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DYNAMIC SELECTION OF PARAMETER
THRESHOLD VALUES

BACKGROUND

The present invention relates to data processing systems,
and more specifically, to artificial intelligence systems.

Artificial intelligence (Al) 1s a technological field, which
combines computer science and robust datasets, to enable
problem-solving. Al also encompasses sub-fields of machine
learning and deep learning, which are frequently mentioned
in conjunction with Al. These disciplines are comprised of
Al algorithms which seek to create expert systems which
make predictions or classifications based on input data.

SUMMARY

A method includes receiving first sensor data from a first
set of Internet of Things devices. The method also can
include determiming sensor data collection rates for a first
artificial intelligence model by analyzing the first sensor data
using a second artificial intelligence model executed by a
processor. The method also can include, based on the sensor
data collection rates, communicating sensor control com-
mands to a second set of Internet of Things devices, the
sensor control commands specifying, to the second set of
Internet of Things devices, sensor data communication rates
that respective ones of the second set of Internet of Things
devices are to implement for communicating, to the first
artificial intelligence model, second sensor data generated
by sensors of the respective ones of the second set of Internet
of Things devices.

A system includes a processor programmed to initiate
executable operations. The executable operations include
receiving first sensor data from a first set of Internet of
Things devices. The executable operations also can 1nclude
determining sensor data collection rates for a first artificial
intelligence model by analyzing the first sensor data using a
second artificial intelligence model executed by a processor.
The executable operations also can include, based on the
sensor data collection rates, communicating sensor control
commands to a second set of Internet of Things devices, the
sensor control commands specifying, to the second set of
Internet of Things devices, sensor data communication rates
that respective ones of the second set of Internet of Things
devices are to implement for communicating, to the first
artificial intelligence model, second sensor data generated
by sensors of the respective ones of the second set of Internet
of Things devices.

A computer program product includes a computer read-
able storage medium having program code stored thereon.
The program code 1s executable by a data processing system
to 1itiate operations. The operations 1include receiving first
sensor data from a first set of Internet of Things devices. The
operations also can include determining sensor data collec-
tion rates for a first artificial intelligence model by analyzing
the first sensor data using a second artificial intelligence
model executed by a processor. The operations also can
include, based on the sensor data collection rates, commu-
nicating sensor control commands to a second set of Internet
of Things devices, the sensor control commands specitying,
to the second set of Internet of Things devices, sensor data
communication rates that respective ones of the second set
of Internet of Things devices are to implement for commu-
nicating, to the first artificial intelligence model, second
sensor data generated by sensors of the respective ones of
the second set of Internet of Things devices.
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This Summary section 1s provided merely to introduce
certain concepts and not to identify any key or essential
features of the claimed subject matter. Other features of the
inventive arrangements will be apparent from the accompa-
nying drawings and from the following detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a cloud computing environment according,
to an embodiment of the present invention.

FIG. 2 depicts abstraction model layers according to an
embodiment of the present invention.

FIG. 3 1s a block diagram illustrating example architec-
ture for a data processing system.

FIG. 4 1s a flowchart illustrating an example of a method
of selectively controlling a quantity of sensor data commu-
nicated to an Al model.

FIG. 5 15 a block diagram 1llustrating an example of an Al
modelling system according to an embodiment of the pres-
ent 1nvention.

DETAILED DESCRIPTION

This disclosure relates to data processing systems, and
more specifically, to artificial intelligence (Al) systems. The
arrangements described herein provide an improvement to
Al computer technology. Specifically, the present arrange-
ments improve the efliciency of implementing Al by reduc-
ing the volume of data analyzed by Al models.

It 1s common for certain Al models to process very large
data sets. The larger the data sets, the longer it takes to
process the data sets. Moreover, large data sets cause Al
models to tie up valuable computer resources, ncluding
processor resources, memory resources, bulk storage
resources, network bandwidth, etc. The present arrange-
ments reduce the volume of data processed by an Al model,
thereby reducing the computer resources necessary to pro-
cess the data and improving the efliciency of computers at
performing Al analysis.

Specifically, the present arrangements can include a pri-
mary Al model and a context Al model that execute on one
or more data processing systems performing digital twin
simulations. The primary Al model can perform the Al
analysis on data to make and output Al predictions based on
digital twin simulation of future scenarios. The context Al
model can predict contexts pertaining to data that 1s col-
lected, and classily the data based on the predicted contexts.
Again, the context Al model can make the context predic-
tions and data classifications based on digital twin simula-
tion of future scenarios. Based on the data classifications, the
context Al model can determine values for data collection
rates for various sensors. The values can be, for example,
percentage values indicating percentages of data generating
capacity to be used by the various sensors.

Based on the determinations made by the context Al
model, the data processing system(s) can, in real time,
configure sensors to generate data at the data collection rates
determined for those types of sensors. Further, the data
processing system(s) can, 1n real time, activate and deacti-
vate sensors based on the determinations made by the
context Al model. Accordingly, the volume of data being
communicated to, and processed by, the primary Al model
can be selectively controlled based on predicted data col-
lection contexts.

In 1llustration, assume various sensors are used to monitor
tratlic on various roadways and current weather conditions,
and the primary Al model processes the sensor data to
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predict near-future weather conditions and impact of the
near-future weather conditions on near-future tratlic condi-
tions. If the context Al model determines the weather
context to be that storms are rapidly developing, the context
Al model can determine relatively high data collection rates
for the sensors that monitor the weather conditions. Such
high data collection rates may be beneficial for ensuring
accuracy ol predictions made by the primary Al model. If,
however, the context Al model determines the weather
context to be calm and clear, the context Al model can
determine relatively lower data collection rates for sensors
that momitor the weather conditions, without adversely
aflecting the predictions made by the primary Al model.
Similarly, if the context Al model determines that traflic 1s
light and flowing smoothly, the context AI model can
determine relatively low data collection rates for the sensors
that monitor flow of trathic. If, however, the context Al
model determines that traflic 1s heavy and/or not flowing
smoothly, the context Al model can determine relatively
high data collection rates for the sensors that monitor flow
of traflic. As contexts and/or predicted contexts change, the
context Al model can dynamically change the sensor data
collection rates, 1n real time, to ensure adequate amount of
sensor data 1s collected for the existing and/or predicted
conditions, without collecting an over-abundance of data.

Since the amount of sensor data communicated to the
primary Al data 1s selectively controlled based on the
contexts of the conditions, as well as predicted conditions,
the primary Al model will process less data. This improves
performance of the data processing system(s) by improving
clliciency of execution of the primary Al model and reduc-
ing use of valuable computing resources used to execute the
primary Al model. These improvements can more than oflset
the use of computing resources used to execute the context
Al model. In this regard, the context AI model can generate
its predictions using a very small amount of data 1n com-
parison to the amount of data consumed by the primary Al
model.

