12 United States Patent

Kosuru et al.

US011907222B1

(10) Patent No.: US 11,907,222 B1
45) Date of Patent: Feb. 20, 2024

(54) DETECTING CHAINS OF FUNCTIONS THAT

(71)

(72)

(73)

(%)

(21)
(22)

(1)
(52)

(58)

(56)

VIOLATE A CONSTRAINT

Applicant: HEWLETT PACKARD
ENTERPRISE DEVELOPMENT LP,

Houston, TX (US)

Inventors: Ramakumar V. Kosuru, Austin, TX

(US); Clifford Earl Gray, San Jose,
CA (US); Joseph Stanley Kosinski, Jr.,

San Jose, CA (US)

Assignee: Hewlett Packard Enterprise
Development LP, Spring, TX (US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 17/815,369

Filed: Jul. 27, 2022

Int. CI.

GOoF 1672453 (2019.01)

U.S. CL

CPC . GO6I' 1624547 (2019.01)

Field of Classification Search

CPC GO6F 16/24547; GO6F 11/0754; GO6F
11/0757

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

8,856,151 B2 10/2014 George
10,515,075 B2 12/2019 Ramachandra et al.
11,243,820 Bl 2/2022 Luo et al.

2003/0056199 Al1* 3/2003 Li ...,

2012/0191732 Al 7/2012 George

tttttttttt

GOO6F 11/323

714/E11.181

110~

102
104~
Database] 106~
Query
g]| Peiabaso
Compiler
DBMS
_ Prt}gram___

;
-

Query
Plan

Resource N 114

2018/0329952 Al 11/2018 Ramachandra et al.
2022/0108007 Al* 4/2022 Zatutschne-Maromoovnen.n.

GO6F 21/52
2022/0114009 Al1* 4/2022 Ismael GOO6F 9/545

OTHER PUBLICATTIONS

Weber, Michael, Viren Shah, and Chris Ren. “A case study In

detecting software security vulnerabilities using constraint optimi-
zation.” Proceedings First IEEE International Workshop on Source

Code Analysis and Manipulation. IEEE, 2001. (Year: 2001).*
Zhang, Jiaxing, et al. “Optimizing Data Shuflling in Data-Parallel
Computation by Understanding User-Defined Functions.” NSDI.
vol. 12. 2012. (Year: 2012).*

Oracle, “PL/SQL Package™, Jun. 26, 2022, 3 pages.

Redis, “Introduction to Redis”, Jun. 26, 2022, 2 pages.
Wikipedia, “Redis™, available online at <https://en.wikipedia.org/
w/index.php?title=Redis&oldid=1083588417>, Apr. 19, 2022, 7
pages.

Wikipedia, “User-defined function™, available online at <https://en.

wikipedia.org/w/index.php?title=User-defined_function&oldid=
1041475611>, Aug. 30, 2021, 4 pages.

* cited by examiner

Primary Examiner — William Spieler
(74) Attorney, Agent, or Firm — Trop, Pruner & Hu, P.C.

(57) ABSTRACT

In some examples, a system determines whether a chain of
functions violates a constraint, based on accessing a tracking
structure populated with entries as the functions are invoked
by respective server processes launched during execution of
a database operation, where each entry of the entries of the
tracking structure identifies a respective mvoked function
that 1s associated with a corresponding program instance,
and detecting, using the tracking structure, related functions
that form the chain, the related functions being identified as
related 11 associated with a same program instance. In
response to determining that the chain of the functions
violates the constraint, the system blocks an invocation of a
further function to be added to the chain.

17 Claims, S Drawing Sheets

Distributed System 124~
116-A~ Monitor
112 UDF Server Process
R Process ----, 120~ §
UDFA 4-~---1 Cache
11 UDF Chain
Coordinator| 116-B~ 11122 g;'radf[mrg
Process UDF Server] !l > ;gii °
Process o ; D
UDFB - 4
l Y * ;‘ﬁ“"*‘ KVN
Helper Process ’ H 1 2685nt|nel KY
® L
\/ 116-X~, j '+ | Package Data
113 UDF Server 1:5 1%@\8tructure
Process }._i' KV-DM7
UDF X [4--+11 | | _KV-DM2
= F 3 KV-DMP

US 11,907,222 B1

Sheet 1 of 5

Feb. 20, 2024

U.S. Patent

2JN1onIIS 051
ele(q abeyoed

9¢l

[

l Ol

~-r1X4an |

e 1 7S | e0inoss ——
JOAIRS 4aN| Cll b

X-9L1
@

. $$820.d J8d|eH |

A I I T A I A I G G A AN SIS GIEE S A A S S -
TR PN D RN Y RN Y Y R Y i

J
~
~—

®

oo - —

wesboud
SINEd

9JNIONIIS m SS900ld J9|Idwon
Bunyoe] zzh || 10jEUIpA00] ey /|| AenO 80
ureyd 4an | f1an oseqele(
ayoe) L - O oND
o oLl !_%SES
071 $S990.d o vy
$$8204d 19AI9S 4dN
JOJUOI | v-0}l
) wajsAg paynqujsiq
¢0l

U.S. Patent Feb. 20, 2024 Sheet 2 of 5 US 11,907,222 Bl

202 204 200 208

UDF 1 UDF 2 UDF 3

2106 214 212 210
UDF 7 UDF © UDF 5 UDF 4

FIG. 2

302 304

3006

UDF 2

308

UDF 3

FIG. 3

U.S. Patent Feb. 20, 2024 Sheet 3 of 5 US 11,907,222 Bl

402
In response to an invocation of a given UDF, record a key-value
pair for the invoked UDF in the UDF chain tracking structure

Add a
sentinel
key-value
pair

Determine whether a nested
chain of UDFs violates
the length constraint?

