USO011907137B2

12 United States Patent (10) Patent No.: US 11,907,137 B2

Joshi et al. 45) Date of Patent: Feb. 20, 2024
(54) SYSTEMS AND METHODS FOR LEADER 2005/0132154 Al 6/2005 Rao et al
NODE ELECTION IN CLUSTER SERVER 2006/0235972 Al 10/2006 Asnis
CONFIGURATIONS 2007/0091889 Al™* 4/2007 X120 .ooviiiiiiiiiiinn, HO041. 45/00
370/312
S
(71) Applicant: Capital One Services, LLLC, McLean, 201470269776 ALT 972014 Bomfim ... HO41\;%%3;
VA (US) 2018/0115456 Al 4/2018 Bendre et al.
2019/0394266 Al 12/2019 Fukuyamu et al.
(72) Inventors: Rohit Joshi, Plano, TX (US); Ashish 2021/0271489 A 9/2021 Singhal
Gupta, Richmond, VA (US)
FOREIGN PATENT DOCUMENTS
(73) Assignee: CAPITAL ONE SERVICES, LLC, oN (07 200 737 018
MecLean, VA (US) CN L11355600 A * 6/2020
CN 111 400 112 7/2020
(*) Notice: Subject to any disclaimer, the term of this
tent 1s extended djusted under 35
USC. 154(b) by 60 days. OTHER PUBLICATIONS
_ Notification of Transmittal of the International Search Report and
(21) Appl. No.: 17/585,387 the Written Opinion of the International Searching Authority 1ssued
(22) Filed: Jan. 26. 2022 in PCT/US2023/011447, dated Jul. 24, 2023, 23 pages.
. .
(65) Prior Publication Data cited by examiner
US 2023/0251976 Al Aug. 10, 2023 Primary Examiner — Clayton R Williams
(51) Int. CL. (74) Attorney, Agent, or Firm — HUNTON ANDREWS
GOG6F 12/123 (2016.01) KURTHLLP
HO4L 67/568 (2022.01)
Gool’ 15/173 (2006.01) (57) ABSTRACT
(52) U.S. CL _ _
CPC GO6F 12/123 (2013.01); GO6F 15/17331 Disclosed are systems and methods for leader node election,
(2013.01); HO4L 67/568 5(2022_05). GOGF comprising a cluster system 1ncluding a plurality of nodes,
j 22712/25] (2613_01) a node registry, wherein nodes are configured to transmit
(58) Field of Classification Search registration requests to the node registry, receive node data
CPC GOGF 12/10-12/123: GOGE 1s response, and to determine a leader node based on the
""""" 15/17306.15/17331- HO4L. 67/50-67/568 earliest registered node, and wherein the leader node is
See application file for complei[e search history configured to dynamically allocate data slots between the
' plurality of nodes, and each of the nodes are configured to
(56) References Cited store data associated with allocated data slots 1n an in-
memory least recently used component and data associated
U.S. PATENT DOCUMENTS with all of the data slots 1n a persistent storage component.
9,800,087 B2 10/2017 Kouroussis et al.
10,454,754 B1* 10/2019 Patel HO41. 41/0654 20 Claims, 10 Drawing Sheets

First Node 205 Second Node 215 Third Node 225
207 | | g 217 g] | 227
 Persisient Persistent Persistent
) 1;“sz Storage Storage
--------- 0. 29 229
Cluster System 200

- Node Registry 240 |

U.S. Patent Feb. 20, 2024 Sheet 1 of 10 US 11,907,137 B2

Client Device 105

Apphication 106

““

[R— [R— [R—
P e oy

H :
++

110

__

Networklzo Server 135

———

i e e A A R A e e A A e e i R el e e e e R R i e el e e e e e el i e e e e e e el el i i e e e i el el el el i e e R R el el i e e e e e el el i e e e i el R R e A g i A A R A A R A R AR AR R R e S A A R R R i e ke i S R R R A e R A AR AR R R A S R R A R R R R e A A R e A A A R A A e A A A R A R A e e R R R R R R el e e e R R R i e i e e S e R R e e A

T T L I Ty By Ry BTy Py ROy Iy MDY PUp Y NET Py BEPIy DU TRy P

Node Registry 130

FIG. |

U.S. Patent Feb. 20, 2024 Sheet 2 of 10 US 11,907,137 B2

First Node 205 Second Node 215 Third Node 225
LRU LRU LRU
207 217 227
Persistent CBersistent 7 | | Persistent
t;nage Storage | | Storage
. 1 229
Cluster System 200
Node Registry 240

F1G. 2

U.S. Patent Feb. 20, 2024 Sheet 3 of 10 US 11,907,137 B2

Node Management Data Storage 310
Agent 303 . S
. LRU31I5 |

Node 300

5 Persistent
- Storage 315 |

Processor 320

--

F1G. 3

U.S. Patent Feb. 20, 2024 Sheet 4 of 10 US 11,907,137 B2

...

First Node Node Registry
410 415
401 400
404
406
408
409 412
414

FIG. 4

¢ DI

ot o, gy, o, g o o, oy gy oy by gy gy gy b

US 11,907,137 B2

Ces [€6

0ts

3CS

Lo I R I T T T T T R I I L R I I Y Y L I R T T T R R R I I I Y Y R) L I R R I I R Y L L U I L T B L TR U)

Sheet 5 of 10

01s

F1S
cls

Feb. 20, 2024

LOS

90¢

'EE RN N NN N RN NN R R EE N IR N I N RN N e OE O O R E R R NN E R EEEEEE® R pE R E RS EE S EE R my LR R R Rl LR R L

_ M W 0LS M G9S w M 095
SPON PIY L ~ 9poN puodeg ANSI3ay opoN | SPON 1541.]

rr

U.S. Patent

9 Dld

US 11,907,137 B2

819 | L19

Sheet 6 of 10

£19

S09

Feb. 20, 2024

LOY

$LY

SL 0L9
OPON PIY L.

OPON PUOIAS

$99

099
ATISTEDY SPON

@ﬁGZ. [N |

T T T T e T T T E T T E T T T E T E T T w o w w e e e
AT EAT AN AT AN A AR RN AR R AR R R R R ww w

U.S. Patent

US 11,907,137 B2

Sheet 7 of 10

Feb. 20, 2024

U.S. Patent

L DIA
1L
01L
LOL
LOL
901
bOL <
0L | 0/
08L m SLL m m 0LL 09.
SPON AqGpUElS PPONPIYL ~ 9PON puodeg OPON 15114

8 DIA

US 11,907,137 B2

oowmo

CC:0T1 0S:01 St:01 OF-01 ¢E-01 0¢.01 ¢C.01

Sheet 8 of 10

0C-01

Feb. 20, 2024

U.S. Patent

%33

OF

6 DIA

US 11,907,137 B2

[T N7, 6 ARIA] / 1] S PO ¢ UOIN AR

00:.90 119l 00.381 00.71 00.90 OI UOIN (0-81 00.71 0090 6 AR 00-81 00.T1 00-90 8 JES 00.81 00-¢1

0
0 l l l I]] M
1 }
S I ‘
= l l - m
'
j I ' - *,
’]) :
l;l. -
M | 2
3 "
- | 6
S - oo~
P N M N !
S _ l N 4
= | ‘ 71 206
l ! !
I "
e "

