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content from tables i1n a relational database. Each table
contains respective rows. Each row contains a vertex of a
graph. Many high-degree vertices are identified. Each high-
degree vertex 1s connected to respective edges in the graph.
A count of the edges of each high-degree vertex exceeds a
degree threshold. A central computer detects that all vertices
in a high-degree subset of tables are high-degree vertices.
Based on detecting the high-degree subset of tables, multiple
vertices of the graph that are not 1n the high-degree subset
of tables are replicated. Within local storage capacity limits
of the computers, this degree-based replication may be
supplemented with other vertex replication strategies that
are schema based, content based, or workload based. This
intelligent selective replication maximizes system through-
put by minimizing graph data access latency based on data

locality.
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ACCESS-FREQUENCY-BASED ENTITY
REPLICATION TECHNIQUES FOR
DISTRIBUTED PROPERTY GRAPHS WITH
SCHEMA

FIELD OF THE DISCLOSURE

This disclosure relates to distributed loading of a graph
from relational tables. Presented herein are techniques that
load vertices based on a relational schema, contents of the
relational tables, and a workload of various data manipula-
tion language (DML) statements.

BACKGROUND

A graph may be loaded from relational tables in a data-
base. Various ways of mapping and transforming tabular
relational data into a graph may entail various overhead and
impedance that typically does not impact graph querying
and graph analytics that occur after the graph 1s already
loaded from the database. However, loading a graph may
involve more data than can be stored by one machine, 1n
which case a cluster of cooperating machines 1s needed.

In a typical distributed property graph processing engine,
graph data 1s partitioned according to various techniques and
heuristics, and each partition 1s stored on a respective
machine. Graph partitioning tries to evenly partition the
graphs to have almost a same amount of work on each
machine. Because the graph 1s partitioned (e.g. sharded) and
distributed across all machines, it 1s 1nevitable to transier
graph data through network media 11 a machine needs to
execute computation on graph data stored in a partition on
another machine. Due to network input/output (I/0)
roundtrip latency, such data transfer 1s one of the most
expensive operations 1 a distributed graph engine.

Demand to access various graph elements and graph
components such as partitions, subgraphs, traversal paths,
vertices, and edges may be imbalanced such that one or
some machines contain graph data that 1s much more
frequently accessed than graph data on other machines. This
imbalance may cause a network element or a processing
clement to become a bottleneck that increases latency and
decreases system throughput. For example, an imbalance
may overload a network switch, a network interface card
(NIC) of a machine, or a central processing unit (CPU) of a

machine. Thus, horizontal scaling of local storage and
processing capacity might provide processing bandwidth
that 1s attenuated, which causes underutilization of some
participating machines.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:

FIG. 1 1s a block diagram that depicts an example
distributed system that provides distributed loading of a
graph stored 1n relational tables;

FI1G. 2 1s a flow diagram that depicts an example computer
process that a distributed system may perform for distributed
loading of a graph stored in relational tables;

FIG. 3 15 a flow diagram that depicts an example computer
process that a distributed system may perform for replication
when participating computers have limited storage capacity;

FI1G. 4 15 a flow diagram that depicts an example computer
process that a distributed system may perform for replication
based on traversal paths;
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FIG. 5 1s a block diagram that illustrates a computer
system upon which an embodiment of the invention may be
implemented;

FIG. 6 1s a block diagram that illustrates a basic software
system that may be employed for controlling the operation
of a computing system.

DETAILED DESCRIPTION

In the following description, for the purposes of expla-
nation, numerous specific details are set forth 1 order to
provide a thorough understanding of the present invention.
It will be apparent, however, that the present invention may
be practiced without these specific details. In other
instances, well-known structures and devices are shown 1n
block diagram form 1n order to avoid unnecessarily obscur-
ing the present mvention.

General Overview

In distributed graph processing systems, data replication
1s critical for performant execution. A potentially frequently
accessed vertex may be detected based on a number of
connected vertices (a degree) of the vertex. Prediction by
vertex degree 1s based on an assumption that if a vertex has
more connections with other vertices, it will be accessed
more frequently. In some cases, degree information 1s not
enough to 1dentity such computationally important vertices.
Herein 1s an advanced new technique that identifies poten-
tially frequently accessed vertices more accurately based on
degree information but also database schema information,
database contents, and workload statistics.

Replication comes at the expense of local storage. At one
extreme, no replication occurs, so that the mimimum local
storage 1s consumed. At the other extreme, all data 1s
replicated, and all accesses become local, which 1s an
approach that cannot be used i1n practice 1 a distributed
system due to limited local storage capacity. Intelligently
selected replication of important/frequently-accessed data
can increase performance. Herein are techniques for decid-
ing which graph data to replicate. This includes a solution
that 1s orthogonal to how much data to replicate and can be
applied on any distributed graph engine.

This approach has a degree threshold for detecting a
high-degree vertex. A capacity threshold 1s used for limiting
how many vertices are replicated. If the replication capacity
1s not exhausted by replicating relational database tables that
contain only high-degree vertices, then schematically related
tables may also be replicated. Two tables are related 11 one
table contains a foreign key that references the other table.

Vertices to be replicated can be also detected by statistics
collected about executions of graph queries. When queries
run, statistics may be collected such as a number of table
accesses for each table. After detecting high-degree tables
and replicating them, once queries are completed, 11 there 1s
a table that 1s accessed more than or equal to the high-degree
table, the table can be promoted as a replicated table.

These techniques have the following performance ben-
efits:

prevent workload imbalance produced by uneven data

distribution,

reduce the cost for data communication,

identily vertices/tables with high probability of cross-

partition access, and

predict frequently accessed vertices more accurately with

schema information.

Embodiments of this approach may implement or lever-
age some or all of the following techniques and tools:
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entity/node/object/data/vertex

tools,

access Irequency based entity/node/vertex replication

mechanisms 1n distributed graphs,

identifying and replicating high-degree vertices,

extending and complementing degree-based entity repli-

cation techniques,

identifying vertices/tables with high probability of cross-

partition access,

partial replication of important/frequently-accessed data,

static entity replication using thresholds,

distributed property graphs with schema information,

balancing partial and full replication, and

distributed property graph analytics engines/tools.

