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FIG.O

ﬁ (2) OBTAIN REPEATING UNIT FROM POLYMER STRUCTURE
3/ AND PHYSICAL PROPERTY DB

REPEATING UNIT: *CCO*

(b) GENFRATE MODFEL STRUCTURE BY REPLICATING REPEATING UNIT |
' MODEL STRUCTURE: CCOCCOCCOCCOCCOCCOCCOCCORLOCCo |

- {cy GENERATE SUBSTRUCGTURE NUMBER VECTOR x4
' NUMBER OF  NUMBER OF NUNMBER OF

¢ ATOMS 0 ATOMS (OCs
. h o
<+ »  n DIMENSIONS

() CALCULATE NUMBER OF ATOMS INCLUDED IN MODEL STRUCTURE |

(e) GENERATE SUBSTRUCTURE NUMBER DENSITY VECTOR x

n DIMENSIONS

(f} EXTRACT IMPORTANT SUBSTRUCTURE BY DIMENSION REDUCTION

n?! DIMENSIONS
(n <n

(g) CONSTRUCGCT REGRESSION MODEL T BASED ON SUBSTRUQGTURE
NUMBER DENSITY VECTOR x AND POLYMER PHYSICAL PROPERTY v

v = f(x)

() GENERATE SUBSTRUCTURE NUMBER DENSITY VECTOR (x,) TO
' PREDICT POLYMER PHYSICAL PROPERTY (y,) IN
ACCORDANCE WITH INPUT OF POLYMER
STRUCTURE A WHOGSE PHYSICAL PROPERTY IS TO BE OBTAINED
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FIG.8A
N
-. START '
| e ~F91
| MODEL GENERATING PROCESS
- 511

OBTAIN REPEATING UNIT &N{} EXPERIMENTAL VALUE
BY SELECTING AND READING ONE RECORD
FF%{}M F‘(}L‘?‘MEQ ST?%L}QTUF%E ANE} PHYSZGAL PRQPERT‘%" DB

JSE?E

GENERATE MOUEL STQUGTHHE BY REPEATING OPERATIONS
' OF REPLICATING AND LINKING REPEATING UNIT
PREDETERMINED NUMBER OF TIMES

Tesa 1 ssia

CALCULATE NUMBER OF CALCULATE NUMBER OF
| SUBSTRUCTURES CONSTITUENT ATOMS

/9018
CALCULATE SUBSTRUCGCTURE NUMBER DENSITY

,-M

_ ALL RECORDS ARE PROCESSED? =
y YES 8817

GBTMN iMP{}F?TANT SUESTQU{}TUQE
BY DIMENSION ReEDUGTION

g e el T g g ™ ™ W ol i

~r 2018

OBTAIN REGRESSION MODEL | BY USING x
AS SUBSTRUGTURE NUMBER DENSITY CORRESPONDING TO
IMPORTANT SUBSTRUCTURE AND v
AS EXPERIMENTAL VALULE

TO FIG. 8B
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F1G.8B
FROM FIG. 8A
P55
PHYSICAL PROPERTY
PREDICTION PROCESS | _+S521
RECEIVE POLYMER STRUCTURE
/8522

OBTAIN NUMBER OF SUBSTRUCTURES, NUMBER OF ATOMS.
AND SUBSTRUCTURE NUMBER DENSITY OF RECEIVED
POLYMER STRUCTURE

- 5523

REDUCE DIMENSIONS OF SUBSTRUGTURE NUMBER DENSITY
BASED ON IMPORTANT SUBSTRUCTURE OBTAINED
IN STEP 5517

~ 024

PREDICT PHYSICAL PROPERTY VALUE
BY USING REGRESSION MODEL OBTAINED IN STER 5518
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FIG. 14

COMPARAT IVE
- EXAMPLE

EXAMPLE | EXAMPLE | EXANPLE EXANPLE

FIG.15

er NUMEER OF |

EXAMPLE 5 | GLASS TRANSITION POINT {i{]

EXAMPLE 6 | BAND GAP [eV]

EXAMPLE 7|  RELATIVE PERMITTIVITY

COEFFICIENT OF
EXAMPLE 8 LINEAR EXPANSION [1075/K] |
EXAMPLE g DENSITY [e/omd] '
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POLYMER PHYSICAL PROPERTY
PREDICTION DEVICE, RECORDING
MEDIUM, AND POLYMER PHYSICAL

PROPERTY PREDICTION METHOD

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation-in-part application of
International Application No. PCT/JP2019/008704 filed on

Mar. 5, 2019, which 1s based upon and claims priority to
Japanese Priority Application No. 2018-043171 filed on
Mar. 9, 2018, the enfire contents of which are hereby
incorporated by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a device that predicts the
physical properties of a polymer (heremnaiter “polymer
physical property prediction device”, a recording medium,
and a polymer physical property prediction method.

2. Description of the Related Art

In recent years, machine learning has been used to predict
physical properties of organic compounds such as polymers
by using a computer.

Conventional techniques for predicting physical proper-
ties of polymers use various structure descriptors configured
by humans to predict physical properties. Techniques for
mechanically 1dentifying substructure patterns of molecules
and calculating structure descriptors based on algorithms
have also been proposed.

Conventionally, it 1s necessary for a human to determine
a structural pattern, such as the number of carbon atoms, that
serves as a structure descriptor of a polymer in advance.
With respect to this, there 1s a method for automatically
extracting substructures of low-molecular weight organic
molecules, but there 1s a problem that the accuracy of
predicting the physical properties of a polymer 1s low. Thus,
the method has not been applied to polymer structures.

RELATED-ART DOCUMENTS

Patent Documents

[Patent Document 1] Japanese National Publication of
International Patent Application No. 2004-514902

Non-Patent Document

[Non-Patent Document 1] David Rogers et al.,

“Extended-Connectivity Fingerprints”, American Chemical
Society, J. Chem. Info. Model., Vol. 50, No. 5, 2010, pp.
742-754.

SUMMARY OF THE INVENTION

According to one aspect, a polymer physical property
prediction device includes a processor, and a memory stor-
ing program instructions that cause the processor to read a
structural unit from a storage unit and use the structural unit
to calculate numbers each indicating how many substruc-
tures are 1n a polymer, the polymer being formed of repeti-
tion of the structural unit, calculate a number indicating how
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2

many atoms are in the structural unit, calculate number
densities of the substructures from the numbers of substruc-
tures and the number of atoms in the structural unit, con-
struct a regression model that predicts a physical property
value by using an experimental value of a physical property
of the polymer and the number densities of the substructures,
the experimental value being obtained from the storage unat,
input a polymer structure of which the physical property
value 1s to be predicted, and predict the physical property
value corresponding to the input polymer structure by using
the regression model.

A means to solve the above-described problem can be a
program or a method for predicting the physical properties
ol a polymer.

