recovering K, the private key decryp-
tion device computes

(%)C—STU

mod p. In this case, fewer bits of the raw key are utilized as
reconciliation data than are available. Generally, the lesser
significant bits have less impact on the failure probability.

Instead of using error matrices, the example may be
modified to scale down in the star operations to add noise
instead of adding explicit noise. Scaling down has the
advantage that bandwidth 1s reduced. Instead of using matri-
ces, the example may be modified to use polynomials.

Returning to FIG. 2a. Shown are an enrollment phase 31
in which the first cryptographic device 10 generates its
private and public key matrices, and makes the public key
available to the public key encryption device 20. For
example, the public key may be sent to device 20. For
example, the public key may be deposited 1n a public-key
database, from which device 20 may retrieve 1t. For
example, devices 10 and 20 may be different devices, or may
be the same device.

During enrollment phase 31, device 10 generates a first
private-key matrix (r) and computes a first public-key matrix
(b) from the first private-key matrix (r). For example, device
10 may generate a public matrix (a), and compute the first
public-key matrix (b) as a noisy matrix multiplication
between the first private-key matrix (r) and the public matrix
(a). Transfer of the first public-key matrix (b) from the first
cryptographic device to the second cryptographic device 20
1s arranged. For example, the first public-key matrix (b) may
be sent from the first cryptographic device to device 20 in a
message 11.

The public matrix (a) 1s shared between the second
cryptographic device and the first cryptographic device, the
first public-key matrix (b) being associated with the public
matrix (a). For example, the public matrix 1s transferred to
device 20 1n the same way as the public key matrix (b).
Typically, matrix a will be generated pseudo randomly from
a seed. The matrix can be shared by sending the seed.

The encryption phase 32 may be later, even much later,
than the enrollment phase 31. In the encryption phase 32,
device 20 generates a key seed (K), generates a second
private-key matrix (s), and computes a second public-key
matrix (u) from the second private-key matrix (s). For
example, device 20 may obtain the public matrix (a) asso-
ciated with the first public-key matrix (b), and compute the
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second public-key matrix (u) as a noisy matrix multiplica-
tion between the second private-key matrix and the public
matrix (a). The public matrix may be obtained 1n the form of
a seed from which the public matrix generated. In an
embodiment, the public matrix 1s obtained from a different
source. For example, both device 10 and device 20 may
obtain the public matrix from a third party.

Generating the key seed may be done randomly.

Device 20 1s configured to compute a second raw shared
key (k*) from the second private-key matrix (s) and the first
public-key matrix (b), computing the second raw shared key
comprising a matrix multiplication between the second
private-key matrix (s) and the first public-key matrix (b),
encapsulate the key seed (K) with at least part of the second
raw shared key by applying an encapsulation function,
obtaining encapsulated data (c¢), and transfer the second
public-key matrix (u), and the encapsulated data (c¢) to the
first cryptographic device. For example, the second public-
key matrix (u), and the encapsulated data (¢) to the first
cryptographic device may be sent in a message 12.

Note that this allows the key seed to be independent from
the raw key. This increases resilience against active attacks.

After the first cryptographic device receives from the
second cryptographic device the second public-key matrix
(u) and the encapsulated data (c), the first cryptographic
device can proceed 1n a decryption phase 33 to compute a
first raw shared key (K') from the second public-key matrix
(u) and the first private-key matrix (r), compute the first raw
shared key comprising a matrix multiplication between the
second public-key matrix (u) and the first private-key matrix
(r), and decapsulate the encapsulated data (¢) using at least
part of the first raw shared key (k') to obtain a key seed.

Interestingly, 1n an embodiment, the second public-key
matrix (u) has fewer matrix elements than the first public-
key matrix (b). If all the matrices were square and of the
same dimension, then the second public-key matrix (u) and
the first public-key matrix (b) would have the same number
of elements, but this not needed. This in turn would mean
that the contribution of the public keys to the messages 11
and 12 would be equal. However, the circumstances in
which these messages are sent and the devices by which they
are sent may be quite different. By selecting the size of the
second public-key matrix (u) to be smaller than the first
public-key matrix (b) the bandwidth requirement for mes-
sage 12 1s reduced while the bandwidth requirement for
message 11 1s increased.

In an embodiment, the public matrix a 1s a square matrix
of dimensions dxd. The first private-key matrix r and {first
public-key matrix b have dimensions dxn. The second
private-key matrix s and second public-key matrix u have
dimensions dxm. For example, one may use m=n, but this is
not needed. Interestingly, the security of the system 1s
believed to depend more on the system dimension d and on
the product Bnm, than on the individual sizes of n and m.
The latter indicates the length in bits that can be used to
derive the raw key. The former influences the size of the
underlying lattice and thus the hardness of the underlying
cryptographic problem. The probability of decryption failure
of the scheme depends in part on the value of B. Higher
values of B worsen the failure rate and adversely affect the
security of the PKE scheme against adaptive active attacks.
Typically, B 1s fixed, e.g., 1n the form of standardized
parameter sets.

Interestingly, the second dimension (m) of the second
public-key matrix (u) need not be pre-determined. It can be
chosen independent of the choices made for the first private
and public-key. In particular, it may be chosen independent

5

10

15

20

25

30

35

40

45

50

55

60

65

16

on the dimension (n). In an embodiment, the second dimen-
sion (m) 1s configurable at the second device 20. In Round5
many examples of matrix or polynomial dimensions are
given. For example, one may use: (cf. Round5, Table 14,
page 58)

Small ciphertext configuration

d, n 757, 1
q, P, t 214? 29? 24
B, T, m 1,,192 1

n 192

In the Above Table:

n: indicates the degree of polynomials in the private
and/or public matrices. A value of n=1 indicates that integers
modulo a modulus are used. The value n may be referred to
as the “ring dimension”, e.g., the degree of the chosen
polynomial ring.

d indicates the system dimension, e€.g., number of col-
umns and rows the public matrix a,

u indicates the number of elements of the raw key matrix
that are used to encapsulate the key seed. These elements
may be pre-determined, e.g., standardized, or may be ran-
domly selected, or may be purposely, e.g., as reliable ele-
ments, etc. The shared-secret key length 1s thus uB; in the
above example this 15 192x1=192.

In an embodiment, active security may be further
enhanced using a more elaborate encapsulate function, e.g.,
as 1n algorithm 9, in “Round2: KEM and PKE based on
GLWR”, by Hayo Baan, et al. If so, the ciphertext may
comprise a hash g, which may be computed by the second
cryptographic device by hashing the public-key of the
private key decryption device. The hash may be used to
ensure that the final shared-secret contains contributions
from both the first cryptographic device and the second
cryptographic device. For example, the Fujisaki-Okamoto
transform may be used. The hash may for example be the
s1ze of the shared secret, 1n this example 256 bits.

As pointed out above, the key seed may be used to encrypt
a message m. For example, the second cryptographic device
may be configured to encrypt the message (im) with the key
seed, and to transier said encrypted message to the first
cryptographic device. The first cryptographic device may
receive the encrypted message from the second crypto-
graphic device, e.g., together with the second public-key
matrix and the encapsulated date and decrypt the encrypted
message with the key seed.

In an embodiment, the key seed 1s independent from the
first public-key matrix (b). For example, key seed K may be
generated without using first public-key matrix (b), for
example, the key seed may be generated randomly, and/or
generated before first public-key matrix (b) 1s received at
device 20.

Likewise, the key seed may be independent from the first
private key matrix (r). The key seed may be computationally
independent from the second private-key matrix (s) and
second public key matrnix (u), encapsulated data (c¢). Com-
putationally independent means that within the computa-
tional bounds of the attacker, knowledge of the second
private-key matrix does not provide information on the key
seed.

Key seed K 1s typically used temporarily, e.g., 1t may be
ephemeral, e.g., used only to encrypt a single message m, or
a single session, protocol, handshake or the like. Key seed
K may be a symmetric key, e.g., used as a key 1n a block
cipher.
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For example, device 20 may be configured to delete the
key seed encrypting the message and/or the second private-
key matrix after encapsulating the key seed. For example,
the key seed and/or second private-key matrix may be
deleted before sending the encapsulated data to device 10.
Likewise, device 10 may delete the key seed after decrypting
the message.

In an embodiment, the second private-key matrix 1s
derived from the key seed. For example, the key seed may
be generated randomly, eirther true or pseudo, and then used
as an mput to a key derivation function, e.g., a hash function
to derive a seed; there may be additional inputs, e.g., the
message, the first public-key matrix, etc. The seed 1s then
used to generate the second private-key matrix, e.g., as a
deterministic pseudo-random function depending on the
seed. The key derivation function 1s preferably chosen such
that the key seed cannot be computed from the second
private-key matrix.

This has the effect that after device 10 derived the key
seed, device 10 can reconstruct the second private-key
matrix from the key seed, e.g., by applying the same key
derivation function and computing the second private-key
matrix from 1t. Next, device 10 can vernly if the second
public key and/or the encapsulated data was computed
correctly. This has the advantage that active attacks are
much harder to accomplish. If device 10 finds an anomaly,
¢.g., a diflerence between the received data and the recom-
puted second public key and/or the recomputed encapsulated
data, the device 10 may take approprate action, €.g., gen-
crate a warning signal, abort decrypting the second message,
etc.

Deriving the second private-key matrix from the key seed
has the advantage of increasing the security towards that of
a CCA-secure system. This 1s advantageous, especially 11 a
first public-key matrix 1s generated once and used for many
messages.

In an embodiment, the processor of the second crypto-
graphic device 1s configured to compute helper data to
reduce the error rate 1n obtaining the key seed at the first
cryptographic device. It 1s the nature of public key encryp-
tion based on noisy matrix multiplication that there 1s a
chance that reconstruction of the key seed at the side of the
private-key decryption key may fail. The failure probability
can be reduced 1n various ways, one of which 1s to compute
and send helper data which helps the private key decryption
device to reach the correct key seed.

