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(57) ABSTRACT

A computer-implemented method for automatically deter-
mining a neural network architecture represents a neural
network architecture as a data structure defining a hierar-
chical set of directed acyclic graphs 1n multiple levels. Each
graph has an iput, an output, and a plurality of nodes
between the input and the output. At each level, a corre-
sponding set of the nodes are connected pairwise by directed
edges which indicate operations performed on outputs of
one node to generate an mput to another node. Each level 1s
associated with a corresponding set of operations. At a
lowest level, the operations associated with each edge are
selected from a set of primitive operations. The method
includes repeatedly generating new sample neural network
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architectures, and evaluating their fitness. The modification
1s performed by selecting a level, selecting two nodes at that
level, and moditying, removing or adding an edge between
those nodes according to operations associated with lower
levels of the hierarchy.
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USING HIERARCHICAL
REPRESENTATIONS FOR NEURAL

NETWORK ARCHITECTURE SEARCHING

CROSS-REFERENCE TO RELATED
APPLICATION

This application 1s a National Stage Application under 35
U.S.C. § 371 and claims the benefit of International Appli-
cation No. PCT/EP2018/079401, filed Oct. 26, 2018, which
claims prionty to U.S. Application No. 62/578,356, filed
Oct. 27, 2017, the entire contents of which are hereby
incorporated by reference herein.

BACKGROUND

This specification relates to systems and methods for
automatically determining neural network architectures.

Neural networks are machine learning models that
employ one or more layers of nonlinear units to predict an
output for a received input. Some neural networks include
one or more hidden layers 1 addition to an output layer. The
output of each hidden layer 1s used as input to the next layer
in the network, 1.e., the next hidden layer or the output layer.
Each layer of the network generates an output from a
received mput 1n accordance with current values of a respec-
tive set of parameters.

Some neural networks are recurrent neural networks. A
recurrent neural network 1s a neural network that recetves an
input sequence and generates an output sequence from the
input sequence. In particular, a recurrent neural network can
use some or all of the internal state of the network from a
previous time step 1n computing an output at a current time
step. An example of a recurrent neural network 1s a long
short term memory (LSTM) neural network that includes
one or more LSTM memory blocks. Each LSTM memory
block can include one or more cells that each include an
input gate, a forget gate, and an output gate that allow the
cell to store previous states for the cell, e.g., for use 1n
generating a current activation or to be provided to other
components of the LSTM neural network.

SUMMARY

This specification describes a system and method, imple-
mented as one or more computer programs on one or more
computers 1 one or more locations, that determines a neural
network architecture. The neural network architecture may,
for example, be the architecture of a convolutional and/or
recurrent neural network.

A neural network system comprising a neural network
corresponding to the determined neural network architecture
can be configured to receive any kind of digital data mnput
and to generate any kind of score, classification, or regres-
sion output based on the input. For example, 1t may be a
neural network system configured to classify iput data, e.g.
a data i1tem captured by a sensor and characterizing the real
world. For example, the data item may be an image, such as
one captured by a camera, or a sound signal, such as one
captured by a microphone. The neural network system may
be trained by supervised learning based on a training set
composed of instances of sensor data (e.g. real-world
instances of sensor data, such as images captured by a
camera; but in principle some or all of the instances of
sensor data may be simulated) and corresponding labels
indicating that the instance of sensor data 1s associated with
one of a predetermined set of classes. The trained neural
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network system may be used by mputting real-world sensor
data which was captured by a sensor into the neural network
system, and obtaining a corresponding label as the output of
the neural network system, indicative of the mnput sensor
data being associated with one of the classes.

Alternatively, the neural network system may be config-
ured to process a sequence of mput data such as a sequence
of words or data i1tems, or 1t may be part of a generative
neural network system, or it may be part of a reinforcement
learning system, 1n which case it may generate an output
identifying an action to be performed by an agent which may
be, for example, a robot.

In general terms, the present disclosure proposes a com-
puter-implemented method for automatically determining a
neural network architecture which represents any given
neural network architecture in a data structure defining a
hierarchical set of directed acyclic graphs. Each graph has an
input, an output, and a plurality of nodes between the mput
and the output.

As noted, the set of graphs hierarchical, defined at each of
a plurality of levels. The levels may be associated with
corresponding subsets of the nodes. The subset of nodes for
cach level includes the subset of nodes for the next higher
level, plus additional node(s). The hierarchical representa-
tion 1ncludes, at each level, directed edges between respec-
tive pairs of the nodes of the corresponding subset of the
nodes. An edge indicates that an operation 1s performed on
an output of one of the nodes to generate an input to the other
node. An edge between two nodes of a certain level of the
representation may, at the next lower level, be represented
instead by one or more additional nodes (i1.e. nodes of the
subset of nodes associated with the next lower level but
which were not part of the subset of nodes associated with
the certain level), and by edges between the two nodes of the
certain level, and/or between those two nodes and the
additional nodes, and/or between two of the additional
nodes.

Each level may be associated with a corresponding set of
operations. The operation between any pair of nodes of a
given level except the lowest, may be one of the subset of
operations associated with a lower level. At a lowest-but-one
level, the operations associated with each edge may be
selected from a set of primitive operations which constitute
the lowest level of the hierarchy.

The method includes repeatedly generating new sample
neural network architectures by modifying existing neural
network architecture(s), and evaluating their fitness. The
modification 1s performed by selecting a level of an existing
neural network architecture, selecting two nodes at that
level, and modilying, removing or adding an operation
between those nodes. The modifying or adding operations
are performed using operations associated with a lower level
of the hierarchy.

Expressing the general concepts above more specifically,
according to one innovative aspect a computer-implemented
method for automatically determining a neural network
architecture. The method represents a neural network archi-
tecture as a data structure defining a hierarchical set of
graphs, 1n particular directed acyclic graphs. Fach graph has
an 1mmput, an output, and a plurality of nodes between the
input and the output. Each node, or at least each apart from
an iput node for the hierarchy, corresponds to (outputs) a
feature map within a neural network defined by the neural
network architecture. The feature map may comprise an
embedding, 1n a neural network represented by the archi-
tecture, of features derived from an mput vector to the neural
network. Two nodes are connected by a (directed) edge
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which connects an mput node of the edge to an output node
of the edge. Each edge corresponds to an operation per-
formed on a feature map of the mput node of the edge to
provide a feature map to the output node of the edge. Thus
cach graph performs an operation, described later as a motif.

The hierarchical set of graphs comprises a plurality of
hierarchical levels of graphs, in particular a lowest hierar-
chical level comprising one or more lowest level graphs, and
one or more next higher hierarchical levels comprising one
or more next level graphs. Operations (motifs) correspond-
ing to edges of the one or more lowest level graphs are
selected from a set of primitive neural network operations
(in the later description the lowest level graphs are at level
2 and the primitive operations themselves are at level 1).
Operations corresponding to edges of the one or more next
level graphs are selected from a set of operations performed
by the one or more lowest level graphs.