U.S. Patent

US 11,907,137 B2

Sheet 10 of 10

Feb. 20, 2024

U.S. Patent

01 UON 00-C1

00:-Z1 0011 00:0T 0060 00:80 000 0090 0050 000 00.£0 00-C0 00-10 0T U0 qQo.€T 00.Tz 0017 00.0¢ 0061 00-81

(0-¥1

00-¢1

01 DIA

6 ABIN 00:T1 8 185

00-L1

00-91

00-¢1

GO ™~ O Wy =T N O e O

-

- 01

L1

¢l
el

Pl
1
91

g

US 11,907,137 B2

1

SYSTEMS AND METHODS FOR LEADER
NODE ELECTION IN CLUSTER SERVER
CONFIGURATIONS

FIELD OF THE DISCLOSURE

The present disclosure 1s generally related to leader node
clection 1n distributed cluster server arrangements.

BACKGROUND

Leader election node 1n a multi-node distributed cluster 1s
challenging. Conventional approaches have attempted to
address node failure 1n such configurations by utilizing
overly complex protocols and/or adding additional compo-
nents. Such conventional approaches, however, fail to
adequately minimize node failure time and the adverse
performance and latency impacts of utilizing such multi-
node cluster systems.

These challenges can be worsened during a node failure.
In such situations, the shortcomings of conventional
approaches can be more pronounced when one or more
nodes are not available.

These and other drawbacks exist 1n the conventional art.
Accordingly, there 1s a need to effectively and efliciently
select a leader node.

SUMMARY OF THE DISCLOSURE

Embodiments of the present disclosure provide a system,
method, and a non-transitory computer-accessible medium
having stored thereon computer-executable instructions for
leader node election 1n cluster arrangements.

Exemplary embodiments provide a system, method, and
computer arrangement for leader node election comprising;
a cluster system comprising a plurality of nodes; and a node
registry 1n data communication with the cluster system;
wherein the node registry 1s configured to: receive registra-
tion requests from the plurality of nodes; and update node
data with a registration time, a ID, and address of each of the
plurality of nodes based on the registration requests; wherein
the each of the plurality of nodes are configured to: transmit
a registration request to the node registry at startup; receive
the node data from the node registry; and identily a leader
node based on an earliest registered node 1n the node data.

In addition, a leader node can be configured to update a
tully qualified domain name (FQDN) of the cluster system
with an IP address of the leader node. The cluster system can
turther comprise a plurality of data slots, and wherein each
of the plurality of nodes 1s allocated with a portion of the
data slots. Further, each of the plurality of nodes can be
configured to store data associated with data slots allocated
to 1t 1n an 1n-memory least recently used component. A client
driver can be configured to determine a data slot associated
with a client request based on a key 1n the client request.

Further, the client drniver 1s configured to route the client
request to a node 1n the cluster system allocated with the data
slot. The node allocated with the data slot can be configured
to access data associated with the data slot from an in-
memory least recently used component of the node in
response to the client request. The in-memory least recently
used component can be a non-volatile express memory disk.
In addition, the plurality of nodes are configured to transmut
a cluster password to the leader node before joining the
cluster system. The leader node can also be configured to
determine a node status of each of the plurality of nodes and
to adjust an allocation of the data slots based on the node

10

15

20

25

30

35

40

45

50

55

60

65

2

status of each of the plurality of nodes, and to reallocate at
least one data slot previously allocated to a first node, to a
second node when the leader node determines that the

second node 1s not responsive.

Further, a second node can be configured to load data
associated with the at least one data slot previously allocated
to the first node to an-1n memory least recently used (LRU)
component of the second node, and can also be configured
to retrieve the data associated with the at least one data slot
previously allocated to the first node from a persistent
storage component of the second node. Further, the leader
node can be configured to transmit cluster topology data to
a client driver.

In addition, data associated with a data slot allocated to
the first node can be updated; and
automatically transmitted to a second node 1n the plurality of
nodes. Further, a second node can be configured to store the
updated data 1n a persistent storage component of the second
node. A first node can further be configured to periodically
transmit a registration request to the node registry and
retrieve node data 1n response, and determine a leader node
in response. A leader node can further be configured to
determine a status of each of the plurality of the nodes.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the present disclosure, together
with further objects and advantages, can best be understood
by reference to the following description taken 1n conjunc-
tion with the accompanying drawings.

FIG. 1 illustrates an exemplary cluster node-leader man-
agement system.

FIG. 2 illustrates an exemplary cluster system.

FIG. 3 illustrates an exemplary node.

FIG. 4 1s a sequence diagram illustrating an exemplary
cluster leader node election process.

FIG. 5 1s a sequence diagram illustrating exemplary
clustering and node information sharing processes.

FIG. 6 1s a sequence diagram 1llustrating exemplary node
failure processes 1n the exemplary cluster system.

FIG. 7 1s a sequence diagram illustrating exemplary
non-leader node failure processes 1n the exemplary cluster
system.

FIG. 8 illustrates a comparison between the read/write
time of a conventional cluster system to the cluster system
of exemplary embodiments.

FIG. 9 illustrates a comparison between the latency times
for gradual tratfic roll out from 50% to 100% 1n conventional
cluster system with the cluster system of exemplary embodi-
ments.

FIG. 10 illustrates a comparison between the read latency
times of an alternative conventional system with the cluster
system of exemplary embodiments.

DETAILED DESCRIPTION

The following description of embodiments provides non-
limiting representative examples referencing numerals to
particularly describe features and teachings of diflerent
aspects of the mmvention. The embodiments described should
be recognized as capable of implementation separately, or in
combination, with other embodiments from the description
of the embodiments. A person of ordinary skill in the art
reviewing the description of embodiments should be able to
learn and understand the different described aspects of the
invention. The description of embodiments should facilitate
understanding of the invention to such an extent that other

US 11,907,137 B2

3

implementations, not specifically covered but within the
knowledge of a person of skill in the art having read the
description of embodiments, would be understood to be
consistent with an application of the invention.

The present disclosure provides a computer implemented
cluster system and method for minimizing impact during
node failure and facilitates the eflicient management, dis-
covery, and synchronization of a cluster system,

Exemplary embodiments can provide a cluster system and
method for leader node election and allocation of data slots.
Benefits of the system and methods disclosed herein include
providing a systems and methods where a database can be
portioned and dynamic stored 1n an in-memory least recently
used (LRU) cache of a plurality of nodes 1n a cluster system
in order facilitate high performance, resiliency, and scalabil-
ity, and provides rich key-value store. Exemplary embodi-
ments provide an innovative leader node election determi-
nation protocol 1 order to eliminate complicate
communications and excessive additional cluster system
components in determining the leader node. Exemplary
systems and methods disclosed herein can readily be
deployed and 1s highly configurable. For example, an appli-
cation implementing the exemplary cluster system can be
clliciently operated without the need for additional physical
1solated servers—eliminating the need for network hops.