In an embodiment, multiple computers cooperate to
retrieve content ifrom tables 1n a relational database. Each
table contains respective rows. Each row contains a vertex
of a graph. Many high-degree vertices are identified. Fach
high-degree vertex 1s connected to respective edges in the
graph. A count of the edges of each high-degree vertex
exceeds a degree threshold. A central computer detects that
all vertices 1n a high-degree subset of tables are high-degree
vertices. Based on detecting the high-degree subset of tables,
multiple vertices of the graph that are not in the high-degree
subset of tables are replicated. Within local storage capacity
limits of the computers, this degree-based replication may
be supplemented with other vertex replication strategies that
are schema based, content based, or workload based. This
intelligent selective replication maximizes system through-
put by minimizing graph data access latency based on data
locality.

replication techniques/

1.0 Example Distributed System

FIG. 1 1s a block diagram that depicts an example
distributed system 100 that provides distributed loading of a
graph stored 1n relational tables A-E. Distributed system 100
implements techniques that load vertices of the graph based
on: a relational schema, contents of any of tables A-E, and/or
a workload of various data manipulation language (DML)
statements. Distributed system 100 contains computers 131-
132 that may each be a rack server such as a blade, a
mainirame, a personal computer, a virtual machine, or other
computing device.

Computers 131-132 are connected by a communication
network such as a local area network (LAN) or an internet-
work, which also connects relational database 110 and/or a
database management system (DBMS) that operates rela-
tional database 110. Although computers 131-132 do not
contain relational database 110, computers 131-132 may
receive content from relational database 110 1n various ways
in various embodiments. Relational database 110 may or
may not be operated by a DBMS that 1s hosted by other

computer(s), and computers 131-132 may cooperate with
the DBMS.

1.1 Relational Tables

Relational database 110 may or may not be stored 1n a
remote filesystem that computers 131-132 may cross mount.
Each of tables A-E may contain rows and columns of data
that may be persisted 1n row-major or columnar (1.e. col-
umn-major) format. In an embodiment, each of tables A-E 1s
stored 1n respective remote file(s) imn a Hadoop filesystem
(HDFS). For example, table A may be horizontally parti-
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tioned by rows and/or vertically partitioned by columns into
multiple Apache Parquet files or object row columnar (ORC)
files.

Each of tables A-E stores a distinct kind of vertices of the
graph. Each row 1n each table stores a distinct vertex. A table
may have a column that 1s a primary key that contains a
distinct value for each row/vertex. For example as shown,
high-degree table C contains two vertices that respectively
have distinct values C1-C2 in primary key 123 that 1s a
column of high-degree table C.

Tables A-E may contain more columns than shown. For
example, the graph may be a property graph, and any of
tables A-E may contain a payload column that contains
colors of vertices in that table. Tables A-E may contain more
rows than shown. For example, table A may contain billions
of rows.

1.2 Edges
Each edge i the graph connects exactly two respective
vertices. Edges may be directed or undirected, and tech-

niques herein treat edges as undirected. There may or may
not be different kinds of edges. Edges may or may not have
properties such as a label, a weight, or a timestamp.

An edge may be stored as a value of a foreign key 1n a
table that corresponds to a primary key 1n another table. For
example, foreign keys 121-122 each corresponds to primary
key 123. The directed arrow that originates at low-degree
table B and terminates at high-degree table C indicates that
cach vertex 1n low-degree table B may be connected to a
respective edge that 1s connected to a respective vertex in
high-degree table C. Definitions of table degree, vertex
degree, and an integer threshold between high and low
vertex degree are presented later herein.

A correspondence between two key columns may be
mandatory or optional. For example, the NULL wvalues
shown 1n foreign key 121 indicates that the correspondence
between keys 121 and 123 1s optional, and that two vertices
in low-degree table B are not connected to any vertex in
high-degree table C. The two C1 values in foreign key 121
indicate that low-degree table B contains two vertices that
are connected to a same vertex 1n high-degree table C that
has value C1 in primary key 123. Regardless of whether the
correspondence between keys 121 and 123 1s mandatory or
optional, the absence of value C2 in foreign key 121
indicates that high-degree table C contains a vertex that 1s
not connected to any vertex 1n low-degree table B.

1.3 Vertex Distribution and Replication

Each of computers 131-132 may load a respective subset
of vertices/rows of any of tables A-E. Each vertex 1s loaded
into volatile or nonvolatile storage of at least one of com-
puters 131-132. In an embodiment, the vertices/rows of any
of tables A-E may be divided into disjoint (1.e. non-inter-
secting) subsets that contain equal amounts of vertices/rows,
and there may be as many subsets as available computers
131-132 so that there may be a one-to-one correspondence
between each subset and each computer. For example if
there are two computers 131-132, then each computer may
receive and store hall of the vertices/rows of each of tables
A-E.

Each of computers 131-132 lacks capacity to locally store
all of the vertices of the graph. Each of computers 131-132
has extra capacity that 1s more than needed to locally store
an equally-sized subset of vertices/rows of each of tables
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A-E. Some vertices of the graph may be locally stored on
more than one of computers 131-132.

Loading of vertices into computers 131-132 may occur as
follows. In a first phase, each of computers 131-132 may
receive and locally store an equally-sized disjoint subset of
vertices of each of tables A-E. In a second phase, all of
computers 131-132 may receive and locally store copies of
an 1ntelligently selected subset of vertices 1n the graph, even

though each of those selected vertices 1s already locally
stored on a respective one of the computers.

2.0 Vertex Replication Process

FI1G. 2 1s a flow diagram that depicts an example computer
process that distributed system 100 may perform for dis-
tributed loading of a graph stored in relational tables A-E, in
an embodiment. FIG. 2 1s discussed with reference to FIG.
1.

In relational database 110, preparatory step 201 stores
tables A-E that contain rows that contain distinct vertices of
the graph. Graph loading steps 202-207 intelligently distrib-
ute or replicate portions of the graph that contain equal
amounts of vertices to each of computers 131-132. A cause
of some or all of graph loading steps 202-207 depends on
various implementations discussed later herein.

2.1 Distribution Versus Replication

Herein, distribution entails loading disjoint (1.e. noninter-
secting) subsets having an equal count of distinct vertices on
all computers 131-132, which means that a vertex 1s loaded
on only one of computers 131-132. Vertex access 15 non-
uniform such that access and analysis of a vertex that 1s
distributed only to computer 131 1s accelerated 1t locally
performed by computer 131 instead of remotely by com-
puter 132.

Herein, replication entails loading a same vertex on all
computers 131-132. Access and analysis of a replicated
vertex 1s uniform and always local and accelerated, regard-
less of being performed by any of computers 131-132.

There 1s a design tension between distribution and repli-
cation. For analytic speed, replication 1s better than distri-
bution. For space, distribution 1s better than replication. An
optimal balance entails distribution of most vertices, which
consumes most of the storage capacity of computers 131-
132, and replication of as many intelligently selected verti-
ces as capacity permits as discussed later herein.