According to at least one embodiment of the present
invention, the physical properties of a polymer can be
accurately predicted.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a drawing illustrating an example of a system
configuration according to the present embodiment;

FIG. 2 1s a drawing illustrating an example of a hardware
configuration of a physical property prediction device;

FIG. 3 1s a drawing 1llustrating a first functional configu-
ration example of the physical property prediction device;

FIG. 4 1s a drawing illustrating an example of a data
configuration of a polymer structure and physical property
DB;

FIG. 5 1s a drawing for describing an overview of a
prediction process according to the present embodiment;

FIG. 6 1s a drawing 1llustrating an example of the number
density;

FIG. 7 1s a drawing for describing a difference caused
when replication of a repeating unit 1s performed and no
replication of a repeating unit 1s performed;

FIG. 8A 1s a flowchart for describing the prediction
Process;

FIG. 8B 1s a tlowchart for describing the prediction
Process;

FIG. 9 1s a drawing illustrating an example of a data
configuration of a regression model management table;

FIG. 10 1s a drawing illustrating a second functional
configuration example of the physical property prediction
device;

FIG. 11 1s a drawing 1llustrating a third functional con-
figuration example of the physical property prediction
device;

FIG. 12 1s a drawing 1illustrating a fourth functional
configuration example of the physical property prediction
device;

FIG. 13 1s a drawing illustrating a functional configura-
tion example of a physical property prediction device based
on an existing technique;

FIG. 14 1s a drawing illustrating an example of evaluation
results;

FIG. 15 1s a drawing illustrating an example of evaluation
results; and

FIG. 16 1s a drawing illustrating an example of a manu-
facturing method for manufacturing a polymer.

DESCRIPTION OF THE EMBODIMENTS

L1

In the following, an embodiment of the present invention
will be described based on the drawings. First, an example
ol a system configuration according to the present embodi-
ment will be described. FIG. 1 1s a drawing 1illustrating the
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example of the system configuration according to the present
embodiment In FIG. 1, a system 1000 includes a physical
property prediction device 100 and multiple terminals 3, and
cach of the terminals can be connected through a network 2.

The terminal 3 1s an information processing terminal used
by a user, 1s connected to the physical property prediction
device 100, and utilizes processing performed by a predic-
tion processing unit 40.

The physical property prediction device 100 1s an infor-
mation processing device including the prediction process-
ing unit 40 that predicts a physical property of a polymer. In
the physical property prediction device 100, the prediction
processing unit 40 performs machine learning using a struc-
ture of the polymer and data indicating the physical property
of the polymer that are provided in advance to generate a
regression model. In response to receiving a polymer struc-
ture 6a from the terminal 3, a physical property value 1s
predicted using the generated regression model with respect
to the received polymer structure 6a, and a predicted physi-
cal property value 65 1s sent to the terminal 3.

A configuration of the system 1000 1s not limited to the
example of FIG. 1. As an example, the physical property
prediction device 100 may be utilized 1n a stand-alone
manner. In this case, when the polymer structure 6a 1s input
by a user operation of an mmput device 14 (FIG. 2), the
physical property value 65 1s output to a display device 15
(FI1G. 2).

The physical property prediction device 100 according to
the present embodiment has a hardware configuration as
illustrated 1n FIG. 2. FIG. 2 1s a drawing illustrating an
example of the hardware configuration of the physical
property prediction device. In FIG. 2, the physical property
prediction device 100 1s an information processing device
controlled by a computer and includes a central processing
unit (CPU) 11, a main storage device 12, an auxiliary storage
device 13, the mput device 14, the display device 15, a
communication interface (I/F) 17, and a drive device 18,
which are connected to a bus B.

The CPU 11 corresponds to a processor that controls the
physical property prediction device 100 according to a
program stored in the main storage device 12. As the main
storage device 12, a random access memory (RAM) and a
read only memory (ROM) are used to store or temporarily
store a program executed by the CPU 11, data necessary for
processing by the CPU 11, and data obtained by processing
by the CPU 11, for example.

A hard disk drive (HDD) 1s used for the auxiliary storage
device 13, for example, to store data such as a program for
executing various processing. A portion ol the program
stored 1n the auxihiary storage device 13 i1s loaded into the
main storage device 12 and 1s executed by the CPU 11 to
achieve various processing. Heremnafter, the main storage
device 12, the auxiliary storage device 13, and an external
storage device accessible by the physical property prediction
device 100 will be collectively referred to as a storage unit
130.

The 1nput device 14 includes a mouse and a keyboard and
1s used by a user to mput various information required for
processing by the physical property prediction device 100.
The display device 15 displays various necessary mforma-
tion under control of the CPU 11. The mput device 14 and
the display device 15 may be a user interface, such as an
integrated touch panel. The communication I'F 17 performs
communication through a network, such as a wired or
wireless network. The communication by the communica-
tion I/F 17 1s not limited to the wired or wireless commu-
nication. The drive device 18 interfaces a recording medium
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19 set 1n the drive device 18 (e.g., a compact disc read-only
memory (CD-ROM)) with the physical property prediction
device 100.

A program for implementing the processing performed by
the physical property prediction device 100 1s provided to
the physical property prediction device 100 through the
recording medium 19, such as a CD-ROM. A program for
implementing various processing according to the present
embodiment, which will be described later, i1s stored 1n the
recording medium 19, and the program stored 1n the record-
ing medium 19 1s mstalled 1n the physical property predic-
tion device 100 through the drive device 18. The installed

program can be executed by the physical property prediction
device 100.

The recording medium 19 for storing the program 1s not
limited to a CD-ROM, but may be one or more non-
transitory and tangible media having a computer readable
data structure. As a computer readable recording medium 1n
addition to a CD-ROM, a portable storage medium, such as
a digital versatile disk (DVD) and a USB memory, or a
semiconductor memory, such as a flash memory, may be
used.

|First Functional Configuration Example]

FIG. 3 1s a drawing illustrating a first functional configu-
ration example of the physical property prediction device. In
FIG. 3, the physical property prediction device 100 includes
the prediction processing unit 40. The prediction processing
unmt 40 corresponds to a prediction process performed by the
CPU 11 executing a corresponding program.

The storage unit 130 stores a polymer structure and
physical property DB 31, a model structure 33qa, the number
of substructures 3354, the number of atoms 33c¢, a substruc-
ture number density 334, an important substructure 33e, a
regression model 33/, a polymer structure 6a, a physical
property value 65, for example.

The prediction processing unit 40 obtains the regression
model 33/ for predicting the physical properties of the
polymer structure 6a specified by a user by performing
machine learming, predicts the physical properties of the
polymer structure 6a by using the obtained regression model
33/, and outputs the obtained physical property value 65b.
The prediction processing unit 40 includes a model genera-
tor 41 and a physical property prediction unit 45 as process-
ing units.

The model generator 41 learns the physical property of
the polymer structure 1n which a structural unit 1s repeatedly
replicated and linked using the polymer structure and physi-
cal property DB31 and determines the regression model 33f.
A structural unit forming a polymer by repetition 1s called a
“repeating unit”. In the polymer structure and physical
property DB 31, a repeating unit and an experimental value
of a physical property experimentally obtained 1n advance
are stored 1n association with each polymer.

The model generator 41 includes a model structure gen-
erator 43a, a substructure number calculating unit 435, an
atom calculating umt 43¢, a substructure number density
calculating unit 434, a dimension reduction unit 43e, and a
regression model construction unit 43/ as processing units.
Either or both of the model structure generator 43a and the
dimension reduction unit 43¢ can be removed.

The model structure generator 43a obtains the repeating
unit from the polymer structure and physical property DB 31
and repeats the process of replicating and linking the
obtained repeating umit a predetermined number of times to
generate the model structure 33a. The repeating unit
includes a substructure. The repeating unit may also be an
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entire of a substructure. The repeating unit are linked
multiple times to represent a polymer.

The generated model structure 33a 1s stored in the storage
unit 130. The repeating unit and the model structure 33a may
be represented 1n a predetermined form. The first functional
configuration example describes the repeating unit and the
model structure 33q 1n the simplified molecular 1mput line
entry syntax (SMILES) notation, but the notation i1s not
limited to this.