Exemplary embodiments provide that each node in the
cluster system include both an 1n memory LRU cache
component and a persistent storage component. Exemplary
embodiments can support, for example, Redis Senalization
Protocol (RSP) and Hypertext Transfer Protocol Secure
(HT'TPS), and can support, for example, the following
network interfaces standards: TCP, SSL/TLS (TLS1.2/
TLS1.3), and Unix Socket Domain.

FIG. 1 illustrates an exemplary cluster node-leader man-
agement system 100. The system 100 can comprise a client
device 1035, network 120, a cluster system 125, a node
registry 130, a server 135, and a database 140. FIG. 1 may
reference the same or similar components, and data as the
other figures set forth herein.

The client device 105 can include a network-enabled
computer system and/or device. As referred to herein, a
network-enabled computer system and/or device can
include, but 1s not limited to: e.g., any computer device, or
communications device including, e.g., a server, a network
appliance, a personal computer (PC), a workstation, a
mobile device, a phone, a handheld PC, a personal digital
assistant (PDA), a thin client, a fat client, an Internet
browser, a smart card, or other device. The network-enabled
computer systems can execute one or more software appli-
cations to, for example, receive data as input from an entity
accessing the network-enabled computer system, process
received data, transmit data over a network, and receive data
over a network.

The client device 105 can include at least one processor
109, which can be a central processing unit (CPU), which
can be configured to execute computer program instructions
to perform various processes and methods. The at least one
CPU can comprise several processors, a single processor, or
a single device having multiple processors.

The client device 105 can include a data storage 108,
including for example, random access memory (RAM) and
read only memory (ROM), which can be configured to
access and store data and information and computer program
instructions. The data storage can also include storage media
or other suitable type of memory (e.g., such as, for example,
RAM, ROM, programmable read-only memory (PROM),

erasable programmable read-only memory (EPROM), elec-

10

15

20

25

30

35

40

45

50

55

60

65

4

trically erasable programmable read-only memory (EE-
PROM), magnetic disks, optical disks, floppy disks, hard
disks, removable cartridges, flash drives, any type of tan-
gible and non-transitory storage medium), where the files
that comprise an operating system, application programs
including, for example, web browser application, email
account application and/or other applications, and data files
can be stored. The data storage of the network-enabled
computer systems can iclude electronic information, files,
and documents stored in various ways, including, for
example, a flat file, indexed file, hierarchical database,
relational database, such as a database created and main-
tained with software from, for example, Oracle® Corpora-
tion, Microsofi® Excel® file, Microsoft® Access® file, a
solid state storage device, which can include an all flash
array, a hybnid array, or a server-side product, enterprise
storage, which can include online or cloud storage, or any
other storage mechanism.

The data storage 108 can be a read-only memory, write-
once read-multiple memory or read/write memory, e€.g.,
RAM, ROM, and EEPROM, and the client device 105 can
include one or more of these memories. A read-only memory
can be factory programmable as read-only or one-time
programmable. One-time programmability provides the
opportunity to write once then read many times. A write
once/read-multiple memory can be programmed at a point 1n
time after the memory has lett the factory. Once the memory
1s programmed, 1t cannot be rewritten, but it can be read
many times. A read/write memory can be programmed and
re-programed many times after leaving the factory. It can
also be read many times.

Although depicted as single elements, 1t should be appre-
ciated that according to one or more embodiments, the client
device 105 can comprise a plurality of client devices 105. As
shown 1n FIG. 1, the client device 105 can include various
components. As used herein, the term “component” can be
understood to refer to computer executable software, firm-
ware, hardware, and/or various combinations thereof. It 1s
noted there where a component 1s a software and/or firm-
ware component, the component 1s configured to affect the
hardware elements of an associated system. It 1s further
noted that the components shown and described herein are
intended as examples. The components can be combined,
integrated, separated, or duplicated to support various appli-
cations. Also, a function described herein as being per-
formed at a particular component can be performed at one or
more other components and by one or more other devices
instead of or in addition to the function performed at the
particular component. Further, the components can be
implemented across multiple devices or other components
local or remote to one another. Additionally, the components
can be moved from one device and added to another device,
or can be included in both devices.

The client device 105 can be any device capable of
communicating via, for example, Bluetooth technology, near
field communication (NFC) technology, WiF1 Direct tech-
nology, and/or the like. The client device 105 can be
associated with a user and can be configured to execute
various functions to transmit and receive user data (e.g.,
security questions, answers to security questions, card num-
ber, account type, account balance, account limits, budget
data, recent transactions, and/or the like). For example, the
client device 105 could be an 1Phone, 1Pod, 1iPad, and/or
Apple Watch from Apple® or other mobile device runming
Apple’s 10S operating system, devices running Google’s
Android® operating system, including, for example, smart-
phones running the Android® operating system and other

US 11,907,137 B2

S

wearable mobile devices, such as Google Glass® or Sam-
sung Galaxy® Gear Smartwatch, devices running
Microsoit’s Windows® Mobile operating system, and/or
any other smartphone, smartwatch, tablet, or like device,
which can include personal assistant devices incorporating,
systems, such as Alexa, Sini, Google Assistant, and
Microsoit Cortana, including home assistant devices such as
Amazon Echo, Google Home, and the like.

The client device 105 can include components to send
and/or receive data for use in other components, such as a
communication interface 107. The communication interface
1077 can include various hardware and software components,
such as, for example, a repeater, a microwave antenna, or
another network access device capable of providing con-
nectivity between network mediums. The communication
interface 107 can also contain various software and/or
hardware components to enable communication over the
network 120. For example, the communication interface 107
can be capable of sending or receirving signals via the
network 120. Moreover, the communication interface 107
can provide connectivity to one or more wired networks and
can be capable of receiving signals on a first medium (such
as a wired network) and transmitting the received signals on
a second medium (such as a wireless network). One or more
users can access the network 120 through one or more user
devices 1035 (using the various components of the one or
more user devices 1035) that can be communicatively
coupled to the network 120.

Client device 105 can include a client driver 110. Client
driver 110 can provide runtime support for application 106,
and can facilitate application 106 transmitting and receiving
data from cluster system 125. For example, 11 application
requests data from cluster system 125, the client driver 110
can specily the address for the application to transmit client
requests to the cluster system 1235. Client driver 110 can
provide a programming interface to control and manage
lower level interfaces linked to the hardware of the client
device 103.

In exemplary embodiments, client driver 110 can main-
tain node management data.

Client driver 110 can periodically transmit a data request
to one or more nodes 1n a cluster system 125. The client
driver 110 can periodically transmit data requests to the
leader node and to the other nodes 1n the cluster system 125.
In response to the data requests sent by the client driver, the
leader node, (and any other nodes who were sent data
requests) can transmit a reply. Client driver 110 can maintain
node management data indicating the identity of each of the
nodes in the cluster system (such as a name, and address of
cach of the nodes), a current status of each of the nodes (such
as a responsive, and non-responsive status), a leader status
of each of the nodes, a count pertaining to the number of
times a nodes has not replied to data requests from the client
driver, a response time of each of the plurality of nodes,
indicating a time taken for each of nodes to reply to a data
request from the client driver, and other information, such as
other metrics pertaining to the performance of each of the
plurality of nodes. Client driver 110 can ascertain the node
management data from the replies received (or not received)
from the nodes 1n the cluster system 125. If the client driver
110 determines the leader node 1s non-responsive (after one
or more data request transmission sent thereto), the client
driver 110 can reroute client requests to another node in the
cluster system 125.