The method may comprise determining at least two
sample neural network architectures, in particular by defin-
ing at least the operations performed by the edges in
respective hierarchical sets of graphs representing the
sample neural network architectures. These sample archi-
tectures may be used to determine a neural network archi-
tecture for use 1n constructing a neural network. This may
involve using a genetic algorithm, in which case the sample
neural network architectures may be evolved over time.
Alternatively 1t may involve a random search algorithm, in
which case the sample architectures may be evaluated
sequentially until a satisfactory architecture 1s identified.
Alternatively other techniques may be employed.

Thus the method may still further comprise generating
sample neural networks having the sample neural network
architectures, training the sample neural networks, evaluat-
ing the sample neural networks by determining a fitness
value for each of the sample neural networks, and then
selecting one or more of the sample neural network archi-
tectures according to the determined fitness values to deter-
mine a neural network architecture. The fitness value may be
calculated using a fitness test, which may for example be a
test of how well a neural network system comprising the
sample neural network, and trained to perform a computa-
tional test, performs that task.

In some implementations the plurality of hierarchical
levels of graphs comprises a succession ol next higher
hierarchical levels. Operations corresponding to edges of
cach hierarchical level are selected from a set of operations
performed by one or more graphs of at least one preceding,
(lower) level 1n the succession, that 1s motifs of a preceding
level. These may but need not be exclusively from the
immediately preceding level—for example an operation at a
level may also include one or more primitive operations
such as the no-connection/no-edge operation described
below.

The set of primitive neural network operations may
include, for example, one or more convolution operations, of
which some or all may be of stride one. Preferably such a
convolution operation 1s configured such that that when
performed on a feature map 1t leaves an nput resolution of
the feature map unchanged. This can facilitate chaining of
operations at different levels in 1mplementations of the
method. For similar reasons a convolution operation may be
tollowed by a batch normalization operation. Multiple con-
volution operations may be provided, for example of dif-
terent kernel sizes, and/or of separable/non-separable types.

The set of primitive neural network operations may
additionally or alternatively include an identity operation,
that 1s an operation that when performed on a feature map
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4

leaves the feature map substantially unchanged. This can be
advantageous because can allow nodes to effectively be
added to/removed from a graph, by changing whether two
nodes are equivalent to one another.

The set of primitive neural network operations may
additionally or alternatively include a no-connection opera-
tion which defines that there 1s no direct connection between
the nodes linked by the edge to which the operation corre-
sponds. This 1s effectively a no-edge operation in that the
no-connection operation eflectively defines that there i1s no
edge between the nodes. That 1s, the output of one of the
nodes does not pass as an 1put to the other.

The set of primitive neural network operations may
additionally or alternatively include one or more of a max
pooling operation, an average pooling operation, and a
recurrent operation such as an LSTM or GRU (gated recur-
rent unit) operation.

Determining the at least two sample neural network
architectures may include mitializing a population of sample
neural network architectures. This may comprise initializing
at least one instance of the data structure defining the
hierarchical set of graphs by defining at least the operations
performed by the edges of the hierarchical set of graphs, in
some 1mplementations to the 1dentity operation. Then these
operations may be mutated by randomly modifying the
operations performed by the edges of the hierarchical set of
graphs. Such mitialization can be useful for various search
procedures 1including random search, in which case just one
sample architecture may be generated/initialized for each
search 1teration.

For a genetic algorithm a larger population of sample
neural network architectures may be employed. The select-
ing may then comprise comparing the fitness values of
sample neural network architectures from the population
against one another. This may be done by any of a range of
fitness/reward-based selection mechanisms used for genetic
algorithms, but tournament selection has been found to work
particularly well. Preferably tournament selection 1s
employed with a significant proportion of the population, for
example equal to or greater than 1%, 3% or 5%. Thus
determining the sample neural network architectures may
further comprise mutating a sample neural network archi-
tecture selected according to the determined fitness value
and repeating the generating, training, evaluating and select-
ing to evolve the sample neural network architecture(s).

The mutating may comprise selecting one of the hierar-
chical levels, selecting a graph (motil) 1n the selected level,
and selecting a predecessor node and a successor node 1n the
selected graph. Some or all of the selections may be random.
The predecessor node and successor node may be selected
such that, in the neural network before the mutation, no
output of the successor node passes to the predecessor node
(directly, or via other nodes). That 1s, the predecessor node
and a successor node may be selected to be consistent with
the existing edges/operations, to ensure that the mutation
does not change the acyclic nature of the graph; generally 1n
a directed acyclic graph there 1s an inherent topological
ordering.

The mutating may further comprise replacing an opera-
tion corresponding to an edge connecting the selected nodes
with another operation, which may be randomly selected.
Selecting the same operation as the original operation may,
but need not be permitted.

In some 1implementations the selecting further comprises
providing a plurality of evaluation workers, which may be
implemented as software agents, each configured to evaluate

a sample neural network architecture. Sample neural net-
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work architectures may be allocated to the workers for
evaluation as each worker becomes available. For example
a worker may pick a sample from a data queue defining
architectures for evaluation. Each worker may then perform
the generating, training and evaluating of a sample neural
network having the corresponding architectures. When fin-
ished the worker may, asynchronously, be allocated a further
sample neural network architecture for evaluation. The
evaluation results generated by the workers may be added to
a shared data store. A controller software also have access to
the shared data store for controlling selecting of the archi-
tectures according to their evaluation results.

Many different techniques may be used for evaluating the
fitness value, that 1s the performance of a neural network,
including, for example, the network’s accuracy at performs-
ing a computational task such as a classification task, a loss
or cost function within the network, or a score/reward
obtained in a remnforcement learning task. Where an error or
average error 1s determined, the fitness value may be a
negative of this error. The fitness value of a sample neural
network may optionally be determined as a measure of the
performance of a (larger) neural network system comprising,
one or more instances of the sample neural network, 1n
performing a computational task.

The method may further include designing a neural net-
work according to the determined neural network architec-
ture 1f any further design work 1s necessary, and/or con-
structing a neural network with the architecture. The
constructing may be automatic. It may include incorporating
one or more instances of the determined neural network
architecture into a (larger) neural network system. The
method may further include using neural network for train-
ing and/or inference; or making the neural network available
for use, for example for training and/or inference, via an API
(application programming interface). Thus one use case of
implementations of the method/system involves a user pro-
viding data for machine learning processing; the method/
system may then be used to generate, in particular evolve a
neural network architecture; and then a neural network with
the architecture may be made available for the user to use.

In a related aspect a system to automatically determine a
neural network architecture comprises a data structure
memory to store data structures. Each data structure is
configured to represent a neural network architecture as a
hierarchical set of graphs. Each graph may have an mput, an
output, and a plurality of nodes between the mput and the
output. A node may correspond to a feature map within a
neural network defined by the neural network architecture,
¢.g. 1n the sense of outputting that feature map. The input to
the node may be one or more feature maps which are the
outputs of other nodes. Each pair of nodes may be connected
by an edge. Fach edge may connect an input node of the
edge to an output node of the edge and may correspond to
an operation performed on a feature map of the mput node
of the edge to provide a feature map to the output node of
the edge, such that each graph performs an operation.