In a static embodiment, some or all of graph loading may
cagerly occur any time aiter step 201 such as while a DBMS
that hosts relational database 110 1s starting. For example,
distribution and replication of vertices of the graph may
occur once and might not later be adjusted.

In a dynamic embodiment, some or all of graph loading
1s deferred until distributed system 100 receives or generates
a request to analyze the graph such as a graph query. For
example, distribution and replication of vertices of the graph
may occur upon receipt and ispection of the request and
might not later be adjusted. In a hybrid embodiment, eager
graph loading occurs before receipt of the request, and
replication 1s adjusted upon receipt of the request.

Herein, adjusting replication entails: a) mitially replicat-
ing only high-degree tables and reserving some storage
capacity of computers 131-132 as unused until later, and b)
deferring replication of low-degree tables (e.g. connected
tables presented later heremn) until later time(s) such as
opportunistically according to a condition or duration.
Herein, adjusting replication monotonically increases which
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vertices are replicated. In other words, a vertex may even-
tually be promoted from distributed to replicated but never

demoted back to distributed. Once storage capacity of com-
puters 131-132 1s exhausted as discussed later herein, there
can be no further adjustment to replication.

In an autonomous embodiment, some or all of graph
loading 1s deferred until distributed system 100 has gathered
table access statistics of an ongoing analytic workload for
the graph with concurrent or sequential analysis requests
such as graph queries. For example, replication of vertices of
the graph and repeated subsequent adjustment may occur at
any time after step 201 based on table access statistics.
Workload-based replication 1s discussed later herein.

2.2 Coordinated Replication

Step 202 treats edges as undirected and i1dentifies high-
degree vertices that each 1s connected to more edges 1n the
graph than a predefined degree threshold. In step 202,
computers 131-132 may load equal counts of distinct ver-
tices from each of respective tables A-E. For example when
computers 131-132 are only two computers, each of tables
A-E may have 1ts vertices logically divided into two halves,
and each of computers 131-132 may load a separate half into
local volatile or nonvolatile storage. In an embodiment, a
central computer instructs computers 131-132 which respec-
tive hall to load such as by specitying a subrange of vertex
oflsets within a table to load. The central computer 1s or 1s
not one of computers 131-132.

In step 202, each of computers 131-132 may load and/or
count edges that are connected to locally loaded vertices. In
an embodiment, step 202 counts edges connected to local
vertices without loading the edges. For example “SELECT
COUNT(*) FROM D WHERE foreign_key_122 IN (locally
loaded primary_key_123) GROUP BY foreign_key_122”
may count edges that connect locally loaded vertices of table
C to any vertices of table D.

Local tallies may occur for edges between tables A and C,
edges between tables B and C, and edges between tables C
and D. The local sum of those local tallies calculates the
degree (1.e. edge count) of each local vertex in high-degree
table C. For example, the degree of vertex C1 1n high-degree
table C 1s three. If the degree threshold to be exceeded 1s
two, then vertex C1 has high degree and 1s a high-degree
vertex. However 11 the degree threshold were instead three
that the degree of vertex C1 equals but does not exceed, then
C1 would mstead be low degree.

The cardinality (1.e. row count) of a table 1s orthogonal to
whether the table 1s high-degree or low-degree. A high-
degree table may have more or fewer rows than a low-degree
table. Magnitude of a positive count of other tables related
to a table by foreign/primary key correspondence as stati-
cally indicated by a schema of relational database 110 may
be more or less orthogonal to whether the table 1s high-
degree or low-degree. A high-degree table may be related to
more or fewer other tables than a low-degree table. Only a
low-degree table can be schematically unrelated to all other
tables.

In step 202, computers 131-132 detect which tables are
locally high-degree tables because they contain only high-
degree local vertices. Computers 131-132 each send to the
central computer some or all local information such as:
identifiers of locally high-degree tables, identifiers or copies
of high-degree local vertices, and degrees of high-degree
local vertices.

In step 203, the central computer detects that all vertices
in a table are high-degree vertices, 1n which case the table
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actually 1s high degree. For example, step 203 may detect
that computers 131-132 disagree that low-degree table E 1s

locally high degree, in which case step 203 decides that
low-degree table E actually 1s low degree instead of high
degree.

Within capacity limits discussed elsewhere herein, all
vertices of all high-degree tables should be replicated to all
computers 131-132. With opportunistic exceptions dis-
cussed elsewhere herein, all vertices of low-degree tables
should be locally loaded by only a respective one of com-
puters 131-132.

Replication of high-degree tables 1s referred to herein as
degree-based replication. Other replication strategies herein
include schema-based replication, content-based replication,
and workload-based replication. Only when degree-based
replication does not exhaust capacity limits, some or all of
these other replication strategies may occur at a same or
different times.

2.3 Schema Based Replication

Steps 204-207 cooperate to provide schema-based repli-
cation. In step 204, the central computer imnspects the schema
of relational database 110 to infer that all vertices 1 low-
degree table B can be connected by edges only to vertices 1n
high-degree table C. For example, a foreign key may occur
in table B or C that corresponds to a primary key in the other
of table B or C, and there i1s no foreign key that occurs
between low-degree table B and any table other than tables
B-C.

Depending on the embodiment, step 204 may detect all
low-degree tables that are: a) schematically related to only
one other table, and that other table 1s high degree or b)
schematically related to only one or more other tables, and
those other table(s) all are high degree. These tables are
referred to herein as connected tables, which are low-degree
tables related only to high-degree tables. Step 204 treats
edges as undirected.

In an embodiment, the criteria for being a connected table
are relaxed to also include a linear chain that consists of two
related low-degree tables. A first table 1n the chain 1s related
to: a) a high-degree table and b) a second table 1n the chain
that 1s related only to the first table. For example, the second
table may be low-degree table E.

As explained earlier herein, replication may be capacity
constrained, and high-degree tables have priority for repli-
cation 1nstead of connected tables. If capacity 1s suflicient to
replicate all high-degree tables and all connected tables, then
steps 204-207 may replicate indirectly connected tables,
which are: a) low-degree tables that are not connected tables
and b) connected only to: ¢) one table, which 1s a connected
table or d) one or more tables, which all are connected
tables. Depending on the embodiment, either (c) or (d) 1s
implemented.

In step 205, the central computer sends (e.g. broadcasts)
identifiers of connected tables to all computers 131-132.
Each of computers 131-132 may calculate the degree of each
local vertex of the connected tables. In step 206, computers
131-132 each send to the central computer some or all local
information such as: 1dentifiers or copies of connected local
vertices and degrees of connected local vertices.

