12 United States Patent

US011914755B2

(10) Patent No.: US 11,914,755 B2

Kitahara et al. 45) Date of Patent: Feb. 27, 2024
(54) CLUSTER RESOURCE SIGNATURE (56) References Cited
VERIFICATION B
U.S. PATENT DOCUMENTS
(71) Applicant: INTERNATIONAL BUSINESS 6.263.434 Bl 72001 Hanna et al.
MACHINES CORPORATION, 7,840,814 B2* 11/2010 Benoit GO7F 7/1008
Armonk, NY (US) 455/410
9,268,935 B2* 2/2016 Lindooeene, HO04W 12/37
(72) Inventors: Hirokuni Kitahara, Sumida-ku (JP); (Continued)
Ruriko Kudo, Saitama (JP);
Kugamoorthy Gajananan, Toshima-ku FOREIGN PATENT DOCUMENTS
(JP); Yuji Watanabe, Chuouku (JP) CN 106066810 A 11/7016
_ CN 108777625 A 11/2018
(73) Assignee: INTERNATIONAL BUSINESS (Continued)
MACHINES CORPORATION,
Armonk, NY (US) OTHER PUBLICATIONS
(*) Notice: Subject‘ to any disclaimer_,‘ the term of thus R. Kudo, H. Kitahara, K. Gajananan and Y. Watanabe, “Integrity
patent is extended or adjusted under 35 Protection for Kubernetes Resource Based on Digital Signature,”
U.S.C. 154(b) by 468 days. 2021 IEEE 14th International Conference on Cloud Computing
(CLOUD), Chicago, IL, USA, 2021, pp. 288-296. (Year: 2021).*
(21) Appl. No.: 17/167,398 (Continued)
(22) Filed: keb. 4, 2021 Primary Examiner — Kar1 L Schmidt
: P 74) Attorney, Agent, or Firm — Tutunjian & Bitetto,
(65) Prior Publication Data %-C?; Robe rt;;{icl%ar d Aragona J
US 2022/0245285 Al Aug. 4, 2022
(57) ABSTRACT
(1) Int. CL. H Methods and systems for verifying a resource definition
Goor 21/64 (2013'();) include simulating an original resource definition to 1identify
GO6F 9/50 (2006'0;) at least one change that 1s made to the original resource
GO6F 11/34 (2006'0;) definition by a management service. A signature of a
GO6F 21/31 (2013.01) received resource defimition 1s generated, omitting portions
(52) US. ClL of the received resource definition that correspond to the at
CPC GO6l 21/64 (2013.01); GO6F 9/5011 least one i1dentified change. The signature of the received
(2013.01); GO6F 11/3457 (2013.01); GO6F resource definition 1s compared to a signature of the original
21/31 (2013.01) resource definition to find a match and to verity the recerved
(58) Field of Classification Search resource definition. The received resource definition 1s

CPC GO6F 21/64; GO6F 21/31; GO6F 21/566;
GO6F 21/563

See application file for complete search history.

(znarate signature for an onginal
resouice definiion
3¢

Reguest instaliation of 2 mogiied
reapurce definilion
304

[~ . TTTTT]
L m ... oo ..o ... L. o ; ... = ... ERPAPPL, = ...
M W LW

306

AT LA UL EFULIL AL UL -

e resouree definition

T - i
Siruisate ine orniginal resource I_

implemented, responsive to finding the match.

14 Claims, 8 Drawing Sheets

| identity changing fislds of the original

308

{sanerate zignature of ine modihied
resource, gnoring changing fislds
310

— 7

- Compare signature of the original
' resource definition to signatura of the
| modified rescurce definition

214

mateh?

216

I install resgurcs

US 11,914,755 B2

Page 2
(56) References Cited FOREIGN PATENT DOCUMENTS
U.S. PATENT DOCUMENTS CN 111144859 A 5/2020
WO 2018205325 A1 11/2018
9,442,810 B2* 9/2016 Jaisinghani HO041.41/12
9,501,313 B2 11/2016 Konik et al.
9,665,385 Bl1* 5/2017 Nguyen ... GO6F 9/455 OTHER PUBLICATTONS
9,679,122 Bl 6/2017 Dehaan et al.
10,291,706 B1* 5/2019 Zhao HO4L 67/1097 Moritz Strube, et al. DrySim: simulation-aided deployment-specific
10,404,474 B1* 9/2019 Caceres GOOF 97455 tailoring of mote-class WSN software. In Proceedings of the 17th
10,742,421 B1™ /2020 Wentz HOA4L 970897 ACM international conference on Modelin lysi d simul
10,824,726 Bl * 11/2020 Herman Saffar GOGF 21/566 2, dllalysls dnd SHntia-
11,593,495 B2* 2/2023 Dekel ..cccovvon... GO6F 21/6209 tion of wireless and mobile systems (MSWIM ’14). Association for
2004/0193388 Al* 9/2004 Outhred HO4L 67/1001 Computing Machinery, New York, NY, 3-11. (Year: 2014).*
| 703/1 International Search Report and Written Opinion 1ssued in corre-
2014/0006796 Al* 172014 Smuth .vvvvvrnnrnees GOOF 217645 ghonding PCT Application Serial No. PCT/ CN2022/071600, dated
| | | TI3/187 Nar 17, 2022, pp. 1-8.
2018/0129479 Al1* 5/2018 McPherson GO6F 8/63 . . o .,
2018/0367578 Al 12/2018 Schwarz ef al. Anonymous., “Certificate Signing Requests”, Kubernetes v1.19
2019/0065323 Al 2/2019 Dhamdhere et al. [stable], pp. 1-9, Oct. 20, 2020.
2020/0067789 Al* 2/2020 Khuti HO0A4I. 41/5009 Anonymous., “Extend the Kubernetes API with CustomResourceDefini-
2020/0228402 Al* 7/2020 Parker GO6F 9/45533 tions”, Kubernetes v1.10 [beta], pp. 1-19, Nov. 4, 2020.
2020/0389372 Al 12/2020 Tian Mell et al., “The NIST Definition of Cloud Computing”, National
2021/0144013 A'_“ ¥ 52021 Chen ..o, HO4L 9/0894 Institute of Standards and Technology, Special Publication 800-145,
2021/0311763 Al™ 10/2021 Beard GO6F 8/65 Sep. 2011 {7
2022/0019418 Al* 1/2022 McKay ..coovvevee... H041. 63/20 . cVL L, PP 27
2022/0114003 Al* 4/2022 Okman GO6F 9/45558 _ _
2022/0237048 Al* 7/2022 WiggerS .oovovven... GO6F 9/5027 ™ cited by examiner

S. Patent

LU N B N N N N N N N N B N B N

User
102

LI N O DN U B B DN B R R N U N U R B B N B B BB BN

-
iiiii-i-li-liiiiiiiiiiiiiiiiiiiiiiii‘iiii

*

FProcessing
node
106

LR B N N N N N N N N N N N N N N I N N I N N N N N N N N N B N N B B B B

ko ko ko bk kb ko

Feb. 27, 2024

Sheet 1 of 8

LD B N N B UL B B UL N N N N N U N N N N N N N N N N N N N N N N B B B B N

Manager
syste
104

- -
LI A 4
LI I A I I R RN RN
- 4 h ok
- 4 -
L]

ok ko ko ko ko ko ko
LI N O DN U B B DN B R R N U N U R B B N B B BB BN

-l-l-l-l-liiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

ProCessing

node
146

L I N I N B N I N N N N N I N N I N I I B N I N N B B B B B B B B B B B)

Fila. 1

o o o
ko ko ko bk kb ko

ProCessing
noae
106

S 11,914,755 B2

o kb

L B T I B RO I RO RO B DO DL IO O RO IO DAL B IO DAL DL BOE B B BOE BOL ML L DL N B B B B B B

US 11,914,755 B2

Sheet 2 of 8

Feb. 27, 2024

U.S. Patent

L N N L N N N N N R N R N R N N N R N N R N O B R D N N N N N N R N N N N R L N L N R N I N R N K R R N R R R R N I N N N R R R R N R L N R R N R R N R R B N R N N N B

L I o I N N N .