The hierarchical set of graphs may comprise a plurality of
hierarchical levels of graphs, a lowest hierarchical level
comprising one or more lowest level graphs and a next
higher hierarchical level comprising one or more next level
graphs. Operations corresponding to edges of the one or
more lowest level graphs may be selected from a set of
primitive neural network operations. Operations corre-
sponding to edges of the one or more next level graphs may
be selected from a set of operations performed by the one or
more lowest level graphs. The system may include a sample
module to define at least two sample neural network archi-
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tectures by defining at least the operations performed by the
edges 1n respective hierarchical sets of graphs representing

the sample neural network architectures. The system may
also include an evaluation module to generate sample neural
networks having the sample neural network architectures;
train the sample neural networks; evaluate the sample neural
networks by determining a fitness value for each of the
sample neural networks; and/or select one or more of the
sample neural network architectures according to the deter-
mined fitness values.

The subject matter described in this specification can be
implemented 1n particular embodiments so as to realize one
or more of the following advantages.

Embodiments of the above described systems and meth-
ods can produce neural network architectures with perfor-
mance 1n a computational task (such as processing sensor
data to generate an output classitying the data, or generating
control data) which 1s as good as or better than human-
designed neural networks, and 1n a much shorter space of
time. Thus, the embodiments of the method lead to an
improved computer system, which, for a given level of
computational training resources (e.g. processor time), can
be trained to perform computational tasks, such as sensor
data classification, with higher efliciency.

Furthermore, embodiments of the described systems and
methods, have been found to perform neural network archi-
tecture searches with a large saving i1n computational
resources (e.g. reduced processing time used by a processor
umt with a given processing rate) compared to known
algorithms for performing architecture searches. In various
experiments, an increase in speed by a factor in the range 6
to over 200 was observed compared to known techniques, to
produce a neural network architecture which performed an
image classification task to substantially the same level of
accuracy, or 1n some cases better.

The neural network generated by the described method
may be implemented in hardware as a novel computer
system, which comprises a plurality of processor units
which implement the respective functions of nodes and
edges of the neural network, the processor units being
connected by physical signal paths (electrical and/or optical
circuitry) designed by method. The neural network thus has
a different hardware architecture to any existing computer
system. Alternatively, the method may be implemented by
one or more processors which simulate the processor units
and signal paths of the novel hardware architecture.

BRIEF DESCRIPTION OF THE DRAWINGS

Examples of the disclosed method will now be described,
for the sake of example, only with reference to the following
figures 1n which:

FIG. 1 1llustrates primitive operations which may be used
in a method according to the present disclosure;

FIG. 2, which 1s composed of FIGS. 2(a) and 2(b),
illustrates the formation of a level 2 motif in the method
according to the present disclosure using the primitive
operations of FIG. 1;

FIG. 3, which 1s composed of FIGS. 3(a) and 3(b), shows
two other level 2 motifs;

FIG. 4, which 1s composed of FIGS. 4(a) and 4(b), shows
the formation of a level 3 motif 1n the method of FIG. 2
using the level 2 motifs of FIGS. 2 and 3;

FIG. 5§ 1s a flow diagram showing steps of a method
according to the present disclosure to determine a neural
network architecture, and use the determined neural network
architecture to perform a computational task; and
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FIG. 6 shows schematically the construction of a system
for performing the method of FIG. 1.

DETAILED DESCRIPTION OF THE EXAMPLES

Below an example of method according to the present
disclosure for determining (generating) a neural network
architecture 1s described, with reference to FIG. 5. Before
that, we describe neural networks which are produced by the
method.

Each neural network has a neural architecture which can
be represented as a directed acyclic graph, composed of a
plurality of nodes connected pairwise by directed edges. The
nodes comprise at least one mnput node and at least one
output node. For simplicity we will consider the case that
there 1s a only a single mput node (*single source”) and
single output node (“single sink), such that the neural
network transforms the mput at the source to the output at
the sink. The network 1s acyclic 1n the sense that no path
exists which starts from any given node, extends along the
directed edges (1n the direction of the edges), and returns to
the given node.

Each node of the graph may generate a feature map based
on 1ts mputs. The feature map may be an array (e.g. a
two-dimensional array, but 1n variations of the example the
array may have any other dimensionality) of vectors. Each
vector has one or more components; typically each vector of
the feature map has the same (plural) number of compo-
nents.

Each directed edge, extending from a first of the nodes to
a second of the nodes, 1s associated with a corresponding
one of a set of primitive operations that transforms the
feature map 1n the first node to produce a feature map which
the edge passes to the second node.

Formally, a neural network consists of a number of nodes,
labelled by varniable 1, each of which forms a feature map x,
from 1ts inputs. The nodes are connected in pairs by directed
edges. A directed edge from a first node 1 to a second node
j performs an operation on the feature map x, to generate an
input for the second node. The neural network architecture
1s defined by the representation (G, o), consisting of two
clements:

1. A pool of available operations 0={0,, 05, . . . }.

2. An adjacency matrix G specifying the neural network
graph of operations, where G, =k means that the graph
contains nodes 1 and j, with a directed edge from node
1 to node 1 which corresponds to the k-th operation o,.

The architecture, which may alternatively be denoted
arch, 1s obtained by assembling operations o according to the
adjacency matrix G:

(1)

The single input node may be designated by 1=1. The
number of nodes 1s |Gl, and the output node 1s 1=IGl. The
other nodes are numbered such that the set of nodes j from
which it 1s possible to reach a given node 1 by moving along,
one of the edges 1n the direction specified by the edge have
a label which 1s less than 1 (the network 1s acyclic which
guarantees that this topographical ordering will be possible).
This set of nodes i1s referred to as the direct predecessor
nodes of node 1. Thus, the feature map X, of node 1 1s
obtained from the feature maps x; of its direct predecessor
nodes following the topological ordering:

arch=assemble(G,0).

G (2)

Here, merge 1s an operation combining multiple feature
maps nto one. In one example this can be implemented as

x=merge[{0,(x)};<i=2 . . .
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depthwise concatenation (1.¢ X, 1s a concatenation of the
vectors {ogﬁ(xj)}j{f. An alternative way of performing the
merge operation 1s by element-wise addition. However, this
1s less tlexible since 1t requires the incoming feature maps to
contain the same number of channels (components). In any
case, a merge operation of this kind can be performed by a
chain of two nodes which each perform a merge operation
by concatenation, joined by a directed edge which performs
a 1x1 convolution.

A key 1dea of the hierarchical neural network architecture
representation 1s that the neural network architecture is
constructed according to a hierarchy consisting of a plurality
of levels. Each level except the lowest 1s associated with a
subset of the nodes. The highest level may for example just
be associated with the single mput node and the single
output node. Each lower level 1s associated with the subset
of nodes for the next higher level, plus one or more
additional nodes. The lowest-but-one level (“level 27) 1s
associated with all the nodes of the neural network archi-
tecture. At each level except the lowest, we can represent the
flow of data between two nodes associated with that level by
directed edges between a respective pair of the nodes
associated with that level. Thus, for level 2, the edges, as
explained above, each represent respective one of the pool
of available operations (referred to as available operations),
while at each higher level an edge represents the flow of data
between two nodes of that level, typically via node(s) of one
or more lower levels.