The client driver 110 can further maintain and manage a
connection pool, which can contain data indicative of the
connection between previous client requests and each of the

10

15

20

25

30

35

40

45

50

55

60

65

6

individual nodes of the cluster system 125 that handled such
client requests. The cluster system 125 can transmit infor-
mation pertaining to the particular node 1n the cluster system
125 that has handled particular client requests 1n the past to
client driver 110, so that the client driver 110 can maintain
a current connection pool. The client driver 110 can also
utilize information 1n the cluster management data (such as
response time) to determine which node to route client
requests to 1n the event that the leader node 1s non-respon-
S1Ve.

The client device 105 can also mclude various software
components to facilitate the functionalities described herein,
including an application processor (not shown in FIG. 1).
For example, the client device 105 can include an operating
system such as, for example, the 10S® operating system
from Apple®, the Google® Android® operating system, and
the Windows Mobile® operating system from Microsolt®.
The client device 105 can also include, without limitation,
soltware application(s) such as web browsing applications,
email account applications, and mobile banking applica-
tions, an NFC application programming interface, and soft-
ware to enable touch sensitive displays.

The system 100 can include one or more network 120. In
some examples, network 120 can be one or more of a
wireless network, a wired network or any combination of
wireless network and wired network, and can be configured
to connect to any one of components of system 100. In some
examples, network 120 can include one or more of a fiber
optics network, a passive optical network, a cable network,
an Internet network, a satellite network, a wireless local area
network (LAN), a Global System for Mobile Communica-
tion, a Personal Communication Service, a Personal Area
Network, Wireless Application Protocol, Multimedia Mes-
saging Service, Enhanced Messaging Service, Short Mes-
sage Service, Time Division Multiplexing based systems,

Code Division Multiple Access based systems, D-AMPS,
Wi-F1, Fixed Wireless Data, IEEE 802.11b, 802.13.1,
802.11n and 802.11g, Bluetooth, NFC, Radio Frequency
Identification (RFID), Wi-F1, and/or the like.

In addition, network 120 can include, without limitation,
telephone lines, fiber optics, IEEE Ethernet 902.3, a wide
area network, a wireless personal area network, a LAN, or
a global network such as the Internet. In addition, network
120 can support an Internet network, a wireless communi-
cation network, a cellular network, or the like, or any
combination thereof. Network 120 can further include one
network, or any number of the exemplary types ol networks
mentioned above, operating as a stand-alone network or in
cooperation with each other. Network 120 can utilize one or
more protocols of one or more network elements to which
they are communicatively coupled. Network 120 can trans-
late to or from other protocols to one or more protocols of
network devices. Although network 120 1s depicted as a
single network, 1t should be appreciated that according to
one or more examples, network 120 can comprise a plurality
ol mterconnected networks, such as, for example, the Inter-
net, a service provider’s network, a cable television network,
corporate networks, such as credit card association net-
works, and home networks.

System 100 can further comprise one or more node
registries 130, which 1s described 1n more detail with respect
to FIG. 2. Node registry 130 can be provided in the form of
a database or server, such as a database analogous to the
database 140 described herein, or a server analogous to the
server 135 described herein. Node registry 130 can function
as a discovery server which can provide information about
one or more nodes 1n the cluster system 125 to the other

US 11,907,137 B2

7

nodes 1n the cluster system 125. In exemplary embodiments
node registry can provide information as to when each of the
nodes in the cluster system 125 mitialized or registered.
Each of the nodes 1n the cluster system 125 can register with
the node registry 130 whenever the node iitializes.
System 100 can optionally comprise one or more servers
135. In some examples, the server 135 can include one or
more processors 137 coupled to memory 139. The server
135 can be configured as a central system, server or platiorm
to control and call various data at different times to execute
a plurality of workiflow actions. The server 135 can be
configured to connect to the cluster system 125. One or more
nodes 1n the cluster system 125 can retrieve or store data to,
write to, or otherwise access data from the server 135. The
server 135 can be a dedicated server computer, such as
bladed servers, or can be personal computers, laptop com-
puters, notebook computers, palm top computers, network
computers, mobile devices, wearable devices, or any pro-

cessor-controlled device capable of supporting the system
100. While FIG. 1 1illustrates a single server 135, it 1s

understood that other embodiments can use multiple servers
or multiple computer systems as necessary or desired to
support the users and can also use back-up or redundant
servers to prevent network downtime 1n the event of a failure
ol a particular server.

While FIG. 1 1llustrates a server 135, 1t 1s understood that
other embodiments can use multiple servers or multiple
computer systems as necessary or desired to support the
users and can also use back-up or redundant servers to
prevent network downtime in the event of a failure of a
particular server.

The server 135 can include a processor 137. The proces-
sor 137 can be, for example, one or more miCroprocessors.
The processor 137 can include processing circuitry, which
can contain additional components, including additional
processors, memories, error and parity/CRC checkers, data
encoders, anti-collision algorithms, controllers, command
decoders, security primitives and tamper-proofing hardware,
as necessary to perform the functions described herein.

The server 135 can include an application comprising
instructions for execution thereon (not shown). For example,
the application can reside 1n memory 139 of server 135 and
can comprise 1nstructions for execution on the server 135.

System 100 can also optionally include one or more
databases 140. The database 140 can comprise a relational
database, a non-relational database, or other database 1imple-
mentations, and any combination thereof, including a plu-
rality of relational databases and non-relational databases. In
some examples, the database 140 can comprise a desktop
database, a mobile database, or an 1n-memory database. The
database 140 can be in data communication with one or
more nodes in the cluster system 125. For example, one or
more nodes of the cluster system 125 can be configured to
retrieve or store data from, write data to, or otherwise access
data from the database 140 via one or more nodes of the
cluster system 125.

In some examples, exemplary procedures in accordance
with the present disclosure described herein can be per-
formed by a processing arrangement and/or a computing
arrangement (e.g., computer hardware arrangement). Such
processing/computing arrangement can be, for example
entircly or a part of, or include, but not limited to, a
computer/processor that can include, for example one or
more microprocessors, and use instructions stored on a
computer-accessible medium (e.g., RAM, ROM, hard drive,
or other storage device).

10

15

20

25

30

35

40

45

50

55

60

65

8

In some examples, a computer-accessible medium (e.g.,
as described herein above, a storage device such as a hard
disk, floppy disk, memory stick, CD-ROM, RAM, ROM,
etc., or a collection thereol) can be provided (e.g., 1n
communication with the processing arrangement). The com-
puter-accessible medium can contain executable mnstructions
thereon. In addition or alternatively, a storage arrangement
can be provided separately from the computer-accessible
medium, which can provide the instructions to the process-
ing arrangement so as to configure the processing arrange-
ment to execute certain exemplary procedures, processes,
and methods, as described herein.