LI I N I R R EREERENENERRENENENEENENEEENEEENREERMNRIR]!
]
 h o h ok ok h ok ohoh hh o dhd hh ok hh o h ko h h ok h
4 bk oh Ak ko h ko hh o hh o hh o hh o hh o h R hh o hh o h R

-
-

-

-

-

-

“ -
-

-

L :
-

-

m -
-

E LECEE .
o ;

-

d -
__ m -
. -
-

“ -
) -,

-

S .
-

-

-

-

-

-

-

-

-

-

-

-

L N N N L N N N B N L N ++ PP FFPFFrErFErFrrFFESLFFSrSFrESrFEFrESFSLrErSSrer

Conlainer
208

4 4 4 4 d hhd hhhh A h o hh A hhhhhd hhhhhhh Ak
- 4 A

L
.
L
L
.
L
L
r
L
L
.
L
L
.
L
L
.
L
L
.
L
L
r
.
L
.
L
L
.
L
L
r
L
L
.
L
L
L

LA N NN N BN BB BB B EBEBEEBEBEBEEEBEEEBEERBEEBEBEEBNENELE.,. LI BB N BB EBEEBEEEBEEEBEBEEBEEBEEBEEBEBEEBEEBENEE.,.

k=

4 4 b h h Ak ok h o h Ak h o hhhhhhhhhhhhhhh o hhh Ak

Frocessor
207

L I I I I N

L I I T T L T I

L L N N B LN L N N N N NN NN NN NN N N N NN N NN N NN N NN N N N NN N NN N NN NN NN N NN NN NN NN NN NN EEEEEEEEEEEIEEEIEEEEIEEIEEEIEEEEEEIEEEEEEEIEEIEEIEEEEEEEEEEEEIEEEIEEEIEEIEEEIEIEEIEIEEIEIEIEIEIEEIEIEIEEEIEIEIEEIEIEEEEENEN]

L I O N N R .

ar grehestration engine

it

Conta

L I I L

L
.
L
L
.
L
L
.
L
L
.
L
L
.
L
L
.
L
L
.
L
L
.
L
L
.
L
L
.
L
L
.
L
L
.
L
L
.
.
L
.
L
L
.
L
L
r
L
L
.
L
L
.
L
L
.
L
L
.
L
L
r
.
L
.
L
L
.
L
L
.
L
L
.
L
L
r
.
L
.
L
L
.
L
L
r
.
L
.
L
L
.
.
L
.
L
L
.
L
L
r
.
L
.
L
L
.
.
L
r
.
L
.
L
L
r
.
L
.
L
L
.
L
L
r
.
L
.
L
L
T

-

.
LR
L

-
.
L

+ ¥ £ 5 F P

L
L

.
-

¥
+ £
L

L I I I I O I e L I O I

L L
L
+ ¥+ FFEr
+r F

Farsistent
yolume
218

L B T I B RO I RO RO B DO DL IO O RO IO DAL B IO DAL DL BOE B B BOE BOL ML L DL N B B B B B B

LR B N N B UL N B NE N B N N N N N N N N N N N N N N B N N N N N N B B B B

-
-

-
-

-
L]

L]
&

- -
LR]
 h ok ok oh ok oh ook
LI

- -

iiiiiiiiii.1.1.1.1.1.1.1iiiiiiiiiiiiiiiiiiiiii L N N N N N N N N N N N N N N

iNg

S
214

.
o2
2
=
-
-
s

Hersistent
VoIuMe
218

 h ok oh ok ok ohh hh o dhd Ak h ko E ko ko hhhh o hhh h ok hE ko h Ak hhh Eh ko h o h o hh ok

LB BN B EEBEBEEBEBEBEBEBEEBEEEBEBEBEEBEEBEBEEBEEBEBEEBENEEN,. LI N BN NN BB BB BB EEBEEBEEEBEEEBEEBEEERBEEBIELELELMN,.

er
C engine

VT

L I N I I B N I N B B N N I B B IO BOE B IO O N IO AL B DO AL IO B BOL N IR DAL B DR B 1

Ll

-

Ll

Ll

-

Ll

Ll

+

L]

Ll

H -
Ll

Ll

w -

L]

. Ll
.IE .
ol :

&3 - o :
-

m”““ Ll
Ll

+

) F]

T ,
-

L] ’
Ll

-

Ll

Ll

+

L]

Ll

-

Ll

Ll

+

L R T L e

L N N N B N B BB E BB EEBEEEEERENELENME,.

L o

Nt

L

.

L

L

.

L

L

.

L

L

.

L

L

.

L

L

.

L

L

.

L

L

.

L

L

.

L

L

.

L

L

.
L ’
L

.

L

L

.

.

L

.

t .
L

.

L

L

r

L

L

.

L

L

.

L

L

.

L
L
.
L
L
r
.
L
.
L
L
.
L
L
.
L
L
.
L
L
r
.
L
.
L
L
.
L

g Noge
108

FProcessin

r

. £

U.S. Patent Feb. 27, 2024 Sheet 3 of 8 US 11.914.755 B2

LR R B DR R BE BE R BE DR BE DR IR DE B BE DE DE DR DR DR R DE R DR R DE DR DR BE DR DR DR R DR DE DR DR DR BE DR BE DR DR R DR DE DR DR DE DR DR DR DR DR DR DR R DR DR BE B U B B U B B R BN B NN B B UK N B NE N B NN N0 U N BN I NN BE N B N N N BE B N BN B B B B B

Generate signature for an original

LI I T B B DO RO IO O BOE B IO DAL IO DK T IOE DAL DL DAL DO DO IO DL DO BOE DO DO DL AL DO IO DR DL IO DK BOL IOE DL DK BOE DK BN DOE DL RO DOE DK DK IOE DO BOE BOE DAL BOK BOE DO DO BOE O BOE BOE DR BOE BOE DAL DO IOE DK BOE DOE DO BOL BOE DO BOK IOR DO B DAL DL NOL DO DL RO BOE DAL DAL IOE DO BOE BON DAL RO BN BOC AL DR DAL DO BE DK 1

dentity changing fields of the original

-
LI]
LB I)
LIE L UE BE B BE BRI
LI B B
4 4 4
-

resource gefintion resource definiion

302

LR DR B B B B B B B B B B B DR B B R D DL DR DR DR DR B DR RE DE DR DR BE DR DR DE DR DE DE DR DR DR DR DR BE DR DR DR B DR DE DR DR DR DR DE DR B DR DR DR B DE DR B DR B B DR B B DR BN B NE BN B UE BE B NE B B U B I N B I N B I B N I N B B B B I B B I B
L]

ok ok ko ko
o o o ko ko ko ko
L N B R R N R N N R U N B N N R

LI I AL A I B O DL DO DAL B B O IO DAL L DL DL AL IOL DAL L IOE DO DAL IOE DOE BOE DL DO DO IO DK DO IO DOE DO IOE DL DAL IOE DO DL IOE DL DO BOE DK DAL IOE DAL DO BOE DAL DK IOE DO DO IOE DK BOE BOE DK DO DOE DO DAL IOL DOC DAL IOE DK DAL BOE BAC DO DOL DAL DO BOL DAL DAL IO DL DO IOE DAL DAL IOE BAE BEE BOL DAL BEL BOE BAE BN DL DAL BN BN)