Several definitions that apply throughout this document
now will be presented.

As defined herein, the term “artificial intelligence model,”
also referred to herein as “Al model,” means a functional
data structure i1including computer-based algorithms
enabling computer understanding, using machine learning,
deep learning or artificial neural networks, to replicate
cognitive decision processes.

As defined herein, the term “artificial itelligence predic-
tion,” also referred to herein as “Al prediction,” means data
output by an artificial intelligence model predicting a future
a context and/or contextual information, the prediction made
using machine learning, deep learning or artificial neural
networks.

As defined herein, the term “Internet of Things device,”
also referred to herein as “loT device,” means a device,
including at least one processor (e.g., a hardware controller)
and at least one sensor, that 1s communicatively linked to at
least one data processing system via one or more networks,
such as the Internet, and that autonomously communicates
sensor data to the at least one data processing system. IoT
devices typically do not include an input/output interfaces
for directly connecting to mice and keyboards.

As defined herein, the term “digital twin” means a virtual
representation of a system that spans the system’s lifecycle,
1s updated from real-time data, and uses simulation, machine
learning and reasoming to help decision-making.

As defined herein, the term “responsive to” means
responding or reacting readily to an action or event. Thus, 1
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a second action 1s performed “responsive to” a {first action,
there 1s a causal relationship between an occurrence of the
first action and an occurrence of the second action, and the
term “responsive to” indicates such causal relationship.

As defined herein, the term “computer readable storage
medium”™ means a storage medium that contains or stores
program code for use by or in connection with an 1nstruction
execution system, apparatus, or device. As defined herein, a
“computer readable storage medium™ 1s not a transitory,
propagating signal per se.

As defined herein, the term “data processing system”
means one or more hardware systems configured to process
data, each hardware system including at least one processor
programmed to 1nitiate executable operations and memory.

As defined herein, the term “processor’” means at least one
hardware circuit (e.g., an integrated circuit) configured to
carry out mstructions contained 1n program code. Examples
of a processor include, but are not limited to, a central
processing unit (CPU), an array processor, a vector proces-
sor, a digital signal processor (DSP), a field-programmable
gate array (FPGA), a programmable logic array (PLA), an
application specific integrated circuit (ASIC), program-
mable logic circuitry, and a hardware based controller.

As defined herein, the term “server” means a data pro-
cessing system configured to share services with one or

more other data processing systems.

As defined herein, the term “real time” means a level of
processing responsiveness that a user or system senses as
sufliciently immediate for a particular process or determi-
nation to be made, or that enables the processor to keep up
with some external process.

As defined herein, the term “automatically” means with-
out user 1ntervention.

As defined herein, the term “user” means a person (1.€., a
human being).

It 1s to be understood that although this disclosure
includes a detailed description on cloud computing, 1imple-
mentation of the teachings recited herein are not limited to
a cloud computing environment. Rather, embodiments of the
present 1nvention are capable of being implemented in
conjunction with any other type of computing environment
now known or later developed.

Cloud computing 1s a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be
rapidly provisioned and released with minimal management
cllort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.

Characteristics are as follows:

On-demand self-service: a cloud consumer can unilater-
ally provision computing capabilities, such as server time
and network storage, as needed automatically without
requiring human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that
promote use by heterogeneous thin or thick client platforms
(e.g., mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There 1s
a sense ol location independence in that the consumer
generally has no control or knowledge over the exact
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location of the provided resources but may be able to specity
location at a higher level of abstraction (e.g., country, state,
or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, 1n some cases automatically, to quickly scale
out and rapidly released to quickly scale in. To the consumer,
the capabilities available for provisioning oiten appear to be
unlimited and can be purchased 1n any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capa-
bility at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported, providing transparency for both the provider and
consumer of the utilized service.

Service Models are as follows:

Software as a Service (SaaS): the capability provided to
the consumer 1s to use the provider’s applications running on
a cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as
a web browser (e.g., web-based e-mail). The consumer does
not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or
even individual application capabilities, with the possible
exception of limited user-specific application configuration
settings.

Platform as a Service (PaaS): the capability provided to
the consumer 1s to deploy onto the cloud infrastructure
consumer-created or acquired applications created using
programming languages and tools supported by the provider.
The consumer does not manage or control the underlying
cloud mfrastructure including networks, servers, operating
systems, or storage, but has control over the deployed
applications and possibly application hosting environment
configurations.

Infrastructure as a Service (IaaS): the capability provided
to the consumer 1s to provision processing, storage, net-
works, and other fundamental computing resources where
the consumer 1s able to deploy and run arbitrary software,
which can include operating systems and applications. The
consumer does not manage or control the underlying cloud
infrastructure but has control over operating systems, stor-
age, deployed applications, and possibly limited control of
select networking components (e.g., host firewalls).

Deployment Models are as follows:

Private cloud: the cloud inirastructure 1s operated solely
for an organization. It may be managed by the organization
or a third party and may exist on-premises or ofl-premises.

Community cloud: the cloud infrastructure i1s shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-
premises or oil-premises.

Public cloud: the cloud infrastructure 1s made available to
the general public or a large industry group and 1s owned by
an organization selling cloud services.

Hybrid cloud: the cloud infrastructure 1s a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standard-
1zed or proprietary technology that enables data and appli-
cation portability (e.g., cloud bursting for load-balancing
between clouds).

A cloud computing environment 1s service oriented with
a focus on statelessness, low coupling, modularity, and
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semantic interoperability. At the heart of cloud computing 1s
an infrastructure that includes a network of interconnected
nodes.

Retferring now to FIG. 1, illustrative cloud computing
environment 50 1s depicted. As shown, cloud computing
environment 50 includes one or more cloud computing
nodes 10 with which local computing devices used by cloud
consumers, such as, for example, personal digital assistant
(PDA) or cellular telephone 34A, desktop computer 54B,
laptop computer 34C, and/or automobile computer system
54N may communicate. Nodes 10 may communicate with
one another. They may be grouped (not shown) physically or
virtually, 1n one or more networks, such as Private, Com-
munity, Public, or Hybrid clouds as described hereinabove,
or a combination thereof. This allows cloud computing
environment 50 to offer infrastructure, platforms and/or
software as services for which a cloud consumer does not
need to maintain resources on a local computing device. It
1s understood that the types of computing devices 54A-N
shown 1n FIG. 1 are intended to be illustrative only and that
cloud computing nodes 10 and cloud computing environ-
ment 50 can communicate with any type of computerized
device over any type of network and/or network addressable
connection (e.g., using a web browser).