403

410

Provide a
cyclical

Determine whether adding
a further UDF violates the
cyclical constraint?

Y .
€S constraint

violation
Indication

No

FIG. 4

U.S. Patent Feb. 20, 2024 Sheet 4 of 5 US 11,907,222 Bl

500
502 Storage Medium
Constraint Violation Determination Instructions

504
Tracking Structure Accessing Instructions

506
Related Functions Detection Instructions

508

~ Function Invocation Blocking Instructions '

FIG. 5
o002~
504 Distributed System
Cache
Tracking Structure

606 614

618

o ” — —3

Computing Node Computing Node

Server Process ’ 661 102 6532 N

' ' 616~

FIG. 6

Server Process

U.S. Patent Feb. 20, 2024 Sheet 5 of 5 US 11,907,222 Bl

700
702

Invoke UDFs for execution in respective server processes of a
plurality of server processes, where a first UDF in a first server
process can invoke a second UDF for execution in a second server
process, and each respective server process of the plurality of server
processes defines an isolated computing environment for execution
of a respective UDF

704

As UDFs are invoked and executed by server processes, add
key-value pairs to entries of a tracking structure in a cache, where
each respective key-value pair of the key-value pairs includes a key
that identifies a program instance a corresponding UDF s
assoclated with, and a value that identifies the corresponding UDF

706

Determine, by a monitor process based on the key-value pairs,
whether a chain of UDFs violates a constraint

708
In response to determining that the chain of UDFs violates the
constraint, block, by a server process, invocation of a further UDF

FIG. 7

US 11,907,222 Bl

1

DETECTING CHAINS OF FUNCTIONS THAT
VIOLATE A CONSTRAINT

BACKGROUND

Database queries can be submitted to a database system to
perform operations on relational tables of the database
system. Examples of database queries include Structured
Query Language (SQL) queries.

BRIEF DESCRIPTION OF THE DRAWINGS

Some 1mplementations of the present disclosure are
described with respect to the following figures.

FIG. 1 1s a block diagram of a distributed system 1nclud-
ing a database management program, user defined function
(UDF) server processes to execute respective UDFs, and a
monitor process according to some examples.

FI1G. 2 illustrates a nested chain of UDFs that violates a
length constraint, according to some examples.

FIG. 3 illustrates a cyclical chain of UDFs according to
some examples.

FIG. 4 1s a tflow diagram of a process of detecting
violation of a constraint, according to some examples.

FIG. 5 1s a block diagram of a storage medium storing
machine-readable instructions according to some examples.

FIG. 6 1s a block diagram of a distributed system accord-
ing to some examples.

FI1G. 7 1s a flow diagram of a process according to further
examples.

Throughout the drawings, i1dentical reference numbers
designate similar, but not necessarily identical, elements.
The figures are not necessarily to scale, and the size of some
parts may be exaggerated to more clearly illustrate the
example shown. Moreover, the drawings provide examples
and/or 1mplementations consistent with the description;
however, the description 1s not limited to the examples
and/or implementations provided i the drawings.

DETAILED DESCRIPTION

A database query submitted for processing by a database
system can invoke various functions to perform respective
specified tasks. In some examples, a function that can be

triggered can include user defined function (UDF). A “UDFE”

can refer to a function developed by a user (or group of
users), or another entity such as a program or machine, that
1s not part ol a database programming language (e.g., a
Structured Query Language (SQL)), but rather can be tai-
lored to perform specific actions with respect to data.

In other examples, a function that can be triggered can
include a native function of the database programming
language (e.g., SQL). A native function can perform pre-
defined tasks, such as a function to sum values, a function to
calculate an average of values, and so forth.

A database query can invoke a first function (e.g., a first
UDF), which 1n turn can mvoke a second function (e.g., a
second UDF), which 1n turn can invoke a third function (e.g.,
a third UDF), and so forth. The mvocation of a function by
another function 1s referred to as a nested invocation of the
tunction. The length of nested mvocations of functions can
be arbitrarily long.

In some cases, a nested chain of functions can include a
cycle of functions, i which the nested chain of functions
starts at a first function and has another function that invokes

10

15

20

25

30

35

40

45

50

55

60

65

2

the first function. A nested chain of functions that includes
a cycle of functions 1s referred to as a cyclical chain of
functions.

The presence of a lengthy nested chain of functions or a
cyclical chain of functions can result 1n resource contention
in a system 1n which the functions are executed. Examples
of resources subject to contention by execution of a nested
chain of function any or some combination of processing
resources (e.g., a hardware processor, multiple hardware
processors, a core of a multi-core processor, plural cores of
a multi-core processor, efc.), storage resources (e.g., a
memory, a disk-based storage, a solid-state drive, etc.)
and/or a communication resource (a network interface con-
troller, a switch or router, etc.). Additionally, resources can
include virtual resources, such as virtual machines, contain-
ers, and so forth.

In addition, database operations performed 1n response to
a database query can modily data in tables, which can
include rows. As rows are modified (e.g., rows are inserted,
rows are deleted, or rows are updated) 1n a table, locks can
be placed on the rows that are being modified. A cyclical
chain of functions that perform modifications of rows that
result 1n locks being placed on the rows can produce
deadlocks, 1n which locks placed on the table rows may
prevent the functions in the cyclical chain of functions from
progressing further.

In accordance with some implementations of the present
disclosure, techniques or mechanisms are provided to detect
the presence of lengthy nested chains of functions (a
“lengthy” nested chain of functions 1s a chain that includes
more than a specified number of functions) and/or a cyclical
chain of functions. In response to detecting the lengthy chain
of functions or a cyclical chain of functions, a system can
prevent further addition of a function to be added to the
chain.