One or more motifs are defined at each level of the
hierarchy, where, except for the lowest level, each motif of
a given level 1s composed of motifs of lower levels. That 1s,
lower level motifs are reused as building blocks (operations)
during the construction of higher-level motifs. Specifically,
cach motif of a given level, except the first level, may be
composed of motifs of the immediately lower level.

Consider a hierarchy of L levels where the 1-th level
contains M, motifs. The highest-level =L contains only a
single motif corresponding to the full architecture, and the
lowest level 1=1 1s the set of primitive operations. We
recursively define om(z),, the m-th motif in level 1, as the
composition of lower-level motiis

1 -1 (-1
o' ):{ﬂ(l ),0(2 L 3

Using this approach the network structure matrix G can be
decomposed 1nto the set of matrices

{G))

which each correspond to one of the motifs (1.e. the m-th
motif of level 1) according to 1ts network structure, such that
we can write the m-th motif of the 1-th level as:

0, P=assemble(G, ‘" o IhViE2, . . . L

A hierarchical neural network architecture representation 1s
provided by the data structure

L
(Gt s o)

which 1s determined by the network structures of motifs at
all levels and the set of bottom-level primitives.



US 11,907,853 B2

9

We now consider the primitive operations at level 1=1 of
the hierarchy. In one example there are six such primitive
operations (1=1, M.=6), as follows:

1x1 convolution of C channels

3x3 depthwise convolution of C channels

3x3 separable convolution of C channels

3x3 max-pooling

3x3 average-pooling

identity

Three of the six possible such primitive operations are
illustrated 1n FIG. 1. Each of these primitive operations 1s
well-known 1n the field of convolutional neural networks,
and may be summarized as follows.

A first primitive operation, denoted by o,", is a 1xI1
convolution. That 1s, an operation which, upon receiving
two-dimensional array of first vectors of equal length, forms
a second two-dimensional array of the same number of
second vectors 1 which each second vector 1s a function
(normally a linear function) of the corresponding one of the
first vectors; each second vector 1s generated from the
corresponding first vector using the same function.

A second primitive operation, denoted by o,'"’, is a 3x3
depthwise convolution. This 1s another operation which,
upon receiving two-dimensional array of first vectors of
equal length, forms a second two-dimensional array of
second vectors, but 1n this case each of the second vectors
1s formed as a function (normally a linear function) of the
first vectors 1 a corresponding 3x3 patch of the two-
dimensional array of first vectors. The patches may be
overlapping. Again each second vector 1s generated using
the same function, except that optionally second vectors at
the edge of the two-dimensional array may be generated by
a modified function which operates on a smaller number of
the first vectors. The convolution 1s depthwise, in which
components of the second vector are formed from (only) the
corresponding components of the patch of first vectors.

Note that another one of the six primitive operations (not
shown 1 FIG. 1) 1s a separable convolution, 1n which the
convolution kernel 1s separable as the outer product of two
vectors. A separable convolution may be equivalent to a
depthwise convolution followed by a 1x1 convolution.

A further possible primitive operation, denoted by 0,‘", is
a 3x3 max pooling operation That 1s another operation
which, upon receiving two-dimensional array of first vectors
of equal length, forms a second two-dimensional array of
second vectors, and each second vectors 1s formed from a
corresponding 3x3 patch of the two-dimensional array of
first vectors, but 1n this case each component of each second
vector 1s the maximum of the corresponding components of
the first vectors in the patch.

Similarly, another of the six possible primitive operations
(not shown 1n FIG. 1) 1s a 3x3 average pooling operation,
which differs from the 3x3 max pooling operation 1n that
cach second vector 1s formed from a corresponding 3x3
patch of the array of {first vectors, such that each component
of each second vector 1s the average of the corresponding
components of the first vectors of the patch.

In one example, all primitives are of stride one and the
convolved feature maps are padded to preserve their spatial
resolution. All convolutional operations may be followed by
batch normalization (1.e. increased/decreased by a first
value, and multiplied by a second value, to give zero mean
and umt variance), and RelLU activation (1.e. set to the
higher of (1) their value, and (11) zero). The number of output
channels for each convolution operation 1s fixed to be a
constant C (e.g. by padding). We note that convolutions with
larger receptive fields and more channels can be expressed
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as motifs composed of such primitives. Indeed, large recep-
tive fields can be obtained by stacking 3x3 convolutions in
a chain structure, and wider convolutions with more chan-
nels can be obtained by merging the outputs of multiple
convolutions through depthwise concatenation.

The i1dentity operation 1s a primitive operation which,
when 1t 1s associated with the directed edge connecting node
1 and node j, outputs the feature map X, to the node ;.

We also mtroduce a special “none” operation, which
indicates that there 1s no edge between nodes 1 and j. It 1s
added to the pool of operations at each level.

FIG. 2(a) illustrates an example of a possible level 2
network structure G,‘" defined using the primitive opera-
tions of FIG. 1, and FIG. 2(b) shows how these primitives
are assembled based on G,* into the corresponding level 2
motif o,. FIGS. 3(a) and 3(b) shows two further level 2
motifs 0, and o,

FIG. 4(a) shows a level 3 network structure G,*’, and
FIG. 4(b) shows how the primitives of FIG. 2(b) and FIG.
3 are assembled based on G, to form a level 3 motif o, .

We now explain a computer-implemented method 500
which 1s an example according to the present disclosure,
with reference to FIG. 5. The method employs an evolu-
tionary strategy over neural network architectures by treat-
ing instances of the neural network architecture representa-
tions (G, 0) as genotypes.

Steps 501 and 502 are to initialize a population of
genotypes. In 301, at least one 1nitial genotype 1s created.
The mitial genotype 1s a neural network architecture repre-
sentation representing a hierarchical neural network with a
plurality of levels L (which 1s greater than one, and prefer-
ably greater than two). For example, the (or each) initial
genotype may be created as a “trivial” genotype, which 1s a
neural network representation representing a neural network
in which the only motif at each level 1s a chain of identity
mappings. Thus, the only primitive operation used in the
initial genotype 1s the identity primitive.

In step 502, the mitial genotype(s) are diversified by
applying a plurality of random mutations, to form a popu-
lation of neural network representations. For example, start-
ing with a single one of the imitial genotype(s), a plurality of
genotypes (neural network architecture representations) may
be formed by applying a respective plurality of mutations to
the 1mitial genotype(s). Note that this 1s in contrast to some
known techmiques in which all the initial genotypes are
trivial networks. The diversification step 502 provides an
improved initial coverage of the search space with non-
trivial architectures, and helps to avoid a bias introduced by
handcrafted initialization routines. In fact, even some of the
neural networks represented by the genotypes generated in

step 502 may be reasonably well-performing according to
the fitness test discussed below.