 F F F F

o o o F k&

Generate signature of the modified
resouree, gnoring changing helds
310

L B N N B B B B O B N O B O O O O D I B O I O O B O O B O B I B D I O O B O O B O D B O B N D D N N T N N B B B DL N O B N N D N O D I D D B N B R D D N D N R D N N N N N N NN N N D N B B N B B B B B B B AN

Request instaliation of a modified
resource dshinition

e o o ko ko ko F

o ok kR
[R N B N R R RN N N R N N N NN R

L B N N B DL B B DL B B D B O O I B D I B O B O D B B O I B O I D D I B D N D DN B B D I L D N D D N B B B B N B DL R B O N N D R N D N B DN N NN D R N D N D D R D D N B N N N N N B D N N D N D B B B B B B A

L]

-
-

L]
-

-
L]

-
-

L]
-

-
L]

L]
-

LI L] LR
4 b 4 4 4 A
- - - 4
LI L]
- 4 LR
- 4 -
LI L]
- -
- -

L

LB DL B U B B UE B DL D B DN DN BN D BN DL BN DN DD DN UL DL N U B UL DB DN D U DD DL DU BN D DD DU D DD D DD DL DU DL DU NN N DL DD N DN N DR D D DD DU DN EE DN D DL DD D DD DU DL BN LB B B UL B D UE B DL DL BN N D DN DN BN DN B DN DN BN DN DS D UL D DL DS DN NS D D DD R DR DD DU DN B DD DN N D DD D BN NN DU DL DN U D DL DD D DB DR R D DD B DS DL DD DU DN NS D DN DD DU R BN

Compare signaiure of the original
resource definition to signaturs of the
modified resource definiion

Simulate the original resource
206

L B N N B N N N N N N N N D N N B N N B N B N N B N N D L N N N N B N N N N N B L N N N N D N N N N N N N N B N N B N N B N N B N N B N N B N N B N N N N N N N N B N N B N N B N N B N N B N N B N B B B

[N N N B NN N NN NN NN N NN NN NN NN NN N NN NN NN NN NN NN NN NN NNNN

4 4 4 4

o ko kR

[N N N NN NN RN RN RN NN NN NN EEE NN,
ok ok ko

LB B B B BN B BN B B B DL BN DL DS B DL DN BN DN DN BN BN DN DN BN D D U DU DL DL D NN D BN D DU DD DD DD U DU DD U DN DS B DU D BN DL DN DL DS D UL D DN RS D R DD D DL DD DU DS DD RN DS DD DR

&

LR BE BE B BE BE DR BE BE DR R DR DR DE DE DR DE DE DR DL DR DR DR DR B RE BE DR BE BE DR DL DR B DR DR BE L DR B DE DR B B DR BN DR B B B UL B DL DR B BE BE B B NE BE B UL B B U B B N BN B L B B UE B B R N N UL B I N I B NN B B B N B B N B B B B B B B B

oignatures
maten’
314

Lany resource
418

ok ok ko ko ko

o o o o F F F F FFF

L]
LI T T IO AL B IO RO RO IOE AL O IO DO O IO DO O IOE DL B BOE B B B B N L DL N D B N N B N B N N B N N N B N N N N I B N I N N N B N N N N N N NN N N N N N N R N N N N N I N N N N N N N N R N N R N N I N N I B N N B N B B N

install regource

ok o o ko ko kS
ok kR

L B T I B B I B B I D B I D B N DL N I B B B B B N R N N N N N N N N B N N N N N N N N N N N N N N N N N R N N L N N N N N R N N N N N N N N N N N B N I N N N B N N B N I I N R N B I B B I B B I B B B B B

i, 3

U.S. Patent Feb. 27, 2024 Sheet 4 of 8 US 11.914.755 B2

L L N I N N N B N N N N B N N B N I I N I DAL RO IO DAL DO BOE DO DO BOE DL DO IO DAL DK DO DK DO BOE DL DAL IOE DK BN DOE DL DAL DOE DAC BOE IOE DO DO IOE DAL BOE BOE DOE BOE DOL DO DO BOE DK BOE BOE BAE DO BOE BAE BEL IR TN BN BN)

enerate workioad

o o o F ko F F F F ko FF ko F
ko ko ko ko

Letarming resources needed
404

L I I e

o o o ko F ko ko
o o o ok o ko

LI B B B BE BE BE DR DE R BE R B DR DR R DR DE DR DR DR DR DR DR DR DR BE DR DR BE DR DR DE DR DR DR B DR DR R DR DE D DR DR BN DE DR DR B UE BE B DR B B NE BE B R BE B NN BN B N B B NE B B B B |

end implementation request
fOF resources

o o ok
o o o ko ko ko

LA B B B B B B B D B B B B B B DR DR D DR DR DR DR DR DR DR DR BE DR DR BE DR DR DE DR DR DR B DR DR R DR DE DR DR DR B DR DE B DR UE B B DR B B NE B B UE B B L B B N B B K B I R B |

LI B B B BE BE BE DR DE R BE R B DR DR R DR DE DR DR DR DR DR DR DR DR BE DR DR BE DR DR DE DR DR DR B DR DR R DR DE D DR DR BN DE DR DR B UE BE B DR B B NE BE B R BE B NN BN B N B B NE B B B B |

o o ok ko
o o o ko ko

insiall requested rasources
418

L N B B B B B B B B N O B I O O O O O I O B I O B B O O B O B I B O B O O I B B N O B B O B B N D N B B N B B B B D B B B N O D N O D B O B N B B

o o o
o o o o F o F F F F F F F F F F ko

4 o oh ok oh ok ohhhh o dhh ke hh o d ko h o h ko hh h o h hh A h h o h ok h h ok h ko h h o h hEhh E ok h

Periorm workioad using

nstalied resources
414

L N B N I N N N N N N N N N B N U N N N N B N N N N N I B B

o o o

o o o ko F F F F F F ko F

i, 4

S. Patent

o ko ko ko ko ko ko ko ko ko

hy

Feb. 27, 2024 Sheet S of 8

L I R N

Uriginal
re’0urcs

LI R L R R N

Simulated
Bt FRSQUICES
50b

L R R R]