A Turther 1ssue related to a nested chain of functions 1s that
data members associated with a package may not be share-
able by the functions of the nested chain of functions. A
“package” can be defined by package data that identifies
data members that are part of the package, as well as UDFs
in the package. The package data 1s 1n the form of a data
structure having a specified format. A “data member” can
refer to any varnable or parameter. If the data members (or
more specifically, the most updated values of the data
members) of the package are not available to any UDF in the
package, then the UDFs in a nested chain of UDFs may
produce erroneous results, such as when computations are
based on stale versions of the data members. In accordance
with some implementations of the present disclosure, related
functions of a package can share access of data members that
are part of the package. In some examples, the data members

of the package can be stored 1n a cache for sharing by the
related functions.

FIG. 1 1s a block diagram of a distributed system 102 1n
which database operations can be performed. A “distributed
system” refers to a system that has multiple computing
nodes, where each “computing node” can refer to a com-
puter, a processor, a core ol a multi-core processor, or any
other type of processing circuit. The distributed system 102
1s a distributed database system that 1s able to access data 1n
response to database queries.

The distributed system 102 includes a database manage-
ment system (DBMS) program 104 that can process data-
base queries, such as SQL queries. SQL refers to a database
programming language that allows for management of data

US 11,907,222 Bl

3

held 1n a relational database management system (RDBMS).
In other examples, database queries according to other
languages can be employed.

The DBMS program 104 includes a database query com-
piler 106 that can parse a database query 108 into a query
plan 110. For example, the database query can include a
SQL statement, which can be individually submitted by a
requester or can be part of a package of SQL statements. The
query plan 110 produced by the database query compiler 106
can include a set of instructions that describe the various
tasks performed for a database operation mvoked by the
database query 108.

In some examples, a coordinator process 112 can be
initiated 1n the distributed system 102 for executing database
operations according to the query plan 110. For example, the
coordinator process 112 can be used to coordinate the usage
of resources of the distributed system 102. The resources can
include processing resources, storage resources, and/or coms-
munication resources. The coordinator process 112 can
launch various helper processes 113 to perform specific
tasks associated with the database operations for the query
plan 110.

A “helper process™ can refer to a process 1n the distributed
system 102 that performs tasks delegated to the helper
process by the coordinator process 112. The multiple helper
processes 113 can execute 1n parallel, such as on respective
different processors or processor cores. In other examples,
helper processes are not used by the coordinator process 112.

In some examples, functions can be triggered as part of
the query plan 110 to perform respective actions. In some
examples, the Tunctions that are triggered can include UDFs
or native functions.

Functions, including UDFs and/or native functions, can
perform any of various different types of actions on data,
such as to compute a mathematical computation of data
values, generate an output value based on various mput data
values, determine whether data values satisty a criterion, and
so forth.

In some cases, there can be nested invocations of func-
tions. For example, a first UDF may be imnvoked by a trigger
that 1s part of a database query, the first UDF can invoke a
second UDF, the second UDF can invoke a third UDF, and
so forth. FIG. 2 shows an example in which 7 UDFs are
invoked, one following another, in a nested chain of UDFs.
In the example of FIG. 2, a trigger 202 1n a database query
invokes a first UDF 204, which invokes a second UDF 206,
which 1nvokes a third UDF 208, which invokes fourth UDF
210, which mvokes a fitth UDF 212, which invokes a sixth
UDF 214, and which mvokes seventh UDF 216. The length
of nested mvocations of the UDFs can be arbitrarnily long. In
the example of FIG. 2, the length of the nested chain of
UDFs 1s 7 (7 UDFs mnvoked).

A “trigger” 1n a database query can refer to any part of the
database query (such as a clause, a predicate, etc.) that
makes a call of a function, such as a UDF or a native
function.

FIG. 3, shows an example of a cyclical chain of UDFs. In
the example of FIG. 3, atrigger 302 invokes a first UDF 304,
which 1nvokes a second UDF 306, which invokes a thlrd
UDF 308, and which mvokes the ﬁrst UDF 304. Since the
third UDF 308 1nvokes the first UDF 304, a cycle of UDFs
1s formed 1n the nested chain of UDFs shown in FIG. 3.

The presence of a lengthy nested chain of functions (a
chain of functions with a length that exceeds a length
threshold) or a cyclical chain of functions can result in
resource contention in the distributed system 102. In some
examples, a UDF server process 1s launched to execute a

10

15

20

25

30

35

40

45

50

55

60

65

4

respective UDFE. For example, FIG. 1 shows a UDF server
process 116-A to execute UDEF A, a UDF server process
116-B to execute UDF B, . . ., and a UDF server process
116-X to execute UDF X. The multiple UDF server pro-
cesses 116-A to 116-X can compete for resources 114 of the
distributed system 102. The resources 114 can include any or
some combination of processing resources, storage

resources, communication resources, virtual resources, and
so forth.

Each UDF server process 116-A, 116-B, , 116-X
defines an 1solated computing environment in which a
respective UDF 1s executed. Thus, for example, UDF A
executed 1n the UDF server process 116-A 1s 1solated from
the execution of UDF B 1n the UDF server process 116-B.
Each UDF server process can be implemented as a Java
virtual machine (JVM), a container, or any other virtual
environment. Each call of a given UDF (whether called by
a trigger 1 a database query or another UDF) results 1n
another invocation of the given UDF by the corresponding
UDF server process.

Resource contention among the UDF server processes
116-A to 116-X can result in meflicient execution of data-
base operations that mvolve execution of the respective
UDFs A to X. For example, 1f a resource requested by a first
UDF server process 1s unavailable or 1s being heavily
utilized due to execution of a second UDF server process,
then the first UDF server process may not be able to execute
its respective UDF 1n a timely fashion.