For example, the first cryptographic device may be con-
figured to receive helper data from the second cryptographic
device, and to apply the helper data to reduce the error rate
in obtaining the key seed at the first cryptographic device.

There are several types of helper data that may be used.
In the example given above, one approach was used, so
called reconciliation data. Part of the second raw key may be
used to encapsulate the key seed, and part of 1t may be used
as reconciliation data.

For example, 1n an embodiment, the second raw key 1s a
matrix, encapsulating the key seed (K) may comprise adding
bits of the key seed to a most significant part of at least part
of the elements of the second raw key matrix, and discarding
zero or more least significant bits of the at least part of the
clements of the second raw key matrix. In an embodiment,
all of the bits which are not added to the key seed to
encapsulate 1t may be used as reconciliation data. However,
to reduce bandwidth one or more of the least significant bits
may be discarded. Note that not all matrix elements of a raw
key matrix need to be used. Elements which are not used,
can be discarded in their entirety. At device 10, decapsulat-
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ing the encapsulated data may comprise discarding zero or
more least significant bits of at least part of the elements of
the first raw key matrix, subtracting the at least part of the
clements of the first raw key matrix from the encapsulated
data, and rounding the subtracting result. Interestingly, the
helper data 1s easily integrated 1n the encapsulated key seed.

In an embodiment, the second cryptographic device 1s
configured to one or more of the following:

a) apply a reliable bit function to the second raw shared
key (k*) selecting the part of the second raw shared
key, obtaining reliable indices indicating elements of
the second raw shared key, bits for encapsulation being
derived from the indicated elements, and transier the
reliable indices to the first cryptographic device, and/or

b) generate reconciliation data (h) for the at least part of
the second raw shared key, the reconciliation data
comprising information allowing reducing of difler-
ences between the first and second raw key derived at
the second cryptographic device and the first crypto-
graphic device, and transierring the reconciliation data
(h) to the first cryptographic device, and/or

¢) generating parity bits for the key seed, the key seed and
the parity bits forming a code word according to an
error correction code, encapsulating the key seed com-
prising encapsulating the code word.

Likewise, the first cryptographic device may be config-

ured to one or more of the following:

a) receive reliable indices from the second cryptographic
device, selecting the part of the first raw shared key
indicated by the reliable indices,

b) recerve reconciliation data (h) for the at least part of the
first raw shared key (k'), the reconciliation data com-
prising information allowing reducing of differences
between the first and second raw key derived at the
second cryptographic device and the first cryptographic
device, apply a reconciliation function to the at least
part of the first raw shared key and the reconciliation
data, and

c) decapsulate the encapsulated data (c) to obtain a
near-code word, apply an error correcting according to
the error correcting code.

FIG. 2b schematically shows an example of public-key
encryption and of private-key decryption. The public-key
encryption side 1s performed by second cryptographic
device 20. The private-key decryption side 1s performed by
first cryptographic device 10. The various elements of the
protocols 1llustrated with reference to FIG. 26 may be
implemented using the algorithms and/or formula’s shown
in Round5.

Enrollment phase 31 may comprise the selection, e.g.,
random selection of a seed a, from which a public object,
¢.g., amatrix or polynomial may be derived. Likewise, a first
private key S, may be generated, e.g., randomly generated.
For example, first private key S may have elements which
are bound 1n absolute value, e.g., a value [x|=s, e.g., s=1.
Larger values of s are also possible. The latter are referred
to as ternary secrets. S may be generated subject to other
conditions, e.g., a particular weight or weight limit, or
balanced, etc. A public key B 1s computed from public object
A and S using a noisy multiplication. For example, a
multiplication AS may be computed which may be reduced
modulo a reduction polynomial and/or modulus 11 needed.
Next the multiplication result may be noisied, e.g., by
applying a scaling operator R, _,, ; . Enrollment phase 31
may comprise algorithm 1 from Round 3.

Encryption phase 32 may comprise validating B, as
further explained below. A second private key R may be
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generated, e.g., using the same or similar procedure as used
for first private key S. The second public key may also be
computed 1n a similar way. However, if matrices are used, a
transpose ol public matrix A may be used. The result of the
multiplication may be nosied, e.g., by applying a scaling
operator R, _,,, ;, .

A key seed m may be selected, e.g., randomly selected.

A raw key may be computed from the second private key
R and the first public key B, e.g., using a noisy multiplica-
tion. Also here, 1t may be needed to add a transpose, e.g., to
B. Adding the noise may be done directly after the multi-
plication, but may also be integrated with the rest of the
encapsulation operation. The key seed m may be encapsu-
lated with the raw key.

For example, the multiplication may be reduced modulo
a polynomial or integer modulus, as needed. From the result,
a number of bits may be taken for the encapsulation. For
example, one or more or all of the values may be selected
from which one or more of the bits may be used. The key
seed m may be encapsulated with the bit taken from the raw
key.

Before adding the raw key (or part thereol) an error
correcting algorithm may be applied to the key seed m, e.g.,
the xef_compute algorithm. One way to encapsulate 1s to
scale the key seed, or the code word, up by multiplying with
a factor, for example, the factor may be q/2 or g/4, etc.
Finally, the noise may be added by applying a scaling
operator R _,,, . Encrypting phase 32 may comprise algo-
rithm 2 of Round5. The second public key and the encap-
sulated value v are transferred to the first cryptographic
device.

A communication key, or further key, or transmission key
K, may be computed from the key seed by applying a hash
it. The hash may comprise further information, e.g., the
second public key, the encapsulated key seed, etc. The
communication key K may be used for further communica-
tion, not shown 1 FIG. 2b, e.g., as a symmetric key, e.g., for
a block cipher, mac operator, and the like. Encrypting phase
32 may comprise algorithm 2 of Round?3, e.g., Algorithm 5
or 8.

Decrypting phase 33 may comprise applying a validation
procedure to the second public key U. A second raw key 1s
computed from the second public key U and the first private
key S, e.g., by multiplication, possibly followed by modulus
operation for an integer and/or polynomial modulus. Note
that adding noise 1s not needed here. The second raw key 1s
used to decapsulate the key seed m. IT S 1s a matrix, then a
transpose may be needed. Note that the computing the raw
key may be combined with a round constant, e.g., as S*
(U+h,J). If the key seed 1s encapsulated as a code word, an
error correcting algorithm may be applied, e.g., xel_decode.
Decrypting phase 33 may comprise Algorithm 3 of Round 5.
Finally, the communication key K may be obtained 1n the
same manner as the second cryptographic device did. For
example, decryption phase 33 may comprise algorithm 6 or
9.

Many variants are possible on the algorithms shown with
respect to FIGS. 2a and 2b; various additional steps can be
included or some of the shown one may be omitted. For
example, Reliable bits are bits that are more likely to be
computed equally at both sides. For example, some elements
of the raw key matrix may be determined as reliable while
others, that are unreliable, may be discarded. For the
selected matrix elements, reconciliation data may be
obtained. Finally, parity bits may be computed to compute
still further errors. These three types of helper data are
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independent, as each one, or each two, or all three, may be
used to reduce the failure rate of the private key decryption.

In an embodiment, reconciliation data and parity bits may
be combined but not reliable bits. An advantage of this
approach 1s that no information regarding the sizes of
clements needs to be shared. Helper data may be included 1n
the encapsulated data, but may also be transferred from
device 20 to device 10 independently. Reconciliation data
may be conveniently integrated with the encapsulated key
seed, e.g., as illustrated herein. An example of an embodi-
ment 1n which parity bits and reconciliation data are com-
bined but not reliable bits 1s 1llustrated 1n FIG. 3.

In an embodiment of the second cryptographic device or
first cryptographic device the reliable bits are one or more
most significant bits of the indicated elements, a reconcili-
ation data for an indicated element are one or more bits of
the indicated elements following the reliable bits 1 signifi-
cance, one or more least sigmificant bits of the indicated
clements may be discarded. The indicated elements, that is,
the reliable elements, may be communicated from the sec-
ond cryptographic device to the first cryptographic device,
¢.g., their position 1n the matrx.

In an embodiment of the first cryptographic device, the
clements 1n the raw key indicated by the reliable indices are
selected and replaced with modified elements agreeing with
the corresponding reconciliation data. For example, the
modified elements may mimimize the lee-distance between
the selected element and the modified element. The reliable
bits may be obtained as one or more most significant bits of
the modified elements.

In an embodiment, the modified elements are determined
so that they agree with the corresponding reconciliation data
that they would not have been discarded by the second
cryptographic device. The modified elements minimize the
lee-distance between the selected element and the modified
clement.

The public-key encryption according to an embodiment
may be used in various existing protocols. For example,
embodiments may be integrated with protocols such as TLS,
IPSec, VPN. For example:

TLS1.3: client sends client hello. The client hello, may
comprise a public-key. Instead of having the public-key, the
client hello may include a URL indicating where the public-
key can be downloaded. If the server does not have the
public-key vet, e.g., cached, then the server may proceed to
download the public-key and store 1t locally. With the
public-key, the server can encrypt a symmetric-key or key-
seed and send 1t to the client so that 1t may be used as the
master key from which the symmetric-keys for the record
layer are derived. In this example, the client functions as a
first cryptographic device.

TLS1.2: 1 this example, it 1s the other way around. The
client may send a request, and the server sends a URL where
the server public-key can be obtained. The client may
download 11 the public-key 1s not available yet. And once the
client has the public-key, i1t can proceed to encrypt a key
seed, e.g., to be used 1n the record layer. In this example, the
client acts as a second cryptographic device.