Resource

simulator
504

L R N

atinition
502

L R R

o ok ko ko

*
L
L
ok ko ko ko kR
b o o
L
*
*
[
ok ko ko ko kR

*
o+ &

-

L]
-
-
L]
-
-
L]
-

*

LB B B B B B U B D D B O D B D D D B BN B B DL DS DL DN DS D DS B DL B BB

Hequestaed
resgurce

LB B B B B B U B D D BN O D BN D B D B B DL B DL DL DL DL DS D DS DN UL D B B BB

Yyhitelist
qenerator
208

LB B B B B DL B B DL B DL O B D D N DL D B BN B B B DL DL D D DS DU D D BB R

defin

ok ko

ok bk ko F

-
LB B B N B B B B N B B O O O DL B D D DL B DN B DN DL O D DL B DL D B D BB BB
-

-
L]
-
-
LR |
-
-
L]
-
L]

signature 520

218

L B N N B N B B B B B

S14

L B N I B N I N N I B N B B N I B N I I N I B N I B N N B N N B B B N N

h -
- -
- - 4
- -4
- -
- h 4
.
- -
- -
- -
- -
. .
- -
- . - .
- - L |]
- -
. .
- -
- -
- -
- . - .
- E -
- n -
- -
- -
- -
- -
. .
- ‘ 3 -
- -
- -
- - -
- -
. .
- -
- -
- - . . . - -
. - * 4 . . *
: -y - - -
- LR -
R -
- - -
.) * . *
- L] [-
- -
- -
- -
- -
. .
- -
- -
- -
- -
- -
. .
- -
- -
- -
- -
- H -
. .
4 4 4 4+ 4+ 43 41! - L+ 4 421l -
- -
- -
- -
- -
. .
- -
- -
- -
- -
- -
. .
- -
- -
- -
- -
-
-
.
-
-
. '
a2 Ak
4 4 A -
-4 - .
- -
b h 4 4 A
. -
‘ii‘i‘i'i‘ii'i‘i‘i‘i‘ii'i‘i‘iiiiiiiiiiiiiiiiiiiiiii L I I B B IO AL AL IO AL B DO B L B BOC O DL DO DL DO DO B L O O DL AL AL BE DAL N B B N B B BN L DL L N B UL N B UL NS N N B N L N N N N N N N N N N N N N N N N B B B B N B
- -
- -
- -
, - -
- -
- -
- -
- -
|]
- -
- -
- -
- -
L m g
- . -
- -
- -
- . -
- k -
- -
LR] - - -
A P
P e TR -
- LR
- - . -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -

o o
b o o

L B T I B RO I RO RO B DO DL IO O RO IO DAL B IO DAL DL BOE B B BOE BOL ML L DL N B B B B B B

signatura verifier
444

G, S

S 11,914,755 B2

LI B B B R BE R R DE DR R DR B DR BE B DR DE B BE DR R DR DR B R DR DR DE DR DR DE DR B DR DR B DR DR B BE BE DR DR R R DR B D DR DR DR DR DR R DR DE DR B DR B BE DR B DR DR DR BE DR R DR DR B DR DE DR BE DR RE BE DR DR DR DR R DR DR B DR DE BE DR DR R DR DR DR DR R DR DR DR DR BE DR DR DR DR DR DR DR B DR DR DR RE DR DR DR NE B DR UE B B NE B U R BE B UE BE B NE BE N N BN B N BN B NE B B N B

b o o o o o ko ko ko ko

.S. Patent Feb. 27, 2024

L N L B B B B B B O O O B I O O O O O I B D I B O B O B I B O B B O O O D I B O O O D I B D D B D B B D I N D B O D B B D N B D D D D N L D R D D N D B B B BN

oiversion: v1
xind: ConfigMap
data:

sample-data: abc
security-enabled: frue

alle

LI I I N R R RN R R R R R EREEREEREREREREEREEREREERENEEEEEEEEEENEENEERN]

& ok o ko F F F F ko F ko ko

4 h hh ok h ok oh ko h ok ohohhhdhd ko h o h ko h o h o E ko h ok h A d ko h o h h o hh ko h o h h hd h o h ko h ko hh ok h ok hh h ok

apivearsion: v’
xind: ConfigMap
metadata:

sampie-daia: abe
sgcurity-enabied: rus

o o ok F F F F F F F ko F ko F ko F ko F ko F F F ko F ko ko
o ko kS

L L B B B BN DL B B B B DL O DL DS B DL DN BN DR DN D B DN DL DN D D D N DL DD DD BN UL D D DD DU DL B BB DN DD D UL DN U DD DD LR N D DD D DL EE DR DN DD N D DR B LN N

L I I e
3 E
]
L]]
n
E

gata;

sampie-data: abe
security-enabled: trus

nefarious addition: backdoor
bils

LEE R B B BE BE DR BE DR B DR B B DR BE DR DE DE DR DR DR DR DR BE DR DR DE DR DR BE DR DR DE BE DR DE DR B DR BE DR DE DR D DR DL B B DR B BE NE B DL DR R BE DR B B DR B B L B B N B B L B L N B N R B B NE B N B B B R B B B

& ko

ok ok kR

Sheet 6 of 8 S 11.914.755 B2

L B B N B B B B DL B O O I B O B O O O O O I O O I O O I O B I O D O O O B O O B O D B O D B O B B O B B O D B O D B O B B O DL B O DL T L DL B B DL N B DL B L DL N DL DL B BN D B B BN BN

DiVersion: v

Kin

LR |

L K I)
4 4k oh &
4 &
LI I]

-

LI I B I B I R I)

o ok ko ok F F F F ko ko F ko F F F ko F F F ko

SHENE

4 4 4k dhh Ao

apiversion: vi

L]
-
-
L]
-
L]
-
-
-
L]
-

ok kS

apivarsion: vi
kind: ConfigMap
metadala
uid: azbdediZ-3ca8-a896
data
sample-data: abe
security-enabled: true
gtauit-cont

& ok o o o F o o F ko ko F ko

LB DL B U B B DS B DL DL BN B DN BN D BN DN N D DL BN DN DS DL UL D DL DL BN U DN DN D DN D N D DB R UL DL DU DD BN DN DD N DD DU DB DD DU DU DE U DN D DD D DD D DN DD DL DN LN B

US 11,914,755 B2

Sheet 7 of 8

Feb. 27, 2024

U.S. Patent

B e e e e e T e o — -
e T R T '
R W W WSRO PR MOCEL T T OTOT T W ;

3 W L Y oy o e i i e R Nt N By B Ty By -

AL A RS A EETEREREREREEE. THE E RAF TR W
ML Ly

" A

FiG. 7

U.S. Patent Feb. 27, 2024 Sheet 8 of 8 US 11,914,755 B2

,f“”‘“““‘“‘““"‘**””*"“‘”“"*“'“““‘“ e
//, R8s, /‘F’f“ avy. // Vit // Data /s’ 'ans. /f Sag :;/:
i Prov ..f/ Mgmt // Class /" Anal / Proc ve;a
7 g1 // o 4 93 4 o /
wﬁgﬁg’ioads _ .
0/ 7/ S Vgt /) SR/ /
/ .ﬂf ﬁ;j- / i 85 / /
e Manageme}nt
Wﬂ |

'I“
[9
4N
1. . -11 r ,
"
M o W l
-
o Wy
line il 2 L T L LE) Ty

Has‘dware and sothware

.*"

11111111

50

US 11,914,755 B2

1

CLUSTER RESOURCE SIGNATURE
VERIFICATION

BACKGROUND

The present mvention generally relates to cluster man-
agement and security, and, more particularly, to signing
static parts of a resource definition.

Cloud computing systems now run a wide variety of
mission-critical applications, including financial and gov-
ernmental nstitutions. Such systems may be implemented 1n
a variety ol ways, including any of several container orches-
tration systems. The sensitive nature of such applications
brings with it a need for strong security, for example to
prevent resources from being tampered with prior to 1mple-
mentation.

SUMMARY

A method for vernifying a resource defimition includes
simulating an original resource definition to identify at least
one change that 1s made to the original resource definition by
a management service. A signature ol a received resource
definition 1s generated, omitting portions of the received
resource definition that correspond to the at least one 1den-
tified change. The signature of the received resource defi-
nition 1s compared to a signature of the original resource
definition to find a match and to verily the received resource
definition. The received resource definition 1s implemented,
responsive to finding the match.