Reference 1s now made to FIG. 2 which illustrates an
exemplary cluster system 200. FIG. 2 may reference the
same or similar components, and data as the other figures set
forth herein. Cluster system 200 can be the same as cluster
system 125 1llustrated 1n FIG. 1. Cluster system 200 can
include a plurality of nodes, such as first node 203, second
node 210, and third node 215. First node 205, second node
210, and third node 215 and any additional nodes in cluster
system 200 can be commumnicatively coupled to another in
the cluster system 200 by, for example, a a cluster bus, a
shared network or other configuration connecting the com-
ponents 1n the cluster to one another. Nodes can be config-
ured to perform shared tasks requested by a client device
(such as client device 105 described in connection with FIG.
1). Each node m the cluster system (such as first node 205,
second node 210, and third node 215) can be machines, such
as virtual machines or in alternative embodiments, one or
more nodes can be a distinct physical machines.

Each node can include an imn-memory LRU component
and a persistent storage component. For example, first node
205 can include m-memory LRU component 207 and a
persistent storage component 209, second node 215 can
include m-memory LRU component 217 and a persistent
storage component 219, third node 225 can include 1n-
memory LRU component 227 and a persistent storage
component 229.

The persistent storage component can be in the form of
non-volatile memory, such as, but not limited to, a non-
volatile express memory (NVMe) disk. In exemplary
embodiments persistent storage can utilize, for example,
RocksDB.

The in-memory LRU component can be provided 1n any
other form of volatile memory, including random access
memory (RAM), and Dynamic RAM (DRAM). volatile
memory.

Each node can further include an application comprising,
instructions for execution thereon (not shown). For example,
the application can reside in one of the LRU component or
persistent storage component in the nodes and can comprise
instructions for execution on the node. Fach node can also
include a communication interface (not shown), which con-
tains contain various soitware and/or hardware components
to enable communication to other nodes and to other com-
ponents (such as client devices, databases, servers, and node
registries) over external networks.

The node registry 240 can be a discovery server, which
stores node data pertaining to the cluster system 200. Node
registry 240 can be a database or a server (such as a virtual
machine provided externally to the cluster system over a
network. For example, each node 1n the cluster system can
be communicatively coupled through an internal network,
such as through a cluster bus or LAN network, while node
registry 240 can be communicatively coupled to the cluster
system 200 through an external network, such as a WAN
network. Node registry 240 can store the following node

US 11,907,137 B2

9

data for each node 1n the cluster system that registers with
it: IP address, registration time, ID (or an indication of the
name of a particular node), and node status. The node status
can 1ndicate 1 a node 1s 1n a startup state (such as when a
node 1s mitializing from an oflline state), shutting down state
(such as when a node 1s transition from an online state to an
oflline state), an oflline state, an online state, or a non-
responsive state. In addition the node registry 240 can be
configured to transmit a health check transmission to each
node 1n the cluster system 200 to determine a current node
status of each of the nodes in the cluster system. Based on
a reply received (or not received) from the health check
transmission, the node registry can appropriately update a
status one or more nodes 1n the node data indicating the state
of the node.

When a node 1n the cluster system initially startups or
mitializes (and 1s able to communicate with node registry
240 via its commumication interface) the node can be
configured to transmit a registration transmission with the
node registry 240.

Each of the nodes can be configured to register with the
node registry 240 upon manually being turned, or wvia
automatic processes. For example, one or nodes 1n the
cluster system can be configured to automatically startup or
initialize 1 response to another node 1n the cluster system
being determined to be non-responsive or oflline. To register
with the node registry, a node of the cluster system can
transmit one or more messages including data indicative of
the node’s 1dentity (node ID), node IP address, node status,
and registration time.

Reference 1s now made to FIG. 3 which illustrates an
exemplary node 300. FIG. 3 may reference the same or
similar components, and data as the other figures set forth
herein. Node 300 can have the same components as first
node 205, second node 210, and third node 2135 depicted in
FIG. 2. Node 300 can include node management agent 305,
data storage 310, and processor 320. Data storage 310 can
include an m-memory least recently used (LRU) component
315 or main memory, and persistent storage 318. Persistent
storage 318 can be the same as the persistent storage
component described in connection to FIG. 2. Data can be
stored 1 mm-memory LRU component 315 1n volatile
memory so the node 300 can quickly access data, while data
can be stored in persistent storage 318 as non-volatile
memory, such as a non-volatile express memory (NVMe)
disk. In mn-memory LRU component 315 can be any other
form of volatile memory, including random access memory
(RAM), and Dynamic RAM (DRAM).

All of the data in the cluster system can be saved 1n a
persistent storage component of each of the nodes. Thus,
cach node 1n the cluster system can access 100% of the data
available in the cluster system, even i1f such data 1s not
currently stored in the in-memory LRU component of a
particular nodes. In exemplary embodiments, only data
associated with particular data slots allocated to a particular
node 1n the cluster system 1s stored in the in-memory LRU
component 315 of that node.

Data slots can be used to allocate the storage of keys and
data associated with the keys among the nodes in the cluster
system. A fixed number of data slots can be distributed
amongst the nodes 1n the cluster system at any one time. For
example, cluster system can be similar to a Redis cluster
containing 16,384 data slots (or hash slots). A particular data
slot value (e.g. “8,450") can be derived by performing a hash
and modulo function on a key. The hash function can take as
an iput the key (which can be a string of any size), compute
and return a particular hash value (which 1s a value with a

10

15

20

25

30

35

40

45

50

55

60

65

10

fixed length). The hash function can be, for example, a
CRC-16 hash function. A modulo function using the total
number of data slots 1n the cluster system, can thereafter be
performed on the hash value to obtain the slot value of a
particular key.

A client dnver of the client device can perform the
hashing and modulo function on the key 1n the client request,
and return the data slot value of one of the plurality of data
slots 1n the cluster system. In this manner, the client driver
can determine a particular node to route client requests to by
deriving the data slot value from the key contained in the
client request and by knowing the data slots allocated to each
node 1n the cluster network and the number of data slots in
the cluster. The node allocated to the slot value associated
with the key contained in the client request can then be
routed with that particular client request. By storing data
associated with the data slots allocated to the node 1n the
in-memory LRU component 315, the particular node can
handle the client request more quickly than a node handling
the client request that’s required to access data associated
with the client request through persistent storage.

For example, a key can be “Color,” with a slot value
“10100,” and the data associated with the key can include a
string of different colors, e.g., “Blue, Green, Red, Yellow.”)
The associated data can be, for example, a string, list, set,
hash, bit array, stream or another type of data structure. The
key and the data associated with the key can be saved 1n the
in-memory LRU component 315 of a third node 1n a cluster
system (as well as the persistent storage component of each
node in the cluster network) which 1s allocated to the slot
value corresponding to the key. If a client request includes
the key “UserlProfile,” a client driver of the client device
can determine an associated slot value (10100) of the key
using a hashing and modulo function, and then route the
client request to the third node to handle the request). The
third node can then quickly and etliciently handle the client
request as data associated with the key, “Color” as the data
associated with the key 1s already stored in the imn-memory
LRU of the third node.