The mutation of step 502 may be carried out using the
following action space. A single mutation consists of the
following sequence of actions:

1. Select a value for 1 in the range 2 to L. This amounts
to sampling a non-primitive level (the “target level”)
which 1s not the primitive level (1=1).

. Sample a motif m 1n the target level (the “target motit™).

. Sample a random node 1 1n the target motil (the
“successor node”) which 1s not the mput node of the
motif.

4. Sample a random node 7 1n the target motil (the

predecessor node) which 1s not the node 1, and 1s not a

successor of the node 1 (1.e. neither a direct successor

2 DD
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nor an indirect successor, 1.e. not a node from which
node 1 can be reached by following multiple directed
edges).

5. Replace the current operation 0,"" from j to i with a

randomly sampled operation o, ‘.

In the case of flat genotypes which consist of two levels
(one of which 1s the level of fixed primitives), the first step
1s omitted and/1s set to 2. The mutation can be summarized
as:

(GO, =K (4)

where (I, m, 1, 3, k) are randomly sampled from their
respective domains. Notably, the mutation process 1s pow-
erful enough to perform various modifications on the target
motif, such as:

1. Add a new edge: if 0,"Y=none and o, V’=none

2. Alter an existing edge: if 0, “=none and 0, ”=none

and o, "Vzo, 1

3. Remove an existing edge: if 0,"""=none and if o, .“"

=none

Steps 503-508 implement an evolutionary search algo-
rithm based on tournament selection. Starting from an 1nitial
population of random genotypes, tournament selection pro-
vides a mechanism to pick at least one promising genotype
from the population, and to place 1ts mutated oflspring back
into the population. By repeating this process, the quality of
the population keeps being refined over time. The genotype
with the highest fitness value (e.g. validation accuracy
obtained by training a neural network system including a
neural network based on the genotype from scratch for a
fixed number of steps) among the entire population when a
termination criterion 1s met (e.g. a {ixed amount of time has
passed) 1s selected as the final output (determined neural
network architecture).

Specifically, in step 503 a sample (1.e. a number K which
1s at least two and preferably greater, but less than the
number of genotypes in the population) of the plurality of
genotypes 1n the population are randomly selected from the
current genotype population, e.g. 5% of the population.

In step 504, each sample genotype (instance of the data
structure) 1s assembled to form a corresponding sample
neural network, and the sample neural networks are trained.
Each sample neural network may be mitialized with random
weilghts (or 1 a vanation equal weights). Thus 504 does not
rely on weight imnheritance, though incorporating 1t into step
504 1s straightiforward. The training may use a fixed number
of traiming steps to train each network.

In step 503 the fitness of the trained networks 1s evaluated
using a fitness test to derive a fitness value for each sample
neural network. The fitness values for each sample neural
network are stored in memory.

If steps 504 and 505 are not being performed for the first
time (see below) such that a given sample neural network
has already been trained an evaluated, step 504 may be
omitted 1n respect of that sample neural network and in step
505 the evaluation result may be retrieved from the memory.

In one implementation, for a given sample genotype, the
training and evaluation in steps 304 and 505 may include
forming a first neural network system using a neural network
generated from the sample genotype as a component. The
sample neural network generated from the sample genotype
may be termed a neural network section (“cell”) of the first
neural network system. For example, the first neural network
system may be generated according to a first template (e.g.
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a predetermined architecture) of multiple neural network
sections, ¢.g. arranged sequentially 1n a feedforward manner.
One or more of the neural network sections of the template
may be implemented as a neural network generated from the
genotype. One or more of other neural network sections of
the template may be implemented 1n some other way, e.g. as
a predetermined set of one or more layers, such as a
convolutional layer, a pooling layer and/or a softmax layer.

In this case, 1n step 504, the first neural network system
may then be trained (e.g. by standard neural network train-
ing algorithm, such as supervised learning, based on a
training set) to perform a computational task, including
training the neural network section(s) which are generated
from the sample genotype. In step 505, the fitness test may
then be a measure of the success of the trained first neural
network system in performing the computational task.

In step 506, the neural network having highest fitness
value, as evaluated in step 505, i1s identified (wins the
tournament) and selected. In a variation more than one of the
neural networks can be 1dentified and selected at this stage,
¢.g. a predetermined number of the neural networks having
the highest fitness values.

In step 507 1t 1s determined whether a termination crite-
rion has been met (e.g. the set of steps 503-506 has been
carried out for at least a predetermined number of times). If
the determination 1s positive, the method 500 passes to step
509 (discussed below).

Alternatively, 1f the determination 1n step 507 1s negative
then 1n step 508 the sample genotype(s) from which the
neural network(s) selected 1n step 506 were assembled, are
mutated, by the process described above 1n relation to step
502. The mutated genotypes (additional instances of data
structures) are added to the population. The process then
returns to step 503. Thus, the set of steps 503-508 constitutes
a loop which 1s typically carried out multiple times (e.g. at
least 40 times).

Note that the selection pressure 1s controlled by the
tournament size, which 1s set to 5% of the population size in
our case. In method 500 no genotypes are removed from the
population, allowing 1t to grow with time, thereby maintain-
ing architecture diversity.

The method 500 may be implemented by an asynchronous
distributed system, which consists of a single controller
responsible for performing evolution over the genotypes
(steps 501-502 and 506-508), and a set of N, workers. Both
the controller and the workers have access to a shared
tabular memory M recording the population of genotypes

and their fitness, as well as a data queue QQ contaiming the
genotypes with unknown fitness which should be evaluated.

The workers are responsible for their evaluation (steps
503, 504 and 505). A worker will pick up an unevaluated
genotype from (Q whenever there 1s one available, assemble
it 1nto an architecture, carry out training and validation, and
then record the validation accuracy (fitness) i M.

Additionally, the controller performs steps 506 and S08 by
controlling any of the workers which 1s currently idle (e.g.
not able to begin performing steps 504 and 505 because the
Q 1s empty) to perform steps 506 and 508. Specifically, the
controller will perform tournament selection of a genotype
from M whenever a worker becomes available, followed by
the mutation of the selected genotype and its 1nsertion nto
Q {for fitness evaluation.

Note that no synchronization 1s required, and all workers
can be fully occupied during architecture evolution.

In step 509, one of the genotypes 1n the population of
genotypes 1s selected as the “determined neural network
architecture”, and this 1s optionally used in a subsequent
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programming task, which may be the programming task
used 1n steps 504 and 505. The determined neural network
architecture may be the genotype from which a neural
network was generated which achieved the highest fitness
value out of all the times 1n which step 505 was performed.

The determined neural network architecture may be used
to form a new neural network (by performing the merge
operation on it), and then training it (e.g. for a new task).

In one possible implementation of step 309, the neural
network corresponding to the determined neural network
architecture 1s used as one or more components (“‘cells”) of
a second neural network system. The second neural network
system may be formed using a second template (e.g. a
predetermined architecture) of multiple neural network sec-
tions, e.g. arranged sequentially in a feediorward manner.
One or more of the neural network sections may be imple-
mented as a neural network generated from the determined
neural network architecture. Alternatively or additionally,
one or more of the other neural network sections may be
implemented 1n some other way, e.g. as a predetermined set
of one or more layers, such as a convolutional layer, a
pooling layer and/or a soitmax layer.