The substructure number calculating unit 435 calculates
the number of substructures 335 based on the model struc-
ture 33a. The numbers of substructures 335 are represented
by an n-dimensional vector and stored in the storage 130.
The atom calculating unit 43¢ calculates the number of
atoms 33c¢ based on the model structure 33a. The obtained
number of atoms 33c¢ is stored in the storage unit 130.

The substructure number density calculating unit 43d
calculates the substructure number density 334 by using the
numbers of substructures 335 and the number of atoms 33c.
The substructure number density 334 can be obtained by the
tollowing equation:

substructure number density=number of
substructures+number of atoms

The obtained substructure number densities 33d are repre-
sented by a vector of the same n-dimensional vector as the
vector of the substructure number 335 and are stored 1n the
storage unit 130.

The dimension reduction unit 43e constructs a temporal
regression model by using the substructure number density
334 and the experimental value, and reduces the dimensions
ol the temporal regression model based on a predetermined
dimension reduction method to obtain the important sub-
structure 33e. The important substructure 33e 1s stored 1n the
storage unit 130. The mmportant substructure 33e 1s data
specilying an element (e.g., a vector) that will contribute to
the prediction accuracy of the regression model 33f to be
constructed in the substructure number density 334.

For the dimension reduction method, a procedure corre-
sponding to a regression analysis method to be used 1s
determined 1n advance. For example, when the lasso regres-
s1on 15 used, the dimensions can be reduced by removing a
coellicient term of 0. When the random forest regression 1s
used, the dimensions can be reduced by calculating the
importance of explanatory variables and excluding vaniables
that have the importance lower than or equal to a threshold.
In the stepwise method, the dimensions can be reduced by
searching for combinations of explanatory variables having
highest prediction accuracy by adding or reducing an
explanatory variable one by one when a temporal regression
model 1s constructed.

The regression model construction unit 43/ constructs the
regression model 33/ by performing a regression analysis
based on the important substructure 33e obtained by the
dimension reduction unit 43¢ by using the substructure
number density 334 and the experimental value. The regres-
sion model 33/ 1s stored in the storage unit 130.

In the dimension reduction unit 43¢ and the regression
model construction unit 43, the experimental value can be
obtained from the polymer structure and physical property
DB 31. The regression model 33/ obtained by the regression
model construction umt 43/ 1s expressed in the following
equation.

y=fx)

By substituting the substructure number density 334 for a
variable x, a predicted value y of the physical property 1s
obtained.
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To the regression analysis for obtaining the temporal
regression model and the regression model 33/, any one of
Lasso regression, random {forest regression, a stepwise
method, partial linear regression, ridge regression, kernel
ridge regression, support vector regression, decision tree
regression, (Gaussian process regression, and so on can be
applied. As an example, a temporal regression model can be
obtained by the Lasso regression, and the regression model
33/ can be obtained by the Gaussian process regression.

Next, the physical property prediction unit 45 predicts the
physical properties of the polymer based on the polymer
structure 6a by using the regression model 33/ 1n response
to an mnput of the polymer structure 6a specified by a user.
The polymer structure 6a may specily the repeating unit by
the SMILES notation or the like. The physical property
prediction unit 45 includes a polymer structure mput unit
47a and a polymer physical property prediction unit 475 as
processing units.

The polymer structure input unit 47a mputs the polymer
structure 6a specified by a user and the polymer structure 64
1s stored 1n the storage unit 130. The polymer structure mnput
unit 47a may mput the polymer structure 6a by the com-
munication I'F 17 receiving the polymer structure 6a
through the network 2 or may input the polymer structure 6a
in accordance with a user’s specification by the input device
14 of the property prediction device 100.

The polymer physical property prediction unit 475 obtains
the model structure, the numbers of substructures, and the
number of atoms, from the polymer structure 6a, to calculate
the substructure number density, and predicts the physical
property value by using the regression model 33/ stored in
the storage unit 130. The method of obtaining the model
structure, the numbers of substructures, the number of
atoms, and the substructure number density based on the
polymer structure 6a is similar to the method of the model
generator 41.

The predicted physical property value 65 1s output to the
storage unit 130. When the polymer structure 6a 1s specified
through the network 2, the obtained physical property value
65 1s sent to the terminal 3 of the user and displayed. When
the polymer structure 6a 1s specified by a user operation at
the physical property prediction device 100, the obtained
physical property value 65 1s displayed on the display device
15.

FIG. 4 1s a drawing illustrating an example of a data
configuration of the polymer structure and physical property
DB. In FIG. 4, the polymer structure and physical property
DB 31 is a database that manages the repeating unit and
experimental values of various physical properties, such as
a refractive index, for each polymer, and includes 1items such
as a polymer name, the repeating unit, the refractive index,
and a glass transition point.

The polymer name indicates specific information speci-
tying the polymer structure. An example in which the
repeating unit 1s represented by the SMILES notation 1s used
for the following description, but the notation of the repeat-
ing unit 1s not limited to the SMILES notation. The refrac-
tive index, the glass transition point, and the like are
examples of various physical properties of the polymer
experimentally obtained 1in advance, and the experimental
values are shown for each name of the physical property.

In this example, a repeating unit “*CC*” 15 associated
with a polymer name “poly(ethylene)” and the experimental
values, such as the refractive index “1.472”, are shown.
Similarly, an experimental value of each physical property 1s
shown for another polymer.
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In the model generator 41, referenced data, generated
data, and the like may be managed 1n a work table 32. The
work table 32 1s a table 1n which calculated values are stored
for each repeating unit of the polymer of which the sub-
structure number density 334 1s obtained, and includes 1items
such as the polymer name, the repeating unit, the number of
atoms, and the substructure number density.

The polymer name 1ndicates a polymer name registered in
the polymer structure and physical property DB 31. The
number of substructures indicates the number of substruc-
tures 33b obtained by the substructure number calculating
unit 435. The number of atoms indicates the number of
atoms 33c¢ obtained by the atom calculating unit 43¢. The
substructure number density indicates the substructure num-
ber density 334 obtained by the substructure number density
calculating unit 434.

The substructure number density of the work table 32 and
the experimental values of the physical property of the
polymer structure and physical property DB 31 are used for
the machine learning by the regression analysis. Thus, the
work table 32 may be associated with the polymer structure
and physical property DB 31 by the polymer name. Here, the
data configuration example of the polymer structure and
physical property DB 31 and the work table 32 illustrated in
FIG. 4 1s only one example, but 1s not limited to this
example.

An outline of an entire prediction process performed by
the prediction processing unit 40 will be described using an
example of the repeating unit. FIG. 5 1s a drawing for
describing the overview of the prediction process according
to the present embodiment. As illustrated 1n FIG. 5, 1n the
model generator 41 of the prediction processing unit 40, the
model structure generator 43a obtains the repeating unit
from the polymer structure and physical property DB 31 (as
described 1n (a) of FIG. §). For example, a repeating unit
“*CCO*” 1s obtained. In the following description, “*”
indicating a start and an end of a certain structure in the
SMILES notation will be omatted.

The model structure generator 43a uses the obtained
substructure as a repeating unit, and replicates the repeating
unit to generate the model structure 33a (as described i (b)
of FIG. 5). In this example, the model structure generator

43a repeats replicating the repeating unit “CCO” to the right
a predetermined number of times, to generate the model
structure 33a “CCOCOCOCCCOCCCOCCCOCCCOCC-
COCCO”, in which the repeating unit “CCO” are linked
multiple times, 1n the memory umt 130.