The client dniver must know the data slot topology of the
cluster system, 1.e. how the data slots are allocated across
cach of the nodes 1n the cluster system, in order to route the
client requests to the appropniate node. In exemplary
embodiments, the client driver can receive the data slot
topology of the cluster system from the leader node using the
systems and methods described herein.

By distributing the data slots across a plurality of nodes 1n
the cluster system, the client requests can quickly and
ciliciently be handled, as each client request can be handled
by a node storing data requested in its m-memory LRU
component rather than having to retrieve such data from
persistent storage.

Each node 1n the cluster system can further include a node
management agent 305. Node management agent 305 can be
an application executed by the processor 320. The node
management agent 305 can be configured to perform the
processes and functions described herein with respect to the
node associated therewith. For example node management
agent can be responsible for all or part of the following
functions of the node 300: transmitting and receiving data to
and from other nodes, the node registry, client devices
(including associated client drivers), external networks,
databases and servers, and internal data storage (including
the m-memory LRU and persistent storage components),
reading and writing such data into various components,
processing and monitoring such data and performing other
functions described herein.

US 11,907,137 B2

11

The node 300 can also include at least one processor 320,
which can be a central processing unit (CPU), which can be
configured to execute computer program instructions to
perform various processes and methods. The at least one
CPU can comprise several processors, a single processor, or
a single device having multiple processors. A single CPU
can be shared among a plurality of nodes i1n the cluster
system. The node 300 can also include a network interface
(not shown), such as the network interface described 1in
connection with FIG. 2.

Reference 1s now made to FIG. 4, which 1s a sequence
diagram 1illustrating an exemplary cluster leader node elec-
tion process and an exemplary health check process. FIG. 4
may reference the same or similar components, and data as
the other figures set forth herein.

The exemplary processes illustrated 1n FIG. 4 can involve
a cluster system including at least one node, such as first
node 410, and a node registry 415 provided as an external
database or server. The exemplary process can involve more
than one node and/or node registry.

Reference 401 refers to an exemplary cluster leader node
clection process. At sequence 402 when the first node 410
mitially startups or initializes the first node can transmit a
registration request to node registry 415 of the cluster
system. The node registry 415 can update node data 1in
response to receiving the node registration request. For
example, node registry can add or update node data to reflect
the node ID, registration time, and node status of the first
node 410. Such data can be included 1n the node registration
request, or can be communicated to the node registry 415 in
subsequent transmissions to the node registry from the first
node 410.

At sequence step 404 first node 410 can transmit a request
to node registry 4135 to recerve node data.

At sequence step 406, node registry 415 can transmit node
data to the first node 410. In some embodiments, the
transmitted node data can be 1n the form a chronological list,
listing the ID, IP address, and node status, and registration
time of each of the nodes based on the registration time(s)
ol each of the nodes.

At step 408 first node 410 can 1dentily a leader node based
on the node data. First node 410 can, for example, determine
the leader node from the node data by identilying a node
with an online status having the earliest registration time.

If first node 410 determines that it 1s the leader node, first
node 410 can alter the fully qualified domain name (FQDN)
associated with the cluster system to 1ts own IP address. A
client driver only knowing only a hostname (or partially
qualified domain name) of the cluster system, can thus
readily communicate with the leader node as its request sent
to the hostname of the cluster system will be resolved to the
address of the leader node via a domain name server.

Reference 409 refers to an exemplary health check pro-
cess. Node registry 415 can be configured to transmit a
health check transmission to each node 1n the cluster system
to determine a current node status of each of the nodes. At
sequence step 412, for example, node registry can transmit
a health check transmission to a first node 410 of the cluster
system. At step 414, based on a reply received (or not
received) from the health check transmission, the node
registry 415 can appropriately update the current node status
of the first node 410 1n node data. For example, i1 the first
node 410 successiully transmits a reply to the node registry
415, the node registry 415 can designate the first node 410
as online 1 node data. It first node fails 410 to respond to
the health check transmission, the node registry 415 can
designate the first node 410 as oflline in node data. If the first

10

15

20

25

30

35

40

45

50

55

60

65

12

node 410 continues to transmit data to the node registry 415,
but fails to respond to the health check transmission, or
otherwise provides a transmission to the node registry 415
indicating hardware or software 1ssues, the node registry 415
can designate the first node 410 as non-responsive. The node
registry can periodically transmit health check transmissions
to each of the nodes in the cluster system, on a regular
interval, such as once every 5 seconds.

Reference 1s now made to FIG. 5, which 1s a sequence
diagram 1illustrating exemplary clustering and node infor-
mation sharing processes. FIG. 5 may reference the same or
similar components, and data as the other figures set forth
herein. The processes described i FIG. 5 can mvolve a
cluster system including a first node 560, a second node 570,
and a third node 575, and an external node registry 565. The
processes 1llustrated with respect to FIG. § however, are
applicable to systems 1volving more nodes and/or node
registries.

Retference 501 refers to an exemplary node registration
process which contains similar to steps to the process
described with respect to FIG. 4. At sequence step 502, first
node 560 can transmit a registration request to node registry
565 at a first, earliest time. At sequence step 504, second
node 570 can transmit a registration request to node registry
565 at a second time which 1s later than the first time. At
sequence step 506, third node 573 can transmit a registration
request to node registry 565 at a third time which 1s later than
the second time. The node registry 565 can receive all such
registration requests and update node data 1n real time as the
registration requests are received. The node data can, for
example, indicate the ID, address, node status, and a regis-
tration time (based on when the registration request was
received) of each of the first node 560, second node 570, and
third node.

Retference 507 refers to an exemplary leader node deter-
mination process which contains similar steps to the process
described with respect to FIG. 4. In sequence step 506 {first
node 560 can transmit a request to the node registry 565 to
receive node data. At sequence step 308, node registry 563
can return node data to the first node 560, indicating which
of the nodes already registered with the node registry 565
was first to register (which 1s the first node 560 1in the
example 1llustrated in FIG. 5). The first node 560 can
determine that it 1s the leader node based on the received
node data as 1t 1s the earliest registered node 1n the node data.
Because the first node 1s the leader node it can alter the
FQDN of the cluster system so that all client requests
directed to the hostname of the cluster network are resolved
to the address of the leader node.

At sequence step 510, second node 570 can transmit a
request to the node registry 365 to receive node data. At
sequence 512, the second node 370 can determine that the
first node 560 1s the leader node because the received node
data indicates that the first node has the earliest registration
time and 1s online.

At sequence step 514, the third node 5735 can transmit a
request to the node registry 565 to receive node data. At
sequence 516, the third node 575 can determine that the first
node 560 1s the leader node because the received node data
indicates that the first node has the earliest registration time
and 1s online.