The second neural network system may then be trained to
perform a computational task, e.g. including training the
neural network section(s) which are generated from the
determined neural network architecture. The computational
task may be the same one as used 1n step 504 and 505.

Preferably the first and second templates are diflerent. The
first template preferably defines a smaller neural network
system than the second template. In particular, the second
template may include more neural network sections (e.g. the
second neural network system may comprise more instances
of neural networks formed using the determined neural
network architecture than the first neural network systems
comprise mstances ol a sample neural network). Performing
steps 304 and 5035 using a smaller neural network system
from that specified by the second template of step 509,
means that steps 5304 and 505, which have to be performed
many times to generate the determined neural network
architecture, can be performed with less computational cost
than the computational cost of step 509, which only has to
be performed once.

Note that 1n a vanation of the method 500, steps 503, 507
and 508 are omitted. Instead, all the population of genotypes
generated 1 step 502 are used in step 504 to generate
respective trained neural networks, and all are evaluated in
step 505. In step 506, the trained neural network with the
highest fitness value 1s selected as the determined neural
network architecture, and then the method passes to step
509. An advantage of this variation of the method 500 1s that
it can be run in parallel over the entire population, substan-
tially reducing the search time.

FI1G. 6 illustrates a system 600 for performing the method
500. It includes a data structure memory 601 for storing data
including the population of data structures (genotypes). It
turther includes a fitness module 602 which may perform
steps 501, 502 and 508 of the method 500, and an evaluation
module 603 which may perform steps 503-507 of the
method 500. It further includes a determined neural network
architecture employment module 604 for performing the
step 509. During the loop of steps 503-508, the workers may
be allocated dynamically to the fitness module 602 or to the
evaluation module 603. This permits advantages of paral-
lelism to be ethciently realized.

In experiments using a standard learning problem, meth-
ods and systems as described above were able to produce the
second neural network system with a traiming time which
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was reduced by over 97% compared to a conventional neural
network training technmique, while producing a superior
quality of results. This 1s significant since the computational
processing time associated with neural network architecture
search techniques have previously been enormous.

Specifically, in an 1mage classification task using the
CIFAR-10 training set, and using 40,000 training images
and 10,000 validation images, 1t took 1.5 days using 200
P100 GPUs (graphics processing units) to perform an evo-
lutionary search by a method 500 over 7000 steps. Using the
variation of method 500 discussed 1n the preceding para-
graphs, 1t took one hour using the 200 P100 GPUs to
perform a search over 200 architectures. By contrast, known
techniques took 11 days using 250 GPUS, and 4 days using
450 GPUs. It was found that the neural network system
produced in one hour using the variation of method 500,
performed the 1mage classification task substantially as well
as these known techniques (1.e. with much the same classi-
fication error), despite having been produced using less than
1% of the processor time. The neural network system
produced using the method 500 performed the classification
task with a lower classification error than the neural network
system produced using the variation of method 500.

In this document, for a system of one or more computers
to be configured to perform particular operations or actions
means that the system has installed on it software, firmware,
hardware, or a combination of them that 1n operation cause
the system to perform the operations or actions. For one or
more computer programs to be configured to perform par-
ticular operations or actions means that the one or more
programs include instructions that, when executed by data
processing apparatus, cause the apparatus to perform the
operations or actions.

Embodiments of the subject matter and the functional
operations described 1n this specification can be 1mple-
mented 1 digital electronic circuitry, in tangibly-embodied
computer soltware or firmware, i computer hardware,
including the structures disclosed 1n this specification and
their structural equivalents, or 1n combinations of one or
more of them. Embodiments of the subject matter described
in this specification can be implemented as one or more
computer programs, 1.€., one or more modules of computer
program 1nstructions encoded on a tangible non transitory
program carrier for execution by, or to control the operation
of, data processing apparatus. Alternatively or in addition,
the program instructions can be encoded on an artificially
generated propagated signal, e.g., a machine-generated elec-
trical, optical, or electromagnetic signal, that 1s generated to
encode 1nformation for transmission to suitable receiver
apparatus for execution by a data processing apparatus. The
computer storage medium can be a machine-readable stor-
age device, a machine-readable storage substrate, a random
or serial access memory device, or a combination of one or
more of them. The computer storage medium 1s not, how-
ever, a propagated signal.

The term “data processing apparatus” encompasses all
kinds of apparatus, devices, and machines for processing
data, including by way of example a programmable proces-
sor, a computer, or multiple processors or computers. The
apparatus can include special purpose logic circuitry, €.g., an
FPGA (field programmable gate array) or an ASIC (appli-
cation specific mtegrated circuit). The apparatus can also
include, 1n addition to hardware, code that creates an execu-
tion environment for the computer program in question, €.g.,
code that constitutes processor firmware, a protocol stack, a
database management system, an operating system, or a
combination of one or more of them.
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A computer program (which may also be referred to or
described as a program, software, a software application, a
module, a software module, a script, or code) can be written
in any form of programming language, including compiled
or mterpreted languages, or declarative or procedural lan-
guages, and 1t can be deployed 1n any form, including as a
stand alone program or as a module, component, subroutine,
or other unit switable for use 1n a computing environment. A
computer program may, but need not, correspond to a file 1n
a file system. A program can be stored in a portion of a file
that holds other programs or data, e.g., one or more scripts
stored 1n a markup language document, in a single file
dedicated to the program in question, or in multiple coor-
dinated files, e.g., files that store one or more modules, sub
programs, or portions of code. A computer program can be
deployed to be executed on one computer or on multiple
computers that are located at one site or distributed across
multiple sites and interconnected by a communication net-
work.

As used 1n this specification, an “engine,” or “software
engine,” refers to a software implemented 1nput/output sys-
tem that provides an output that 1s different from the input.
An engine can be an encoded block of functionality, such as
a library, a platform, a software development kit (“SDK”),
or an object. Each engine can be implemented on any
appropriate type of computing device, e.g., servers, mobile
phones, tablet computers, notebook computers, music play-
ers, e-book readers, laptop or desktop computers, PDAs,
smart phones, or other stationary or portable devices, that
includes one or more processors and computer readable
media. Additionally, two or more of the engines may be
implemented on the same computing device, or on different
computing devices.

The processes and logic flows described 1n this specifi-
cation can be performed by one or more programmable
computers executing one or more computer programs to
perform functions by operating on input data and generating,
output. The processes and logic flows can also be performed
by, and apparatus can also be implemented as, special
purpose logic circuitry, e.g., an FPGA (field programmable
gate array) or an ASIC (application specific integrated
circuit). For example, the processes and logic flows can be
performed by and apparatus can also be implemented as a
graphics processing unit (GPU).