Note that public-keys may be pre-distributed. For
example, 1n a browser, one or more, €.g., a plurality of
public-key matrices may be pre-distributed. For example, a
public-key may be indicated with a public-key ID, e.g., a
hash of the key, so that the software, e.g., the browser can
verily 1 the public-key 1s obtained through pre-distribution.
In the pre-distribution scenario, the asymmetry 1n bandwidth
1s an advantage. For example, during pre-distribution 1t 1s
not a problem 1f the public key matrices are larger, but
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during use, the size of the messages 1s reduced. Also 1n, say,
a VPN, e.g., TLS based, the public-keys may be pre-
configured 1n one or both of the communicating parties.

In an embodiment, device 10 may be configured to send
a first hello message that lists cryptographic information,
¢.g., such as the SSL or TLS version, or, in the client’s order
of preference, the CipherSuites supported, etc. In response to
the first hello message, device 20 may send a second hello
message. The second hello message may contain similar
details. Device 20 may also send its digital certificate in the
second hello message. Device 10 may verily the certificate.
The first and/or second hello message may comprise a
public-key or an indication of a public-key. In the second
hello message and/or a subsequent message one or more key
seeds are agreed on. A key seed may be used to encrypt or
authenticate subsequent communication between device 10
and 20. If multiple key seeds are agreed, they may be
combined into a single key, e.g., they may be hashed
together, or XOR-ed, etc.

FIG. 3 schematically shows an example of public-key
encryption and of private-key decryption. In FIG. 3, the
following notation 1s used.

parity_bits refers to the information used for error cor-

rection

obtain_parity_bits(k) means that some parity bits of k are

obtained. For example, parity bits may be generated
according to an error correcting code.

error_correct(k, parity_bits) means that the parity_bits are

used to correct potential errors 1n either k or parity_bits
obtaining a version of k that 1s more likely to be error
free

The embodiment according to FIG. 3 uses a different type
of helper data. For example, according to an embodiment,
device 20 computes parity bits for the key seed. For
example, the parity bits together with the key seed may be

a codeword according to an error correcting code, e.g., a
BCH code. The code word 1s encapsulated with the raw key,
e.g., as described herein. The encapsulation may include
reconciliation data 1f needed. To decapsulate, device 10 first
applies reconciliation data, obtaining a near-code word, e.g.,
a code word with possible bit-errors therein. The near-code
word may be corrected using an error correction algorithm
associated with the error correcting code. The use of error
correction and reconciliation data improves the decryption
tailure probability, thus allowing smaller parameters, and
improving performance through smaller key-sizes. The
combination of parity bits and reconciliation data 1s a
preferred combination, allowing a small size of the public-
key matrix.

In an embodiment of the protocol, the first public-key
contains n vectors. The ciphertext comprises the second
public-key u and the encapsulated data c¢. The second
public-key matrix u may be a vector of dimension d with
clements in Z_p. To minimize the size of the ciphertext, we
may use m=1. This means that the raw key will have at most
Bn elements. To optimize the size of the raw shared secret,
we will take B bits from as many elements as possible, thus
using p=n. The encapsulated data ¢ encrypts the key seed
and may have p=n elements so that a key seed of length
K=uB can be encapsulated. B 1s the number of bits extracted
from each vector entry. It is not needed that m=1, for
example, one may have m>1, e.g., m=n.

The first public-key matrix may comprise n vectors of
length d. With this, one can  encapsulate
nB=k+parity_bits_length, wherein K is the key seed length
and there are parity_bits_length bits that serve as parity bits.
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The vector ¢ will become parity_bits_lengthxlog, t longer
since additional parity bits need to be transmitted. However,
because of those parity bits, this scheme can deal better with
decryption errors so that smaller values of g and p can be
chosen. Since p 1s smaller, also d may decrease since we can
keep the same secunity level. In summary, by adding error
correction code 1n this way, we can further decrease the size
of the ciphertext even if 1t comes at the price of a longer
public key. The choice B=1, is eflicient, and using 1t we need
then n=xk+parity_bits_length,
The panity bits allow for the correction of bit errors. For
example, one may use the error correcting code XE1, which
allows the correction of 3 bit errors. Xef 1s described 1n
“Round5: Compact and Fast Post-Quantum Public-Key
Encryption”, by Sauvik Bhattacharya, et al. An advantage of
using XET 1s that the decoding can be done efliciently in
constant time, thus avoiding timing attacks.
In this embodiment, the ciphertext size would be a bit
more than 1 KB. This implies that such a construction can
enable non-ring configurations that do not require fragmen-
tation of the ciphertext. It 1s important to reduce the size of
the ciphertext to under, about 1,5 kb, since this avoid
fragmentation 1 packet based communication, in which
packets are about 2 kb as used, e.g., on the internet.
Note that the amount of noise introduced by scaling 1s
relatively high. In the above example, 16 bits for the secret
matrix elements 1s reduced to 8 bits for the public matrix
clements; that 1s a reduction of 50%. Compared to the
example without parity bits given earlier, 14 bits are reduced
to 12 bits, a reduction of about 15%. Likewise, the difference
between bit lengths of the secret versus public bits has
increased from 2 bits to 8 bits. The higher noise allows for
a higher efliciency 1n the lattice part of the protocol, but at
the price of a higher failure rate. The latter 1s then reduced
using the parity baits.
In an embodiment, m=1 and n=p=x+parity_bit_length.
For example, with k=128. For example, the number of parity
bits may be chosen so that they can correct at least 3 errors.
In an embodiment, the log, p/log, q=0.85, or =0.72, or 0.7,
or <0.6, or even as 1n the above embodiment 0.5, or even
less. Note that no use 1s made of so-called reliable bits, since
all elements 1n the raw shared key are used, e.g., y=nm. Such
high noise may be combined with low m, in particular with
m=1, or m=2, etc.
FIG. 4 schematically shows an example of public-key
encryption and of private-key decryption. The embodiment
of FIG. 4 includes three different sources of error correction:
safe bits, reconciliation data and parity bits.
In FIG. 4:
h represents the helper data including reconciliation bits
get_reconciliation(k) 1s a function that returns reconcili-
ation bits out of raw_key k.

reconciliate(k,h) 1s a function that reconciliates raw_key
k given reconciliation bits h.

safe_bits( ) returns two values: (1) the actual reliable
values and (1) the positions of the key bits that can lead
to lower failure probability since the obtained values
are further away of the quantification boundaries. The
actual values returned by Safe_bits( ) are later used,
¢.g., for encapsulation. The positions are exchanged to
the other party so that it knows which positions are
needed.

Interestingly, the three sources of information may be
used to reduce failure probability when exchanging the code
word, and a randomly generated key from it. Moreover,
because a code word can be generated randomly, active
security 1s improved; note that the second private-key matrix
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may be derived from the code word to further improve active
security. The code word may comprise the key seed and
parity bits. These sources include the use of reliable bits, the
reconciliation data extracted for coefficients of a raw key,

24

and error correcting redundancy information whichis partof 5 and to 1 if it is in the range

the code word, e.g., parity bits.

It should be emphasized that 1t 1s not needed to combine
different ways to reduce failure probability. For example, the
use of safe bits or reliable bits 1s entirely optional.

For example, in an embodiment the device 10 and 20 may
agree on a raw key, say a matrnx key k* with n coefficients
in Z._g. For example, an element in a raw key matrix may be
mapped to part of a key seed, e.g., to one or more bits. For
example, half of the values in Z_q may be mapped to 0 and
half of them to 1, e.g., B=1. Selecting reliable bits may be
done by selecting, e.g., some number, say mu, of coefficients
that are furthest away from the decoding boundary so that
the likelithood of making an error 1s lower.

Key reconcihation data may be information which 1s
extracted by the second cryptographic device, e.g., for the
chosen, reliable coefficients, say the chosen mu coefficients,
of the raw key, say the matrix key. The reconcihiation
information helps the first cryptographic device to come to
the same decision, whether a specific coefficient of the raw
key 1s mapped to what part of the code word. Not that this
need only to be done for the selected reliable coefficients,
which means that less work 1s needed.

Error correction information may be parity biats. Parity
bits may be extracted from the randomly generated binary
key K, message m or pre-key so that the information that the
second device encapsulates has some redundancy. In this
way, even 1f errors are made before, device 10 can correct
them. So 1f you want to transmit a key K that 1s kappa bits
long and there are (mu—Xkappa) parity bits, these parity bits
help device 10 to make sure that the kappa bits of the key K
are correct.

A problem of many quantum resistant public-key encryp-
tion 1s that they have some failure probability. For example,
a first cryptographic device and a second cryptographic
device initially agree on a noisy raw key, which i1s then
reconciled, e.g., through reconcihiation data. A reliable bit
function allows the second cryptographic device, e.g., the
party that first derives the raw key, to identify which bits in
the raw key are more likely to be derived in the same way
by the first cryptographic device, and which bits in the raw
key are less likely to be the same.

A straightforward 1mplementation of a reliable bit func-
fion defines two or more center points for the coefficients
that are sampled to obtain key bits. Coefficients that are too
far away from the center points, e.g., according to a thresh-
old, may be discarded whereas the remainder may be
sampled to a value associated with the center point. For
example, the number of center points may be a power of 2.
For example, the matrix elements may be taken from a
variety of different rings and the like.

Reliable bit sampling uses the assumption that not all bats
given by a ring dimension are needed for the keys. Typically,
the dimension of the underlying matrices ¥ 1s much larger
than the required key length. For example, the second
cryptographic device may select m indexes in 7y that are most
likely to agree. These safe coefficients may be those that are
closest to center points of the coefficients ranges that are
mapped to a zero bit or to a one bit; k=0 and k=1. For
example, 1n a ring modulo q a coefficient may be mapped to
0 1f 1t 1s 1n the range
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or vice versa. If the coefficient 1s 1n neither range 1t 1s not a
reliable bit. The value b determines, 1n part, the reliability of
the bits. For example, 1n this case it may be chosen as g/8;
smaller values for b provide more reliability but less key
bits. In this case the center points may be g/4 and 3q/4, or
a rounding thereof.