Referring now to FIG. 2, a set of functional abstraction
layers provided by cloud computing environment 50 (FIG.
1) 1s shown. It should be understood in advance that the
components, layers, and functions shown in FIG. 2 are
intended to be illustrative only and embodiments of the
invention are not limited thereto. As depicted, the following
layers and corresponding functions are provided:

Hardware and software layer 60 includes hardware and
soltware components. Examples of hardware components
include: mainirames 61; RISC (Reduced Instruction Set
Computer) architecture based servers 62; servers 63; blade
servers 64; storage devices 63; networks and networking
components 66; and Internet of Things (IoT) devices 67. In
some embodiments, software components include network
application server software 68 and database software 69.

Virtualization layer 70 provides an abstraction layer from
which the following examples of virtual entities may be
provided: virtual servers 71; wvirtual storage 72; virtual
networks 73, including virtual private networks; virtual
applications and operating systems 74; and virtual clients
75.

In an example, management layer 80 may provide the
functions described below. Resource provisioning 81 pro-
vides dynamic procurement of computing resources and
other resources that are utilized to perform tasks within the
cloud computing environment. Metering and Pricing 82
provide cost tracking as resources are utilized within the
cloud computing environment, and billing or 1nvoicing for
consumption ol these resources. In one example, these
resources may include application software licenses. Secu-
rity provides 1dentity verification for cloud consumers and
tasks, as well as protection for data and other resources. User
portal 83 provides access to the cloud computing environ-
ment for consumers and system administrators. Service level
management 84 provides cloud computing resource alloca-
tion and management such that required service levels are
met. Service Level Agreement (SLA) planning and fulfill-
ment 85 provide pre-arrangement for, and procurement of,
cloud computing resources for which a future requirement 1s
anticipated 1n accordance with an SLA.

Workloads layer 90 provides examples of functionality
tor which the cloud computing environment may be utilized.
Examples of workloads and functions which may be pro-
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vided from this layer include: software development and
lifecycle management 91; transaction processing 92; data
analytics processing 93; weather prediction 94; mapping and
navigation 95; and artificial intelligence 96.

FIG. 3 1s a block diagram illustrating example architec-
ture for a data processing system 300, which can be imple-
mented as a node of the cloud computing environment 350
(FIG. 1), for example at the hardware and software layer 60
(FIG. 2). The data processing system 300 can include at least
one processor 305 (e.g., a central processing unit) coupled to
memory elements 310 through a system bus 315 or other
suitable circuitry. As such, the data processing system 300
can store program code within the memory elements 310.
The processor 305 can execute the program code accessed
from the memory elements 310 via the system bus 315. It
should be appreciated that the data processing system 300
can be implemented 1n the form of any system including a
processor and memory that i1s capable of performing the
functions and/or operations described within this specifica-
tion. For example, the data processing system 300 can be
implemented as a server, a plurality of communicatively
linked servers, a workstation, a desktop computer, a mobile
computer, a tablet computer, a laptop computer, a netbook
computer, a smart phone, a personal digital assistant, a
set-top box, a network appliance, and so on.

The memory elements 310 can include one or more
physical memory devices such as, for example, local
memory 320 and one or more bulk storage devices 325.
Local memory 320 refers to random access memory (RAM)
or other non-persistent memory device(s) generally used
during actual execution of the program code. The bulk
storage device(s) 325 can be implemented as a hard disk
drive (HDD), solid state drive (SSD), or other persistent data
storage device. The data processing system 300 also can
include one or more cache memories 330 that provide
temporary storage of at least some program code 1n order to
reduce the number of times program code must be retrieved
from the local memory 320 and/or bulk storage device 3235
during execution.

Input/output (I/O) devices such as one or more network
adapters 335 and various external devices 340 (e.g., a
display, a touch screen, a pointing device, a keyboard, etc.)
can be coupled to the data processing system 300. The 1/0
devices can be coupled to the data processing system 300
either directly or through intervening I/0 interfaces 342. The
network adapters 335 can enable the data processing system
300 to become coupled to other systems, computer systems,
remote printers, and/or remote storage devices through inter-
vening private or public networks. Modems, cable modems,
transceivers, and Ethernet cards are examples of diflerent
types of network adapters 335 that can be used with the data
processing system 300.

As pictured 1n FIG. 3, the memory elements 310 can store
programs/utilities 350, including one or more program mod-
ules 3355, configured to perform processes described herein.
For example, programs/utilities 350 can include Al models
(430, 435 of FIG. 4) and at least one sensor controller (440
of FIG. 4), which are discussed herein. Being implemented
in the form of executable program code, the programs/
utilities 350 can be executed by the data processing system
300 (e.g., by the processor 3035) and, as such, can be
considered part of the data processing system 300. More-
over, the programs/utilities 350 are functional data structures
that impart functionality when employed as part of the data
processing system 300. As defined within this disclosure, a
“data structure” 1s a physical implementation of a data
model’s organization of data within a physical memory. As
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such, a data structure 1s formed of specific electrical or
magnetic structural elements in a memory. A data structure
imposes physical organization on the data stored in the
memory as used by an application program executed using
a Processor.

Date generated by the programs/utilities 350 can be
output to, and stored within, the memory elements 310. As
used herein, “outputting” and/or “output” can mean storing
in the memory elements 310, for example, writing to a file
stored 1in the memory elements 310, writing to a display or
other peripheral output device, sending or transmitting to
another system, exporting, or similar operations.

FIG. 4 1s a block diagram 1llustrating an example of an Al
modelling system 400 according to an embodiment of the
present 1vention.

The Al modelling system 400 can include a plurality of
Io'T devices 410 and a plurality of IoT devices 420. The IoT
devices 410, 420 can be implemented, for example, as IoT
devices 67 of the hardware and software 60 layer (FIG. 2).
Each of the IoT devices 410 can include at least one sensor
412 and at least one processor 414 (e.g., a hardware con-
troller). Similarly, each of the IoT devices 420 can include
at least one sensor 422 and at least one processor 424 (e.g.,
a hardware controller). The processors 414, 424 can be
configured to control sensors 412, 422 of their respective
Io'T devices 410, 420. For example, the processors 414, 424
can control rates at which sensors 412, 422 perform sensor
measurements, control rates at which sensors 412, 422
generate sensor data, etc. The processors 414, 424 also can
control rates at which sensor data 1s communicated to other
components of the Al modelling system 400, for example
via network adapters, I/O interfaces, etc. Further, the pro-
cessors 414, 424 can connect the IoT devices 410, 420 to one
or more networks, or the IoT devices 410, 420 can include
dedicated network adapters (not shown). The IoT devices
410 can be, for example, infrastructure components of, or
near, roadways, components of vehicles configured to travel
on roadways, etc. In illustration, automobiles can include
Io'T devices 410, 420 configured to communicate sensor data
to the data processing system 300 (FIG. 3), and the data
processing system 300 can be configured to communicate
that sensor data to the context Al model 430 and/or the
primary Al model 435.