In accordance with some implementations of the present
disclosure, to support detection of lengthy nested chains of
UDFs or cyclical chains of UDFs, a UDF chain tracking
structure 122 may be stored 1n a cache 120. A “cache” can
be implemented using a collection of memory devices (a
single memory device or multiple memory devices). In some
examples, the cache 120 may include a Remote Dictionary
Server (Redis), which i1s according to an open-source pro-
tocol that provides an in-memory data structure store of
in-memory key-value pairs. In other examples, the cache
120 can store data according to other formats or protocols.

The UDF chain tracking structure 122 includes entries
that each identifies a respective UDF of a nested chain of
UDFs. The UDF chain tracking structure 122 1s associated
with a corresponding program instance, which 1s an instance
of a program such as an application program, a utility
program, or another type of program. If the distributed
system 102 1s executing database operations for multiple
program instances (which can be different instances of the
same program or instances of diflerent programs), then the
cache 120 can store multiple UDF chain tracking structures
associated with respective diflerent program instances. In
other examples, one UDF chain tracking structure 122 can
be used to store entries for multiple program instances.

The entries of the UDF chain tracking structure 122 are
populated as UDFs are invoked and their respective UDF
server processes (e.g., 116-A to 116-X) are launched during,
execution of database operations. The UDF chain tracking
structure 122 contains information of related UDFs, where
UDFs are related 11 they are associated with (e.g., invoked
in response to) the same program instance.

In some examples, a monitor process 124 (including
machine-readable instructions) i1s able to monitor the UDF
chain tracking structure 122 to determine whether a nested
chain of UDFs violates a constraint.

In some examples, the monitor process 124 i1s separate
from the UDF server processes 116-A to 116-X, the coor-
dinator process 112, and the helper processes 113. In other
examples, the monitor process 124 (or multiple istances of

US 11,907,222 Bl

S

the monitor process 124) can be part of any one or more of
the UDF server processes 116-A to 116-X, and/or the
coordinator process 112, and/or any one or more of the
helper processes 113.

A nested chain of UDFs would violate the constraint 1f
cither or both of the following is present: (1) a length of the
nested chain of UDFs exceeds a specified length (where a
“length” of a nested chain of functions 1s equal to how many
functions are 1n the nested chain of functions), or (2) the
nested chain of UDFs (or more generally, a nested chain of
functions) 1s cyclical.

In the above, the constraint includes a length constraint
and a cyclical constraint. As used here, the term “constraint™
can refer to a single constraint or multiple constraints.

Detecting Violations of Constraints by Nested Chains of
UDFs

Referring to FIGS. 1 and 4, a process performed by
components of the distributed system 102 1s depicted.

In response to an ivocation of a given UDF (“UDF k”

whereki1sone of A, B, ..., X) by a UDF server process (one
of 116-A to 116-X), the UDF server process can record (at

402) a key-value pair for the invoked UDF k 1 the UDF
chain tracking structure 122. The UDF server process can
invoke UDF k in response to a call by a database query or
a call i another UDF.

The UDF chain tracking structure 122 has multiple entries
that contain corresponding key-value pairs, such as KV1,
KV2, ..., KVN (Nz2) depicted in FIG. 1. Although FIG.
1 shows the entries of the UDF chain tracking structure 122
containing respective key-value pairs, 1n other examples, the
entries of the UDF chain tracking structure 122 can contain
data relating to UDFs 1n a different form.

A key-value pair 1n an entry of the UDF chain tracking
structure 122 contains a key and an associated value. The
key contains a program instance value that identifies a
program 1instance that the invocation of the UDF 1s associ-
ated with. The program instance value may be 1n the form of
a process ID. As an example, a program P may issue a
database query that triggers invocation of a first UDF, which
in turn mvokes a second UDF, which 1n turn invokes a third
UDVEF, and so forth, in a nested chain of UDFs. UDF k 1n the
above example can be one of the UDFs 1n the nested chain
of UDFs.

The key may also contain a UDF 1dentification value to
identify UDF k-1 that imnvoked UDF k. The value of the
key-value pair 1s a UDF i1dentification value to identity UDF
k that 1s invoked.

As an example, the key-value pair added to the UDF chain
tracking structure 122 1n response to the invocation of UDF
k can be in the following form:

{Key=100INT(k-1), Value=INT(k)}.

In the above example key-value pair, INT(k) 1s the UDF
identification value of UDF k that 1s invoked, 100 is the
process ID of the program instance, and INT(k-1) 1s the
UDF identification value of UDF k-1 that invoked UDF k.
In some examples, the process ID (such as 100) can be a
random number or any other value that can uniquely 1dentify
a program 1nstance. A UDF 1dentification value can also be
a random number or any other value that can uniquely
identify a UDF.

Note that if UDF k was called by a trigger in a database
query rather than another UDF, then the key of the key-value
pair added for the mnvocation of UDF k can include some
predefined value indicating that the calling entity 1s a trigger
rather than another UDF.

As UDFs are invoked by respective UDF server processes
that are associated with the program instance having the

5

10

15

20

25

30

35

40

45

50

55

60

65

6

process 1D 100, corresponding key-value pairs are added to
entries of the UDF chain tracking structure 122 where each
key of the key-value pairs contains the process 1D 100.

The monitor process 124 can determine (at 404) whether
a nested chain of UDFs violates the length constraint. In
some examples, the monitor process 124 can analyze the
key-value pairs 1n the entries of the UDF chain tracking
structure 122 on a periodic basis (e.g., once every specified
time interval) or in response to another event (e.g., a
detection that resource usage 1s high, a detection of a
slowdown 1n database operations of the distributed system
102, etc.). In such examples, the monitor process 124
determines whether the nested chain of UDFs represented by
the collection of key-value pairs 1n the entries of the UDF
chain tracking structure 122 violates the length constraint.