A system for verifying a resource definition includes a
hardware processor and a memory that stores computer
program code. When the computer program code 1s executed
by the hardware processor, it causes the hardware processor
to simulate an original resource definition to 1dentify at least
one change that 1s made to the original resource definition by
a management service, to generate a signature of a received
resource definition, omitting portions of the received
resource definition that correspond to the at least one 1den-
tified change, to compare the signature of the recerved
resource definition to a signature of the original resource
definition to find a match and to verity the received resource
definition, and to implement the received resource defini-
tion, responsive to finding the match.

These and other features and advantages will become

apparent from the following detailed description of 1llustra-
tive embodiments thereof, which 1s to be read 1n connection
with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The following description will provide details of preterred
embodiments with reference to the {following figures
wherein:

FIG. 1 1s a block diagram of a Platform as a Service
(PaaS) system that includes resource signature verification,
in accordance with an embodiment of the present invention;

FIG. 2 1s a block diagram of an individual processing
node 1 a PaaS system that performs signature verification
on receitved resource definitions, 1n accordance with an
embodiment of the present invention;

FIG. 3 1s a block/flow diagram of a method for verifying
a received resource definition against a signature of a
corresponding original resource definition, 1 accordance
with an embodiment of the present invention;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4 1s a block/tlow diagram of a method for installing
and using requested resources 1n a PaaS system that includes
signature verification, 1n accordance with an embodiment of
the present invention;

FIG. 5 1s a block diagram of a signature verification
system that simulates an original resource definition to
identify a whitelist of changes that occur during handling of
the resource definition, and that verifies a received resource
definition using that whitelist, in accordance with an
embodiment of the present invention;

FIG. 6 1s a diagram that illustrates different kinds of
resource defimtions and the changes that may occur within
them, 1mn accordance with an embodiment of the present
invention;

FIG. 7 1s a diagram of a cloud computing environment
according to the present principles;

and

FIG. 8 1s a diagram of abstraction model layers according
to the present principles.

.

DETAILED DESCRIPTION

A given cluster resource may change during use. For
example, an original resource may be different from the
resource that 1s actually implemented. This presents a chal-
lenge, when an application requires that the resource be
digitally signed before installation. In such a case, the
installation may fail, because the signed resource 1s not
identical to the resource that 1s being installed.

To address this problem, a resource whitelist may be
generated to 1dentily the parts of the resource that will not
change. This may be accomplished by simulating the
resource multiple times to identify those attributes within the
resource that remain constant, and those which change. A
signature file can then be generated that 1s based on the static
portions of the resource. At the time of installation, the
signature can be verified by looking only to those attributes
within the resource that are static.

Retferring now to FIG. 1, a diagram of a platform as a
system (PaaS) system 100 i1s shown. A user 102 has a
workload for execution on a distribution computing plat-
form. The user 102 communicates with a manager system
104 and provides information regarding the workload,
including the number and type of processing nodes 106 that
will be needed to execute the workload. The information
provided to the manager system 104 includes, for example,
a number of processing nodes 106, a processor type, an
operating system, an execution environment, storage capac-
ity, random access memory capacity, network bandwidth,
and any other points that may be needed for the workload.
The user 102 can furthermore provide particular images or
containers to the manager system 104 for storage in a
registry there. It should be understood that the PaaS system
100 can include many thousands of processing nodes 106,
cach of which can be 1dle or busy 1n accordance with the
workloads being executed by the PaaS system 100 at any
given time. It should also be understood that, although a
single manager system 104 1s shown, there can be multiple
such manager systems 104, with multiple registries distrib-
uted across the PaaS system 100. While this can reduce the
problem of limited bandwidth at the registry by providing
alternative 1image sources, very large deployments will still
cause delays. Furthermore, although the manger system 104
1s shown as being a single device, 1t should be understood
that scheduling can be performed at a separate location from
the 1mage registry.

US 11,914,755 B2

3

Before and during execution of the workload, the man-
ager system 104 determines which processing nodes 106
will use which images. The manager system 104 thus
distributes 1mages to the processing nodes 106 according to
its own 1nternal logic, for example based on node and
resource availability at the time of provisioning. The man-
ager system 104 and the PaaS system 100 can handle
multiple different workloads from multiple different users
102, such that the availability of particular resources will
depend on what 1s happening in the PaaS system 100
generally.

Provisioning, as the term 1s used herein, refers to the
process by which resources in a PaaS system 100 are
allocated to a user 102 and are prepared for execution. Thus,
provisioning includes the determinations made by the man-
ager system 104 as to which processing elements 106 will be
used for the workload as well as the transmission of 1images
and any configuration steps that are needed to prepare the
processing nodes 106 for execution of the workload. The
processing nodes 106 selected by the manager system 104
then install the images and perform any configuration
needed for the workload. Execution can then proceed,
triggered by the manager system 104, by the user 102, or by
any other appropriate source.

It 1s to be understood in advance that, although this
disclosure 1ncludes a detailed description of cloud comput-
ing, implementation of the teachings recited herein are not
limited to a cloud computing environment. Rather, embodi-
ments of the present invention are capable of being imple-
mented 1n conjunction with any other type of computing
environment now known or later developed.

Referring now to FIG. 2, additional detail on a processing
node 106 1s shown. The processing node 106 includes a
hardware processor 202, a memory 204, and a network
interface 206. The network interface 206 1s configured to
communicate with the manager system 104 and with other
processing nodes 106 as needed, using any appropnate
wired or wireless communications medium and protocol.
The processing node 106 also includes one or more func-
tional modules that may, in some embodiments, be 1mple-
mented as software that 1s stored 1n the memory 204 and that
1s executed by the hardware processor 202. In other embodi-
ments, one or more of the functional modules may be
implemented as one or more discrete hardware components
in the form of, e.g., application-specific integrated chips or
field programmable gate arrays.

The processing node 106 may include one or more
containers 208, for example that have been distributed to 1t
by the manager system 104. It 1s specifically contemplated
that each container 208 represents a distinct operating envi-
ronment. The containers 208 each include a set of software
applications, configuration files, workload datasets, and any
other information or software needed to execute a specific
workload. The containers 208 are stored 1n memory 204 and
are 1nstantiated and decommissioned by the container
orchestration engine 210 as needed. It should be understood
that, as a general matter, an operating system of the pro-
cessing node 106 exists outside the containers 208. Thus,
cach container 208 interfaces with the same operating sys-
tem kernel, reducing the overhead needed to execute mul-
tiple containers simultaneously. The containers 208 mean-
while generally have no communication with one another
outside of specifically agreed-to interfaces, reducing secu-
rity concerns.

A container 208 may access a distributed filesystem that
1s shared between multiple processing nodes 106. The
container 208 may communicate with the container orches-

10

15

20

25

30

35

40

45

50

55

60

65

4

tration engine 210 to mount a persistent volume 218. Upon
receipt of a request from a container 208, the container
orchestration engine 210 communicates with the storage
provision engine 212. When the storage provision engine
212 receirves a directory request, 1t provisions the distributed
fillesystem with a local directory mount point, informs the
quota manager 214 and sync engine 216 to complete quota/
1solation and mformation syncing processes, and provides a
directory back to the container orchestration engine 210.