The Al modelling system 400 also can include a context
Al model 430, a primary Al model 435 and a sensor
controller 440. The Al models 430, 435 can be implemented
with artificial mtelligence 96 of the workloads layer 90. The
sensor controller 440 can be 1implemented at the manage-
ment layer 80, for example as part of resource provisioning,
81 for the weather prediction 94, mapping and navigation
05, and/or one or more other workloads for which sensor
data generated by the sensors 412, 422 1s used.

The context Al model 430 can be a real-time counterpart
of the primary Al model 435. In this regard, the context Al
model 430 can perform the same types of context predic-
tions as the primary Al model 435 based on analyzing the
same types of sensor data analyzed by the primary Al model
435, but the amount of sensor data received and processed
by the context Al model 430 can be significantly less that the
amount ol sensor data received and processed by the pri-
mary Al model 435. For example, the number of Io'T devices
410 from which the context Al model 430 receives sensor
data can be less than a threshold percentage of the number
of IoT devices 420. The threshold percentage can be, for
instance, 0.01%, 0.05%, 0.1%, 0.2%, 0.5%, 1%, or any other
desired percentage value. In another example, the number of
IoT devices 410 from which the context Al model 430
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receives sensor data can be less than a threshold value,
which may be determined by the number of IoT devices 410
configured to communicate sensor data 455 to the context Al
model 430. In one or more non-limiting arrangements, the
[oT devices 410 can be a subset of the IoT devices 420, but
this need not be the case. For example, the Io'T devices 410
can be dedicated to the context Al model 430. As noted, in
the case of IoT devices 410, 420 that are vehicle compo-
nents, the data processing system 300 can select which of
those IoT devices are to be used as IolT devices 410
generating sensor data 435 and which of those IoT devices
are to be used as Io'T devices 420 generating sensor data 470.
The data processing system 300 can be configured choose
from the vehicle IoT devices which IoT devices are to be
used as IoT devices 410 using a suitable algorithm, for
example using random selection, selecting every n” IoT
device, etc.

Further, in addition to performing the same types of
predictions as the primary Al model 435, the context Al
model 430 can determine sensor data collection rates 460 to
be used by IoT devices 420 generating sensor data 470 for
the primary Al model 435, as will be described.

FIG. 5 15 a flowchart 1llustrating an example of a method
500 of selectively controlling a quantity of sensor data
communicated to an Al model. The method 500 can be
implemented, for example, by the data processing system
300 of FIG. 3. For ease of understanding, in the following
description of the method 500 reference will be made both
to FIGS. 4 and S.

At step 505 the data processing system 300 can receive
first sensor data from a first set of IoT devices. For example,
the data processing system 300 can receive, from the IoT
devices 410, sensor data 455 generated by the sensors 412.

At step 310 the data processing system 300 can determine
sensor data collection rates for a first Al model by analyzing
the first sensor data using a second Al model. For example,
the data processing system 300 can provide the sensor data
4355 as mnput data to the context Al model 430. The context
Al model 430 can perform digital twin simulations of the
system for which the sensor data 455, 470 1s captured. In this
regard, the context AI model 430 can access, for example
from the memory elements 310, a digital twin 4357 of the
system. During the digital twin simulations, the context Al
model 430 can analyze the sensor data 435 with respect to
the digital twin 457 of the system and, based on such
analyses, determine contextual information pertaining to
parameters contained in the sensor data 4355.

In 1llustration, 11 a portion of the sensor data 455 contains
parameters generated from weather measurements, the con-
text Al model 430 can determine contextual information for
the weather using digital twin simulations of future sce-
narios that may, or are anticipated, to occur. Examples of
weather-related contextual information include, but are not
limited to, contextual information indicating the following:
precipitation rates at various geographic locations; whether
it 1s cloudy at various geographic locations; fog/smoke
density at various geographic locations; whether it 1s sunny
at various geographic locations; temperatures at various
geographic locations; wind velocities at various geographic
locations; changes in weather at various geographic loca-
tions; and so on. The contextual information pertaining to
determined changes in weather can include, for example,
contextual information indicating the following: rates of
change 1n temperatures; rates of change in precipitation
rates; rates of change 1n cloud cover; rates of change of
fog/smoke density; rates of change 1n wind velocities; and so
on. In this regard, various ones of the IoT devices 410 can
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include sensors 412 configured to measure weather-related
parameters and can be positioned at different geographic
locations.

The context Al model 430 can represent each weather-
related contextual information using one or more characters
and/or symbols. For example, the Al model 430 can assign
a type (e.g., one or more alphanumeric characters) to each
type of weather-related contextual information and a value
(e.g., a number from 0 to 100) indicating a severity or score
determined for that weather-related contextual information.

Further, 11 another portion of the sensor data 455 contains
parameters generated from vehicle tratlic measurements on
roadways, the context Al model 430 can determine contex-
tual information for the tratlic conditions on the various
roadways. Examples of vehicle traflic-related contextual
information include, but are not limited to, contextual infor-
mation 1ndicating the following: traflic volume; tratlic con-
gestion; traflic speed (e.g., average tratlic speed of vehicles);
traflic lane closures; traflic acceleration rates (e.g., average
acceleration rates of vehicles); tratlic deceleration rates (e.g.,
average deceleration rates of vehicles); changes 1n traflic
conditions; one or more accidents detected; emergency
response vehicles traveling to or at geographic locations;
emergency response vehicles predicted to be traveling to
geographic locations; and so on. The contextual information
pertaining to determined changes in trailic conditions can
include, for example, contextual information indicating the
following: rates of change 1n traflic volume; rates of change
in tratlic congestion; rates of change 1n tratlic speed; rates of
change in trafhic lane closures; rates of change in traflic
acceleration rates; rates ol change in trafhic deceleration
rates; and so on. In this regard, various ones of the IoT
devices 410 can include sensors 412 configured to measure
vehicle traflic-related parameters and can be positioned at
different geographic locations along various roadways.

The context Al model 430 can represent each traflic-
related contextual information using one or more characters
and/or symbols. For example, the AI model 430 can assign
a type (e.g., one or more alphanumeric characters) to each
type of trathic-related contextual information and a value
(e.g., a number from 0 to 100) indicating a severity or score
of that traflic-related contextual information.