The substructure number calculating unit 435 generates a
substructure number vector X, (1.e., the numbers of substruc-
tures 33b) of the structure model 33a (as described 1n (¢) in
FIG. §). The substructure number vector X, 1s represented 1n
n dimensions by a structure descriptor, such as extended
circular finger print (ECFP), atom pair, topological torsion,
and neural finger print. In the first functional configuration
example, a structure descriptor represented by the number of
C atoms, the number of O atoms, the number of COCs, or
the like 1s used for the description. However, the structure
descriptor 1s not limited to this.

In the structure model “CCOCCCOCCCOCCCOCC-
COCCCOCCQO”, an n-dimensional substructure number
vector X,, which consists of the number of C atoms “207, the
number of O atoms “10”, . . ., and the number of COCs “9”,
1s generated. A structure assigned to each vector, such as
“C”, 07, “COC”, indicates the type of the substructure of
the polymer. Here, n 1s an arbitrary natural number, and 1s

usually about 256 to 2048.
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The atom calculating unit 43¢ calculates the number of
atoms 1ncluded 1n the model structure 33a (as described 1n

(d) of FIG. 5). In the structure model “CCOCOCOCOCC-
COCCCOCCCOCCCQO”, the number of atoms 1s “30”.

The substructure number density calculating umt 434
divides the substructure number vector X, (1.¢., the numbers
of substructures 335) obtained by the substructure number
calculating unit 435 in (¢) of FIG. 5 by the number of atoms
33c obtained by the atom calculating unit 43¢ 1n (d) of FIG.
5 to generate the substructure number density vector x (i.e.,
the substructure number densities 33d) 1 (e) of FIG. 5.

Specifically, 1n the structure model “CCOCCCOCCOC-
COCCCOCCCOCCCOCCCOCCQO”, each value of the sub-
structure number vector X, 1s divided by the number of
atoms “30”" to obtain the substructure number density vector
X representing the C atom number density “%4 (=20/30)”, the
O atom number density “\5 (=10/30)”, . . . , and the COC
density ““/30.” The number of dimensions of the substructure
number density vector x 1s n, which 1s the same number as
the number of dimensions of the substructure number vector
Xo-

For each record of the polymer structure and physical
property DB 31, (a) of FIG. 5 to (e) of FIG. 5 are repeated.
The number of substructures 3354, the number of atoms 33c,
and the substructure number density 334 that are obtained
may be stored in the work table 32 1n association with the
polymer name.

Belore constructing the regression model 33/, a temporal
regression model 1s constructed by the dimension reduction
unit 43¢ and the dimension reduction 1s performed (1n (1) of
FIG. 5). This can reduce n dimensions to n' dimensions
(n'<n). By the dimension reduction, the important substruc-
ture 33e that contributes to the prediction accuracy 1is
determined. Here, n' 1s a natural number smaller than n, and
1s usually about 16 to 128.

The regression model construction umt 43/ constructs the
regression model 33/ used 1n predicting the physical prop-
erty value based on the important substructure 33e (1n (g) of
FIG. 5). The regression model 33/, whose dimensions are
reduced to several tens dimensions, 1s obtained. The regres-
sion model 33/ 1s expressed by the following equation (1)
that obtains the predicted value y of the physical property of
the polymer by the substructure number density vector x
(1.e., the substructure number densities 334d).

y=fix) (1)

When dimensions are not reduced, the number of substruc-
ture number density vector x 1s n, which 1s the number of
dimensions. But after dimensions are reduced, the dimen-
sions of the substructure number density vector x are n'.
Because the predicted values are calculated using only the
dimensions contributing to the prediction accuracy by using
the important substructure 33e, the physical property pre-
diction process can be efliciently performed.

The above-described process from (a) to (e) n FIG. 5
corresponds to the model generating process of the model
generator 41. After the model generating process has been
performed, 1n response to receiving the mput of the polymer
structure 6a desired to be processed from the user, the
physical property prediction process 1s performed by the
physical property prediction unit 45.

In response to the input of the polymer structure A of
which the physical property 1s to be obtained, the physical
property prediction unmit 45 generates the substructure num-
ber density vector x,, and predicts the physical property
value v, (in (h) of FIG. 5). The polymer structure input unit
4'7a mputs the polymer structure A, and the polymer physi-
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cal property prediction unit 475 predicts the physical prop-
erty value y , by using the regression model 33/

The physical property value y , with respect to the poly-
mer structure A desired to be processed can be obtained by
substituting the substructure number density x , 1n the above 5
equation (1).

Ya=fx4) (2)

If the regression model 33f 1s for only one physical
property, the value of a predetermined physical property 1s 10
predicted. If the regression model 33/ 1s obtained with
respect to each of the various physical properties, the user
may specily the polymer structure A and all physical prop-
erties or a specific physical property. In this case, the
polymer physical property prediction unit 475 predicts the 15
physical property value 65 by using the regression model 33/
corresponding to each physical property and the important
substructure 33e.

The process of calculating the numbers of substructures
330 1 (¢) of FIG. 5 and the process of calculating the 20
number of atoms 1n (d) of FIG. 5 may be performed 1n any
order. After calculating the number of atoms 33c 1s per-
tormed, the numbers of substructures 335 may be calculated,
or the number of atoms 33¢ and the numbers of substructures
336 may be calculated in parallel. In the present embodi- 25
ment, a “predicted value” of the physical property and a
predicted “physical property value” are identical.

In the first functional configuration example, the substruc-
ture number density calculating unit 434 of the prediction
processing unit 40 can recognize whether polymer structures 30
are 1dentical. FIG. 6 1s a drawing illustrating an example of
the number density. In FIG. 6, the number of carbons of a
polyethylene oxide 1s illustrated as an example.

Referring to FIG. 6, when a structure A and a structure B
are compared, a notation of the structure B 1s longer and 35
different from a notation of the structure A. However,
polymers represented by the structure A and the structure B
are 1dentical.

In an existing technique in which the number of substruc-
tures 1s used as a structure descriptor, the number of carbons 40
of the structure A 1s “2,” the number of carbons of the
structure B 1s “4”. Since the numbers of carbons of the
structure A and the structure B are diflerent, the polymers are
mistakenly recogmized as being different. This example
indicates that when polymers having different lengths of the 45
repeating unit are compared, the number of substructures
cannot appropriately capture structural features of the poly-
mer.

In the first functional configuration example, the substruc-
ture number density calculating unit 434 obtains the same 50
substructure number density (carbon number density) “3”
with respect to the structure A and the structure B. Thus, the
dimension reduction unit 43¢ and the regression model
construction unit 43/ can correctly recognize that the struc-
ture A and the structure B represent the same polymer. Based 55
on these examples, the inventors have found that by using
the substructure number density 33d, polymers having dii-
terent lengths of the repeating unit can be treated equiva-
lently.

The inventors have also found that replicating and linking 60
the repeating unit can improve the existing technique having,
low prediction accuracy. A difference between when repli-
cation 1s performed and when no replication 1s performed 1s
described 1 FIG. 7. FIG. 7 1s a drawing for describing the
difference between when replication of the repeating unit 1s 65
performed and when no replication 1s performed. In FIG. 7,

a polyethylene oxide 1s used as an example. A repeating unit
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when replication 1s performed and a repeating unit when no
replication 1s performed are 1dentical.