Computers suitable for the execution of a computer
program include, by way of example, can be based on
general or special purpose microprocessors or both, or any
other kind of central processing unit. Generally, a central
processing unit will receive 1nstructions and data from a read
only memory or a random access memory or both. The
essential elements of a computer are a central processing
unit for performing or executing instructions and one or
more memory devices for storing instructions and data.
Generally, a computer will also include, or be operatively
coupled to receive data from or transfer data to, or both, one
or more mass storage devices for storing data, e.g., mag-
netic, magneto optical disks, or optical disks. However, a
computer need not have such devices. Moreover, a computer
can be embedded in another device, e.g., a mobile telephone,
a personal digital assistant (PDA), a mobile audio or video
player, a game console, a Global Positioning System (GPS)
receiver, or a portable storage device, e.g., a universal serial
bus (USB) flash drive, to name just a few.

Computer readable media suitable for storing computer
program 1nstructions and data include all forms ol non-
volatile memory, media and memory devices, including by
way ol example semiconductor memory devices, e.g.,
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EPROM, EEPROM, and flash memory devices; magnetic

disks, e.g., internal hard disks or removable disks; magneto
optical disks; and CD ROM and DVD-ROM disks. The
processor and the memory can be supplemented by, or
incorporated 1n, special purpose logic circuitry.

To provide for interaction with a user, embodiments of the
subject matter described 1n this specification can be imple-
mented on a computer having a display device, e.g., a CRT
(cathode ray tube) or LCD (liquid crystal display) monitor,
for displaying information to the user and a keyboard and a
pointing device, €.g., a mouse or a trackball, by which the
user can provide mput to the computer. Other kinds of
devices can be used to provide for interaction with a user as
well; for example, feedback provided to the user can be any
form of sensory feedback, e.g., visual feedback, auditory
teedback, or tactile feedback; and mput from the user can be
received 1n any form, including acoustic, speech, or tactile
input. In addition, a computer can interact with a user by
sending documents to and receiving documents from a
device that 1s used by the user; for example, by sending web
pages to a web browser on a user’s client device 1n response
to requests received from the web browser.

Embodiments of the subject matter described in this
specification can be implemented in a computing system that
includes a back end component, e.g., as a data server, or that
includes a middleware component, e.g., an application
server, or that includes a front end component, e.g., a client
computer having a graphical user interface or a Web browser
through which a user can interact with an implementation of
the subject matter described in this specification, or any
combination of one or more such back end, middleware, or
front end components. The components of the system can be
interconnected by any form or medium of digital data
communication, €.g., a commumnication network. Examples
of communication networks include a local area network
(“LAN”) and a wide area network (“WAN™), e.g., the
Internet.

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other.

While this specification contains many specific imple-
mentation details, these should not be construed as limita-
tions on the scope of any mnvention or of what may be
claimed, but rather as descriptions of features that may be
specific to particular embodiments of particular inventions.
Certain features that are described 1n this specification in the
context of separate embodiments can also be implemented 1n
combination 1n a single embodiment. Conversely, various
teatures that are described in the context of a single embodi-
ment can also be mmplemented 1 multiple embodiments
separately or 1n any suitable subcombination. Moreover,
although features may be described above as acting 1n
certain combinations and even mitially claimed as such, one
or more features from a claimed combination can in some
cases be excised from the combination, and the claimed
combination may be directed to a subcombination or varia-
tion of a subcombination.

Similarly, while operations are depicted 1n the drawings in
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or 1n sequential order, or that all 1llustrated operations
be performed, to achieve desirable results. In certain cir-
cumstances, multitasking and parallel processing may be
advantageous. Moreover, the separation of various system
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modules and components in the embodiments described
above should not be understood as requiring such separation
in all embodiments, and i1t should be understood that the
described program components and systems can generally
be 1ntegrated together 1n a single software product or pack-
aged 1to multiple software products.

Particular embodiments of the subject matter have been
described. Other embodiments are within the scope of the
following claims. For example, the actions recited in the
claims can be performed 1n a different order and still achieve
desirable results. As one example, the processes depicted 1n
the accompanying figures do not necessarily require the
particular order shown, or sequential order, to achieve
desirable results. In certain implementations, multitasking
and parallel processing may be advantageous.

What 1s claimed 1s:

1. A computer-implemented method for automatically
determining a neural network architecture, comprising:
generating data representing the neural network architec-
ture as a data structure defining a hierarchical set of
graphs comprising a succession of hierarchical levels of
graphs, each graph having an mput, an output, a plu-
rality of nodes between the input and the output, and
one or more edges that each connect two respective
nodes, wherein: a node corresponds to a feature map
within a neural network defined by the neural network
architecture, each edge connects an input node of the
edge to an output node of the edge and corresponds to
an operation performed on a feature map of the mput
node of the edge to provide a feature map to the output
node of the edge, such that each graph performs an
operation, the succession of hierarchical levels include
a lowest hierarchical level and a plurality of additional
hierarchical levels, generating the data comprises
defining the hierarchical set of graphs, and defining the
hierarchical set of graphs comprises:
defining the lowest hierarchical level comprising one or
more lowest level graphs, wherein operations corre-
sponding to edges of the one or more lowest level
graphs are selected from a set of primitive neural
network operations, and
recursively defining the additional hierarchical levels,
wherein each respective additional hierarchical level
comprises a respective set of one or more graphs,
wherein recursively defining each respective addi-
tional hierarchical level comprises, for each graph 1n
the one or more graphs 1n the respective additional
hierarchical level, selecting a set of lower-level
graphs from the graphs 1n the hierarchical level that
precedes the respective additional hierarchical level
in the succession of hierarchical levels, and gener-
ating data representing the graph by assembling the
lower-level graphs selected from the graphs in the
hierarchical level that precedes the respective addi-
tional hierarchical level;
initiating a population of two or more sample neural
network architectures based on the data structure defin-
ing the hierarchical set of graphs, wherein each respec-
tive sample neural network architecture in the popula-
tion 1s mitiated by modifying one or more of the
operations performed by the edges of the hierarchical
set of graphs;
generating sample neural networks having the sample
neural network architectures 1n the population;
training the sample neural networks;
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evaluating the sample neural networks by determining a
fitness value for each of the sample neural networks;
and

selecting one or more of the sample neural network
architectures in the population according to the deter-
mined fitness values to determine a neural network
architecture.