The second cryptographic device who applies the above
procedure, obtains indices of reliable bits and key bits that
correspond to them. The reliable indices may be communi-
cated to the first cryptographic device, the reliable key bits
are not. The first cryptographic device can obtain key bits
from the bit at the indices indicated by the second crypto-

graphic device. As these bits are more reliable, the error rate
will be lower.

Further implementations of a reliable bit functions can be
found 1n the paper Hila 5, included herein by reference. For
example, the algorithms in section 3 may be applied. The
inventors found that reliable bit functions may be applied 1n
a range of situations, e.g., with different underlying rings or
objects, e.g., 1n particular on matrices.

In embodiments, the two parties generate two raw keys,
e.g., matrices that are approximately, but not exactly equal.
To come to exact agreement, some reconciliation data 1s
sent. A scheme for doing so 1s explained i1n a patent
application of the same applicant, with title “REACHING
AGREEMENT ON A SECRET VALUE”, filed at the EPO
on 4 Nov. 2016, with application Ser. No. 16/197,277.3; for
example, the method on pages 7-10 may be used for
reconciliation 1n embodiments. Variants disclosed elsewhere
in the cited patent application may also be adopted.

In this application, we will use the following notation for
the following three functions:
1. Rounding Function . _‘Bb Forqg,b,, B € Z,b,>1, B<log,
g—b,, let

B=log,q—B. Then,
- B.b,: v— 277 v_‘(mod 25)
In mtwely, \_v_‘ », €Xtracts the B most 31gn1ﬁcant bits of
{v+21°8 a=B+b0} where the second component is a rounding
factor to ensure unbiased rounding errors. B indicates the
number of bits that are extracted form a symbol v, and b,
indicates the number of helper data bits. In an embodiment,
g may be a power of 2.
2. Cross-Rounding Function (+) 5, : Forq, b,, B € Z, b,>1,
B<log,q—b,, let

B=log, q—B. Then,

(") B, v 272y |(mod 244
Intultwely, (V) 5, €Xtracts the b, least significant bits of
the (B+b,) most Signiﬁcant bits of v.
3. Reconciliation Function rec(w, b):
Forq,b,.Be Z,b,21, B<log, g—b,, w & Z . b e [0,27%,
rec(w,b)= v | B.b,

where v is the closest element to w such that (V) B.p,=D-
The closest element w may be taken according to the Lee
distance, e.g., min(lv—wl,g—lv—wl).

These three functions can be applied element-wise to
matrices. The above cited reconciliation function 1s used as
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an example, herein. As noted, the reconciliation methods 1n
the above cited application could also be used. The cross-
rounding function can be applied to obtain the reconciliation
data and the rounding function to obtain the data which 1s
reconciled, e.g., the reliable bits. When the reconciliation
data 1s later used in the reconciliation function, the recon-
ciled data is recovered. In other words: rec(w, (v))=Lv],
assuming that v and w are within a threshold distance of
each other.

A weak public key B 1s considered to be a security
vulnerability, since a weak public key B, say having the
value of zero, i1f not rejected by the second cryptographic
key, may permit even a passive eavesdropper to read the
session traffic.

As explained above, many lattice-based public-key
encryption schemes such as considered, e.g., in the NIST
PQC standardization project. Many lattice-based public-key
encryption schemes do a key generation phase 1n which a
public-key component 1s computed generally speaking as
B=AS+E where A is a public parameter and S and E are
secret. The first cryptographic device sends (A,B) to the
second cryptographic device, or the like. Next, these
schemes may require the second cryptographic device to
encapsulate a message m, e.g., a key seed, as something like
v=BR+E"+q/2 m. The second cryptographic device sends
back to the first cryptographic device U=AR+E" and v, or the
like.

Example, of lattice-based public-key encryption schemes
like this include RoundS (e.g., page 17 of spec, Alg 1 and 2),
FrodoKEM (page 17 of spec, Alg 9 and 10), NewHope (page
7, Alg 1 and 2), SABER (page 7, Alg 1 and 2), or Kyber
(page 9 of spec, Alg 4 and J).

If the second public key B has an unusual value, then this
may not be secure. For example, if B then v leaks the
encapsulated message m. This 1s so since BR+E" 1s small
compared with g/2 m. The second public key may be small
for any reasons, e.g., accidentally, e.g., programmer error, or
as part of an attack, e.g., to make later repudiation possible.

Likewise, a special crafted public key U may leak infor-
mation on the private key. This problem 1s most pronounced
for a party that uses a long-term private key, e.g., the first
cryptographic device. This problem can arise for example,
for specially crafted keys U that are small or have many zero

components. An example of an attack of this nature 1s given
1n the paper “An Efficient Key Mismatch Attack on the NIST

Second Round Candidate Kyber”, by Yue Qin, Chi Cheng,
Member, IEEE, and Jintai Ding, Cryptology ePrint Archive:
Report 2019/1343, the paper 1s included herein by reference.

Below several examples are given of validation proce-
dures that can be applied to a public key. One or both of the
first and second cryptographic devices may be configured
with a validation procedure.

Upon reception of the public-key B (or U) the crypto-
graphic device may check that values of the public key
follow the corresponding probability distribution. This can
be done by performing a statistical test such as chi square
test, a binomial test, or a multinomal test, e.g., see “Open-
Intro Statistics”, Fourth Edition by David Diez, et al. For
example, 1n the case of the non-ring parameter sets, these
tests may be performed for each of the n and m components
in B and/or U public-parameters.

The Chi-squared test may be used to verify if B and/or U
are uniformly distributed. For example, a cryptographic
device may be configured to: (1) compute a histogram of the
public parameter, e.g., B or U, (1) compute 1ts Chi-squared
statistic, and (111) compare that to a fixed pre-computed
critical value. The critical value may be determined by the
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degree of freedom, e.g., number of bins—1, and a P-value.
The P-value may be chosen as smaller than a target failure
probability of the RoundS parameter set. Preferably, for the
Chi-squared test the number of expected elements per bin 1s
at least 10. Furthermore, the test tends to be more accurate
for a larger number of bins. In an embodiment, the number
of bins may be set to

ﬂﬂﬂ?(fﬂgz 1:1’_0) \‘i‘
2 , or to o |

or about.

In an embodiment, the test 1s performed twice: once on a
histogram version derived from the public key, B and/or U,
and once on a histogram derived from the public key after
shifting the public-key components. For example, the pub-
lic-key components may be shifted by k/2, where k 1s the bin
size. This has the advantage of better detecting a non-
uniform distribution of values close to the minimum and
maximum values of consecutive bins.

A binomial test may be used to verify whether a certain
value, e.g., the zero value, appears unexpectedly often.

Given the expected probability of a value, or set of values,
we can obtain a threshold value so that the tail of the
binomial distribution, indicating how likely 1t 1s that the
value or values occur more often than said threshold value,
1s smaller than the target failure probability of a Round3
parameter set.

In an embodiment, this check 1s performed throughout the

whole range of possible values of the components of public
key B and/or U. This 1s especially advantageous using
balanced secrets, e.g., as 1n Roundd. This test can be
performed directly on B and U. The binomial test may also
be performed on a histogram derived from the public key.
This has the advantage of reducing memory needs. As for
the chi-square test, the test may advantageously be per-
formed on both the non-shifted and shifted histogram; that
1s the histogram obtained from the received public key and
the histogram obtained after shifting the public-key compo-
nents. For example, the public-key components may be
shifted by k/2, where k 1s the bin size.
The Chi-squared and the binomial tests may involve two
thresholds. To obtain the Chi-squared threshold, the critical
value (CV), one may obtain the smallest CV for which the
upper regularized incomplete gamma function 1s smaller
than the target failure probability. In other words, one may
compute the smallest value CV for which the integral of the
upper part of the cumulative distribution function 1s smaller
than the target failure probability.

. _Twr, 0, cv)
[(DF)

< failure probability

where I'( ) 1s the Gamma functiton and DF refers to the
degrees of freedom. Similarly, the threshold for the binomal
distribution may be determined as the smallest value ¢ such
that

Y.._ “p(d i)<failure probability
where:
t:f N A\ i
ra.0=(3)5)0-G)
AV P
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For instance, parameter set RSND_1CPA_0d of Round5
may use the following two thresholds for the Chi-squared
and binomial tests: 297 and 43. The first value considers a
histogram version of the exchanged parameter sets using a
bin size o1 32. The second threshold value considers that the
check 1s done for each of the p potential values of each
component of B or U. The table below includes C code that
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includes function checkPublicParameter( ) that performs the
Chi2 test and binomial test on the input public parameter
according to the description above. In this table,
PARAMS_D 1s the number of components of B and
PARAMS_P refers to the size of each of the components.

This tables gives an optimized implementation 11 the number
of bins 1s a power of two.