The quota manager 214 interacts with the storage provi-
s1on engine 202 to set quotas and i1solation for the persistent
volume directories 218. The quota manager 214 gets infor-
mation from the storage provision engine 212 regarding the
successiul mount of the distributed filesystem and can be
implemented as, for example, a kernel module, where sys-
tem calls monitor the directory size and isolation of the
persistent volumes 218. The quota manager 214 interacts
with the storage provision engine 212 to address volumes
overrunning their quotas. For example, the quota manager
214 can perform actions based on policy, such as halting
writing operations, when the directory’s size exceeds a
predetermined quota. The quota amount for an individual
directory 1s determined when the persistent volume 218 1s
created. Isolation 1s used to ensure that the persistent volume
218 cannot be used by other processes.

A sync engine 216 communicates with sync engines 216
from other processing nodes 106. The sync engine 216
communicates information relating to how the persistent
volumes 218 are being used, including quota information
and 1solation information. Quota and 1solation 1s set on a
per-host basis, so the sync engine 216 communicates that
information to other hosts to guarantee consistence across
different nodes.

The persistent volumes 218 are represented herein as
directories in the local filesystem of the processing node
106. These directories can then be mount points 220 for the
distributed filesystem 106. As the containers 208 access the
persistent volumes 218, filesystem operations are transmit-
ted to and from the distributed filesystem 106, making the
data 1 the distributed filesystem 106 accessible to the
containers. In particular, 1t should be noted that multiple
containers 208 can share access to the distributed filesystem
in this manner.

In some cases, where signature verification 1s needed
before a resource can be installed, the container orchestra-
tion engine 210 communicates with a signature verifier 222.
The signature verifier compares the resource that 1s to be
installed (e.g., a description of a container 208) with a
signature for the resource. If the signature matches, then the
resource may be installed and executed. If not, then the
signature verifier 222 demes the request, and the resource 1s
prevented Ifrom being installed or executed.

Referring now to FIG. 3, a method for verilying a
resource definition 1s shown. Block 302 generates a signa-
ture for an original resource definition. In one specific, and
non-limiting example, a KUBERNETES® system may be
used for container management. In such an embodiment,
resources may be defined using text-based files in the
“YAML” format. The following 1s an exemplary YAML
resource definition that may be used mn a KUBERNETES
system:

abiVersion: vl
kind: ConfigMap
data:

US 11,914,755 B2

S

-continued

sample-data: abc
Security-enabled: true

It should be understood that this resource definition 1s
purely exemplary, and that any appropriate resource may be
used instead. The signature may be generated by any appro-
priate signing algorithm, for example using a signing key.
Such algorithms may include, for example, RSA, DSA, and
ECDSA. Additionally, the use of other container manage-
ment systems 1s also contemplated.

Block 304 receives a request for installing the resource,
for example using a resource definition file that has been
modified by a KUBERNETES system. For example, the
modified resource definition may be changed as follows,
with differences being indicated:

abiVersion: vl
kind: ConfigMap

metadata: # This line has been added
uid: a2bdedt2-3¢cal-a996 # This line has been added
data:

sample-data: abc
Security-enabled: true

default-config: def # This line has been added

If a signature was formed for the original resource defi-
nition, and the signature verifier 222 later attempts to verily
the signature for the entirety of the modified resource
definition, then the verification will fail, because the modi-
fled resource definition 1s not identical. To address this
problem, the signature verifier 222 1gnores those lines of the
modified resource definition which are expected to be
altered by the system. Excluding such lines, the signature
verifier 222 generates a signature of the remaining lines and
compares 1t to the signature of the original resource defini-
tion. If there 1s a match, then the modified resource definition
may be verified.

While these changeable lines and fields may be predeter-
mined by analysis of the KUBERNETES system software,
soltware updates may cause changes to how the resource
definitions are handled, and may add new types of informa-
tion that were not previously contemplated. To address this,
the changes may be analyzed on a per-resource basis, at
runtime, to build a whitelist of current changes.

Thus, block 306 may simulate the original resource defi-
nition, for example using the KUBERNETES “DryRun”
function, to generate one or more simulated resource defi-
nitions, which may be changed 1n a manner that 1s similar to
the changes that would be made by the KUBERNETES
system for an actual implementation. By simulating the
resource, rather than relying on a static whitelist, changes to
the underlying software can be accommodated immediately.
By comparing the simulated resource defimitions to the
original resource definitions, block 308 can find lines that
have been altered in, or added to, the simulated resource
definitions. At least two simulations may be run, but greater
numbers may provide better results.

Block 310 generates a signature for the modified resource
definition, 1gnoring any lines that have were indicated 1n
block 308 as being changed. Block 312 compares the
signature of the original resource definition to the signature
of the modified resource definition. If block 314 finds that
the two signatures do not match, then block 316 denies the
resource. In this case, the signature verifier 222 instructs the
container orchestration engine 210 to deny the request to

10

15

20

25

30

35

40

45

50

55

60

65

6

install the resource. If the two signatures do match, then
block 318 causes the signature verifier 222 to instruct the
container orchestration engine 210 to install the resource.

Referring now to FIG. 4, a method for performing a task
using a PaaS system, such as the system 100 described
above. Block 402 generates a workload. For example, the
workload may include any appropriate software to perform
any purpose, such as processing financial transactions or
performing statistical computations on large datasets. Block
404 determines what resources will be needed to perform the
workload. For example, block 404 may determine how
many instantiations may be needed, what operating systems
and supporting software may be used, and what containers
may be used. Block 406 sends the request for these resources
to the manager system 104.

Block 408 verifies the resource signatures as described
above. If the verification 1s successtul, block 410 1nstalls the
requested resources, and block 412 performs the workload
using the installed resources. In the event that block 408 fails
to verily the resource signatures, then a user 102 may go
back to audit their resource requests, to identily and address
discrepancies. A failure to verily the signature may indicate
an attempt to tamper with the resources by an attacker.

The present mnvention may be a system, a method, and/or
a computer program product at any possible technical detail
level of integration. The computer program product may
include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium 1ncludes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program 1nstructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface i each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program

US 11,914,755 B2

7

instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program 1instructions for carrying out
operations of the present invention may be assembler
istructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent 1nstructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or either source code
or object code written 1n any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++, or the like, and
procedural programming languages, such as the “C” pro-
gramming language or stmilar programming languages. The
computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone soitware package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, 1n order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1mple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor ol a computer, or other program-
mable data processing apparatus to produce a machine, such
that the 1nstructions, which execute via the processor of the
computer or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified 1n the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer 1mple-
mented process, such that the mstructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified 1n the flow-
chart and/or block diagram block or blocks.

Reference 1n the specification to “one embodiment™ or
“an embodiment” of the present invention, as well as other
variations thereof, means that a particular feature, structure,
characteristic, and so forth described in connection with the

10

15

20

25

30

35

40

45

50

55

60

65

8

embodiment 1s included 1n at least one embodiment of the
present invention. Thus, the appearances of the phrase “in
one embodiment” or “in an embodiment™, as well any other
variations, appearing in various places throughout the speci-
fication are not necessarily all referring to the same embodi-
ment.