In the exemplary leader node determination process 507
the first, second, and third nodes can periodically transmit
requests to the node registry 5635 to receive current node
data, receive the current node data from the node registry
565, and determine the current leader node based on the
current node data. In certain embodiments, this process can

US 11,907,137 B2

13

occur approximately once every sixty seconds. The
sequence steps 508, 512, and 516, corresponding to the first,
second, and third nodes transmitting a request to the node
registry 565 to receive a current node data, can occur at
approximately the same time, and the node registry 565 can
transmit node data to each of the nodes 1n the cluster system
(corresponding to sequence steps 510, 514, and 518) at
approximately the same time. Alternatively, the node regis-
try 565 can be configured to transmit node data to a
particular node whenever 1t receives requests from that node.

Reference 519 refers to an exemplary cluster initialization
process. At sequence step 3520 after first node 560 has
determined the leader node, which i1n the illustrative
example 1 FIG. 5 1s the first node 560, the first node 560
designates 1tsell as the leader of the cluster system.

In sequence step 522 after the second node 3570 has
determined the leader node, which 1n the 1illustrative
example 1 FIG. 5 1s the first node 560, the second node 570
joins the cluster system by providing a cluster password to

the leader node (the first node 560) so that the leader node
can authenticate the second node 570. An authentication
confirmation can be transmitted from the leader node to the
second node 570 1n response.

In sequence step 524 after the third node 575 has deter-
mined the leader node, which 1n the 1llustrative example in
FIG. S5 1s the first node 560, the third node 575 joins the
cluster by providing a cluster password to the leader node
(the first node 560) so that the leader node can authenticate
the third node 575. An authentication confirmation can be
transmitted from the leader node to the third node 575 in
response.

Reference 525 illustrates an exemplary data slot alloca-
tion process. In the exemplary data slot allocation process
the leader node can determine the allocation of data slots for
cach of the nodes i1n the cluster system based on the
responsiveness of the nodes. During this process, all of the
data slots 1n the cluster node are allocated among the nodes
in cluster system. If only one node 1s present cluster system,
for example, that node must contain of the data slots of the
cluster system. The leader node can determine to adjust the
allocation of the data slots amongst the cluster nodes 1n the
cluster system because of, for example, failure of one or
more nodes 1n the cluster system, performance related 1ssues
of one or more nodes 1n the cluster system, and/or alterations
in the volume or other characteristics of client requests (to
the extent that such alterations render a particular node
ineflective).

In sequence step 526 the leader node (which 1s first node
560 1n the example shown 1n FIG. 5) can mnitially allocate or
adjust the allocation of the data slots to the first node 560.
In certain embodiments the leader node can determine to
allocate no data slots to the first node 560 when 1t has
determined that, for example, the first node 560 1s the leader
node. In can be beneficial in certain situations to have no
data slots allocated to the leader node so that all of the
processing capabilities of the leader node are directed to
performing tasks in which the leader node 1s solely respon-
sible for, such as, for example, allocating data slots across
the nodes 1n the cluster system, and monitoring the perfor-
mance ol the other nodes 1n the cluster system. In other
embodiments, (including embodiments where only one node
1s present 1n the cluster system) the leader node can allocate
one or more data slots to itself. Such a configuration can be
beneficial when the leader node has enough processing
capability to perform both 1ts function as a leader node and
as a non-leader node, or there are not enough available
nodes.

10

15

20

25

30

35

40

45

50

55

60

65

14

In sequence step 528 the leader node can mitially allocate
or adjust the allocation of the data slots 1n the second node
570. The leader node can also transmit a health check to the
second node 570, and determine a node status of the second
node 570 based on a reply from the second node 570. The
node status can indicate 1f a node 1s 1n a startup state (such
as when a node 1s 1nitializing from an offline state), shutting
down state (such as when a node 1s transition from an online
state to an oflline state), an oflline state, an online state, or
a non-responsive state. The leader node can determine to
adjust the allocation of data slots according to the node
status of the second node 570 and of the other nodes 1n the
cluster system.

In sequence step 530 the leader node can mitially allocate
or adjust the allocation of the data slots 1n the third node 575.
The leader node can also transmit a health check to the third
node 575, and determine a node status of the third node 575
based on a reply from the third node 575. The leader node
can determine to adjust the allocation of data slots according
to the node status of the third node 375 and of the other
nodes 1n the cluster system.

When the leader node imitially allocates or adjusts the
allocation of data slots of a particular node 1n the cluster
network, the node can pull data associated with the data slots
now allocated thereto into i1ts in-memory LRU that 1s not
already present and/or current. The data associated with the
now allocated data slots can be obtained from the persistent
storage of the cluster network. The first node can also
perform this same process in sequence step 526 to the extent
data slots are allocated to 1t with respect to pulling data
associated with the data slots allocated thereto.

The exemplary data slot allocation process can be per-
formed periodically, or can be performed on an ad hoc basis
by the leader node. As the process of loading data into the
in-memory LRU can be time consuming and computation-
ally costly, the alteration of the allocation of data slots 1n the
cluster 1s only performed when needed.

Retference 531 refers to an exemplary updating process in
the cluster system. In the exemplary updating process each
of the nodes 1n the cluster system can push any updates to
the data associated with the data slots allocated to the
respective node to the other nodes 1n the cluster system so
that the other nodes can replicate the updates into their
persistent storage. In this manner, each node 1n the cluster
system can actively maintain all of the data associated with
cach data slot 1n the cluster system 1n its persistent storage

At sequence step 532 first node 560 can push any updates
to the data associated with the data slots allocated to the first
node 560 to the second node 3570. Second node 570 can
thereaiter replicate the updates to its persistent storage
component. At sequence step 334 first node 560 can push
any updates to the data associated with the data slots
allocated to the first node 560 to the third node 575. Third
node 575 can thereafter replicate the updates to its persistent
storage component.

At sequence step 336 second node 370 can push any
updates to the data associated with the data slots allocated to
the second node 570 to the first node 560. First node 560 can
thereafter replicate the updates to its persistent storage
component. At sequence step 538 second node 570 can push
any updates to the data associated with the data slots
allocated to the second node 570 to the third node 575. Third
node 575 can thereatter replicate the updates to 1ts persistent
storage component.

At sequence step 540 third node 575 can push any updates
to the data associated with the data slots allocated to the third
node 575 to the first node 560. First node 560 can thereafter

US 11,907,137 B2

15

replicate the updates to 1ts persistent storage component. At
sequence step 342 third node 5735 can push any updates to
the data associated with the data slots allocated to the third
node 575 to the second node 570. Second node 3570 can
thereafter replicate the updates to its persistent storage
component.

By continuously performing the exemplary updating pro-
cess 531, 1t can be ensured that all of the cluster system data
accessible by a client device 1s backed up 1n the persistent
storage components of each of the nodes in the cluster
system. In the event of failure of one or more of the nodes
in the cluster, another of the nodes 1n the cluster systems can
access any data associated with data slots allocated to the
failed node.

In an alternative updating process whenever data 1s writ-
ten 1nto one of the nodes 1n the cluster by a client device, the
data which 1s written can be propagated to other nodes 1n the
cluster. In this manner, the other nodes can store the newly
written data into each of their persistent memory compo-
nents. Unlike the exemplary updating process, 1n the alter-
ative updating process, an inter-mode communication in the
cluster 1s required.