// public_param 1s a pointer to the public parameter, offset 1s an offset for the computation of

the shifted histogram, nbins is

he number of bits, and nbinsbits 1s the log2(nbins).

int chi2_simple_check(modp_t *public_param, uintl6_t offset, uint8 t nbins, uint8_t nbinsbits){

int ret = O;
untlé_t 1, 1dx;

uintl6_t histf MAXNBINS] = {0}; // reserve space for the histogram. Initialize to O.
// compute histogram. Note that offset 1s used to obtain the shifted histogram
for (i=0; i< PARAMS_D; i++){

idx = ((public_param|[i1] + offset) >> (PARAMS_P_ BITS - nbinsbits)) & (nbins—1);

hist[idx] += 1;

h

// chi2 test. Note that PARAMS_D does not need to be a multiple of NBINSBITS. Thus, PARAMS_D
>> nbinsbits 1s somewhat smaller than PARAMS D/nbins. Can be corrected for more accurate

computation.
unté4d t chi2 = 0;
// compute chi2 value

for (i=0 ; i < nbins ; i++){

chi2 += (hist[1] - (PARAMS_D >> nbinsbits))*(hist[1] — (PARAMS_D >> nbinsbits));

h

chi2 /= PARAMS D >> nbinsbits;
// trigger alarm if the computed chi2 value 1s > than the critical value
if (chi2 > CRITICALVALUE) {

ret += —1;

h

return ret;

h

int chi2_check(modp_t *public_param, uint16_t offset, uint®_t nbins, uint8_t nbinsbits){

int ret = 0O;

) // chi2 test on normal histogram

ret += chi2_simple_check(public_param, 0, nbins, nbinsbits);

// chi2 test on shifted histogram

ret += chi2_simple_check(public_param, PARAMS_P/(2*nbin s), nbins, nbinsbits);

int bin_check(modp_t *public_param){

int ret = O;
umtlé ti;

uintl6_t histf PARAMS_P] = {0}; // Each element in the public parameter is between 0 and

PARAMS_P - 1.

// count the number of values

for (i=0; i< PARAMS_D; i++){

hist[public_param][1]] += 1;

h

// binomial test

for (i=0; i< PARAMS_P; i++){
if (hist[i] > BINOMIAL THRESHOLD) {

ret += —1;

h
h

return ret;

h

int checkPublicParameter(modp_t *public_param, uintl6_t num vectors){

int ret = O; //return O 1if test 1s ok. Return negative value 1f 1t 1s not ok.
untlé_t j; //to loop over the components (num_vectors) of B and U in the non-ring case
//determine maximum number of bins

unt® t nbins = 64;
unt8 t nbinsbits = 6;

if (PARAMS_D < 640){nbins = 32; nbinsbits = 5;}

/fchi12 test

for (j=0; j < num_vectors; j++){
ret += chi2_check(&public_param[* PARAMS_D], O, nbins, nbinsbits);

h

// bimomial test O,

for (j=0; j < num_vectors; j++){
ret += bin_check(&public_param[* PARAMS_D], 0, nbin s, nbinsbits);

h

return ret;
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For example, in RoundS and Saber and Frodo, the values
of the public key are uniformly distributed in Z_p (Z_qg 1n
Frodo). A histogram may be computed having k bins, e.g.,
k>2. and count the distribution of the elements 1n B over p/k
bins. For example, k may be chosen such that p/k 1s small,
e.g., p/k=4. Larger values for p/k are also possible. In an
embodiment, k 1s a power of 2. For example, since Round3
and Saber and Frodo have that p (and/or q) 1s a power of two,
using a power of two for the k value too.

If one considers p/k bins, the probability that a value 1s
less than k, equals k/p. The probability that exactly ¢ out d
values are less than k may be computed as

wwo- (TGN

The above formula holds for each k, without the require-
ment that k 1s a power of two. The probability that there are
more than d-c_max different values less than v may be
computed as the sum of p(d,d-c) with ¢ from 0 to but
excluding ¢_max. Thus, one may compute the maximum c
for which the probability of a public key having so many
small entries very small.

For 1nstance, consider a public key having d values, e.g.,
a polynomial public key of degree d-1. For d=700, p=256,
and k=256/4=64, the probability of finding a public-key B
such that only up to 6 terms are greater than 64 1s lower than
27{—256}. With this, a validation procedure assuming above
values 1s as follows:

k=p/4

Distribution[p/k]={0, 0, 0, 0}

For 1=0 to d {Distribution [(B[1]>>log k)]4++}

If Distribution[0]>d-6 {reject Public key}

The above algorithm may be executed upon reception of
the public key B or U. The receiving device first sets a
suitable value of k as described above. Then, it initializes an
array called Distribution with p/k=4 bins to 0. Next, the
receiving device loops over the coeflicients of the received
public-key, 1n the example above B. For each coefhicient, 1t
performs a bat shift to the right of log k bits, namely log p-2
bits so that only the two most significant bits remain and
uses these two bits to increase the corresponding bin 1n the
Distribution array. In the last line, 1f the first bin has a value
higher than d-6, then the public-key B 1s rejected. The test
could be changed or extended by rejecting on other elements
in the Distribution array.

For example, this check may be applied to the crypto-
graphic protocols described herein, to protocols such as
Roundd, SABER, Frodo, etc. Note that the above 1mple-
mentation assumes that k and p powers of two and classifies
into p/k bins. This 1s not necessary though, for example, 1f
p 1s not a power of two, one may check how many of the
values are smaller than k. Note as well that it can be tested
if a key has too many entries that are close to 0, but also
close to p-1, or to both.

A particular case of special importance 1n all candidates 1s
to check that B 1s not equal to zero. Another potentially weak
B value 1s one that has all equal or nearly equal values; the
latter 1s especially important for schemes using balanced
ternary secrets such as Round).

Schemes such as NewHope or Kyber perform the poly-
nomial multiplication in a transformed domain, 1n this case
the NTT domain, to speed up operations. Validating a public
key 1s still possible though. For example, one may directly
apply the techniques described herein by first transforming
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a public key back to the transformed domain to the normal
domain. Some tests may be directly performed in the trans-
formed domain however. For example, one may check
whether a linear combination of products of coefficients 1n
the transformed domain, which can be mathematically show
to equal the Euclidean norm of the public key 1n the original
domain has an unlikely value, in particular an unlikely small
value.

For example, NewHope operates with strings of symbols
from {0,1, . .. .,q-1}with g=12289 of length n equal to 512
or 1024. The Number Theoretic Transform (NTT) of such a
string g 1s defined as G=(Gy, Gy, . . . , G,_)=NTT(g,.
g.....,0 =NTT (g) with Gj=zl.=0”—1 g YwY(mod q). Here,
® is a primitive n-th root of unity in Z_¢, and y’=m.

According to Table 2 in the NewHope specification,
v=10968 1f n=512 and y=7 1f n=1024. The NTT is invertible;
if G=NTT(g), then gizn_ly_‘iZj:O”_lij_‘ij . Here, n™' is the
integer in Z._q satisfying n-n"'=1 mod q. If f, g are sequences
of length n, and e=f,g;¥ for 0<i<n—1, then it can be math-
ematically shown that

Eo=n"'L," ' F/G, (*)

In particular, if f=g®™, then E;=X._ ., {.gY)Y=
Y S lg=n"'Y, ”_leGH_j. By direct computation,

; =0 .
F-=Ei=0”_1’}"giﬁ}£*w”= so that the following holds:

J J—1°

Yoo g = lzjznn_ 1 GG, )

Thus, assuming that we have a threshold denoted as
“Norm_threshold” a check applicable to a public key in a
transformed domain, e.g., NewHope 1s as follows:

Norm=()

For j=0 to n {Norm+=B[1]*B[n—1-1]}

Norm=Norm*n~' mod q.

If Norm<Norm_threshold {reject Public-key}

In the first line, it initialize the Norm to 0. In the second
line, it goes through the coeflicients of the received public-
key and computes ijﬂ”_lGjGn_l_j in (¥%). In the third line,
it multiplies by n~' and reduces module g to obtain the norm.
If the norm 1s smaller than the threshold, the public-key 1s
rejected.

This works because 1t successtully detects very small keys
B and U. It may happen that some large keys B and U are
misclassified since the norms are computed modulo q.

Accordingly, instead of outright rejection, one could
instead used the above algorithm as an indicator that
requires performing a more expensive operation, namely,
performing a transformation back to the normal domain and
perform then any of the other checks listed herein.

An additional check 1s to look whether a linear combi-
nation of coefhicients, corresponding to the sum of the
entries 1n the original domain, 1s below a threshold. In fact,
taking f=w™ in (*), we find that ¥_,""'g=n" X _,"7
F.G,,_;. By direct computation,

},(Zj—l)ﬂ 1 7
,},(2}'—1) —1 - 1 _ij—l '

Fy =Ly fiw’ = By =

Here we used that ®”=1 and Y=, so that Y’=—1. The test on
the public key B 1n the NTT domain thus 1s if

_1 ?"I—l 2 ,
7 Zj=0 | — 421 Bn-
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modulo q 1s below a threshold, or 1n a set of the form [0,
tl)U[q_tZ: q_l]

Attacks on long-term private keys, using public key with
special properties, may require multiple calls to the decap-
sulation algorithm before a useful amount of information 1s
obtained by an attacker. An attacker may circumvent the
validation procedure by tuning his public keys so that a no
alarm 1s triggered by the validation procedure (e.g., the
public-key u that 1s used to attack has 7 non-zero elements
instead of only 6) at the expense of requiring more calls.
This may be addressed by including state full validation
procedure, €.g., by keeping a state of previous exchanges.
The alarm may be triggered 1 more than x messages are
received that deviate from the norm. For example, 11 a first
threshold 1s passed a public key may be rejected or an alarm
may be generated outright, but 1f a second, less strict,
threshold 1s passed, a count may be increased for the private
key, or for the cryptographic device that sent the public key,
or for a combination. If the count exceeds a threshold, the
public keys are rejected, or the less-strict test may be used
instead of the stricter test.

For instance, the strict threshold may be 6 non-zero
coellicients (or fewer) and a less-strict threshold may be 7
non-zero coetlicients. When a public key has 6 non-zero
coellicients or fewer 1t 1s rejected. If the public key 7
non-zero coetlicients a count 1s increased. If the count
exceeds a threshold, which may be only 2, the public key 1s
still rejected. For example, 11 two public keys are received
with 7 non-zero coetlicients the latter 1s rejected, moreover,
from that point on 7 non-zero coellicients may be sutlicient
to reject a public key.