When the repeating unit i1s not replicated, there 1s no
substructure “COC”, which 1s expected to exist, at both ends
of the repeating unit. Thus, COC number density 1s “0”.
With respect to this, i the first functional configuration
example, the repeating unit 1s replicated and the right side of
the repeating unit 1s linked to an oxygen atom on the left side
of the next repeating unit. Two repeating units causes the
substructure “COC” to appear and “146” 1s obtained with
respect to the number density of “COC”, which 1s expected
to exast. In the first functional configuration example, the
regression model 33/ 1s obtained using the substructure
number density 334 obtained in such a manner, thereby
improving the prediction accuracy of the existing technique.

As described above, the prediction process 1s performed
by the prediction processing unit 40 as illustrated in FIGS.
8A and 8B. FIGS. 8A and 8B are flowcharts for describing

the prediction process. First, a model generating process P51
1s performed by the model generator 41.

In step S511, in the model generator 41, the model
structure generator 43a selects and reads one record from the
polymer structure and physical property DB 31, and obtains
the repeating unit and the experimental value. In step S512,
the model structure generator 43a repeats an operation of
replicating and linking the obtained repeating unit a prede-
termined number of times to generate the model structure
33a.

In step S513, the substructure number calculating unit 435
calculates the number of substructures 335 of the model
structure 33a by using a predetermined structure descriptor
(e.g., ECFP). In step S514, the atom calculating unit 43¢
calculates the number of atoms 33c¢ of the model structure
33a. Step S513 may be performed after step S314 has been
performed. Alternatively, steps S513 and S514 may be
performed 1n parallel.

In step S5135, the substructure number density calculating
unit 434 calculates the substructure number density 334 by
dividing the number of substructures 336 by the number of
atoms 33c¢. As described above, the numbers of substructures
336 and the substructure number densities 33d are repre-
sented by an n-dimensional vector.

In step S516, the model generator 41 determines whether
all records of the polymer structure and the physical prop-
erty DB 31 have been completed. When all records have not
been completed (NO 1n step S516), the model generator 41
returns to step S511 and performs a process similar to the
process described above.

When all records have been completed (YES 1n step
S516), the dimension reduction umt 43e performs a first
regression analysis for obtamning a temporal regression
model ' by using the substructure number density 33d
corresponding to the important substructure 33e¢ as a vari-
able x' and an experimental value as y'. In step S3517, the
dimension reduction unit 43¢ reduces the dimensions of the
temporal regression model ' by a predetermined dimension
reduction method and obtains the important substructure
33e.

Next, the regression model construction umit 437 performs
a second regression analysis. In step S318, the regression
model construction unit 43/ obtains the regression model 1
by using the substructure number density 33d corresponding
to the important substructure 33e as the variable x and the
experimental value as y. The experimental value y 1s a value
determined by the polymer name and the physical property
in the polymer structure and physical property DB 31. The
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regression model 1, that 1s, the regression model 33/, 1s
stored 1n the storage unit 130.

When the regression model 1 1s obtained for all or some
ol the physical properties registered 1n the polymer structure
and physical property DB 31, an experimental value may be
obtained for each physical property, and steps S517 to S518
may be repeated.

Subsequently, the physical property prediction process
P55 is performed by the physical property prediction unit 45.
When the polymer structure input unit 47a receives the
polymer structure 6a in the prediction processing unit 40
(step S521), the model structure, the number of substruc-
tures, the number of atoms, and the substructure number
density are obtained using the polymer structure 6a as the
repeating umt (step S522). The model structure, the number
of substructures, the number of atoms, and the substructure
number density of the polymer structure 6a are obtained by
performing a process similar to the process from step S512
to step S515 1n the model generating process P51.

In step S523, the dimensions of the substructure number
density of the polymer structure 6a are reduced based on the
important substructure 33e obtained 1n step S517, and 1n step
S524, the polymer physical property prediction unit 475
predicts the physical property value 65 by using the regres-
sion model 1 (1.e., the regression model 33/ stored in the
storage unit 130) obtained 1n step S518. The obtained
physical property value 66 1s sent to the terminal 3 or
displayed on the display device 15.

When the regression model 33/ corresponding to each of
multiple physical properties 1s generated, it 1s desirable to
manage the generated regression models 33/ 1n a table as
illustrated 1n FIG. 9. FIG. 9 1s a drawing illustrating an
example of a data configuration of a regression model
management table.

In FIG. 9, a regression model management table 33k 1s a
table for managing the regression model 33/ for each physi-
cal property, and includes items such as the physical prop-
erty, the regression model, and the important substructure.
The physical property represents a name for specitying the
physical property, such as the refractive index, and the glass
transition point. The regression model represents the regres-
sion model 33/ corresponding to the physical property,
constructed in the regression model construction unit 431

The important substructure specifies a valid vector of the
vector of the substructure number density 33d, obtained
alter dimension reduction (1.e., a valid vector after dimen-
s1on reduction) for using the regression model 33/ When the
dimension reduction i1s omitted, the 1tem of the important
substructure 1s omitted.

In the physical property prediction unit 45, the polymer
physical property prediction unit 475 obtains the regression
model 33/ and the important substructure 33e that are
corresponding to the physical property to be predicted from
the regression model management table 334

The inventors have verified the prediction accuracy of
various functional configurations described below. Accord-
ing to verification results, the first functional configuration
example described above can improve the prediction accu-
racy the most. Further, the inventors have verified that the
prediction accuracy can be sufliciently improved even 1n a
configuration i which either or both of the model structure
generator 43a and the dimension reduction unit 43e are
removed.

First, other examples of the functional configuration in
which the prediction accuracy 1s verified will be described
below. In the following description, a second functional
configuration example 1s a functional configuration 1n which
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both of the model structure generator 43 and the dimension
reduction unit 43e are removed, a third functional configu-
ration example 1s a functional configuration in which the
model structure generator 43a 1s removed, and a fourth
functional configuration example 1s a functional configura-
tion in which the dimension reduction unit 43¢ 1s removed.
In the second functional configuration example to the fourth
functional configuration example, processing units similar to
the processing units of the first functional configuration
example 1llustrated 1n FIG. 3 are referenced by the same
reference numerals, and the detailed description 1s omitted.
|Second Functional Configuration Example]

FIG. 10 1s a drawing illustrating the second functional
configuration example of the physical property prediction
device. In FIG. 10, 1n the second functional configuration
example, the model structure generator 43a and the dimen-
s1on reduction unit 43¢ are removed from the first functional
configuration example 1llustrated 1n FI1G. 3. Thus, the model
structure 33a and the important substructure 33e are not
generated.

In the model generator 41, the substructure number cal-
culating unit 435 and the atom calculating unit 43¢ obtains
the number of substructures 335 and the number of atoms
33¢ by obtaining the repeating unit from the polymer
structure and physical property DB 31.

Also 1n the second functional configuration example, the
substructure number density calculating unit 434 calculates
the substructure number density 334. Then, the regression
model construction unit 437 obtains the regression model 33/
by using the calculated substructure number density 334 and
the experimental value of the physical property.

In the physical property prediction unit 45, when the
polymer structure mput unit 47q inputs the polymer struc-
ture 6a, the polymer physical property prediction unit 475
calculates the number of substructures and the number of
atoms by using the polymer structure 6a without creating the
model structure 33a. The polymer physical property predic-
tion unit 475 obtains the substructure number density by
dividing the obtained number of substructures by the num-
ber of atoms, and uses the substructure number density 334
to obtain the property value 65 by the regression model 33/

In the second functional configuration example, the
regression analysis 1s performed only once. The number of
dimensions of the regression model 33/ 1s the same number
as the number of dimensions of the substructure number
densities 33d, and the important substructure 33e i1s not
determined. However, if the wvalues of the substructure
number density 334 are identical, even polymers with dif-
terent lengths of the repeating unit can be treated equiva-
lently, and the prediction accuracy can be sufliciently
improved.

| Third Function Configuration Example]

FIG. 11 1s a drawing illustrating the third functional
configuration example of the physical property prediction
device. In FIG. 11, 1in the third functional configuration
example, the model structure generator 43a 1s removed from
the first functional configuration example 1llustrated 1n FIG.
3. Thus, the model structure 33a i1s not generated.