2. The method of claim 1, wherein for each respective

additional hierarchical level, the operations corresponding to

the edges of the one or more graphs 1n the respective
additional hierarchical level are selected from a set of

operations performed by one or more graphs in a hierarchi-

cal level that precedes the respective additional lierarchical
level 1n the succession of hierarchical levels.
3. The method of claim 1, wherein the set of primitive
neural network operations includes an 1dentity operation that
when performed on a feature map leaves the feature map
unchanged.
4. The method of claim 1, wherein the set of primitive
neural network operations 1ncludes at least one convolution
operation that when performed on a feature map leaves a
resolution of the feature map unchanged.
5. The method of claim 1, wherein the set of primitive
neural network operations includes at least one convolution
operation followed by a batch normalization operation.
6. The method of claim 1, wherein the set of primitive
neural network operations includes a no-connection opera-
tion which defines that there 1s no direct connection between
the nodes linked by the edge to which the operation corre-
sponds.
7. The method of claim 1, wherein the set of primitive
neural network operations includes an 1dentity operation that
when performed on a feature map leaves the feature map
unchanged and the initializing comprises initializing at least
some of the operations performed by the edges of the
hierarchical set of graphs to the 1dentity operation.
8. The method of claim 1, wherein the selecting comprises
comparing the fitness values of sample neural network
architectures from the population against one another.
9. The method of claim 1, wherein determining at least
two sample neural network architectures further comprises
mutating a sample neural network architecture selected
according to the determined fitness value and repeating the
generating, traiming, evaluating and selecting to evolve the
sample neural network architectures.
10. The method of claim 9, wherein the mutating com-
prises selecting one of the hierarchical levels, selecting a
graph 1n the selected level, selecting a predecessor node and
a successor node in the selected graph, and replacing an
operation corresponding to an edge connecting the selected
nodes with another operation.
11. The method of claim 1, wherein the selecting further
COmMprises:
providing a plurality of evaluation workers each config-
ured to evaluate a sample neural network architecture;

allocating sample neural network architectures to the
workers for evaluation as each worker becomes avail-
able, wherein each worker performs the generating,
training and evaluating of a sample neural network
having a sample neural network architecture and, when
finished, 1s allocated a further sample neural network
architecture;

adding results of the evaluations to a data store shared by

the evaluation workers; and

controlling the selecting using the evaluations 1n the data

store.
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12. The method of claim 1, further comprising construct-
ing a neural network according to the determined neural
network architecture.

13. The method of claim 12, further comprising using the
neural network in a neural network system for training
and/or inference.

14. The method of claim 12, further comprising making
the neural network available 1n a neural network system for
training and/or iference via an API.

15. The method according to claim 13, wherein the neural
network system includes multiple instances of the neural
network.

16. A system comprising one or more computers and one
or more storage devices storing instructions that when
executed by the one or more computers cause the one or
more computers to perform operations for automatically
determining a neural network architecture, the operations
comprising;

generating data representing the neural network architec-

ture as a data structure defining a hierarchical set of
graphs comprising a succession of hierarchical levels of
graphs, each graph having an mnput, an output, a plu-
rality of nodes between the input and the output, and
one or more edges that each connect two respective
nodes, wherein: a node corresponds to a feature map
within a neural network defined by the neural network
architecture, each edge connects an input node of the
edge to an output node of the edge and corresponds to
an operation performed on a feature map of the mput
node of the edge to provide a feature map to the output
node of the edge, such that each graph performs an
operation, the succession of hierarchical levels include
a lowest hierarchical level and a plurality of additional
hierarchical levels, generating the data comprises
defining the hierarchical set of graphs, and defining the
hierarchical set of graphs comprises:
defining the lowest hierarchical level comprising one or
more lowest level graphs, wherein operations corre-
sponding to edges of the one or more lowest level
graphs are selected from a set of primitive neural
network operations, and
recursively defining the additional hierarchical levels,
wherein each respective additional hierarchical level
comprises a respective set of one or more graphs,
wherein recursively defining each respective addi-
tional hierarchical level comprises, for each graph 1n
the one or more graphs 1n the respective additional
hierarchical level, selecting a set of lower-level
graphs from the graphs 1n the hierarchical level that
precedes the respective additional hierarchical level
in the succession of hierarchical levels, and gener-
ating data representing the graph by assembling the
lower-level graphs selected from the graphs in the
hierarchical level that precedes the respective addi-
tional hierarchical level;
initiating a population of two or more sample neural
network architectures based on the data structure defin-
ing the hierarchical set of graphs, wherein each respec-
tive sample neural network architecture in the popula-

tion 1s mitiated by modifying one or more of the
operations performed by the edges of the hierarchical
set of graphs;
generating sample neural networks having the sample
neural network architectures 1n the population;
training the sample neural networks;
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evaluating the sample neural networks by determining a
fitness value for each of the sample neural networks;
and
selecting one or more of the sample neural network
architectures in the population according to the deter-
mined {itness values to determine a neural network
architecture.
17. The system of claim 16, wherein for each respective
additional hierarchical level, the operations corresponding to
the edges of the one or more graphs 1n the respective
additional hierarchical level are selected from a set of
operations performed by one or more graphs 1n a hierarchi-
cal level that precedes the respective additional hierarchical
level 1n the succession of hierarchical levels.
18. The system of claim 16, wherein determining at least
two sample neural network architectures includes initializ-
ing one or a population of sample neural network architec-
tures by:
imitializing at least one instance of the data structure
defining the hierarchical set of graphs by defining at
least the operations performed by the edges of the
hierarchical set of graphs, and
mutating the at least one instance of the data structure by
moditying the operations performed by the edges of the
hierarchical set of graphs.
19. One or more non-transitory computer-readable stor-
age media storing istructions that when executed by one or
more computers cause the one or more computers to perform
operations for automatically determining a neural network
architecture, the operations comprising:
generating data representing the neural network architec-
ture as a data structure defining a hierarchical set of
graphs comprising a succession of hierarchical levels of
graphs, each graph having an input, an output, a plu-
rality of nodes between the input and the output, and
one or more edges that each connect two respective
nodes, wherein: a node corresponds to a feature map
within a neural network defined by the neural network
architecture, each edge connects an mnput node of the
edge to an output node of the edge and corresponds to
an operation performed on a feature map of the input
node of the edge to provide a feature map to the output
node of the edge, such that each graph performs an
operation, the succession ol hierarchical levels include
a lowest hierarchical level and a plurality of additional
hierarchical levels, generating the data comprises
defining the hierarchical set of graphs, and defining the
hierarchical set of graphs comprises:
defining the lowest hierarchical level comprising one or
more lowest level graphs, wherein operations corre-
sponding to edges ol the one or more lowest level
graphs are selected from a set of primitive neural
network operations, and

recursively defining the additional hierarchical levels,
wherein each respective additional hierarchical level
comprises a respective set of one or more graphs,
wherein recursively defining each respective addi-
tional hierarchical level comprises, for each graph 1n
the one or more graphs 1n the respective additional
hierarchical level, selecting a set of lower-level
graphs from the graphs 1n the hierarchical level that
precedes the respective additional hierarchical level
in the succession of hierarchical levels, and gener-
ating data representing the graph by assembling the
lower-level graphs selected from the graphs in the
hierarchical level that precedes the respective addi-
tional hierarchical level;
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initiating a population of two or more sample neural
network architectures based on the data structure defin-
ing the hierarchical set of graphs, wherein each respec-
tive sample neural network architecture 1n the popula-
tion 1s mitiated by modifying one or more of the
operations performed by the edges of the hierarchical
set of graphs;

generating sample neural networks having the sample
neural network architectures in the population;

training the sample neural networks;

evaluating the sample neural networks by determining a
fitness value for each of the sample neural networks;
and

selecting one or more of the sample neural network
architectures in the population according to the deter-
mined fitness values to determine a neural network
architecture.
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