The monitor process 124 can determine whether a length
of the nested chain of UDFs represented by the collection of
key-value pairs violates the length constraint (1.¢., the length
1s at or 1s greater than a length threshold). The monitor
process 124 can retrieve entries from the UDF chain track-
ing structure 122 that contain keys with a common process
ID (for i1dentitying a given program instance). From the
key-value pairs 1n the retrieved entries, the monitor process
124 can determine a length of the nested chain of UDFs,
which 1s determined from the key-value pairs by identifying
which UDFs invoke other UDFs. An example collection of
key-value pairs retrieved from the UDF chain tracking
structure 122 1s provided below:

{Key=100INT(1), Value=INT(2)},

{Key=100INT(2), Value=INT(3)},

{Key=100INT(3), Value=INT(4)},

{Key=100INT(4), Value=INT(5)}

{Key=100INT(5), Value=INT(6)}

{Key=100INT(6), Value=INT(7)}.

The above collection of key-value pairs indicates that a
UDF "1aving a UDF identification value INT(1) invoked a
UDF having a UDF identification value INT(2), the UDF
identification value INT(2) mnvoked a UDF having a UDF
identification value INT(3), and so forth.

Based on the key-value pairs in the entries of the UDF

chain tracking structure 122, that the monitor process 124
can determine that the length of the UDF chain (from INT(1)

to INT(7)) 1s 7. If the length threshold 1s 6 (for example),
then the monitor process 124 can detect that the nested chain
of UDFs 1n the above example 1s at the length threshold, and
thus, the nested chain of UDFs violates the length constraint.

Note that even 1f the length threshold 1s 7 in the above
example, the monitor process 124 would still determine that
the nested chain of UDFs with a length of 7 violates the
length constraint, since adding a further UDF to the nested
chain of UDFs would cause the length threshold to be
exceeded.

In response to determining that the nested chain of UDFs
violates the length constraint, the monitor process 124 adds
(at 406) a “‘sentinel” key-value pair 126 to an entry of the
UDF chain tracking structure 122. The sentinel key-value
pair 126 provides a violation indication that indicates that
the nested chain of UDFs violates the constraint. The key of
the sentinel key-value pair 126 includes a program instance
value (e.g., 100 1 the above example), and the value the
sentinel key-value pair 126 includes a specified value (e.g.,
some predefined number or character string) that indicates
that the nested chain of UDFs violates the constraint.

In some examples, before mvoking a new UDF, a UDF
server process can check for the sentinel key-value pair 126
by reading the UDF chain tracking structure 122. The UDF

server process can search the UDF chain tracking structure

US 11,907,222 Bl

7

122 for presence of the sentinel key-value pair 126, such as
by searching for the specified value or searching for a flag
or other special header indicating an entry as containing a
sentinel key-value patr.

If the UDF server process determines that the sentinel
key-value pair 126 1s present, then the UDF server process
can block invocation of another UDF associated with the
same program instance (e.g., the program instance having
the process 1D 100).

Although FIG. 1 shows the UDF chain tracking structure
122 with one sentinel key-value pair 126, 1n other examples,
the monitor process 124 may have added multiple sentinel
key-value pairs to the UDF chain tracking structure 122 to
indicate respective nested chains of UDFs that have violated
the constraint.

The foregoing refers to an example where the monitor
process 124 analyzes the entries of the UDF chain tracking
structure 122 on a periodic basis or in response to another
event. In some cases, 1t may be possible that by the time the
monitor process 124 analyzes the entries of the UDF chain
tracking structure 122, the length of the nested chain of
UDFs may already be greater than the length threshold.

In other examples, the momitor process 124 can determine
(at 404) whether the nested chain of UDFs violates the
length constraint 1in response to a request to invoke a further
UDF for the program instance (e.g., the one having process
ID 100). In such examples, the monitor process 124 can be
part of a UDF server process, and the monitor process 124
in the UDF server process can, 1n response to the request to
invoke the further UDF (and prior to mvoking the further
UDF), check the entries of the UDF chain tracking structure
122 to determine whether adding the further UDF to the
nested chain of UDFs would violate the length constraint. IT
not, the UDF server process can allow the further UDF to be
invoked. However, 1f adding the further UDF to the nested
chain of UDFs would violate the length constraint, then the
UDF server process would block mvocation of the further
UDF. In addition, 11 adding the further UDF to the nested
chain of UDFs would violate the length constraint, the
monitor process 124 adds (at 406) the sentinel key-value
pair 126 to the UDF chain tracking structure 122.

Similarly, the momnitor process 124 in a UDF server
process can prevent a cyclical chain of UDFs from occur-
ring. The monitor process 124 determines (at 408) whether
adding a further UDF in response to a request to invoke the
UDF wviolates the cyclical constraint. To do so, the monitor
process 124 retrieves the key-value pairs from the UDF
chain tracking structure 122 and determines the existing
nested chain of UDFs.

Another example collection of key-value pairs retrieved
from the UDF chain tracking structure 122 1s provided
below:

{Key=100INT(1), Value=INT(2)},

{Key=100INT(2), Value=INT(3)},

The existing nested chain of UDFs in this example 1s
INT(1)—=INT(2)—=INT(3).

The further UDF may have a UDF identification value
INT(1), and may be invoked by the UDF with UDF 1den-
tification value INT(3). Adding this further UDF to the
nested chain of UDFs would result 1n a cycle of UDFs, since
the UDF chain would start at INT(1) and end at INT(1),
which violates the cyclical constraint.

If the addition of the further UDF to the existing nested
chain of UDFs would result 1n a cycle, then the monitor
process 124 provides (at 410) a cyclical constraint violation
indication, which causes the UDF server process to block
invocation of the further UDF. A cyclical invocation of

10

15

20

25

30

35

40

45

50

55

60

65

8

UDFs can be detected by the UDF server process before 1t
occurs since the UDF server process knows the UDF 1den-
tification value of the UDF about to be invoked, and based
on the reconstructed existing nested chain of UDFs the UDF
server process can detect the cycle.