The context Al model 430, based on other determined
contextual information, determine overall contexts repre-
sented by the contextual information. For example, continu-
ing with the previous example, the Al model 430 can
determine an overall context based on the weather-related
contextual information and the vehicle tratlic-related con-
textual information. In a simple example useful for under-
standing the present arrangements, the Al model 430 can
determine the following overall contexts: Context A if traflic
1s heavy or 1s predicted to be heaving within a threshold
period of time (e.g., fifteen minutes, thirty minutes, one
hour, etc.) and adverse weather conditions exist or are
predicted to occur within the threshold period of time at
geographic region A; Context B if traflic 1s moderate or 1s
predicted to be moderate within the threshold period of time
and adverse weather conditions exist or are predicted to
occur within the threshold period of time at geographic
region B; Context C 1f trathic light or 1s predicted to be light
within the threshold period of time and adverse weather
conditions exist or are predicted to occur within the thresh-
old period of time at geographic region C; and Context D 1f
traflic 1 trathic light or 1s predicted to be light within the
threshold period of time and clear weather conditions exist
or are predicted to occur within the threshold period of time
at geographic region D. Each geographic region A-D can be




US 11,907,857 B2

11

predetermined. For example, a geographic region can cover
a particular one hundred meter segment of a particular
roadway, a particular five hundred meter segment of a
particular roadway, a particular one kilometer segment of a
particular roadway, a particular five kilometer segment of a
particular roadway, a particular ten kilometer segment of a
particular roadway, etc.

The context Al model 430 can represent each overall
context using one or more characters and/or symbols. For
example, the Al model 430 can assign one or more 1ndica-
tors (e.g., one or more alphanumeric characters) to each
overall context. The indicators can indicate a threshold
number of weather-related contextual information and/or
traflic-related contextual information having highest contri-
butions 1n determining the overall context, and for each
indicator a indicating the level of contribution by the
weather-related contextual information and/or trathic-related
contextual information to the overall context.

Based on the determined overall contexts, the context Al
model 430 can determine the sensor data collection rates 460
to be implemented by the IoT devices 420 generating sensor
data for the various geographic regions. For example, the
context AI model 430 can determine sensor data collection
rates 460 for various types of sensors that generate sensor
data consumed by the primary Al model 435. Further, for
cach overall context, a set of respective sensor data collec-
tion rates can be determined. Table 1 depicts examples of

sensor data collection rates 460 that may be determined by
the context Al model 430:

TABLE 1

Sensor lTypes Context A Context B Context C Context D

Type 1
Type 2
Type 3
Type 4
Type 5
Type 6
Type 7
Type &

78%
82%

0%
13%
13%
92%

8%
71%

62%
33%
45%
97%
87%
94%
13%
34%

41%

1%
19%
95%
74%

7%
81%
30%

28%
31%
24%
44%
49%
18%

4%

1%

In the above examples, the sensor data collection rates 460
can be specified as percentage values. Each percentage value
can indicate a data generation rate for a particular type of
sensor 422 for a determined overall context. The percentage
values can be from 0% to 100%, where 0% indicates no
sensor data 1s to be measured by the sensors 422 and/or
communicated to the primary Al model 435 and 100%
indicates that sensor data 1s to be measured by the sensors
422 and communicated to the primary Al model 435 at the
maximum data collection/communication rate specified for
the particular type of sensor 422. Percentage values between
from 0% and 100% can be percentage portions of the
maximum data collection/communication rates for the par-
ticular sensors 422. Nonetheless, the data collection rates
can be specified, for example, as numbers of measurements
per second, numbers of measurements per minute, numbers
of measurements per hour, or specified 1n any other suitable
mannet.

A set of sensor data collection rates 460 can be determined
for each overall context. In illustration, the set of sensor data
collection rates 1n the column having the heading “Context
A” can be the set of sensor data collection rates for the
overall context “Context A.” Similarly, the set of sensor data
collection rates 460 1n the column having the heading
“Context B” can be the set of sensor data collection rates for
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the overall context “Context B,” and so on. Each sensor data
collection rate 460 1n a set can be determined for a particular
type of sensor 422. For instance, 1f there are eight different
types of sensors deployed along a roadway segment to
which the overall context “Context A” 1s assigned, the set of
sensor data collection rates 460 for that roadway segment
can include eight sensor data collection rates. One or more
same types of sensors 422 may be deployed along different
roadway segments. For a particular type of sensor 422,
different sensor data collection rates 460 can be specified for
the different roadway segments.

The context Al model 430 also can determine overall
contexts much more granularly, taking into consideration
various types of trathic conditions that may occur and various
types ol weather conditions that may occur. In this regard,
over time the context Al model 430 can determine tens,
hundreds, and even thousands of difterent overall contexts
for different weather-related contextual information and
vehicle trathc-related contextual information, which the
context Al model 430 may determine to exist and/or predict
to occur at various geographic regions.

The context Al model 430 can change the determined
sensor data collection rates 460 as the overall context
changes. For example, responsive to the Al model 430
determining one or more overall contexts changing by at
least a threshold value, the context AI model 430 can change
the data collection rates for the overall context(s) that
has/have changed. The threshold value can be pre-defined,
for example by a user. In 1llustration, the AI model 430 can
continually monitor analyze the sensor data 455 as the
sensor data 455 1s received to determine the weather-related
contextual information and/or one or more vehicle traflic-
related contextual information in real time, and determine
the overall contexts, 1n real time, based on the newly
received sensor data 435. Further, for each roadway seg-
ment, the context AI model 430 can compare the current
overall context to the previous overall content for that
roadway segment, and determine whether the overall con-
text has changed by at least the threshold value. If so, the
context Al model 430 can determine new sensor data
collection rates 460 for various types of sensors monitoring
data for that roadway segment that generate sensor data
consumed by the primary Al model 435.

The context Al model 430 can train 1tself over time, using,
artificial intelligence, to improve the contextual information
predictions and the overall context predictions made by the
context Al model 430. For example, the context Al model
430 can monitor actual weather-related contextual informa-
tion, actual vehicle tratlic-related contextual information and
actual overall contexts. The context Al model 130 can
compare that actual data to weather-related contextual infor-
mation, vehicle traffic-related contextual information and
overall contexts predicted by the context AI model 430. The
context Al model 430 can be configured to, based on the
comparisons, update parameters used for predicting the
weather-related contextual information, vehicle traflic-re-
lated contextual information and overall contexts 1n order to
improve the predictions. Such training can use Al model
training algorithms. Further, in one or more arrangements,
one or more knowledge corpora comprising sensor data for
overall contexts can be used to train the context AI model
430. For instance, the knowledge corpora can include pre-
viously generated sensor data for previously determined
overall contexts. By way of example, the context Al model
430 can use Al model training algorithms with knowledge
corpora as mputs to perform an 1nitial training of the context
Al model 130. The context Al model 430 can supplement the
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initial Al training using the actual vehicle traflic-related
contextual information and actual overall contexts to per-
form additional Al training.