In a manner similar to the second functional configuration
example, in the model generator 41, the substructure number
calculating unit 435 and the atom calculating unit 43¢ obtain

the repeating unit from the polymer structure and physical
property DB 31 to obtain the number of substructures 3356

and the number of atoms 33c¢. The substructure number
density calculating unit 434 obtains the substructure number
density 33d. Then, the dimension reduction unit 43¢ obtains
the important substructure 33e and reduces the dimensions
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ol the substructure number densities 334, and the regression
model construction unit 43f outputs the regression model
33/

In the physical property prediction unit 45, when the
polymer structure mput unit 47a inputs the polymer struc-
ture 6a, the polymer physical property prediction umt 475
calculates the number of substructures and the number of
atoms by using the polymer structure 6a without generating
the model structure 33a. Then, the polymer physical, prop-
erty prediction unit 47b obtains the substructure number
density by dividing the obtained number of substructures by
the number of atoms, reduces the number of dimensions of
the substructure number densities based on the substructure
number density 33d, and outputs the property value 65 by
using the regression model 33/

In the third functional configuration example, when the
values of the substructure number density 334 are 1dentical,
even polymers with different lengths of the repeating unit
can be equivalently treated. Although the model structure
33a 1s not generated, the important substructure 33e 1is
determined by the dimension reduction unit 43e, thereby
improving the prediction accuracy of the regression model
33/ generated by the regression model construction unit 43/

|[Fourth Functional Configuration Example]

FIG. 12 1s a drawing 1illustrating the fourth functional
configuration example of the physical property prediction
device. In FIG. 12, 1n the fourth functional configuration
example, the dimension reduction unit 43¢ 1s removed from
the first functional configuration example 1llustrated 1n FIG.
3. Thus, the important substructure 33e 1s not generated.

In the model generator 41, the model, structure generator
43a generates the model structure 334, and the substructure
number calculating unit 435 and the atom calculating unit
43¢ obtain the number of substructures 335 and the number
of atoms 33c¢ based on the model structure 33a.

In the physical property prediction unit 45, when the
polymer structure mput unit 47a inputs the polymer struc-
ture 6a, the polymer physical property prediction umt 475
generates the model structure 33a and calculates the number
ol substructures and the number of atoms by using the model
structure 33a. Then, the polymer physical property predic-
tion unit 475 obtains the substructure number density by
dividing the obtained number of substructures by the num-
ber of atoms, and uses the substructure number density 334
to obtain the physical property value 65 by the regression
model 33/, The dimensions of the substructure number
densities obtained Ifrom polymer structure 6a are not
reduced.

In the fourth functional configuration, when the values of
the substructure number density 33d are identical, even
polymers with different lengths of the repeating unit can be
equivalently treated. Although the important substructure
33¢ 1s not generated, the model structure 33a and the
substructure number density 334 can improve the prediction
accuracy ol the regression model 33/ generated by the
regression model construction unit 43/.

Next, a functional configuration example based on the
existing technique will be described as a comparative
example.

|[Existing Functional Configuration Example]

FIG. 13 1s a drawing illustrating a functional configura-
tion example of a physical property prediction device based
on the existing technique. In FIG. 13, a physical property
prediction device 9 has a functional configuration based on
the existing technique. In the comparative example illus-
trated mm FIG. 13, a prediction processing unit 90 of the
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physical property prediction device 9 includes a model
generator 91 and a physical property prediction unit 95.

The model generator 91 1s a processing unit that generates
a regression model 83/ and includes a substructure number
calculating unit 935 and a regression model construction
umit 93/, The substructure number calculating unit 9356
obtains the repeating unit from the polymer structure and
physical property DB 31 and stores the number of substruc-
tures 835 in the storage unit 130. The regression model
construction unit 93/ constructs the regression model 83/ by
performing a regression analysis using the number of sub-
structures 83b and an experimental value obtained from the
polymer structure and physical property DB 31, and stores
the regression model 83/ 1n the storage unit 130.

The physical property prediction unit 935 1s a processing,
unit that predicts the physical property value by applying the
polymer structure 6a desired to be processed by a user to the
regression model 837, and includes a polymer structure input
umt 97a and a polymer physical property prediction unit
97b. The polymer structure input unit 97a stores the polymer
structure 6a i1n the storage unit 130 when receiving the
polymer structure 6a. The polymer physical property pre-
diction unit 975 obtains the number of substructures of the
polymer structure 6a and applies the obtained number of
substructures to the regression model 83f to obtain the
predicted physical property value 6b. The physical property
value 6b 1s presented to the user.

[ Verification of the Prediction Accuracy]

Next, results of verifying the prediction accuracy of the
functional configuration example as a comparative example
and the first to fourth functional configuration examples will
be described. In each functional configuration example, the
inventors have verified the prediction accuracy when the
refractive mdex 1s predicted.

EXAMPLE 1

In Example 1, the second functional configuration
example (FIG. 10) 1n which the model structure generator
43a and the dimension reduction unit 43¢ are removed was
used for the verification. In Example 1, the model structure
33a 1s not generated. In addition, the regression analysis 1s
performed only once by the regression model construction
unmt 43/.

In the above-described second functional configuration
example, structures of 51 general infinite linear polymers,
such as polyethylene and polypropylene, (i.e., repeated
units) and experimental values of the refractive index were
used as training data. ECFP4 was used as the structure
descriptor. Here, ECFP4 indicates ECFP having a radius of
4 and 1024 dimensions. Hereinafter, ECPF4 will be referred
to as an ECFP descriptor.

The ECFP descriptor 1s represented by a vector, each
dimension represents a substructure classification, and a
value of each dimension corresponds the number of sub-
structures. Software such as RDKit was used to generate the
ECFP descriptor. For convenience, the ECFP Descriptor 1s
defined as a substructure number descriptor. Then, a sub-
structure number density descriptor 1s obtained by dividing
cach element of the substructure number descriptor by the
number of constituent atoms.

As a regression method, the Gaussian process regression
was used. The regression model 33f was constructed using
the substructure number density descriptor as an explanatory
variable and the experimental value of the refractive index
as an objective variable.
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A data set was divided into a training data set and a
verification data set by leave-one-out cross-verification, a
regression model was constructed after hyperparameter tun-
ing was performed using the training data set, and the
refractive index of a polymer that was not learned was 2
predicted using the verification data set. The coefficient of
determination R” and the root mean squared error (RMSE)
were used as evaluation measures of the prediction accuracy.
There are various definition equations of R”, but the fol-

lowing equation was used this time. 10

Y -7 Eq. 1
D = 15

R =1

Here, vy, 1s an experimental value of an 1th polymer, y_bar 1s

a measured average value, and 1, 1s the predicted value of the

ith polymer. 20
In the description above, the number of constituent atoms

corresponds to the number of atoms of the repeating unit, the

substructure number descriptor corresponds to the numbers

of substructures 33b, and the substructure number density

descriptor corresponds to the substructure number densities 25

33 d

EXAMPLE 2

In Example 2, the third functional configuration example 30
(FIG. 11) 1n which the model structure generator 43a was
removed was used for the verification. Since the model
structure 33a was not generated, the substructure number
density 33d was obtained from the repeating unit of the
polymer structure and physical property DB 31. The regres-
sion analysis was performed twice by the dimension reduc-
tion unit 43¢ and the regression model construction unit 43f.