If neither the length constraint nor the cyclical constraint
1s violated, then invocation of a further UDF 1s allowed.

Shared Access of Package Data Members

In accordance with some implementations of the present
disclosure, the UDFs of a nested chain of UDFs associated
with the same program instance can share access of data
members of a package that also 1dentifies related UDFs that
are part ol the package. A data member of the package that
1s modified by any UDF of the package can be visible to
other UDF(s) of the package.

FIG. 1 shows a package data structure 130 that i1s stored
in the cache 120. In some examples, the package data
structure 130 includes entries that have key-value pairs
corresponding to the data members of the package. The data
members include data members DM1, DM2, . . ., DMP
(P=2). More generally, a package can include just a single
data member or multiple data members.

Each key-value pair of the package data structure 130
includes a key that includes the name of the data member,
and a value that 1s a current value of the data member
identified by the key. The key can also include an identifier
of the package. Thus, in an example, the key of each
key-value pair 1n the package data structure 130 includes an
identifier of the package and the name of the corresponding
data member. In the package data structure 130, KV-DM1 1s
the key-value pair for data member DM1, KV-DM2 1s the
key-value pair for data member DM2, and KV-DMP 1s the
key-value pair for data member DMP.

In an example, UDF A executed by the UDF server
process 116-A can modily the value of data member DMP
in the package data structure 130, and this modified value 1s
accessible to UDF B and UDF X as soon as the value of data
member DMP 1s modified by UDF A.

The UDF server processes executing respective UDFs
may run on different computing nodes of the distributed
system 102. The cache 120 1s a distributed cache that 1s
accessible by the UDF server processes from across the
different computing nodes.

When a new UDF of the package 1s invoked that leads to
a creation of a new UDF server process, the associated data
members DM1 to DMP of the package 1s made accessible to
the new UDF.

If a package does not include a large quantity of data
members (e.g., the quantity of data members 1s less than a
quantity threshold, such as less than 50, or less than 40, or
less than 30, or less than 20, or less than 10, or less than 3,
etc.), then the package data structure 130 can include as
many key-value pairs as there are data members. When a
data member 1s modified, the corresponding key-value pair
1s modified correspondingly so that all of the related UDFs
of the package are able to see the latest data member value.

In some cases, a data member 1s updated just once, and
becomes read-only after the one update. In this case, the
key-value pair for the data member remains unchanged and
can be looked up using the key of the key-value pairr.

In other examples, the package may include a large
quantity of data members (e.g., the quantity of data members
1s greater than a quantity threshold, such as greater than 100,
or greater than 50, or greater than 40, or greater than 30, or
greater than 20, or greater than 10, or greater than 5, etc.).
In such examples, the data members can be serialized 1nto a
data representation that allows the data members to be

US 11,907,222 Bl

9

retrieved 1n a more eflicient manner than individually storing,
separate key-value pairs 1n individual entries of the package
data structure 130.

For example, the data members can be senialized into an
array ol data members, 1into a tree of data members, and so
torth. The array of data members or the tree of data members
1s an example of the package data structure 130. Diflerent
entriecs of the array of data members may be indicated by
different offsets into the array. In such examples, each entry
of the array includes the value of a respective data member.
The “key” to access the entry can be an offset of the entry.
In further examples, 11 the package data structure 130
includes a tree of data members, then the nodes of the tree
contain the values of corresponding data members, and the
“keys” are 1indexes to the nodes.

In other examples, a data member can include a large
object. A large object can have a size that 1s greater than a
s1ze threshold, e.g., greater than 1 megabyte (MB), or greater
than 5 MBs, or greater than 10 MBs, or greater than 50 MBs,
or greater than 100 MBs, etc. A UDF updating a large object
may update just a small portion (e.g., a small number of
bytes) of the large object. The UDF can send just the small
updated portion to the cache 120 to update the correspond-
ing part of the package data structure 130 1n the cache 120.
In this way, the large object can be efliciently updated 1n
place 1n the cache 120, such that the UDF updating the large
object does not have to send the entire updated large object
to the package data structure 130 1n the cache 120.

Further Examples

FIG. 5 1s a block diagram of a non-transitory machine-
readable or computer-readable storage medium 500 storing
machine-readable instructions that upon execution cause a
system (e.g., the distributed system 102 of FIG. 1) to
perform various tasks.

The machine-readable 1nstructions include constraint vio-
lation determination instructions 302 to determine whether a
chain of functions violates a constraint, including a length
constraint and/or a cyclical constraint.

The constraint violation determination instructions 502
include tracking structure accessing instructions 304 to
access a tracking structure populated with entries as the
functions are 1nvoked by respective server processes
launched during execution of a database operation. Each
entry of the entries of the tracking structure identifies a
respective mvoked function that 1s associated with a corre-
sponding program instance. An example of the tracking
structure 1s the UDF chain tracking structure 122 of FIG. 1.
The functions can be UDFs and/or native functions.

The constraint violation determination instructions 502
include related functions detection instructions 3506 to
detect, using the tracking structure, related functions that
form the chain of functions, the related functions being
identified as related 1t associated with a same program
instance.

The machine-readable instructions include further func-
tion mvocation blocking instructions 508 to, 1n response to
determining that the chain of the functions violates the
constraint, block an invocation of a further function to be
added to the chain. For example, the constraint can be a
length constraint and/or a cyclical constraint. The further
function invocation blocking mstructions 508 can block the
invocation of the further function 11 the chain including the
related functions indicated by the tracking structure 1s at or
exceeds a length threshold. The further function 1vocation
blocking instructions 508 can block the invocation of the
turther function 1f adding the further function would cause
the chain of functions to exceed the length threshold. The

10

15

20

25

30

35

40

45

50

55

60

65

10

further function ivocation blocking instructions 508 can
block the imvocation of the further function 1t adding the
further function would result in a cycle of functions 1n the
chain of functions.