As an example, a vehicle may be generating sensor values
for one contextual situation that are be different than sensor
values generated for another contextual situation. A contex-
tual situation, may, for example, depend on a condition of
the vehicle. For example, a vehicle with new tires can
quickly stop, but as the tires wear the amount of grip can
decline, and this 1t will take a greater amount of time and
distance to stop. So, for same weather contextual situation,
a vehicle with older tires needs may need to start breaking
before the same type of vehicle with new tires. The context
Al model 430 can perform digital twin simulations that
consider tread wear on various vehicles, among a myriad of
other parameters and contextual scenarios.

The context Al model 430 can communicate, to the sensor
controller 440, the sensor data collection rates 460 deter-
mined by the context AI model 430. The context Al model
430 can indicate to the sensor controller 440 to which
roadway segments the sensor data collection rates 460 apply.
In one or more arrangements, the context AI model 430 can
communicate to the sensor controller 440 the sensor data
collection rates 460 1n real time as the context AI model 430
determines the sensor data collection rates 460. For
example, each time the context Al model 430 changes the
sensor data collection rates 460 for a particular roadway
segment, the Al model 430 can communicate to the sensor
controller 440 the new sensor data collection rates 460 for
that roadway segment.

In one or more other arrangements, the context AI model
430 can communicate to the sensor controller 440 the sensor
data collection rates 460 at periodic time intervals, for
example at predefined intervals. The predefined intervals
may be specified by a user. For example, at predefined time
intervals the context AI model 430 can communicate to the
sensor controller 440 sensor data collection rates 460 that
have been updated based on changes 1n overall contexts. In
another example, the context Al model 430 can communi-
cate to the sensor controller 440 sensor all current sensor
data collection rates 460.

At step 515, based on the sensor data collection rates the
data processing system 300 can communicate sensor control
commands to a second set of Internet of Things devices. The
sensor control commands can specity, to the second set of
IoT devices, sensor data communication rates that respective
ones of the second set of IoT devices are to implement for
communicating, to the first AI model, second sensor data
generated by sensors of the respective ones of the second set
of IoT devices.

For example, the sensor controller 440 can communicate,
to the IoT devices 420, the sensor control commands 465.
The sensor control commands 465 can specily to the respec-
tive processors 424 the sensor data communication rates the
respective IoT devices 420 are to implement for communi-
cating, to the primary Al model 435, sensor data generated
by their respective sensors 422. The processors 424 can
control the sensors 422 to generate sensor data at the
specified sensor data collection rates 460 and/or control
communication of the sensor data at the specified sensor
data collection rates 460.

As noted, the context Al model 430 can indicate to the
sensor controller 440 to which roadway segments the sensor
data collection rates 460 apply. Continuing with the example
presented for table 1, Context A can apply to a first roadway
segment, Context B can apply to a second roadway segment,
Context C can apply to a third roadway segment, Context D
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can apply to a fourth roadway, and so on. The context Al
model 430 can indicate which roadway segments the data
collection rates in the respective columns apply.

For each roadway segment, the sensor controller 440 can
determine which IoT devices 420 are assigned to the various
roadway segments. For example, the sensor controller 440
can access from a first data table data indicating geographic
coordinates for each roadway segment, and access from a
second data table data indicating geographic coordinates for
each of the IoT devices 420. Further, the sensor controller
440 can access from a third data table data indicating the
types of sensor data generated by each of the IoT devices
420. The data tables can be accessed from the memory
clements 310 (FIG. 3), for example from the bulk storage
device(s) 323. In one or more other arrangements, the sensor
controller 440 can access the data tables from one or more
other systems (e.g., data processing systems or data storage
systems) to which the data processing system 300 1s com-

municatively linked.

Based on the data accessed from the data tables, the
sensor controller 440 can determine which IoT devices 420
are assigned to the which roadway segments and determine
the type of data generated by each IoT device 420. Based on
those determinations, 1 conjunction with the sensor data
collection rates 460 received by the sensor controller 440,
the sensor controller 440 can determine, for each IoT device
420, the rate at which the IoT device 420 1s to communicate
sensor data to the primary Al model 435. For example, for
Io'T devices 420 for a roadway segment assigned “Context
A” having sensors 422 that are “IType 1,” the sensor con-
troller 440 can communicate to those IoT devices 420 sensor
control commands 465 specifying a sensor data collection
rate of 78%. For IoT devices 420 for the roadway segment
assigned “Context A” having sensors 422 that are “Iype 2,”
the sensor controller 440 can communicate to those IoT
devices 420 sensor control commands 465 specilying a
sensor data collection rate of 82%, and so on. If one or more
Io'T devices 420 include multiple types of sensors, the sensor
controller 440 can communicate to those IoT device 420
sensor control commands 465 specilying the sensor data
collection rate to be used for each of the different types of
the sensors 422.

At step 520 the data processing system 300 can receive
sensor data from the second set of Io'T devices. For example,
the primary Al model 435 can receive from the IoT devices
420 sensor data generated by their respective sensors 422 at
the specified sensor data collection rates 460. I certain types
of sensors 422 are deactivated (e.g., having a specified data
collection rate of 0%), the primary Al model 435 need not
receive sensor data 470 from their respective IoT devices
420.

In one or more arrangements, the specified sensor data
collection rates 460 can be threshold values. The processors
424 of the IoT devices 420 can be configured to control the
sensors 422 to make sensor measurements and generate
sensor data 470 at the threshold value, or within a specified
tolerance of the threshold value, for example at a rate within
1%, 2%, 3%, 4%, 5%, etc. of the threshold value. Further,
the threshold value can a maximum sensor data collection
rate 460 or a minimum data collection rate 460 to be
observed by the processors 424/sensors 422. In arrange-
ments 1n which sensors 422 are configured to continually
generate sensor data, the processors 424 can be configured
to limit communication of the sensor data 470 to the primary
Al model 435 to the sensor data collection rates 460 speci-
fied by the sensor control commands 465.
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During the digital twin simulations, the context AI model
430 can analyze the sensor data 455 with respect to the
digital twin of the system and, based on such analyses,
determine contextual information pertaining to parameters
contained 1n the sensor data 455.