In step 207, the central computer replicates, within capac-
ity limits discussed elsewhere herein, all vertices of all
connected tables and all vertices of all high-degree tables to
all computers 131-132. Replication may entail sending (e.g.
broadcasting) to all of computers 131-132 identifiers or
copies of vertices to be locally loaded ito volatile or
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nonvolatile storage on all computers 131-132. A computer
need not load a vertex that 1s already locally loaded.

2.4 Benchmark Example

After step 207, distributed system 100 may execute a
request to analyze the graph. This may entail some or all of:
a) broadcasting the request to some or all of computers
131-132 for execution upon respective local portions of the
graph, b) generating a respective distinct local request for
some or all of computers 131-132 and sending the local
requests to respective computers for execution upon respec-
tive local portions of the graph, ¢) some or all of computers
131-132 communicating with each other such as to send or
receive non-local vertices or edges or intermediate results,
and d) the central computer receiving respective local results
from some or all computers 131-132 and combining or
further processing those local results to generate a final
result that answers the graph analysis request.

The following example property graph query language
(PGQL) statement 1s a Transaction Processing Performance
Council hourly (TPC-H) benchmark query that calculates
revenue for each nation in ‘ASIA’ between 1994-01-01" and
‘1995-01-01". After step 207, execution of this example
query 1s accelerated due to intelligent replication of vertices.
The TPC-H schema for this example query 1s defined in FIG.
2 of version 3.0.0 of the “TPC Benchmark H Standard
Specification” published Feb. 18, 2021 by the TPC, which 1s

incorporated 1n its entirety herein.

SELECT
n.N_ NAME,

SUM(LL._ EXTENDEDPRICE * (1 - l.L_ DISCOUNT)) AS REVENUE
MATCH

(1 :LINEITEM) - [:LINEITEM__ORDERS] ->(0 :ORDERS),

() - [:LINEITEM_ SUPPLIER] ->(s :SUPPLIER),

(0) - [:ORDER_ CUSTOMER] ->(c :CUSTOMER),

(s) - [:SUPPLIER_ NATION] ->(n),

(c) - [:CUSTOMER_ NATION] ->(n :NATION),

(n) - [:NATION_REGION] ->(r :REGION) WHERE

rR_NAME = ‘ASIA’

AND 0.0__ORDERDATE >= DATE *1994-01-01"

AND 0.0 ORDERDATE < DATE 1995-01-01°

GROUP BY n.N_NAME

ORDER BY REVENUE DESC

Use of the NATION and REGION tables 1n the TPC-H
schema are accelerated by techniques herein. The NATION
table contains 25 rows/vertices. In the TPC-H dataset, the

NATION table 1s high degree and should be replicated
across all computers 131-132. In one example, the REGION
table 1s low degree. The REGION table contains only five
rows and 1s connected only to the NATION table.

In the state of the art, many of the TPC-H benchmark
queries have a network bottleneck/imbalance problem due to
not replicating REGION vertices. Most of the queries access
a REGION vertex from a NATION vertex, and REGION
vertices are accessed as frequently as NATION vertices.
Because REGION vertices are not replicated in the state of
the art, accessing a REGION vertex entails non-local (1.e.
communication network) access. Even 11 there are a hundred
participating computers, REGION vertices are locally stored
on only five computers because the state of the art does not
replicate REGION vertices. Unlike the state of the art that
causes a bottleneck with those five computers, techniques
herein replicate the REGION table to all hundred computers
as a connected table as defined earlier herein.
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3.0 Capacity Constrained Replication Process

FI1G. 3 15 a flow diagram that depicts an example computer
process that distributed system 100 may perform for repli-
cation when computers 131-132 have limited storage capac-
ity, 1n an embodiment. The steps of the processes of FIGS.

2-3 may be complementary and interleaved. FIG. 3 1s
discussed with reference to FIG. 1.

Computers 131-132 may have same or diflerent capacities
to locally store an amount of vertices. The central computer
may 1nitialize a remaining vertex capacity to be the least of
the vertex storage capacities of computers 131-132. As
explained earlier herein, a first phase locally loads equal
counts of distinct vertices of all tables A-E into computers
131-132 such that every vertex in the graph 1s locally stored
in exactly one respective computer.

In a second phase, the central computer decides which
vertices should be opportunistically replicated to all com-
puters 131-132. That overall decision may entail a sequence
of decisions 1n steps 301-304 to replicate additional vertices
to all computers 131-132. The sequence of decisions occur
in a prioritized ordering that can be prematurely terminated
when the remaining vertex capacity discussed above 1s
exhausted. Only when the sequence of decisions ceases are
any vertices replicated to all computers 131-132.

Step 301 decreases the remaining vertex capacity by a
count of vertices in high-degree tables. At most the mitial
remaining vertex capacity of vertices 1n high-degree tables
should be replicated to all computers 131-132.

Step 301 ignores which high-degree table did a vertex
come from. For example 11 step 301 exhausts the remaining
vertex capacity, then it 1s possible that: a) all high-degree
tables might have some vertices that are replicated and/or all
high-degree tables might have some vertices that are not
replicated, or b) some high-degree tables might have no
vertices replicated even though other high-degree tables
have all vertices replicated. Step 301 1gnores high-degree
vertices 1n low-degree tables. For example, step 301 may
decide to replicate a vertex 1n a high-degree table even
though: a) the degree of that vertex i1s less than that of a
high-degree other vertex in a low-degree table, and b) the
other vertex will or will not be replicated.

Step 302 detects whether the remaining vertex capacity 1s
positive, which means that all vertices 1n all high-degree
tables should be replicated to all computers 131-132. IT
instead there are too many vertices 1 high-degree tables
because the remaining vertex capacity i1s exhausted, then the
central computer sorts all vertices 1 all high-degree tables
by degree and will replicate to all computers 131-132 only
as many of those vertices of the highest sorted degrees as the
initial remaining vertex capacity allows.

If step 302 detects that step 301 exhausted the remaining,
vertex capacity, then the process of FIG. 3 ceases and the
subset of the sorted vertices of high-degree tables are
replicated to all computers 131-132. Otherwise, the remain-
ing vertex capacity 1s positive, and steps 303-304 process
connected tables 1n way that 1s somewhat similar to pro-
cessing high-degree tables 1n steps 301-302. As discussed
carlier herein, connected tables are connected only to high-
degree tables.

Step 303 detects whether the remaining vertex capacity 1s
sufficient for all vertices in all connected tables, which
means that all vertices 1 all connected tables should be
replicated to all computers 131-132. If instead there are too
many vertices 1n connected tables, then the central computer
sorts all vertices 1n all connected tables by degree and waill
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replicate to all computers 131-132 only as many of those
vertices of the highest sorted degrees as the remaining vertex
capacity allows.