FIG. 5 schematically shows an example of a crypto-
graphic system 301 according to an embodiment. System
301 comprises a first cryptographic device 300, a second
cryptographic device 350 and optionally a public key
depository 302. For example, the first device 300 and second
device 350 may be implemented on a device such as first
device 10, 100 and/or second device 20, 200. Cryptographic
system 301 may implement a public-key encryption system
as 1llustrated in FIG. 4. Cryptographic system 301 may be
adapted to other embodiments as desired, e.g., by omitting
clements that are unused 1n said embodiments.

First and second device 300 and 350 are configured to
perform a cryptographic protocol. They have the ability to
securely pass data from one device to the other. Various
cryptographic protocols may use this same ability. As an
example, two protocols are described that use this ability.

For example, the first and second device may be config-
ured public key encryption, e.g., designed to allow other
devices, say second device 350, to encrypt a message (m)
such that a particular device, say first device 300 can decrypt
them. However, the contents of the public-key encrypted
message cannot be obtained by other devices than the
encrypting and decrypting device, e.g., second device 350
and first device 300. In case of public key encryption, the
same public key of the first device, e.g., the same first public
key and public object, may be used by multiple second
devices to send encrypted messages to the first public
device. Even if two second devices use the same public key
to encrypt a message, they cannot decrypt the other’s
communication.

The first device 300 and second device 350 comprise a
communication interface 305 and 355 respectively. The
communication interfaces are configured to communicate
with each other. Examples, of communication interfaces,
e.g., over wired or wireless networks, are described herein.
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First device 300 comprises a public/private key generator
315 configured to generate a first private key (r) and a first
public key (b) dertved from the first private key. Deriving
the public key from the private key may use a public object
(a), e.g., a public matrix or public polynomial. For example,
generating the public key may involve multiplication with
the public object, and/or introducing some type ol noise,
¢.g., scaling down the multiplication result, adding a noise
term, etc. The private key and public object may be a matrix,
¢.g., over a finite field or ring.

The first private and public key may be generated ephem-
crally. For example, the latter may be done for a key
agreement protocol, especially, 11 the first and second device
use some other authentication mechanism, e.g., an out-oi-
band mechanism, ¢.g., certificate based authentication or the
like, to authenticate each other. The first private and public
key may also be generated for longer term use. For example,
the first public key may be stored in an external public key
depository 302. Public key depository 302 may also store the
public object (a) or seed therefor. Public key depository 302
may be configured to perform a public key wvalidation
procedure on a recerved public key. For example, Public key
depository 302 may reject a key that does not pass a
validation procedure. For example, a public key which 1s too
small, e.g., has too many small elements, may be rejected.
Small elements may be determined as smaller 1n absolute
value than a bound.

The first public key 1s transierred from the first device 300
to the second device 350, e.g., through communication
interfaces 305 and 355. This may be done by direct com-
munication, or indirect, e.g., through public key depository
302. Together with the first public key, also the public object
(a), may also be transferred, 1f needed. For example, the
public object may be transferred by sending a seed from
which the public object (a) may be generated.

Second device 350 may comprise a public key obtainer
360, ¢.g., configured to retrieve the first public key from
public key depository 302. For example, this type of obtain-
ing 1s suitable for public key encryption. However, the
public key may also be obtained directly from the first
device, possibly out-of-bound, e.g., in an email. The public
key may be stored until needed for a public key encryption
exchange. However, the first public key may also be
received for immediate use, e.g., for a key sharing operation,
¢.g., 1n this case the first public key and/or public object,
may be ephemerally generated. The public key obtainer 360
may be configured to perform a public key validation
procedure.

Second device 350 may comprise a public/private key
generator 365 configured to generate a second private
key (s) and to generate a second public key (u) from the
second private key (s). The second private key (s) and
second public key (u) may be smaller, e.g., have fewer
entries, than the first private key (r) and first public key (b).

The second public key uses the same public object as
generating the first public key did. The first and second
private keys are private to their respective devices. They
may be shared with trusted parties 11 needed, e.g., for
back-up, key escrow, etc. The public keys, and the public
object are not necessarily secret for security; nevertheless
one or more of them may still be private to first and second
device 1f desired. For example, the first public key may only
be shared with the second device, and vice versa.

Second device 350 may comprise a code word generator
370. Code word generator 370 1s configured to generate a
code word according to an error correcting code. The error
correcting code may be a linear code or a non-linear code.
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For example, the error correcting code may be a BCH code,
a Reed-Solomon code, Hadamard code, and the like. Mul-
tiple codes may be concatenated. Concatenated codes are
error-correcting codes that are constructed from two or more
simpler codes 1n order to achieve good performance with
reasonable complexity. For example, a Hadamard code may
be concatenated with a BCH code.

Encoded 1n the code word i1s the data for encapsulation.
For example, code word may be partitioned into a data part,
¢.g., data bits and a parity part, e.g., parity bits. For example,
the data for encapsulation may be comprised 1n the data bits.
One way to generate a code word 1s to generate a data part
and compute parity bits from the data part. For example, a
data vector with data bits may be matrix multiplied by a
parity matrix to obtain the parity bits, or even the full code
word. The code word may be obtained by combining the
data for encapsulation and the parity bits. For example, the
data part and the parity part may be concatenated, although
any permutation of data bits and parity bits may be used to
produce a valid code word according to a corresponding
error correcting code. For example, data bits and parity bits
may be alternated. Note that reconciliation data 1s typically
computed on single g-ary symbols, but parity data 1s typi-
cally computed from multiple bits; note that q 1s much larger
than 2.

The code word may be used 1n various ways. Public key
encryption may also be obtained by encrypting the message
(m) at the second device 350, ¢.g., by a symmetric key, e.g.,
randomly generated for this purpose, and encoding the
encrypting symmetric key in the code word. An additional
key derivation step may be used. For example, a random
pre-key may be encoded in the code word, and the encrypt-
ing key may be dertved from the pre-key. For example,
deriving may use a key derivation function (KDF), e.g., a
hash function. For example, 1n the latter case, the encrypted
message may be sent from the second device to the first
device together with the required data for decrypting the
data, e.g., the second public key, and other data, as described
below. A key seed may be directly encoded 1n the code word,
or may be derived therefrom.

Interestingly, the code word i1s generated independent
from first private key, first public key, second private key
and second public key. Because of this, the protocol has
increased resistance against active attacks. An attacker has
tewer possibilities to influence the shared key since 1t cannot
influence the key through the choice of the first and second
private keys. In an embodiment, the second private key
matrix 1s derived from the code word, or from the key seed.

Independent generation may be obtained, e.g., 1n case of
a message, 1 the message 1s generated from an application
that 1s mndependent from the public key encryption, e.g., a
financial or communication application, etc. Independent
generation may be obtained, e.g., by random generation. For
example, the key or pre-key in the code word may be
generated independently, e.g., using a true random number
generator, or using a pseudo random generator using a seed
that 1s independent from the first and second private key,
¢.g., which 1s 1tself randomly generated, or pre-determined
or the like. For example, the code word may be generated at
the second device even belore the first public key 1s recerved
and/or before the second private key 1s generated; this also
ensures independence.

Second device 350 comprises a Dithe-Hellman unit 375.
Diflie-Hellman unit 375 1s configured to generate a second
raw shared key (k*) from the first public key (b) and the
second private key (s). For example, the Dithe-Hellman unit
375 may be configured to apply a Dithie-Hellman function to
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the first public key and the second private key. For example,
the Dithe-Hellman function may be multiplication. Second
device 350 1s configured to transier 1ts second public key to
the first device 300. First device 300 comprises a Diflie-
Hellman unit 325. Diflie-Hellman unit 325 1s configured to
generate a first raw shared key (k') from the second public
key (u) and the first private key (r), e.g., by applying the
same Difhie-Hellman function. Unifortunately, for some
types of Diflie-Hellman functions it may happen that the first
and second raw keys are close to each other, though not
necessarily identical. The particular likelihood of this hap-
pening depends on the underlying Diflie-Hellman function.
Some likelithood of different raw keys may be accepted 1n
most applications, however, how high this likelihood may be
will depend on the application. Typically though, a lower
likelihood will be preferred. The raw key may be of the same
mathematical type, e.g., matrix, as the private and public
keys.

Second device 350 comprises a reliable bit generator 380
and a reconciliation data generator 385. Reliable bit gen-
erator 380 1s configured to apply a reliable bit function to the
second raw shared key (k*) to obtain reliable indices and
reliable bits derived from the indicated coethicients. The
reliable 1indices indicate the coetlicients of the raw shared
key. For example, the reliable bit generator 380 may deter-
mine which coeflicients in the raw key are close to a
sampling border and which are not. For example, the coel-
ficients 1n the raw key which are within a threshold of a
sampling border may be discarded as unreliable. The
remaining, reliable, coeflicient may be indicated by the
reliable 1ndices. The reliable bits may be obtained by sam-
pling the reliable coeflicients.

In case not enough coellicients remain, there are several
possibilities, e.g., terminating the protocol, restarting the
protocol with a new first and/or second private key, and/or
new public object, dertving a shorter key, or discarding
tewer coellicients. Instead of selecting all coeflicients within
a threshold, one may also select a pre-determined number of
coellicients, e.g., mu coeflicients, and select the most reli-
able coeflicients, e.g., the first mu most reliable coeflicients.

One way to implement reliable bits 1s take one or more,
say B, most significant bits of a coeflicients. For example,
the number of reliable bits per selected coeflicients may be,
say, 1, or 2. In some embodiments, e.g., when large matrices
are used the number of coellicients 1s large, which allows a
high reliability, e.g., a low value for B. For other embodi-
ments, e.g., for Io'T devices larger values for B may be used.
The computations 1n a finite ring may be done 1n the finite
ring of the integers modulo a power of 2. The latter choice
has the advantage of a more even distribution in the reliable
bits.