In some examples, each entry of the entries of the tracking
structure includes a program instance value (e.g., process
ID) that identifies the corresponding program instance,
where the related functions are identified as being related
using the program instance values in the tracking structure.

In some examples, different program instance values 1n
the tracking structure identily different program instances
for which functions are imnvoked.

In some examples, 1 response to determining that the
length of the related functions that form the chain 1s at or 1s
greater than the length threshold, a violation indicating entry
(e.g., the sentinel key-value pair 126 of FIG. 1) 1s added to
the tracking structure.

In some examples, the related functions are part of a
package that further includes data members accessible by
the related functions.

In some examples, the machine-readable instructions
store the data members 1n a package data structure in a cache
to share the data members among the related functions
executed 1n corresponding server processes.

In some examples, the data members are stored as key-
value pairs in the package data structure, each key-value pair
of the key-value pairs in the package data structure including
a key contaiming an identifier of the package, and a value
representing a respective data member of the data members.

In some examples, the key-value pairs 1n the package data
structure are arranged as a tree of nodes 1n the cache, and
cach node of the tree 1s 1dentified by an index and represents
a corresponding data member value.

In some examples, the key-value pairs 1n the package data
structure are arranged as an array in the cache, and each
entry of the array 1s identified by an oflset and represents a
corresponding data member value.

FIG. 6 1s a block diagram of a distributed system 602
according to further examples. The distributed system 602
includes a cache 604 to store a tracking structure 606. An
example of the tracking structure 606 1s the UDF chain
tracking structure 122 of FIG. 1.

The distributed system 602 includes a plurality of com-
puting nodes 608 to execute respective server processes 610,
620 that invoke respective Tunctions 612, 622 for a database
operation. Examples of the server processes 610 include the
UDF server processes 116-A to 116-X of FIG. 1. The
functions 612 can be UDFs and/or native functions.

In response to a first server process 610 mvoking a first
function 612, the first server process 610 adds a first entry
614 to the tracking structure 606 1n the cache 604. The first
entry 614 1dentifies a program instance the first function 612
1s associated with, and includes an identifier of the first
function 612.

The distributed system 602 includes a monitor process
616 to analyze entries of the tracking structure 606 to
determine whether a chain of functions invoked for the
program 1nstance violates a constraint. The entries include
the first entry 614 and a second entry 618 identifying the
program instance a second function 622 is associated with,
and 1ncludes an identifier of the second function 622.

FIG. 7 1s a flow diagram of a process 700 according to
some examples, which may be performed by a distributed

system (e.g., 102 1n FIG. 1 or 602 1n FIG. 6).

The process 700 includes mvoking (at 702) UDFs for
execution 1n respective server processes ol a plurality of
server processes (e.g., UDF server processes 116-A to 116-X

US 11,907,222 Bl

11

in FIG. 1). A first UDF 1n a {irst server process can invoke
a second UDF for execution in a second server process. Each
respective server process of the plurality of server processes
defines an 1solated computing environment for execution of
a respective UDF.

The process 700 further includes, as UDFs are mvoked
and executed by server processes, adding (at 704) key-value
pairs to entries ol a tracking structure (e.g., UDF chain

tracking structure 122 of FIG. 1) 1n a cache (e.g., 120 1 FIG.

1), where each respective key-value pair of the key-value
pairs includes a key that identifies a program instance a
corresponding UDF 1s associated with, and a value that
identifies the corresponding UDF. The key can include a
process 1D of the program instance, and an 1dentifier of the
UDEF. The adding of the key-value pairs to the tracking
structure 1ncludes a first server process adding a first key-
value pair to a first entry of the tracking structure 1n response
to mvocation of a first UDF, and a second server process
adding a second key-value pair to a second entry of the
tracking structure 1n response to invocation of a second
UDF.

The process 700 includes determining (at 706), by a
monitor process (e.g., 124 1 FIG. 1) based on the key-value
pairs, whether a chain of UDFs violates a constraint. In some
examples, the constraint 1s a length constraint, and the chain
of UDFs violates the length constraint if the length of the
chain of UDFs 1s at or exceeds a length threshold. In other
examples, the constraint 1s a cyclical constraint, and the
chain of UDFs violates the cyclical constraint 1f a cycle of
UDFs 1s present in the chain.

The process 700 1includes, 1n response to determining that
the chain of UDF's violates the constraint, blocking (at 708),
by a server process, imvocation of a further UDF. The server
process that blocks mvocation of the further UDF can be a
server process launched to execute the further UDF 1n
response to a request to mvoke the further UDF during a
database operation.

A storage medium (e.g., 500 i FIG. 5) can include any or
some combination of the {following: a semiconductor
memory device such as a dynamic or static random access
memory (a DRAM or SRAM), an erasable and program-
mable read-only memory (EPROM), an electrically erasable
and programmable read-only memory (EEPROM) and flash
memory; a magnetic disk such as a fixed, floppy and
removable disk; another magnetic medium including tape;
an optical medium such as a compact disk (CD) or a digital
video disk (DVD); or another type of storage device. Note
that the mstructions discussed above can be provided on one
computer-readable or machine-readable storage medium, or
alternatively, can be provided on multiple computer-read-
able or machine-readable storage media distributed 1 a
large system having possibly plural nodes. Such computer-
readable or machine-readable storage medium or media 1s
(are) considered to be part of an article (or article of
manufacture). An article or article of manufacture can refer
to any manufactured single component or multiple compo-
nents. The storage medium or media can be located either in
the machine running the machine-readable 1nstructions, or
located at a remote site from which machine-readable
instructions can be downloaded over a network for execu-
tion.