Step 303 1gnores which connected table did a vertex come
from and 1gnores whether the vertex itself 1s high degree or
low degree. For example 11 step 303 exhausts the remaining
vertex capacity, then 1t 1s possible that: a) all connected
tables might have some vertices that are replicated and/or all
connected tables might have some vertices that are not
replicated, or b) some connected tables might have no
vertices replicated even though other connected tables have
all vertices replicated.

Based on the remaining vertex capacity, step 304 limits a
count of vertices for replication that are from all connected
tables. After step 304, replication (e.g. broadcast of i1denti-
fiers or copies of vertices) to all computers occurs for all
vertices that were selected for replication. This entails
replicating all vertices from high-degree tables and selected
sorted or all vertices from all connected tables.

4.0 Content Based Replication Process

FIG. 4 1s a flow diagram that depicts an example computer
process that distributed system 100 may perform for repli-
cation based on traversal paths, 1n an embodiment. The steps
of some or all of the processes of FIGS. 2-4 may be
complementary and interleaved. FIG. 4 1s discussed with
reference to FIG. 1.

The process of FIG. 4 provides content-based replication
of a low-degree table in a way that combines aspects of
degree-based replication and schema-based replication. Step
401 treats edges as undirected and selects traversal paths that
contain exactly three respective vertices that are connected
by two respective edges. Each traversal path has a middle
vertex that 1s neither end of the traversal path.

The middle vertex 1s 1n a connected table that 1s related to
a high-degree table. The other two vertices 1n the traversal
path are a vertex 1n that high-degree table and a vertex in any
other table that 1s related to the high-degree table. For
example for such traversal paths 1n FIG. 1, low-degree table
B may be the connected table 1n the traversal paths. At the
opposite end of some of those traversal paths may be
low-degree table D, and at the opposite end of some others
of those traversal paths may be table A, regardless of
whether table A 1s high degree or low degree.

Step 401 may be repeated for each connected table. For
example 11 table A 1s 1tself a connected table at one end of
the traversal paths, then low-degree tables B and D are at the
opposite end of the traversal paths.

Step 402 calculates a ratio of a count of vertices in the
connected table to a count of traversal paths that start at the
connected table. A lower ratio means that the connected
table 1s small but likely to be frequently accessed. If the ratio
exceeds a ratio threshold, then the connected table should
not be replicated.

This content-based replication 1s a modification of
schema-based replication that decreases replication by dis-
qualitying some connected tables. Step 403 replicates con-
nected tables that are not disqualified.

5.0 Workload Based Replication

Replication may be deferred and adjusted 1n various ways
that may or may not entail autonomous decisions by dis-
tributed system 100. Some or all of the following mecha-
nisms may be involved as discussed earlier herein, which
may or may not be autonomously controlled:
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reservation of some storage capacity of computers 131-
132,
prioritized replication strategies such that some strategies

may be deferred,

adjusting previous replication by monotonically increased

replication, and

workload-based replication.

An embodiment may monitor usage statistics such as a
respective usage count of each table or each table not yet
replicated. If the usage count of such an accessed table
exceeds an access threshold and replication capacity 1s not
exhausted, then distributed system 100 may autonomously
decide to replicate the accessed table. The following are
example usage counts.

a count of query executions that reference the accessed

table,

a count of operators that reference the accessed table in

execution plans of multiple queries, and

a count of table scans of the accessed table.

A query plan 1s a generated executable datatlow graph that
usually 1s a tree whose nodes are operators that implement
an operation ol a query execution such as joining, filtering,
scanning, and projecting. Herein, table access and table
scanning does not mean actual access ol database tables.
Because all vertices from all tables were already loaded into
computers 131-132, table access and table scanning instead
means access or scanning of vertices that were already
loaded from a table. In other words, query plans herein are
for graph queries, not database queries, and usage statistics
are graph statistics collected by distributed system 100, not
by a DBMS 1tself. In an embodiment, distributed system 100
tracks which vertices were loaded from which database
tables.

6.0 Database System Overview

A database management system (DBMS) manages one or
more databases. A DBMS may comprise one or more
database servers. A database comprises database data and a
database dictionary that are stored on a persistent memory
mechanism, such as a set of hard disks. Database data may
be stored in one or more data containers. Each container
contains records. The data within each record 1s organized
into one or more fields. In relational DBMSs, the data
containers are referred to as tables, the records are referred
to as rows, and the fields are referred to as columns. In
object-oriented databases, the data containers are referred to
as object classes, the records are referred to as objects, and
the fields are referred to as attributes. Other database archi-
tectures may use other terminology.

Users 1nteract with a database server of a DBMS by
submitting to the database server commands that cause the
database server to perform operations on data stored in a
database. A user may be one or more applications running on
a client computer that interact with a database server.
Multiple users may also be referred to herein collectively as
a user.

A database command may be in the form of a database
statement that conforms to a database language. A database
language for expressing the database commands 1s the
Structured Query Language (SQL). There are many different
versions of SQL, some versions are standard and some
proprictary, and there are a variety of extensions. Data
definition language (“DDL”) commands are issued to a
database server to create or configure database objects, such
as tables, views, or complex data types. SQL/ XML 1s a
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common extension of SQL used when manipulating XML
data 1n an object-relational database.

A multi-node database management system 1s made up of
interconnected nodes that share access to the same database
or databases. Typically, the nodes are interconnected via a
network and share access, 1n varying degrees, to shared
storage, e.g. shared access to a set of disk drives and data
blocks stored thereon. The varying degrees of shared access
between the nodes may include shared nothing, shared
everything, exclusive access to database partitions by node,
or some combination thereof. The nodes 1n a multi-node
database system may be 1n the form of a group of computers
(e.g. work stations, personal computers) that are intercon-
nected via a network. Alternately, the nodes may be the
nodes of a grid, which 1s composed of nodes 1n the form of
server blades interconnected with other server blades on a
rack.

Each node in a multi-node database system hosts a
database server. A server, such as a database server, 1s a
combination of integrated solftware components and an
allocation of computational resources, such as memory, a
node, and processes on the node for executing the integrated
soltware components on a processor, the combination of the
software and computational resources being dedicated to
performing a particular function on behalf of one or more
clients.

Resources from multiple nodes 1n a multi-node database
system can be allocated to running a particular database
server’s software. Each combination of the software and
allocation of resources from a node 1s a server that 1s referred
to herein as a “server instance” or “instance”. A database
server may comprise multiple database instances, some or
all of which are running on separate computers, including
separate server blades.