It 1s to be appreciated that the use of any of the following
“/”, “and/or”, and “at least one of”, for example, in the cases
of “A/B”, “A and/or B” and ““at least one of A and B”, 1s

intended to encompass the selection of the first listed option
(A) only, or the selection of the second listed option (B)
only, or the selection of both options (A and B). As a further
example, in the cases of “A, B, and/or C” and *“at least one
of A, B, and C”, such phrasing is intended to encompass the
selection of the first listed option (A) only, or the selection
of the second listed option (B) only, or the selection of the
third listed option (C) only, or the selection of the first and
the second listed options (A and B) only, or the selection of
the first and third listed options (A and C) only, or the
selection of the second and third listed options (B and C)
only, or the selection of all three options (A and B and C).
This may be extended, as readily apparent by one of
ordinary skill 1in this and related arts, for as many i1tems
listed.

The flowchart and block diagrams 1n the Figures illustrate
the architecture, functionality, and operation ol possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion ol instructions, which comprises one or more
executable 1nstructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted 1n the Figures. For example, two blocks shown in
succession may, in fact, be accomplished as one step,
executed concurrently, substantially concurrently, 1n a par-
tially or wholly temporally overlapping manner, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

As employed herein, the term “hardware processor sub-
system” or “hardware processor” can refer to a processor,
memory, soltware or combinations thereotf that cooperate to
perform one or more specific tasks. In usetul embodiments,
the hardware processor subsystem can 1nclude one or more
data processing elements (e.g., logic circuits, processing
circuits, instruction execution devices, etc.). The one or
more data processing elements can be included 1n a central
processing unit, a graphics processing unit, and/or a separate
processor- or computing element-based controller (e.g.,
logic gates, etc.). The hardware processor subsystem can
include one or more on-board memories (e.g., caches, dedi-
cated memory arrays, read only memory, etc.). In some
embodiments, the hardware processor subsystem can
include one or more memories that can be on or ofl board or
that can be dedicated for use by the hardware processor
subsystem (e.g., ROM, RAM, basic input/output system
(BIOS), etc.).

In some embodiments, the hardware processor subsystem
can include and execute one or more software elements. The

US 11,914,755 B2

9

one or more software elements can include an operating
system and/or one or more applications and/or specific code
to achieve a specified result.

In other embodiments, the hardware processor subsystem
can include dedicated, specialized circuitry that performs
one or more electronic processing functions to achieve a
specified result. Such circuitry can include one or more
application-specific integrated circuits (ASICs), FPGAs,
and/or PLAs.

These and other vaniations of a hardware processor sub-
system are also contemplated 1n accordance with embodi-
ments of the present invention.

Referring now to FIG. 5, additional detail on the signature
verifier 222 1s shown. It should be understood that the
signature verifier 222 may be implemented as part of the
processing node 106 as described above, may be imple-
mented as part of the manager system 104, may be an
independent system running on separate hardware, or may
be implemented in any other approprniate fashion. In the
cvent that the signature verifier 222 1s runming on separate
hardware, then 1t may include a hardware processor, a
memory, and a communications interface (not shown). If the
signature verifier 222 1s collocated with the manager system
104 or a processing node 106, then 1t may share the hardware
resources of those systems.

The signature verifier 222 receives and stores a copy of
the original resource definition 502. This original resource
definition 502 may differ from the original resource defini-
tion, due to discrepancies introduced by the PaaS system, for
example by KUBERNETES software. A resource simulator
504 (¢.g., the KUBERNETES “DryRun” function) runs one
or more simulations of the original resource defimition 502
to generate simulated resources 506. A whitelist generator
508 analyzes the simulated resources 506 to 1dentily parts of
the definition that change when 1t 1s handled by the PaaS
system. The whitelist generator 508 thereby generates a
signature whitelist 510 that may 1dentity lines and fields 1n
the resource definition that change during normal operation.

The requested resource defimition 511 1s processed by a
signature generator 512, for example using the same func-
tion as was used to generate the original resource signature
516, using the signature whitelist 310 to omit portions of the
requested resource definition 511 that change during normal
operation. The signature generator 512 thereby produces a
requested resource signature 514. The requested resource
signature 514 1s compared with the original resource signa-
ture 516 at signature comparison 318. A verifier 520 makes
a determination, based on any discrepancies between the
two signatures, as to whether the requested resource defi-
nition 1s legitimate and may be installed.

Referring now to FIG. 6, a comparison of various
resource definitions 1s shown. The original resource defini-
tion 1s shown as block 502, which shows the information
that specifies the resource. Blocks 506 shows a set of
simulated resource definitions that are based on the original
resource definition 502. The portions that change during the
simulation are shown as underlined; these additions are
introduced by the PaaS system for its own purposes, and do
not generally aflect the functioning of the ultimate resource
installation.

A requested resource definition 1s shown in block 511.
During verification, those additions shown 1n the simulated
definitions 506 are located within the requested resource
definition 511 and are omitted during signature verification.
Excluding these additions, the remaining contents of the
requested resource definition 511 match the contents of the
original resource definition 502, so the verification succeeds.

10

15

20

25

30

35

40

45

50

55

60

65

10

In contrast, a malicious resource definition 602 1s shown.
As with the requested resource definition 511, any 1dentified
changeable lines are omitted during signature verification.
However, another line has been introduced by a malicious
actor, shown 1n bold. If this malicious resource definition
602 1s submitted for signature verification, the mismatch that
the introduced line causes will cause verification to {fail,
preventing installation of the malicious resource.

Cloud computing 1s a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be
rapidly provisioned and released with minimal management
ellort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.

Characteristics are as follows:

On-demand seli-service: a cloud consumer can unilater-
ally provision computing capabilities, such as server time
and network storage, as needed automatically without
requiring human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that
promote use by heterogeneous thin or thick client platforms
(e.g., mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There 1s
a sense ol location independence in that the consumer
generally has no control or knowledge over the exact
location of the provided resources but may be able to specity
location at a higher level of abstraction (e.g., country, state,
or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale
out and rapidly released to quickly scale 1n. To the consumer,
the capabilities available for provisioning often appear to be
unlimited and can be purchased 1n any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capa-
bility at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported, providing transparency for both the provider and
consumer of the utilized service.

Service Models are as follows:

Software as a Service (SaaS): the capability provided to
the consumer 1s to use the provider’s applications runming on
a cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as
a web browser (e.g., web-based e-mail). The consumer does
not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or
even individual application capabilities, with the possible
exception of limited user-specific application configuration
settings.

Platform as a Service (PaaS): the capability provided to
the consumer 1s to deploy onto the cloud infrastructure
consumer-created or acquired applications created using
programming languages and tools supported by the provider.
The consumer does not manage or control the underlying
cloud infrastructure including networks, servers, operating
systems, or storage, but has control over the deployed
applications and possibly application hosting environment
configurations.

US 11,914,755 B2

11

Infrastructure as a Service (IaaS): the capability provided
to the consumer 1s to provision processing, storage, net-
works, and other fundamental computing resources where
the consumer 1s able to deploy and run arbitrary software,
which can include operating systems and applications. The
consumer does not manage or control the underlying cloud
inirastructure but has control over operating systems, stor-
age, deployed applications, and possibly limited control of
select networking components (e.g., host firewalls).

Deployment Models are as follows:

Private cloud: the cloud infrastructure 1s operated solely
for an organization. It may be managed by the organization

or a third party and may exist on-premises or ofl-premises.

Community cloud: the cloud infrastructure i1s shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-
premises or oil-premises.

Public cloud: the cloud infrastructure 1s made available to
the general public or a large industry group and 1s owned by
an organization selling cloud services.

Hybrid cloud: the cloud infrastructure 1s a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standard-
1zed or proprietary technology that enables data and appli-
cation portability (e.g., cloud bursting for load-balancing
between clouds).