In the present disclosure, use of the term ““a,” “an,” or
“the” 1s mtended to include the plural forms as well, unless
the context clearly indicates otherwise. Also, the term
“includes,” “including,” “‘comprises,” “comprising,”
“have,” or “having” when used in this disclosure specifies

5

10

15

20

25

30

35

40

45

50

55

60

65

12

the presence of the stated elements, but do not preclude the
presence or addition of other elements.

In the foregoing description, numerous details are set
forth to provide an understanding of the subject disclosed
herein. However, implementations may be practiced without
some of these details. Other implementations may include
modifications and variations from the details discussed
above. It 1s intended that the appended claims cover such
modifications and variations.

What 1s claimed 1s:

1. A non-transitory machine-readable storage medium
comprising instructions that upon execution cause a system
to:

determine whether a chain of functions violates a con-

straint, based on:

accessing a tracking structure populated with entries as
the functions are invoked by respective server pro-
cesses launched during execution of a database
operation, wherein each entry of the entries of the
tracking structure identifies a respective invoked
function that 1s associated with a corresponding
program 1nstance, and

detecting, using the tracking structure, related functions
that form the chain, the related functions being
identified as related 1t associated with a same pro-
gram instance; and

in response to determining that the chain of the functions

violates the constraint, block an invocation of a further
function to be added to the chain.

2. The non-transitory machine-readable storage medium
of claim 1, wherein each entry of the entries of the tracking
structure comprises a program instance value that identifies
the corresponding program instance, and wherein the related
functions are identified as being related using the program
instance values in the tracking structure.

3. The non-transitory machine-readable storage medium
of claim 2, wherein different program instance values in the
tracking structure identily different program instances for
which functions are invoked.

4. The non-transitory machine-readable storage medium
of claim 1, wherein the functions are user-defined functions
(UDFs) mvoked 1n processing a database query that trig-
gered the database operation.

5. The non-transitory machine-readable storage medium
of claiam 1, wherein each server process of the server
processes 1s to execute a respective function of the functions
In a separate computing environment.

6. The non-transitory machine-readable storage medium
of claim 1, wherein the instructions upon execution cause
the system to:

determine that the chain of the functions violates the

constraint 1n response to determining that a length of
the related functions that form the chain 1s at or 1s
greater than a length threshold; and

in response to determining that the length of the related

functions that form the chain 1s at or 1s greater than the
length threshold, add a violation 1ndicating entry to the
tracking structure.

7. The non-transitory machine-readable storage medium
of claim 1, wherein the instructions upon execution cause
the system to:

determine that the cham of the functions violates the

constraint in response to determining that adding the
further function to the related functions in the chain
would form a cycle of functions 1n the chain.

8. The non-transitory machine-readable storage medium
of claim 1, wherein each entry of the entries of the tracking

US 11,907,222 Bl

13

structure comprises a key-value pair including a key that
identifies an entity that invoked the respective invoked
function, and a value that identifies the respective mvoked
function.

9. The non-transitory machine-readable storage medium
of claim 8, wherein the key further comprises an identifier
of the corresponding program instance.

10. The non-transitory machine-readable storage medium
of claim 8, wherein the entity that invoked the respective
invoked function comprises a trigger 1n a database query or
another function.

11. The non-transitory machine-readable storage medium
of claam 1, wherein the related functions are part of a
package that further includes data members accessible by
the related functions.

12. The non-transitory machine-readable storage medium
of claim 11, wherein the mstructions upon execution cause
the system to:

store the data members 1n a package data structure 1n a

cache to share the data members among the related
functions executed 1n corresponding server processes.

13. The non-transitory machine-readable storage medium
of claim 12, wherein the data members are stored as key-
value pairs 1n the package data structure, each key-value pair
of the key-value pairs in the package data structure com-
prising a key containing an identifier of the package, and a
value representing a respective data member of the data
members.

14. The non-transitory machine-readable storage medium
of claim 13, wherein the key-value pairs 1n the package data
structure are arranged as a tree of nodes 1n the cache, and
cach node of the tree 1s 1dentified by an index and represents
a corresponding data member value.

15. The non-transitory machine-readable storage medium
of claim 13, wherein the key-value pairs 1n the package data
structure are arranged as an array in the cache, and each
entry of the array i1s identified by an offset and represents a
corresponding data member value.

10

15

20

25

30

35

14

16. A method of a distributed system comprising a plu-
rality of computing nodes and a plurality of server processes
executed by the plurality of computing nodes, the method
comprising:
invoking user-defined functions (UDFs) for execution 1n
respective server processes of the plurality of server
processes, wherein a first UDF 1n a first server process
invokes a second UDF for execution 1n a second server
process, wherein each respective server process of the
plurality of server processes comprises a virtual envi-
ronment that defines an 1solated computing environ-
ment for execution of a respective UDF, and wherein a
UDF comprises a function developed by an entity and
1s not part of a database programming language;
as the UDFs are mnvoked and executed by the respective
server processes, adding key-value pairs to entries of a
tracking structure in a cache, wherein each respective
key-value pair of the key-value pairs comprises a key
that 1dentifies a program 1nstance a corresponding UDF
1s associated with, and a value that i1dentifies the
corresponding UDF, wherein the adding comprises a
first server process adding a first key-value pair to a first
entry of the tracking structure in response to invocation
of a first UDF, and a second server process adding a
second key-value pair to a second entry of the tracking
structure 1n response to ivocation of a second UDF;

determining, by a monitor process based on the key-value
pairs 1n the tracking structure, whether a chain of UDFs
violates a constraint, wherein the monitor process com-
prises machine-readable instructions to monitor the
tracking structure; and

in response to determining that the chain of UDFs violates

the constraint, blocking, by a server process, invocation
of a further UDF.

17. The method of claim 16, wherein the key of the
respective key-value pair further identifies a trigger or
another UDF that invoked the corresponding UDF.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