Hardware Overview

According to one embodiment, the techniques described
herein are implemented by one or more special-purpose
computing devices. The special-purpose computing devices
may be hard-wired to perform the techniques, or may
include digital electronic devices such as one or more
application-specific integrated circuits (ASICs) or field pro-
grammable gate arrays (FPGAs) that are persistently pro-
grammed to perform the techniques, or may include one or
more general purpose hardware processors programmed to
perform the techniques pursuant to program instructions in
firmware, memory, other storage, or a combination. Such
special-purpose computing devices may also combine cus-
tom hard-wired logic, ASICs, or FPGAs with custom pro-
gramming to accomplish the techniques. The special-pur-
pose computing devices may be desktop computer systems,
portable computer systems, handheld devices, networking
devices or any other device that incorporates hard-wired
and/or program logic to implement the techniques.

For example, FIG. 5 1s a block diagram that illustrates a
computer system 300 upon which an embodiment of the
invention may be implemented. Computer system 500
includes a bus 502 or other communication mechanism for
communicating information, and a hardware processor 504
coupled with bus 502 for processing information. Hardware
processor 504 may be, for example, a general purpose
MICroprocessor.

Computer system 500 also includes a main memory 3506,
such as a random access memory (RAM) or other dynamic
storage device, coupled to bus 502 for storing information
and 1instructions to be executed by processor 504. Main
memory 506 also may be used for storing temporary vari-
ables or other intermediate information during execution of
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istructions to be executed by processor 504. Such instruc-
tions, when stored 1n non-transitory storage media acces-
sible to processor 504, render computer system 500 1nto a
special-purpose machine that 1s customized to perform the
operations specified 1n the instructions.

Computer system 300 further includes a read only
memory (ROM) 508 or other static storage device coupled
to bus 502 for storing static information and instructions for
processor 504. A storage device 510, such as a magnetic disk
or optical disk, 1s provided and coupled to bus 502 for
storing information and 1nstructions.

Computer system 300 may be coupled via bus 502 to a
display 512, such as a cathode ray tube (CRT), for displaying
information to a computer user. An input device 514, includ-
ing alphanumeric and other keys, 1s coupled to bus 502 for
communicating information and command selections to
processor 504. Another type of user mput device 1s cursor
control 516, such as a mouse, a trackball, or cursor direction
keys for communicating direction information and com-
mand selections to processor 504 and for controlling cursor
movement on display 512. This mput device typically has
two degrees of freedom 1n two axes, a first axis (e.g., X) and
a second axis (e.g., v), that allows the device to specily
positions 1n a plane.

Computer system 500 may implement the techniques
described herein using customized hard-wired logic, one or
more ASICs or FPGAs, firmware and/or program logic
which 1n combination with the computer system causes or
programs computer system 300 to be a special-purpose
machine. According to one embodiment, the techniques
herein are performed by computer system 500 in response to
processor 504 executing one or more sequences of one or
more instructions contained i main memory 506. Such
istructions may be read into main memory 306 from
another storage medium, such as storage device 510. Execu-
tion of the sequences of instructions contained 1 main
memory 506 causes processor 504 to perform the process
steps described herein. In alternative embodiments, hard-
wired circuitry may be used in place of or 1n combination
with software 1nstructions.

The term “‘storage media” as used herein refers to any
non-transitory media that store data and/or instructions that
cause a machine to operation 1n a specific fashion. Such
storage media may comprise non-volatile media and/or
volatile media. Non-volatile media includes, for example,
optical or magnetic disks, such as storage device 510.
Volatile media includes dynamic memory, such as main
memory 506. Common forms of storage media include, for
example, a tloppy disk, a flexible disk, hard disk, solid state
drive, magnetic tape, or any other magnetic data storage
medium, a CD-ROM, any other optical data storage
medium, any physical medium with patterns of holes, a
RAM, a PROM, and FPROM, a FLASH-EPROM,
NVRAM, any other memory chip or cartridge.

Storage media 1s distinct from but may be used 1n con-
junction with transmission media. Transmission media par-
ticipates 1n transierring information between storage media.
For example, transmission media includes coaxial cables,
copper wire and fiber optics, including the wires that com-
prise bus 502. Transmission media can also take the form of
acoustic or light waves, such as those generated during
radio-wave and inira-red data communications.

Various forms of media may be mnvolved 1n carrying one
or more sequences of one or more instructions to processor
504 for execution. For example, the mnstructions may ini-
tially be carried on a magnetic disk or solid state drive of a
remote computer. The remote computer can load the mnstruc-

10

15

20

25

30

35

40

45

50

55

60

65

14

tions 1nto 1ts dynamic memory and send the instructions over
a telephone line using a modem. A modem local to computer
system 500 can receive the data on the telephone line and
use an 1nfra-red transmitter to convert the data to an infra-red
signal. An 1nfra-red detector can receive the data carried 1n
the mira-red signal and appropriate circuitry can place the
data on bus 502. Bus 502 carries the data to main memory
506, from which processor 504 retrieves and executes the
instructions. The instructions recerved by main memory 506
may optionally be stored on storage device 510 eirther before
or after execution by processor 504.

Computer system 500 also includes a communication
interface 518 coupled to bus 502. Communication interface
518 provides a two-way data communication coupling to a
network link 520 that 1s connected to a local network 522.
For example, communication interface 518 may be an
integrated services digital network (ISDN) card, cable
modem, satellite modem, or a modem to provide a data
communication connection to a corresponding type of tele-
phone line. As another example, communication interface
518 may be a local area network (LAN) card to provide a
data communication connection to a compatible LAN. Wire-
less links may also be implemented. In any such implemen-
tation, communication interface 518 sends and receives
clectrical, electromagnetic or optical signals that carry digi-
tal data streams representing various types ol information.

Network link 520 typically provides data communication
through one or more networks to other data devices. For
example, network link 520 may provide a connection
through local network 522 to a host computer 524 or to data
equipment operated by an Internet Service Provider (ISP)
526. ISP 526 1n turn provides data communication services
through the world wide packet data communication network
now commonly referred to as the “Internet” 3528. Local
network 522 and Internet 528 both use electrical, electro-
magnetic or optical signals that carry digital data streams.
The signals through the various networks and the signals on
network link 520 and through communication interface 518,
which carry the digital data to and from computer system
500, are example forms of transmission media.

Computer system 300 can send messages and receive
data, including program code, through the network(s), net-
work link 520 and communication interface 518. In the
Internet example, a server 530 might transmit a requested
code for an application program through Internet 528, ISP
526, local network 522 and communication interface 518.

The received code may be executed by processor 504 as
it 1s received, and/or stored in storage device 310, or other
non-volatile storage for later execution.