Before constructing the regression model 33f, the dimen-
sion reduction unit 43e constructs a Lasso regression model
(corresponding to the temporal regression model) from the
substructure number density 33d and the experimental value
of the physical property of the polymer obtained from the
polymer structure and physical property DB 31, and per-
forms the dimension reduction by excluding variables with 45
coefficients of 0. In the regression model construction unit
43f, the regression model 33f was constructed by the Gauss-
1an process regression 1n a manner similar to Example 1.
Then, the prediction accuracy of the refractive index was
verified by a method similar to the method of Example 1. 50

35

40

EXAMPLE 3

In Example 3, the fourth functional configuration example
(FIG. 12) in which the dimension reduction unit 43¢ 1s 55
removed was used for the verification. The important sub-
structure 33¢ was not obtained. The regression model 33f
with the number of dimensions of the substructures number
densities 33d was constructed.

First, after 10 repeating units were generated as the model 60
structure 33a, the substructure number descriptor and the
number of atoms were calculated, and the substructure
number density descriptor was calculated. After the sub-
structure number density descriptor was calculated, a pre-
dicted value of the refractive index was obtained by a 65
method similar to the method of Example 1, and the pre-
diction accuracy was verified.

16
EXAMPLE 4

In Example 4, the first functional configuration example
(FIG. 3) including the important substructure 33¢ and the
dimension reduction unit 43¢ was used for the verification.

First, after 10 repeating units were generated as the model
structure 33a, the substructure number descriptor and the
number of atoms were calculated, and the substructure
number density descriptor was calculated. In addition, the
dimension reduction unit 43¢ constructed a LLasso regression
model (corresponding to the temporal regression model) and
constructed the regression model 33f by the Gaussian pro-
cess regression after reducing the dimensions by excluding
variables with coefficients of (0. Then, the prediction accu-
racy of the refractive index was verified by a method similar
to the method of Example 1.

COMPARATIVE EXAMPLE 1

In Comparative example 1, the existing functional con-
figuration example (FIG. 13) 1n which only the substructure
number calculating unit 935 and the regression model con-
struction unit 93f obtains the regression model 83/ was used
for the verification.

The substructure number calculating unit 935 obtained the
regression model 83f from the number of substructures 835
(1.e., the substructure number descriptor) obtained using the
repeating unit and the experimental value of the refractive
index. The regression model 83f was constructed using the
(Gaussian process regression in a manner similar to the
manner of Example 1. The predictive accuracy was verified
in a manner similar to the manner of Example 1.

FIG. 14 1s a drawing illustrating an example of evaluation
results. FIG. 14 illustrates the evaluation results of the
prediction accuracy of the refractive index evaluated for
each of Comparative example 1 and Examples 1 to 4 as
described above. Results of R* and RMSE are shown as the
evaluation results.

In the evaluation result of R, compared with “~0.063" of
Comparative Example 1, results of “0.890” in Example 1,
“0.900” 1n Example 2, “0.932” 1n Example 3, and “0.950”
in Example 4 are shown. The closer to “1” R~ is, the higher
the prediction accuracy becomes. Thus, from the evaluation
results, 1t 1s found that the prediction accuracy can be
significantly improved 1n any of the functional configuration
examples according to the present embodiment.

In RMSE, compared with *“0.084” 1n Comparative
example 1, results of “0.027” in Example 1, “0.026” 1n
Example 2, “0.021” in Example 3, and “0.018” in Example
4 are shown. The closer to “0” RMSE 1s, the higher the
prediction accuracy becomes. Thus, 1t 1s found that the
prediction accuracy can be significantly improved 1n all the
functional configuration examples according to the present
embodiment 1n the evaluation results.

From such evaluation results, it can be said that the
substructure number density 334, which the inventors have
focused on, greatly contributes to the improvement of the
prediction accuracy in the present embodiment.

FIG. 15 1llustrates an example of results of an evaluation
performed by changing the physical property and the num-
ber of data 1n the data set in a manner similar to the manner
of Example 4. FIG. 15 illustrates evaluation results of
physical properties of Examples 5 to 9 performed by a
respective number of data 1in a manner similar to the manner
of Example 4. Results of R are shown as the evaluation
results.
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In the results of R>, results of a refractive index, a glass
transition point [k], a band gap [eV], a relative permittivity,
a coefficient of linear expansion [107>/K], and a density
[g/cm’] are greater than or equal to 0.6. Thus, it is found that
the prediction accuracy can be significantly improved.

Since the physical property value can be predicted in
advance using the physical property prediction device 100,
the polymer structure 6a to be manufactured can be accu-
rately selected. Thus, it 1s possible to reduce waste of costs,
time, and so on related to polymer manufacturing.

As described above, according to the present embodi-
ment, the physical properties of the polymer can be accu-
rately predicted by generating the structure descriptor based
on the polymer structure.

Next, a manufacturing method of a polymer using the
desired polymer structure 6a and the predicted physical
property will be described. FIG. 1s a drawing 1llustrating an
example ol a manufacturing method of the polymer.

From FIG. 16, the manufacturing method of the polymer
in the present embodiment 1ncludes a step of obtaining a
polymer structure having a property value predicted by the
polymer physical property prediction method according to
the present embodiment (S601) and a step of preparing raw
materials for forming the polymer structure (S602), and a
step of causing the raw materials to react to obtain a polymer
represented by the polymer structure (S603).

In step S601, a polymer structure predicted to have a
predetermined physical property value 1s appropnately
selected from the mput polymer structures. For example, a
polymer structure whose refractive index 1s within a prede-
termined range may be selected from the mput polymer
structures.

In step S602, raw materials of monomers, oligomers, and
the like are prepared as raw materials for forming the
polymer structure selected 1n step S601. For example, 11 the
selected polymer structure i1s polyethylene, ethylene 1s pre-
pared.

In step S603, the raw matenials prepared i S602 are
caused to react to obtain a polymer represented by the
polymer structure selected in S601. For example, ethylene 1s
polymerized to form polyethylene.

The present invention 1s not limited to the specifically
disclosed embodiments and various variations and modifi-
cations can be made without departing from the scope of the
claims.

The present application 1s based on and claims priority to
Japanese Patent Application No. 2018-043171, filed on Mar.
9, 2018, the entire contents of which are hereby incorporated
herein by reference.

What 1s claimed 1s:

1. A polymer physical property prediction device com-
prising:

a processor; and

a memory storing program instructions that cause the

processor to
read a structural unit from a storage unit and use the
structural unit to calculate numbers each indicating
how many substructures are 1n a polymer, the polymer
being formed of repetition of the structural unit;

calculate a number 1indicating how many atoms are in the
structural unit;

calculate number densities of the substructures from the

numbers of substructures and the number of atoms in
the structural unit;

construct a regression model that predicts a physical

property value by using an experimental value of a
physical property of the polymer and the number
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densities of the substructures, the experimental value
being obtained from the storage unit;

input a polymer structure of which the physical property

value 1s to be predicted; and

predict the physical property value corresponding to the

input polymer structure by using the regression model.

2. The polymer physical property prediction device as
claimed in claim 1, wherein the program instructions cause
the processor to further classity the substructures of the
polymer using an algorithm, and the calculated numbers of
substructures each indicate a number of each corresponding
classified substructure present in the polymer.