Reconciliation data generator 385 1s configured to gener-
ate reconciliation data (h) for the indicated coetlicients of the
raw shared key. The reconciliation data comprising infor-
mation allowing reducing of differences between the first
and second raw key derived at the first and second device.
For example, applying reconciliation data may cause the
difference, e.g., the Lee distance, between a coellicient of the
raw keys at the first and second device to be reduced, thus
increasing the probability that both will produce the same
reliable bit. Both the parity bits in the code word and the
reconciliation data server to reduce noise, however, the
parity bits are computed over multiple data bits, whereas the
reconciliation data 1s computed over coeflicients 1n a raw
shared key. The reconciliation data further increase the
reliability of the reliable bits.
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One way to implement reconciliation data 1s take one or
more, say b, bits of a coetlicients that follow the bits taken
as reliable bits. For example, these may be the b, bits that
follow the B bits 1n significance. For example, the number
of reconciliation bits per selected coeflicients may be, say, 1,
or 2. A smaller number of reconciliation bits has the advan-
tage of reducing communication overhead. A larger amount
ol reconciliation bits 1s possible though.

Second device 350 may comprise an encapsulation unit
390. Encapsulation unit 390 1s configured to encapsulate the
code word with the reliable bits by applying an encapsula-
tion function, e.g., an XOR. The encapsulation may be
one-time pad encapsulation. In an embodiment, the encap-
sulation function obtains periect security, in the sense that
the information on the code word that can be obtained from
the encapsulated the code word 1s zero without knowing
reliable bits. For example, an XOR function may be used, on
one of the other encapsulation functions described herein.

Note that the encapsulation applies to the whole code
word, including data bits and parity bits, and not just to
parity bits. Furthermore, encapsulation 1s applied to gener-
ated data e.g., a message, a key, a pre-key, etc. not to data
derived from one or more of the first or second public or
private keys.

The second device 1s configured to transfer the second
public key (u), the reconciliation data (h), the encapsulated
data (c), and the reliable indices to the first device. The
transferring may be 1n response to receiving the first public
key, e.g., 1n case of key agreement, or not, €.g., 1n case of
public key encryption.

The first device 300 1s configured to receive from the
second device a second public key (u), reconciliation data
(h), and encapsulated data (c¢), and reliable indices. First
device 300 may be configured to perform a public key
validation procedure on public key (u). First device 300
comprises a reconciliation unit 335 configured to apply the
reconciliation data (h) 1n a reconciliation function to the
coellicients 1n the first raw shared key (k') indicated by the
reliable indices (safe bits), obtaining reliable bits (k). For
example, a coellicient indicated as reliable may be recon-
ciled using the reconciliation bits and then sampled to obtain
a reliable bit.

First device 300 comprises a decapsulation unit 340
configured to decapsulate the encapsulated data (¢) obtain-
ing a near-code word using the reliable bits. The reason the
code word of the second device may not be obtained directly
1s that even with reliable bits and reconciliation there may
still be differences between the raw keys that are not
resolved. First device 300 comprises an error corrector 320
that 1s configured to apply an error correction function to the
near-code word obtaining a code word.

Finally, the code word may be decoded, e.g., to obtain the
data part and thus obtain the message (m), the key (K) or
pre-key, e.g., key seed. In the first case some action may be
taken based on the message, e.g., the message may be
displayed, e.g., in a communicator app. In the second case,
the key may be used for further protected communications,
ctc. In the third case, a key derivation function may be
applied to the pre-key to obtain a shared key.

In some embodiments, the processor of the second cryp-
tographic device 1s configured to derive a final key based on
at least the key seed, encrypt a message with the final key,
and to transfer said encrypted message to the first crypto-
graphic device. In some embodiments, the processor of the
first cryptographic device 1s configured to receive an
encrypted message from the first cryptographic device, to
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derive the final key based on at least the key seed, and to
decrypt the encrypted message with the final key.

For example, in an embodiment, the second cryptographic
device and/or the private key decryption device may derive
the final key at least based in part on applying a crypto-
graphic hash function to the key seed. As an illustrative
example, the final key may be derived from the key seed K
by applving a cryptographic hash tunction to the key seed
and optionally part or whole of the public key, e.g., G=H
(m|jpk). Such a cryptographic hash G may be used directly
as final key, or, optionally, at least part of such a crypto-
graphic hash, e.g., L|[rest=G, may be further hashed, e.g.,
with the masked key seed c¢, to obtain the final key, e.g.,
k=H(Ll||c).

FIG. 6a schematically shows an example of a second
cryptographic method (400) according to an embodiment.
Method 400 comprises

establishing (410) communication with a {first crypto-

graphic device, obtaining (420) a first public key (b)
associated with the first cryptographic device,
generating (430) a second private-key (r), and compute a
second public-key (u) from the second private-key (r),

computing (440) a second raw shared key (k*) from the
second private key (r) and the first public key (b),
computing the second raw shared key comprising a
noisy multiplication between the second private key (r)
and the first public key (b),

encapsulating (450) a key seed (m) with at least part of the
second raw shared key by applying an encapsulation
function, obtaining encapsulated data (v), and

transierring (460) the second public-key (u), and the
encapsulated data (v) to the first cryptographic device,
and

applying (405) a validation procedure to the obtained

public key (b) to determine if the public key 1s secure
for encapsulation of a key seed, wherein the key seed
1s not encapsulated or the encapsulated data (v) 1s not
transierred 11 the validation procedure was unsuccess-
ful.

Validation procedure 405 may be performed between
obtaining 420 and encapsulating 450. Validation procedure
405 may be performed after encapsulating 450, 1n which
case the encapsulation may be discarded, e.g., before trans-
ferring 460.

FIG. 6b schematically shows an example of a first cryp-
tographic method 500 according to an embodiment. Method
500 comprises

establishing (510) communication with a second crypto-

graphic device

generating (520) a first private-key (s) and compute a first

public-key (b) from the first private-key (s), and allow
transier of the first public-key (b) to the second cryp-
tographic device,
recerving (530) from the second cryptographic device a
second public-key (u) and encapsulated data (v),

computing (540) a first raw shared key (k') from the
second public-key (u) and the first private-key (s),
computing the first raw shared key comprising a noisy
multiplication between the second public-key (u) and
the first private-key (s),

decapsulating (550) the encapsulated data (v) using at
least part of the first raw shared key (k') to obtain a key
seed, and

applying (505) a validation procedure to the obtained

public key to determine 11 the public key 1s secure for
decapsulation of a key seed, wherein the key seed 1s not
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decapsulated or the decapsulated data (v) 1s not used 1f
the validation procedure was unsuccessiul.

Many different ways of executing the method are pos-
sible, as will be apparent to a person skilled 1n the art. For
example, the steps can be performed 1n the shown order, but
the order of the steps may also be varied or some steps may
be executed 1n parallel. Moreover, in between steps other
method steps may be inserted. The inserted steps may
represent refinements of the method such as described
herein, or may be unrelated to the method. Moreover, a
given step may not have finished completely before a next
step 1s started.

Embodiments of the method may be executed using
soltware, which comprises instructions for causing a pro-
cessor system to perform method 400 and/or 500. Software

may only include those steps taken by a particular sub-entity
of the system. The software may be stored in a suitable
storage medium, such as a hard disk, a floppy, a memory, an
optical disc, etc. The software may be sent as a signal along
a wire, or wireless, or using a data network, e.g., the Internet.
The software may be made available for download and/or
for remote usage on a server. Embodiments of the method
may be executed using a bitstream arranged to configure
programmable logic, e.g., a field-programmable gate array
(FPGA), to perform the method.

It will be appreciated that the imvention also extends to
computer programs, particularly computer programs on or 1n
a carrier, adapted for putting the invention 1nto practice. The
program may be 1n the form of source code, object code, a
code intermediate source, and object code such as partially
compiled form, or in any other form suitable for use 1n the
implementation of an embodiment of the method. An
embodiment relating to a computer program product coms-
prises computer executable instructions corresponding to
cach of the processing steps of at least one of the methods
set forth. These instructions may be subdivided into sub-
routines and/or be stored in one or more files that may be
linked statically or dynamically. Another embodiment relat-
ing to a computer program product comprises computer
executable 1nstructions corresponding to each of the means
ol at least one of the systems and/or products set forth.

It should be noted that the above-mentioned embodiments
illustrate rather than limit the invention, and that those
skilled 1n the art will be able to design many alternative
embodiments.

In the claims, any reference signs placed between paren-
theses shall not be construed as limiting the claim. Use of the
verb ‘comprise’ and 1ts conjugations does not exclude the
presence of elements or steps other than those stated 1n a
claim. The article ‘a’ or ‘an’ preceding an element does not
exclude the presence of a plurality of such elements. Expres-
sions such as “at least one of” when preceding a list of
clements represent a selection of all or of any subset of
clements from the list. For example, the expression, “at least
one of A, B, and C” should be understood as including only
A, only B, only C, both A and B, both A and C, both B and
C, orall of A, B, and C. The invention may be implemented
by means of hardware comprising several distinct elements,
and by means of a suitably programmed computer. In the
device claim enumerating several means, several of these
means may be embodied by one and the same item of
hardware. The mere fact that certain measures are recited in
mutually different dependent claims does not indicate that a
combination of these measures cannot be used to advantage.

In the claims references in parentheses refer to reference
signs 1 drawings of exemplifying embodiments or to for-
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mulas of embodiments, thus increasing the intelligibility of
the claim. These references shall not be construed as limiting
the claim.