At step 5235 the data processing system 300 can determine,
by the first Al model, Al predictions by processing the
second sensor data. For example, the primary Al model 435
can perform digital twin simulations of the system for which
the sensor data 470 1s captured. In this regard, the context Al
model 430 can access, for example from the memory
clements 310, the digital twin 457 of the system. During the
digital twin simulations, the primary Al model 435 can
analyze the sensor data 470 received from the IoT devices
420 with respect to the digital twin 457 of the system and,
based on such analyses, determine weather-related contex-
tual information, trathc-related contextual information and
overall contexts for roadway segments assigned to the
primary Al model 435, for example as previously described

with regard to the context Al model 430 determining the
weather-related contextual information, traflic-related con-
textual information and overall contexts. Based on the
overall contexts, the primary Al model 435 can generate Al
predictions 4735 that predict impact of the weather-related
contextual information, tratlic-related contextual informa-
tion, and overall contexts on vehicle tratlic patterns.

At step 530 the data processing system 300 can output the
Al predictions. For example, the primary Al model 435 can
output the Al predictions 475 to the memory elements 310.
Further, the primary Al model 435 can output the Al
predictions 475 to one or more displays, to one or more other
data processing systems, and so on.

The primary Al model 435 can train 1itself over time to
improve the Al predictions made by the primary Al model
435. For example, the primary Al model 435 can monitor
actual weather-related contextual information, actual vehicle
traflic-related contextual information, actual overall con-
texts, and actual traflic impact predictions. The Al model
435 can compare that actual data to weather-related contex-
tual information, vehicle trathic-related contextual informa-
tion, overall contexts and traflic impact predicted by the
primary Al model 435. The primary Al model 435 can be
configured to, based on the comparisons, update parameters
used for predicting the weather-related contextual informa-
tion, vehicle traflic-related contextual information, overall
contexts, and traflic impacts in order to improve the predic-
tions. Such training can use Al model training algorithms.

In one or more arrangements, one or more steps 505-3535
can be performed by one or more other data processing
systems. For example, steps 505-520 can be performed by
the data processing system 300 and steps 525-335 can be
performed by another data processing system, for example
another data processing system at the hardware and software
60 layer (FIG. 2). In this regard, the other data processing
system can 1include the primary Al model 435, 1n which case
the data processing system 300 need not include the primary
Al model 435.

The foregoing description 1s just an example of embodi-
ments of the invention, and variations and substitutions.
While the disclosure concludes with claims defining novel
features, 1t 1s believed that the various features described
herein will be better understood from a consideration of the
description in conjunction with the drawings. The process
(es), machine(s), manufacture(s) and any variations thereof
described within this disclosure are provided for purposes of
illustration. Any specific structural and functional details
described are not to be interpreted as limiting, but merely as
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a basis for the claims and as a representative basis for
teaching one skilled in the art to variously employ the
features described in virtually any appropriately detailed
structure. Further, the terms and phrases used within this
disclosure are not intended to be limiting, but rather to
provide an understandable description of the features
described.

The present mnvention may be a system, a method, and/or
a computer program product at any possible technical detail
level of integration. The computer program product may
include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects ol the present
ivention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
istruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium 1ncludes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program 1nstructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface i each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or either source code
or object code written 1 any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++, or the like, and
procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
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computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, 1n order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart 1llustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1mple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor ol a computer, or other program-
mable data processing apparatus to produce a machine, such
that the instructions, which execute via the processor of the
computer or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified 1n the flowchart and/or block diagram block or
blocks.

The computer readable program 1nstructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer 1imple-
mented process, such that the mstructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified 1n the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion of 1nstructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted 1n the Figures. For example, two blocks shown in
succession may, in fact, be accomplished as one step,
executed concurrently, substantially concurrently, 1n a par-
tially or wholly temporally overlapping manner, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks i1n the block dia-
grams and/or flowchart i1llustration, can be implemented by
special purpose hardware-based systems that perform the
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specified functions or acts or carry out combinations of
special purpose hardware and computer instructions. The
terminology used herein i1s for the purpose of describing
particular embodiments only and 1s not intended to be
limiting of the invention. As used herein, the singular forms
“a,” “an,” and “the” are intended to include the plural forms
as well, unless the context clearly indicates otherwise. It will
be further understood that the terms “includes,” “including,”
“comprises,” and/or “comprising,” when used in this dis-
closure, specily the presence of stated features, integers,
steps, operations, elements, and/or components, but do not
preclude the presence or addition of one or more other
features, integers, steps, operations, elements, components,
and/or groups thereof.

The terminology used herein 1s for the purpose of describ-
ing particular embodiments only and 1s not intended to be
limiting of the invention. As used herein, the singular forms
“a,” “an,” and “the” are intended to 1include the plural forms
as well, unless the context clearly indicates otherwise. It will
be further understood that the terms “includes,” “including,”
“comprises,” and/or “comprising,” when used in this dis-
closure, specily the presence of stated features, integers,
steps, operations, elements, and/or components, but do not
preclude the presence or addition of one or more other
features, 1ntegers, steps, operations, elements, components,
and/or groups thereof.

Retference throughout this disclosure to “one embodi-
ment,” “an embodiment,” “one arrangement,” “an arrange-
ment,” “one aspect,” “an aspect,” or similar language means
that a particular feature, structure, or characteristic described
in connection with the embodiment 1s 1ncluded 1n at least
one embodiment described within this disclosure. Thus,
appearances of the phrases “one embodiment,” “an embodi-
ment,” “one arrangement,” “an arrangement,” “‘one aspect,”
“an aspect,” and similar language throughout this disclosure
may, but do not necessarily, all refer to the same embodi-
ment.

The term “plurality,” as used herein, 1s defined as two or
more than two. The term ‘“‘another,” as used herein, 1s
defined as at least a second or more. The term “coupled,” as
used herein, 1s defined as connected, whether directly with-
out any intervening elements or indirectly with one or more
intervening elements, unless otherwise indicated. Two ele-
ments also can be coupled mechanically, electrically, or
communicatively linked through a communication channel,
pathway, network, or system. The term “and/or” as used
herein refers to and encompasses any and all possible
combinations of one or more of the associated listed 1tems.
It will also be understood that, although the terms {irst,
second, etc. may be used herein to describe various ele-
ments, these elements should not be limited by these terms,
as these terms are only used to distinguish one element from
another unless stated otherwise or the context indicates
otherwise.