3. The polymer physical property prediction device as
claimed 1n claim 1, wherein the program instructions cause
the processor to further remove part of the calculated num-
ber densities of the substructures.

4. The polymer physical property prediction device as
claimed in claim 1, wherein the program instructions cause
the processor to further generate a model structure by
repeatedly using the structural unit obtained from the storage
unit.

5. The polymer physical property prediction device as
claimed 1n claim 1,

wherein the program instructions cause the processor to

turther

generate a model structure by repeatedly using the
structural umt obtained from the storage unit, and

remove part of a structure descriptor representing the
calculated number densities of the substructures,

wherein the numbers of substructures and the number
of atoms are calculated from the generated model
structure.

6. The polymer physical property prediction device as
claimed in claim 1, wherein the program instructions cause
the processor to calculate the numbers of substructures and
the number of atoms 1n the polymer structure by using the
input polymer structure, calculate the number densities of
the substructures from the calculated numbers of substruc-
tures and the calculated number of atoms, and apply the
calculated number densities to the constructed regression
model to predict the physical property value of the polymer
structure.

7. The polymer physical property prediction device as
claimed in claim 1, wherein the physical property value 1s a
value of a refractive index or a value of a glass transition
point.

8. The polymer physical property prediction device as
claimed 1n claim 1, wherein the physical property value 1s a
value of a band gap, a value of a relative permittivity, a value
ol a coetlicient of linear expansion, or a value of a density.

9. The polymer physical property prediction device as
claimed 1n claim 1, wherein the numbers each indicating
how many substructures are 1n the polymer are calculated by
counting a substructure i the polymer to obtain a substruc-
ture number indicating how many units of the substructure
are 1n the polymer, a number of atoms i1n the polymer 1is
calculated, and the number densities are calculated by divid-
ing the substructure number by the number of atoms 1n the
polymer.

10. The polymer physical property prediction device as
claimed in claim 3, wherein the program instructions cause
the processor to calculate the numbers of substructures and
the number of atoms of the polymer structure by using the
input polymer structure, calculate the number densities of
the substructures from the calculated numbers of substruc-
tures and the calculated number of atoms, remove part of the
calculated number densities of the substructures, and apply
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the number densities whose part 1s removed to the con-
structed regression model to predict the physical property
value of the polymer structure.

11. The polymer physical property prediction device as
claimed 1n claim 4, wherein the program instructions cause
the processor to generate an mput polymer model structure
by repeatedly using the mput polymer structure, calculate
the numbers of substructures and the number of atoms in the
input polymer model structure, calculate the number densi-
ties of the substructures from the calculated numbers of
substructures and the calculated number of atoms, and apply
the calculated number densities to the constructed regression
model to predict the physical property value of the polymer
structure.

12. The polymer physical property prediction device as
claimed 1n claim 5, wherein the program instructions cause
the processor to generate the model structure by repeatedly
using the mput polymer structure, calculate the numbers of
substructures and the number of atoms 1n the model struc-
ture, calculate the number densities of the substructures from
the calculated numbers of substructures and the calculated
number of atoms, remove the part of the structure descriptor
representing the calculated number densities of the substruc-
tures, and apply the number densities whose part 1s removed

to the constructed regression model to predict the physical
property value of the polymer structure.
13. A non-transitory computer-readable recording

medium having stored therein a polymer physical property
prediction program for causing a computer to execute a
process comprising:
reading a structural unit from a storage unit and using the
structural unit to calculate numbers each indicating
how many substructures are 1n a polymer, the polymer
being formed of repetition of the structural unit;

calculating a number indicating how many atoms are in
the structural unit;

calculating number densities of the substructures from the

numbers of substructures and the number of atoms in
the structural unit;

constructing a regression model that predicts a physical

property value by using an experimental value of a
physical property of the polymer and the number
densities of the substructures, the experimental value
being obtained from the storage unit;

inputting a polymer structure of which the physical prop-

erty value 1s to be predicted; and

predicting the physical property value corresponding to

the mput polymer structure by using the regression
model.

14. The recording medium as claamed i claim 13,
wherein the predicting the physical property value further
includes calculating the numbers of substructures and the
number of atoms 1n the polymer structure by using the input
polymer structure, calculating the number densities of the
substructures from the calculated numbers of substructures
and the calculated number of atoms, and applying the
calculated number densities to the regression model to
predict the physical property value of the polymer structure.

15. The non-transitory computer-readable recording
medium as claimed 1n claim 13, wherein the numbers each
indicating how many substructures are 1n the polymer are
calculated by counting a substructure in the polymer to
obtain a substructure number 1indicating how many units of
the substructure are in the polymer, a number of atoms in the
polymer 1s calculated, and the number densities are calcu-
lated by dividing the substructure number by the number of
atoms 1n the polymer.
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16. A polymer physical property prediction method
executed by a computer, the method comprising:
reading a structural unit from a storage unit and using the
structural unit to calculate numbers each indicating
how many substructures are i1n a polymer, the polymer
being formed of repetition of the structural unait;

calculating a number indicating how many atoms are in
the structural unit;

calculating number densities of the substructures from the

numbers of substructures and the number of atoms in
the structural unait;

constructing a regression model that predicts a physical

property value by using an experimental value of a
physical property of the polymer and the number
densities of the substructures, the experimental value
being obtained from the storage unit;

inputting a polymer structure of which the physical prop-

erty value 1s to be predicted; and

predicting the physical property value corresponding to

the mput polymer structure by using the regression
model.
17. The polymer physical property prediction method as
claimed in claim 16, wherein the predicting the physical
property value further includes calculating the numbers of
substructures and the number of atoms in the polymer
structure by using the input polymer structure, calculating
the number densities of the substructures from the calculated
numbers of substructures and the calculated number of
atoms, and applying the calculated number densities to the
regression model to predict the physical property value of
the polymer structure.
18. The polymer physical property prediction method as
claimed in claim 16, wherein the numbers each indicating
how many substructures are 1n the polymer are calculated by
counting a substructure in the polymer to obtain a substruc-
ture number 1ndicating how many units of the substructure
are 1n the polymer, a number of atoms in the polymer 1s
calculated, and the number densities are calculated by divid-
ing the substructure number by the number of atoms 1n the
polymer.
19. A polymer manufacturing method comprising;:
reading a structural unit from a storage unit and using the
structural unit to calculate numbers each indicating
how many substructures are 1n a polymer, the polymer
being formed of repetition of the structural unit;

calculating a number indicating how many atoms are in
the structural unait;

calculating number densities of the substructures from the

numbers ol substructures and the number of atoms in
the structural unit;

constructing a regression model that predicts a physical

property value by using an experimental value of a
physical property of the polymer and the number
densities of the substructures, the experimental value
being obtained from the storage unit;

inputting a polymer structure of which the physical prop-

erty value 1s to be predicted;

predicting the physical property value corresponding to

the mput polymer structure by using the regression
model,

obtaining a polymer structure having the predicted physi-

cal property value;

preparing materials for forming the polymer structure;

and

obtaining a polymer represented by the polymer structure

by reacting the matenals.
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20. The polymer manufacturing method as claimed in
claim 19, wherein the numbers each indicating how many
substructures are in the polymer are calculated by counting
a substructure 1in the polymer to obtain a substructure
number indicating how many units of the substructure are in 3
the polymer, a number of atoms 1n the polymer 1s calculated,
and the number densities are calculated by dividing the

substructure number by the number of atoms 1n the polymer.

G x e Gx o

22



	Front Page
	Drawings
	Specification
	Claims