The mvention claimed 1s:
1. A second cryptographic device comprising:
a communication interface circuit, wherein the commu-
nication interface circuit i1s arranged to communicate
with a first cryptographic device; and
a Processor circuit,
wherein the processor circuit 1s arranged to obtain a
first public key,

wherein the first public key 1s associated with the first
cryptographic device,

wherein the processor circuit 1s arranged to generate a
second private-key,

wherein the processor circuit 1s arranged to compute a
second public-key from the second private-key,

wherein the processor circuit 1s arranged to compute a
second raw shared key from the second private key
and the first public key,

wherein computing the second raw shared key com-
prises a noisy multiplication between the second
private key and the first public key,

wherein the processor circuit 1s arranged to encapsulate
a key seed with at least part of the second raw shared
key by applying an encapsulation function so as to
obtain encapsulated data,

wherein the processor circuit 1s arranged to transier the
second public-key, and the encapsulated data to the
first cryptographic device,

wherein the processor circuit 1s arranged to apply a
validation procedure to the obtained public key to
determine 1if the public key 1s secure for encapsula-
tion of a key seed,

wherein the key seed 1s not encapsulated or the encap-
sulated data 1s not transferred 11 the validation pro-
cedure determines that the public key 1s insecure.

2. The second cryptographic device according to claim 1,

whereimn the first public key, first private key, second
public key and second private key are matrices over a
fimte field or ring, or the first public key, first private
key, second public key and second private key are
polynomials over a finite field or ring.

3. The second cryptographic device according to claim 1,
wherein the validation procedure comprises determining i
the magnitude of the obtained public key 1s below a thresh-
old.

4. The second cryptographic device according to claim 1,
wherein the validation procedure comprises determining 1f a
number of values below a first threshold in the obtained
public key 1s smaller than a second threshold.

5. The second cryptographic device according to claim 1,
wherein the validation procedure comprises:

computing a histogram of values in the obtained public
key; and

comparing the computed histogram to an expected histo-
gram.

6. The second cryptographic device according to claim

5,wherein the validation procedure comprises:

determining 11 a bin of the computed histogram 1s smaller
than a threshold; and/or

determining 11 a bin of the computed histogram is larger
than a threshold; and/or

computing a distance between the computed histogram
and an expected histogram so as to determine 1i the
distance 1s above a threshold.
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7. The second cryptographic device according to claim 1,
wherein the validation procedure comprises:

computing a histogram of values in the obtained public

key:

applying a statistical test to the computed histogram;

shifting the obtained public key;

computing a further histogram of values in the shifted

public key; and

applying a statistical test to the computed further histo-

gram.

8. The second cryptographic device according to claim 1,
wherein the validation procedure comprises determining 1
the obtained public key 1s all zero or near-all zero.

9. The second cryptographic device according to claim 1,
wherein the validation procedure comprises determining i
the number of values of the public key equal to each other
exceeds a threshold.

10. The second cryptographic device according to claim
1,

wherein the public key 1s obtained i a transformed

domain,

wherein the validation procedure comprises determining

if a norm of the public key 1n the transformed domain
1s less than a threshold.

11. The second cryptographic device according to claim 1,
wherein the noisy multiplication comprises a multiplication
and scaling the resulting elements down.

12. The second cryptographic device according to claim
1,

wherein the processor circuit i1s arranged to derive a

symmetric encryption key from the key seed,

wherein the processor circuit 1s arranged to encrypt a

message with the dertved key,

wherein the processor circuit 1s arranged to transfer the

encrypted message to the first cryptographic device.

13. A first cryptographic device comprising

a communication intertface circuit, wherein the commu-

nication interface circuit i1s arranged to communicate
with a second cryptographic device; and

a processor circuit,

wherein the processor circuit 1s arranged to generate a first

private-key,

wherein the processor circuit 1s arranged to compute a

first public-key from the first private-key,

wherein the processor circuit 1s arranged to allow transfer

of the first public-key to the second cryptographic
device,

wherein the processor circuit 1s arranged to receive a

second public-key and encapsulated data from the
second cryptographic device,

wherein the processor circuit 1s arranged to compute a

first raw shared key from the second public-key and the
first private-key,

wherein computing the first raw shared key comprises a

noisy multiplication between the second public-key
and the first private-key,

wherein the processor circuit 1s arranged to decapsulate

the encapsulated data using at least part of the first raw
shared key so as to obtain a key seed,

wherein the processor circuit 1s arranged to apply a

validation procedure to the obtained public key so as to
determine 11 the public key 1s secure for decapsulation
of a key seed,

wherein the key seed 1s not decapsulated or the decapsu-

lated data 1s not used 1f the validation procedure
determines that the public key 1s insecure.
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14. The first cryptographic device according to claim 13,

wherein the first public key, first private key, second

public key and second private key are matrices over a

finite field or ring, or the first public key, first private

key, second public key and second private key are
polynomials over a finite field or ring.

15. The first cryptographic device according to claim 13,

wherein the validation procedure comprises determining if

the magnitude of the obtained public key 1s below a thresh-
old.

16. The first cryptographic device according to claim 13,
wherein the validation procedure comprises determining 1f a
number of values below a first threshold in the obtained
public key 1s smaller than a second threshold.

17. The first cryptographic device according to claim 13,
wherein the validation procedure comprises:

computing a histogram of values in the obtained public

key; and

comparing the computed histogram to an expected histo-

gram.

18. The first cryptographic device according to claim 17,
wherein the validation procedure comprises:

determining 11 a bin of the computed histogram i1s smaller

than a threshold; and/or

determining 11 a bin of the computed histogram 1s larger

than a threshold; and/or

computing a distance between the computed histogram

and an expected histogram so as to determine 1if the
distance 1s above a threshold.

19. The first cryptographic device according to claim 2,
wherein the validation procedure comprises:

computing a histogram of values in the obtained public

key:

applying a statistical test to the computed histogram;

shifting the obtained public key;

computing a further histogram of values in the shifted

public key; and

applying a statistical test to the computed further histo-

gram.

20. The first cryptographic device according to claim 13,
wherein the validation procedure comprises determining i
the obtained public key 1s all zero or near-all zero.

21. The first cryptographic device according to claim 13,
wherein the validation procedure comprises determining i
the number of values of the public key equal to each other
exceeds a threshold.

22. The first cryptographic device according to claim 2,

wherein the public key 1s obtamned in a transformed

domain,

wherein the validation procedure comprises determining

if a norm of the public key 1n the transformed domain
1s less than a threshold.
23. The first cryptographic device according to claim 13,
wherein the noisy multiplication comprises a multiplication
and scaling the resulting elements down.
24. The first cryptographic device according to claim 13,
wherein the processor circuit 1s arranged to derive a
symmetric encryption key from the key seed,

wherein the processor circuit 1s arranged to receive an
encrypted message from the second cryptographic
device,

wherein the processor circuit 1s arranged to decrypt the

encrypted message.

25. A cryptographic method comprising:

establishing communication with a first cryptographic

device;

obtaining a first public key, wherein the first public key 1s

associated with the first cryptographic device;
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generating a second private-key;

computing a second public-key from the second private-
key;

computing a second raw shared key from the second
private key and the first public key;

computing the second raw shared key, wherein the shared
key comprises a noisy multiplication between the sec-
ond private key and the first public key;

encapsulating a key seed with at least part of the second
raw shared key by applying an encapsulation function
so as to obtain encapsulated data;

transferring the second public-key, and the encapsulated
data to the first cryptographic device; and

applying a validation procedure to the obtained public key
to determine 11 the public key 1s secure for encapsula-
tion of a key seed, wherein the key seed 1s not encap-
sulated or the encapsulated data is not transierred 1if the
validation procedure was unsuccessiul.

26. A cryptographic method comprising:

establishing communication with a second cryptographic
device;

generating a first private-key;

computing a {irst public-key from the first private-key;

transferring the first public-key to the second crypto-
graphic device;

receiving a second public-key and encapsulated data from
the second cryptographic device;

computing a first raw shared key from the second public-
key and the first private-key;

computing the first raw shared key, wherein the first raw
key comprises a noisy multiplication between the sec-
ond public-key and the first private-key;

decapsulating the encapsulated data using at least part of
the first raw shared key so as to obtain a key seed; and

applying a validation procedure to the obtained public key
to determine 1f the public key 1s secure for decapsula-
tion of a key seed, wherein the key seed 1s not decap-
sulated or the decapsulated data 1s not used 1f the
validation procedure was unsuccessiul.

27. A computer program stored on a non-transitory

medium, wherein the computer program when executed:

establishes communication with a first cryptographic
device;
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obtains a first public key, wherein the first public key 1s
associated with the first cryptographic device;

generates a second private-key;

computes a second public-key from the second private-
key:;

computes a second raw shared key from the second
private key and the first public key;

computes the second raw shared key, wherein the shared
key comprises a noisy multiplication between the sec-
ond private key and the first public key;

encapsulates a key seed with at least part of the second
raw shared key by applying an encapsulation function
so as to obtain encapsulated data;

transiers the second public-key, and the encapsulated data
to the first cryptographic device; and

applies a validation procedure to the obtained public key
to determine 1f the public key 1s secure for encapsula-
tion of a key seed, wherein the key seed 1s not encap-
sulated or the encapsulated data 1s not transferred 11 the
validation procedure was unsuccessiul.

28. A computer program stored on a non-transitory

medium, wherein the computer program when executed:

establishes communication with a second cryptographic
device;

generates a {irst private-key;

computes a first public-key from the first private-key;

transiers the first public-key to the second cryptographic
device;

recerves a second public-key and encapsulated data from
the second cryptographic device;

computes a first raw shared key from the second public-
key and the first private-key;

computes the first raw shared key, wherein the first raw
key comprises a noisy multiplication between the sec-
ond public-key and the first private-key;

decapsulates the encapsulated data using at least part of
the first raw shared key so as to obtain a key seed; and

applyies a validation procedure to the obtained public key
to determine 1f the public key 1s secure for decapsula-
tion of a key seed, wherein the key seed 1s not decap-
sulated or the decapsulated data i1s not used 1if the
validation procedure was unsuccessiul.
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