The term “1f” may be construed to mean “when” or
“upon” or “in response to determining” or “in response to
detecting,” depending on the context. Similarly, the phrase
“if 1t 1s determined” or ““if [a stated condition or event] 1s
detected” may be construed to mean “upon determining” or
“in response to determining” or “upon detecting [the stated
condition or event]” or “in response to detecting [the stated
condition or event],” depending on the context.

The descriptions of the various embodiments of the
present 1nvention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill 1in the
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art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of 5
ordinary skill in the art to understand the embodiments
disclosed herein.

What 1s claimed 1s:
1. A method, comprising: 10
receiving first sensor data from a {first set of Internet of
Things devices;

determining sensor data collection rates for a first artificial
intelligence model by analyzing the first sensor data
using a second artificial imtelligence model executed by 15
a processor; and

based on the sensor data collection rates, communicating
sensor control commands to a second set of Internet of
Things devices, the sensor control commands specity-
ing, to the second set of Internet of Things devices, 20
sensor data communication rates that respective ones of
the second set of Internet of Things devices are to
implement for communicating, to the first artificial
intelligence model, second sensor data generated by
sensors ol the respective ones of the second set of 25
Internet of Things devices.

2. The method of claim 1, further comprising:

receiving the second sensor data from the second set of
Internet of Things devices;

determining, by the first artificial intelligence model, 30
artificial intelligence predictions by analyzing the sec-
ond sensor data; and

outputting the artificial intelligence predictions.

3. The method of claim 1, wherein the determining the
sensor data collection rates for the first artificial intelligence 35
model comprises:

based on the first sensor data, determining a plurality of

contextual information;

based on the plurality of contextual information, deter-

mining a plurality of overall contexts; and 40
determining a respective set of the sensor data collection
rates for each of the plurality of overall contexts.

4. The method of claim 3, wherein each respective set of
the sensor data collection rates specifies a plurality of the
sensor data collection rates, each of the plurality of the 45
sensor data collection rates assigned to a respective sensor
type.

5. The method of claim 4, wherein a first data collection
rate, specified for a particular sensor type, in a first set of the
sensor data collection rates diflers from a second data 50
collection rate, specified for the particular sensor type, 1n a
second set of the sensor data collection rates.

6. The method of claim 3, wherein at least a portion of the
plurality of contextual information 1s predicted by the sec-
ond artificial intelligence model. 55

7. The method of claim 6, further comprising:

the second artificial intelligence model improving con-

textual information predictions by training itself using

artificial intelligence, the training comprising:

monitoring actual contextual information; 60

comparing the actual contextual information to the
contextual mnformation predictions; and

updating parameters used for predicting the contextual
information.

8. A system, comprising;: 65

a processor programmed to 1mitiate executable operations

comprising;
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receiving first sensor data from a first set of Internet of
Things devices;

determining sensor data collection rates for a first artificial
intelligence model by analyzing the first sensor data
using a second artificial intelligence model; and

based on the sensor data collection rates, communicating
sensor control commands to a second set of Internet of
Things devices, the sensor control commands specify-
ing, to the second set of Internet of Things devices,
sensor data communication rates that respective ones of
the second set of Internet of Things devices are to
implement for communicating, to the first artificial
intelligence model, second sensor data generated by
sensors ol the respective ones of the second set of
Internet of Things devices.
9. The system of claim 8, the executable operations
further comprising:
recerving the second sensor data from the second set of
Internet of Things devices;

determiming, by the first artificial intelligence model,
artificial intelligence predictions by analyzing the sec-
ond sensor data; and
outputting the artificial intelligence predictions.

10. The system of claim 8, wherein the determining the
sensor data collection rates for the first artificial intelligence
model comprises:

based on the first sensor data, determining a plurality of

contextual information;

based on the plurality of contextual information, deter-

mining a plurality of overall contexts; and
determining a respective set of the sensor data collection
rates for each of the plurality of overall contexts.
11. The system of claim 10, wherein each respective set
of the sensor data collection rates specifies a plurality of the
sensor data collection rates, each of the plurality of the
sensor data collection rates assigned to a respective sensor
type.
12. The system of claim 11, wherein a first data collection
rate, specified for a particular sensor type, 1n a first set of the
sensor data collection rates differs from a second data
collection rate, specified for the particular sensor type, 1n a
second set of the sensor data collection rates.
13. The system of claim 10, wherein at least a portion of
the plurality of contextual information i1s predicted by the
second artificial intelligence model.
14. The system of claim 8, the executable operations
further comprising:
the second artificial intelligence model improving con-
textual information predictions by training itself using
artificial intelligence, the training comprising:
monitoring actual contextual information;
comparing the actual contextual information to the
contextual information predictions; and
updating parameters used for predicting the contextual
information.
15. A computer program product, comprising;
one or more computer readable storage mediums having,
program code stored thereon, the program code stored
on the one or more computer readable storage mediums
collectively executable by a data processing system to
initiate operations including:
recerving first sensor data from a first set of Internet of
Things devices;

determining sensor data collection rates for a first artificial
intelligence model by analyzing the first sensor data
using a second artificial intelligence model; and
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based on the sensor data collection rates, communicating
sensor control commands to a second set of Internet of
Things devices, the sensor control commands specity-
ing, to the second set of Internet of Things devices,
sensor data communication rates that respective ones of
the second set of Internet of Things devices are to
implement for communicating, to the first artificial
intelligence model, second sensor data generated by
sensors ol the respective ones of the second set of
Internet of Things devices.
16. The computer program product of claim 15, wherein
the program code 1s executable by the data processing
system to initiate operations further comprising:
receiving the second sensor data from the second set of
Internet of Things devices;

determining, by the first artificial intelligence model,
artificial intelligence predictions by analyzing the sec-
ond sensor data; and

outputting the artificial intelligence predictions.
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17. The computer program product of claim 15, wherein »g

the determining the sensor data collection rates for the first
artificial intelligence model comprises:

22

based on the first sensor data, determining a plurality of
contextual information:

based on the plurality of contextual information, deter-
mining a plurality of overall contexts; and

determiming a respective set of the sensor data collection
rates for each of the plurality of overall contexts.

18. The computer program product of claim 17, wherein
cach respective set of the sensor data collection rates speci-

fies a plurality of the sensor data collection rates, each of the

plurality of the sensor data collection rates assigned to a
respective sensor type.

19. The computer program product of claim 18, wherein
a first data collection rate, specified for a particular sensor
type, 1n a {irst set of the sensor data collection rates differs
from a second data collection rate, specified for the particu-
lar sensor type, 1n a second set of the sensor data collection
rates.

20. The computer program product of claim 17, wherein
at least a portion of the plurality of contextual information
1s predicted by the second artificial intelligence model.
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