A cloud computing environment 1s service oriented with
a focus on statelessness, low coupling, modularity, and
semantic interoperability. At the heart of cloud computing 1s
an 1nfrastructure that includes a network of interconnected
nodes.

Referring now to FIG. 7, illustrative cloud computing
environment 50 1s depicted. As shown, cloud computing
environment 50 includes one or more cloud computing
nodes 10 with which local computing devices used by cloud
consumers, such as, for example, personal digital assistant
(PDA) or cellular telephone 34A, desktop computer 54B,
laptop computer 54C, and/or automobile computer system
54N may communicate. Nodes 10 may communicate with
one another. They may be grouped (not shown) physically or
virtually, in one or more networks, such as Private, Com-
munity, Public, or Hybrid clouds as described heremnabove,
or a combination thereof. This allows cloud computing
environment 50 to offer infrastructure, platforms and/or
software as services for which a cloud consumer does not
need to maintain resources on a local computing device. It
1s understood that the types of computing devices 54A-N
shown 1n FI1G. 7 are intended to be illustrative only and that
computing nodes 10 and cloud computing environment 50
can communicate with any type of computerized device over
any type ol network and/or network addressable connection
(e.g., using a web browser).

Referring now to FIG. 8, a set of functional abstraction
layers provided by cloud computing environment 50 (FIG.
7) 1s shown. It should be understood 1n advance that the
components, layers, and functions shown in FIG. 8 are
intended to be illustrative only and embodiments of the
invention are not limited thereto. As depicted, the following
layers and corresponding functions are provided:

Hardware and software layer 60 includes hardware and
soltware components. Examples of hardware components
include: mainirames 61; RISC (Reduced Instruction Set
Computer) architecture based servers 62; servers 63; blade
servers 64; storage devices 65; and networks and networking

10

15

20

25

30

35

40

45

50

55

60

65

12

components 66. In some embodiments, software compo-
nents include network application server software 67 and
database soltware 68.

Virtualization layer 70 provides an abstraction layer from
which the following examples of virtual entities may be
provided: wvirtual servers 71; virtual storage 72; virtual
networks 73, including virtual private networks; virtual
applications and operating systems 74; and virtual clients
75.

In one example, management layer 80 may provide the
functions described below. Resource provisioning 81 pro-
vides dynamic procurement of computing resources and
other resources that are utilized to perform tasks within the
cloud computing environment. Metering and Pricing 82
provide cost tracking as resources are utilized within the
cloud computing environment, and billing or invoicing for
consumption ol these resources. In one example, these
resources may include application software licenses. Secu-
rity provides identity verification for cloud consumers and
tasks, as well as protection for data and other resources. User
portal 83 provides access to the cloud computing environ-
ment for consumers and system administrators. Service level
management 84 provides cloud computing resource alloca-
tion and management such that required service levels are
met. Service Level Agreement (SLA) planning and fulfill-
ment 85 provide pre-arrangement for, and procurement of,
cloud computing resources for which a future requirement 1s
anticipated 1n accordance with an SLA.

Workloads layer 90 provides examples of functionality
for which the cloud computing environment may be utilized.
Examples of workloads and functions which may be pro-
vided from this layer include: mapping and navigation 91;
soltware development and lifecycle management 92; virtual
classroom education delivery 93; data analytics processing
94 transaction processing 93; and signature verification 96.

Having described preferred embodiments of cluster
resource signature verification (which are intended to be
illustrative and not limiting), it 1s noted that modifications
and variations can be made by persons skilled 1n the art 1n
light of the above teachings. It 1s therefore to be understood
that changes may be made 1n the particular embodiments
disclosed which are within the scope of the invention as
outlined by the appended claims. Having thus described
aspects of the invention, with the details and particularity
required by the patent laws, what 1s claimed and desired
protected by Letters Patent 1s set forth in the appended
claims.

What 1s claimed 1s:
1. A computer-implemented method for verifying a
resource definition, comprising:

simulating an original resource definition, defined for a
container manager, using a DryRun function of the
container manager to generate a simulated resource
definition according a change that 1s made to the
original resource definition by the container manager;

identifying the change using a comparison of the original
resource to the simulated resource definition;

generating a signature of a recerved resource definition,
omitting portions of the received resource definition
that correspond to the at least one 1dentified change;

comparing the signature of the received resource defini-
tion to a signature of the original resource defimition to
find a match and to verity the received resource defi-
nition; and

implementing the received resource definition, responsive
to finding the match.

US 11,914,755 B2

13

2. The method of claim 1, wherein simulating the original
resource definition includes running a simulation of the
original resource definition at least twice.

3. The method of claim 1, wherein generating the signa-
ture of the recerved resource definition includes removing,
the portions of the received resource definition that corre-
spond to the at least one 1dentified change from the received
resource definition before generating a signature from
remaining portions.

4. The method of claim 1, farther comprising receiving the
received resource definition from a user.

5. The method of claim 4, further comprising generating,
the signature of the original resource definition, wherein
generating the signature of the original resource definition 1s
performed before receiving the received resource definition.

6. The method of claim 1, wherein the original resource
definition and the recerved resource definition are text-based

YAML files.
7. The method of claim 1, wheremn implementing the
received resource definition includes installing a corre-
sponding resource on a local processing node.
8. A computer program product for verifying a resource
definition, the computer program product comprising a
computer readable storage medium having program instruc-
tions embodied therewith, the program instructions execut-
able by a hardware processor to cause the hardware proces-
sor to:
simulate an original resource definition, defined for a
container manager, using a DryRun function of the
container manager to generate a simulated resource
definition according a change that 1s made to the
original resource definition by the container manager;

identify the change using a comparison of the original
resource to the simulated resource definition;

generate a signature of a received resource definition,
omitting portions of the received resource definition
that correspond to the at least one 1dentified change;

compare the signature of the received resource definition
to a signature of the original resource definition to find
a match and to verity the received resource definition;
and

implement the received resource definition, responsive to

finding the match.

9. The computer program product of claim 8, wherein
simulating the original resource definition includes running
a stmulation of the original resource definition at least twice.

10

15

20

25

30

35

40

14

10. The computer program product of claim 8, wherein
generating the signature of the received resource definition
includes removing the portions of the received resource
definition that correspond to the at least One identified
change from the received resource definition before gener-
ating a signature irom remaining portions.

11. The computer program product of claim 8, wherein the
program 1nstructions are further executable by a hardware
processor to cause the hardware processor to receive the
received resource definition from a user.

12. The computer program product of claim 11, wherein
the program instructions are further executable by a hard-
ware processor to cause the hardware processor to generate
the signature of the original resource defimition, wherein
generating the signature of the original resource definition 1s
performed before receiving the received resource definition.

13. The computer program product of claim 8, wherein
implementing the received resource defimition includes
installing a corresponding resource on a local processing
node.

14. A system for verniying a resource definition, compris-
ng:

a hardware processor; and

a memory that stores computer program code, which,

when executed by the hardware processor, causes the

hardware processor to:

simulate an original resource definition, defined for a
container manager, using a DryRun function of the
container manager to generate a simulated resource
definition according a change that 1s made to the
original resource definition by the container man-
ager;

identily the change using a comparison of the original
resource to the simulated resource definition;

generate a signature of a recetved resource definition,
omitting portions of the received resource definition
that correspond to the at least one 1dentified change;

compare the signature of the received resource defini-
tion to a signature of the original resource definition
to find a match and to verity the received resource
definition; and

implement the received resource definition, responsive to

finding the match.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