Software Overview

FIG. 6 15 a block diagram of a basic software system 600
that may be employed for controlling the operation of
computing system 500. Software system 600 and 1ts com-
ponents, including their connections, relationships, and
functions, 1s meant to be exemplary only, and not meant to
limit implementations of the example embodiment(s). Other
soltware systems suitable for implementing the example
embodiment(s) may have different components, including
components with different connections, relationships, and
functions.

Software system 600 1s provided for directing the opera-
tion of computing system 500. Software system 600, which
may be stored 1n system memory (RAM) 506 and on fixed
storage (e.g., hard disk or flash memory) 510, includes a
kernel or operating system (OS) 610.

The OS 610 manages low-level aspects of computer
operation, 1ncluding managing execution ol processes,




US 11,907,255 B2

15

memory allocation, file input and output (I/0O), and device
I/0. One or more application programs, represented as

602A, 602B, 602C . . . 602N, may be “loaded” (e.g.,

transferred from fixed storage 510 into memory 506) for
execution by the system 600. The applications or other
soltware 1mtended for use on computer system 500 may also
be stored as a set of downloadable computer-executable
instructions, for example, for downloading and installation
from an Internet location (e.g., a Web server, an app store,
or other online service).

Soltware system 600 includes a graphical user interface
(GUI) 6135, for receiving user commands and data in a
graphical (e.g., “point-and-click” or “touch gesture™) fash-
ion. These inputs, 1n turn, may be acted upon by the system

600 1n accordance with instructions from operating system
610 and/or application(s) 602. The GUI 6135 also serves to

display the results of operation from the OS 610 and
application(s) 602, whereupon the user may supply addi-
tional mputs or terminate the session (e.g., log oil).

OS 610 can execute directly on the bare hardware 620
(e.g., processor(s) 504) of computer system 300. Alterna-
tively, a hypervisor or virtual machine monitor (VMM) 630
may be interposed between the bare hardware 620 and the
OS 610. In this configuration, VMM 630 acts as a software
“cushion” or virtualization layer between the OS 610 and the
bare hardware 620 of the computer system 500.

VMM 630 instantiates and runs one or more virtual
machine 1nstances (“guest machines”). Each guest machine
comprises a “guest” operating system, such as OS 610, and
one or more applications, such as application(s) 602,
designed to execute on the guest operating system. The
VMM 630 presents the guest operating systems with a
virtual operating platform and manages the execution of the
guest operating systems.

In some instances, the VMM 630 may allow a guest
operating system to run as if 1t 1s running on the bare
hardware 620 of computer system 600 directly. In these
instances, the same version of the guest operating system
configured to execute on the bare hardware 620 directly may
also execute on VMM 630 without modification or recon-
figuration. In other words, VMM 630 may provide tull
hardware and CPU virtualization to a guest operating system
in some 1nstances.

In other instances, a guest operating system may be
specially designed or configured to execute on VMM 630 for
clliciency. In these 1nstances, the guest operating system 1s
“aware” that it executes on a virtual machine monitor. In
other words, VMM 630 may provide para-virtualization to a
guest operating system 1n some instances.

A computer system process comprises an allotment of
hardware processor time, and an allotment of memory
(physical and/or virtual), the allotment of memory being for
storing 1structions executed by the hardware processor, for
storing data generated by the hardware processor executing
the instructions, and/or for storing the hardware processor
state (e.g. content of registers) between allotments of the
hardware processor time when the computer system process
1s not running. Computer system processes run under the
control of an operating system, and may run under the
control of other programs being executed on the computer
system.

Cloud Computing,

The term ““cloud computing” 1s generally used herein to
describe a computing model which enables on-demand
access to a shared pool of computing resources, such as
computer networks, servers, soltware applications, and ser-
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vices, and which allows for rapid provisioning and release of
resources with minimal management effort or service pro-
vider 1nteraction.

A cloud computing environment (sometimes referred to as
a cloud environment, or a cloud) can be implemented 1n a
variety of different ways to best suit diflerent requirements.
For example, 1n a public cloud environment, the underlying
computing infrastructure 1s owned by an organization that
makes its cloud services available to other orgamizations or
to the general public. In contrast, a private cloud environ-
ment 15 generally intended solely for use by, or within, a
single organization. A commumty cloud i1s intended to be
shared by several organizations within a community; while
a hybrid cloud comprise two or more types of cloud (e.g.,
private, community, or public) that are bound together by
data and application portability.

Generally, a cloud computing model enables some of
those responsibilities which previously may have been pro-
vided by an organization’s own information technology
department, to instead be delivered as service layers within
a cloud environment, for use by consumers (either within or
external to the organization, according to the cloud’s public/
private nature). Depending on the particular implementa-
tion, the precise definition of components or features pro-
vided by or within each cloud service layer can vary, but
common examples include: Software as a Service (SaaS), 1n
which consumers use software applications that are running
upon a cloud mfrastructure, while a SaaS provider manages
or controls the underlying cloud infrastructure and applica-
tions. Platform as a Service (PaaS), in which consumers can
use soltware programming languages and development tools
supported by a PaaS provider to develop, deploy, and
otherwise control their own applications, while the PaaS
provider manages or controls other aspects of the cloud
environment (i.e., everything below the run-time execution
environment). Infrastructure as a Service (IaaS), in which
consumers can deploy and run arbitrary software applica-
tions, and/or provision processing, storage, networks, and
other fundamental computing resources, while an IaaS pro-
vider manages or controls the underlying physical cloud
infrastructure (1.e., everything below the operating system
layer). Database as a Service (DBaaS) 1in which consumers
use a database server or Database Management System that
1s running upon a cloud infrastructure, while a DbaaS
provider manages or controls the underlying cloud infra-
structure and applications.

The above-described basic computer hardware and soft-
ware and cloud computing environment presented for pur-
pose of 1llustrating the basic underlying computer compo-
nents that may be employed for implementing the example
embodiment(s). The example embodiment(s), however, are
not necessarily limited to any particular computing environ-
ment or computing device configuration. Instead, the
example embodiment(s) may be implemented 1n any type of
system architecture or processing environment that one
skilled 1n the art, 1n light of this disclosure, would under-
stand as capable of supporting the features and functions of
the example embodiment(s) presented herein.

In the foregoing specification, embodiments of the mven-
tion have been described with reference to numerous spe-
cific details that may vary from implementation to 1mple-
mentation. The specification and drawings are, accordingly,
to be regarded in an 1illustrative rather than a restrictive
sense. The sole and exclusive indicator of the scope of the
invention, and what 1s intended by the applicants to be the
scope of the invention, 1s the literal and equivalent scope of
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the set of claims that i1ssue from this application, 1n the
specific form 1n which such claims 1ssue, including any
subsequent correction.

What 1s claimed 1s:

1. A computer-implemented method comprising:

storing, 1 a relational database, a plurality of tables,

wherein:

cach table of the plurality of tables contains a respec-
tive plurality of rows, and

cach row of the plurality of rows of each table contains
a vertex of a graph;

identifying a plurality of high-degree vertices, wherein:

cach high-degree vertex 1n the plurality of high-degree
vertices 1s connected to a respective plurality of
edges 1n the graph, and

a count of the plurality of edges of each high-degree
vertex exceeds a degree threshold;

detecting that all vertices 1n a high-degree subset of tables

of the plurality of tables are high-degree vertices; and
replicating, based on said detecting all vertices in the
high-degree subset of tables are high-degree vertices, a
plurality of vertices of the graph that are not in the
high-degree subset of tables to a plurality of computers.

2. The method of claim 1 wherein the plurality of vertices
of the graph that are not in the high-degree subset of tables
are 1n a connected subset of tables that are connected only
to the high-degree subset of tables.

3. The method of claim 2 wherein said replicating the
plurality of vertices of the graph that are in the connected
subset of tables comprises sending, by each computer in the
plurality of computers, for each vertex in the connected
subset of tables:

an 1dentifier of the vertex, and

a count of edges 1n the graph that are connected to the

vertex.
4. The method of claim 3 wherein said sending, by each
computer in the plurality of computers and for each vertex
in the connected subset of tables, 1s 1n response to receiving,
by each computer, a request that contains an identifier of
cach table 1n the connected subset of tables.
5. The method of claim 2 wherein said replicating the
plurality of vertices of the graph that are in the connected
subset of tables comprises inferring, from a schema of the
relational database, that all vertices 1n a particular table that
1s not 1 the high-degree subset of tables can be connected
by edges 1n the graph only to vertices in one selected from
a group consisting of:
one table of the high-degree subset of tables, and
one or more tables of the high-degree subset of tables.
6. The method of claim 3 further comprising:
inferring, from the schema of the relational database, that
all vertices 1n a second table that 1s not 1n the high-
degree subset of tables can be connected by edges 1n the
graph only to vertices in the particular table;

including the second table in the connected subset of
tables.

7. The method of claim 2 further comprising:

selecting a plurality of traversal paths that contain exactly

three respective vertices 1n the graph that are connected

by two respective edges 1n the graph, wherein for each

traversal path in the plurality of traversal paths:

the three respective vertices contains a respective first
vertex 1n a first table that 1s 1n the connected subset
of tables and a respective second vertex 1n a second
table of the high-degree subset of tables, and

the respective second vertex 1s connected to the two
respective edges;
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calculating a ratio of a count of vertices 1n the first table

to a count of traversal paths 1n the plurality of traversal

paths, wherein said replicating the plurality of vertices

of the graph that are 1n the connected subset of tables

1s based on said calculating the ratio of the count of
vertices to the count of traversal paths.

8. The method of claim 2 further comprising based on

executions of a plurality of queries, for each accessed table

of the plurality of tables, detecting a respective usage count

selected from a group consisting of:

a count of said executions that reference the accessed

table,

a count of operators that reference the accessed table 1n

execution plans of the plurality of queries, and

a count of table scans of the accessed table.

9. The method of claim 1 further comprising decreasing a
remaining vertex capacity by a count of the plurality of
high-degree vertices in the graph.

10. The method of claim 9 wherein said replicating the
plurality of vertices of the graph that are not 1n the high-
degree subset of tables comprises limiting, based on the
remaining vertex capacity, a count of vertices to be repli-
cated that are not 1n the high-degree subset of tables.

11. The method of claim 10 wherein said limiting the
count of vertices to be replicated that are not 1n the high-
degree subset of tables comprises sorting, by degree, mul-
tiple vertices m multiple tables that are not in the high-
degree subset of tables.

12. The method of claim 10 further comprising detecting,
betore said limiting the count of vertices to be replicated that
are not 1 the high-degree subset of tables, that the remaining
vertex capacity 1s positive.

13. The method of claim 1 wherein said detecting all
vertices 1n the high-degree subset of tables are high-degree
vertices comprises:

distributing a respective subset of all vertices 1n a par-

ticular table to each computer 1n the plurality of com-
puters;

detecting, by each computer in the plurality of computers,

that the respective subset of said all vertices in the
particular table contains only high-degree vertices.

14. The method of claim 13 wherein said detecting that all
vertices 1n the particular table are high-degree vertices
comprises sending, to a central computer by each computer
in the plurality of computers, an indication that the respec-
tive subset of said all vertices 1n the particular table contains
only high-degree vertices.

15. The method of claim 14 wherein the indication for the
particular table contains an i1dentifier of the particular table.

16. One or more non-transitory computer-readable media
storing instructions that, when executed by one or more
Processors, cause:

storing, 1n a relational database, a plurality of tables,

wherein:

cach table of the plurality of tables contains a respec-
tive plurality of rows, and

cach row of the plurality of rows of each table contains
a vertex of a graph;

identifying a plurality of high-degree vertices, wherein:

cach high-degree vertex 1n the plurality of high-degree
vertices 1s connected to a respective plurality of
edges 1n the graph, and

a count of the plurality of edges of each high-degree
vertex exceeds a degree threshold;

detecting that all vertices 1n a high-degree subset of tables

of the plurality of tables are high-degree vertices; and
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replicating, based on said detecting all vertices i the
high-degree subset of tables are high-degree vertices, a
plurality of vertices of the graph that are not in the
high-degree subset of tables to a plurality of computers.

17. The one or more non-transitory computer-readable
media of claim 16 wherein the plurality of vertices of the
graph that are not 1n the high-degree subset of tables are 1n
a connected subset of tables that are connected only to the
high-degree subset of tables.

18. The one or more non-transitory computer-readable
media of claim 16 wherein the instructions further cause
decreasing a remaining vertex capacity by a count of the
plurality of high-degree vertices in the graph.

19. The one or more non-transitory computer-readable
media of claim 18 wherein said replicating the plurality of
vertices of the graph that are not in the high-degree subset
of tables comprises limiting, based on the remaining vertex
capacity, a count of vertices to be replicated that are not 1n
the high-degree subset of tables.

20. The one or more non-transitory computer-readable
media of claim 16 wherein said detecting all vertices 1n the
high-degree subset of tables are high-degree vertices com-
Prises:

distributing a respective subset of all vertices 1n a par-

ticular table to each computer 1n the plurality of com-
puters;

detecting, by each computer 1n the plurality of computers,

that the respective subset of said all vertices 1n the
particular table contains only high-degree vertices.
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