In certain embodiments the exemplary updating process 1s
performed on a periodic basis and 1s performed at a greater
frequency than the leader node determination process 507
and data slot allocation process 325. In a particular embodi-
ment, the exemplary updating process 1s performed approxi-
mately once every ten seconds.

In certain embodiments after one or more data slot has
been reallocated away from one node (which has not been
determined to be not responsive), that node can remove data
associated with the data slots which have reallocated away
therefrom from 1ts m-memory LRU component. Such a
feature can ensure that the mn-memory of the LRU does not
run out of space.

FIG. 6 1s a sequence diagram illustrating exemplary node
tailure processes 1n the exemplary cluster system. FIG. 6
may reference the same or similar components, and data as
the other figures set forth herein.

The exemplary node failure process can involve a cluster
system 1ncluding a first node 660, a second node 670, and a
third node 675 and an external node registry 6635. The
processes 1llustrated with respect to FIG. 6 however, are
applicable to systems involving more nodes and/or node
registries.

Reference 601 refers to an exemplary cluster initialization
process during leader node failure. In the exemplary cluster
initialization process 601, the first node 660 had previously
been determined by the second and third nodes in the cluster
network to be the leader node (via a previous leader node
determination process).

At sequence step 602 the second node 670 can attempt to
jo1n the cluster by providing a cluster password to the leader
node (the first node) and can expect an authentication
confirmation in response thereto after a first predetermined
period of time, or the second node 670 can otherwise expect
a response from leader node, and fail to receive a response
from leader node after the first predetermined period of time.
After the second node 670 fails to recerve a response from
the leader node (the first node) after the first predetermined
period of time, the second node can determine that the leader
node at the time (the first node) has failed or 1s otherwise not
responsive. The second node 670 can store 1n data storage
data indicative of the failure of the first node.

At sequence step 604 the third node 6735 can attempt to
jo1n the cluster by providing a cluster password to the leader
node (the first node) and can expect an authentication

10

15

20

25

30

35

40

45

50

55

60

65

16

confirmation 1n response thereto atter the first predetermined
period of time, or the third node 675 can otherwise expect
a response from leader node, and fail to receive a response
from the leader node after the first predetermined period of
time. After the third node 675 fails to receive a response
from the leader node (the first node) after the first predeter-
mined period of time, the third node 675 can determine that
the leader node at the time (the first node) has failed or 1s
otherwise not responsive. The third node 675 can store 1n
data storage data indicative of the failure of the first node.

Retference 605 refers to an exemplary leader node deter-
mination process that can be triggered to be ran after a
second predetermined period after one or more of the nodes
in the cluster failed to receive a response from the leader
node (as illustrated in exemplary cluster mitialization pro-
cess 601).

In some embodiments, the first and second period of time
can be the same, and in other embodiments, they can be
different. The second period of time can be greater than the
first period of time 1n some embodiments 1f the leader node
has had a history of not being responsive, and then recon-
necting shortly thereafter. The first and second period of
time can be adjusted by a user or can be adjusted based on
parameters of the cluster system.

In alternative embodiments, the exemplary leader node
determination process can be triggered due to a normal cycle
of a leader node determination process (such as the exem-
plary leader node determination process 307 described in
connection with FIG. 5).

In sequence step 606 1n the exemplary leader node
determination process 605, the second node 670 can trans-
mit a request the node registry 6635 to receive current node
data. At step 608 second node 670 can receive current node
data from the node registry 665 and determine a leader node
based on the current node data. In the example 1n FIG. 6,
although the second node 670 ascertains that the first node
660 1n the cluster system has an earliest registration time of
the nodes 1n the node data, the second node nevertheless
determines that 1t 1s the leader node because the first node
660 i1s 1n an offline or nonresponsive state and the second
node 670 has the next earliest registration time of the nodes
in the node data.

In sequence step 610 in the exemplary leader node
determination process 605, the third node 6735 can transmit
a request the node registry 665 to receive current node data.
At step 612 third node 675 can receive current node data
from the node registry 665 and determine a leader node
based on the node data. In the example 1n FIG. 6, the third
node 675 determines that the second node 670 1s the leader
node based on the node data because the second node 1s has
the earliest registration time of the online nodes.

Retference 613 refers to an exemplary data slot allocation
process after leader node failure. After a new leader node has
been determined (i.e. the second node 670 1n FIG. 6), the
new leader can reallocate any slots that were allocated the
previous leader node (i.e. the first node 660 1n FIG. 6) to the
remaining healthy nodes in the cluster network. For
example, the first node could have previously had data slots
0-5460 allocated to it. At sequence step 614, for example,
the leader node (the second node) can allocate data slots
0-2730 that were previously allocated to the first node 660
to itself. After the data slots have been reallocated to the
second node 670 from the first node 660, the second node
670 can replicate data associated with the newly allocated
data slots into 1ts m-memory LRU component. The data

US 11,907,137 B2

17

associated with the newly allocated data slots can be
retrieved from the persistent storage component of the
second node 670.

At sequence step 616 the leader node can allocate the
remaining portion of the data slots previously allocated to
the first node (data slots 2731-5460) to the third node. After
the data slots have been reallocated to the third node 675
from the first node 660, the third node 675 can replicate data
associated with the newly allocated data slots into 1ts 1n-
memory LRU component. The data associated with the
newly allocated data slots can be retrieved from the persis-
tent storage component of the third node 675.

FIG. 7 1s a sequence diagram illustrating exemplary
non-leader node failure processes 1in the exemplary cluster
system. FIG. 7 may reference the same or similar compo-
nents, and data as the other figures set forth heremn. The
exemplary node failure process can involve a cluster system
including a first node 760, a second node 770, a third node
775, and a standby node 780. The processes illustrated with
respect to FIG. 7 however, are applicable to systems 1mvolv-
ing more nodes and/or other components.

Reference 701 refers to an exemplary cluster initialization
process during non-leader node failure. In the system asso-
ciated with the exemplary cluster initialization process 701
in FIG. 7, the first node 760 can have previously been
determined by each of the nodes 1n the cluster system to be
the leader node, and first, second, and third nodes can have
previously have had all of the data slots 1n the cluster system
allocated amongst each other.

In sequence step 702, the first node 760, as the leader
node. At sequence step 704, the second node 770 does not
provide a cluster password to the leader node, the first node,
because, for example, the second node has an internal error
or some other failure. If the second node 770 does not
provide a cluster password to the leader node after a pre-
determined period of time, the leader node can determine
that the second node 1s not responsive and no longer an
available 1n the cluster system. In sequence step 706 the
third node can provide a cluster password to the leader node
so that the leader node can authenticate the third node and
recognize and can verily 1t 1s responsive.

In alternative embodiments, the leader node can deter-
mine that one or more of the nodes 1n the cluster system are
not responsive when the leader node fails to receive an
expected transmission from the one or more nodes after a
predetermined period of time.

Reference 707 refers to an exemplary data slot allocation
process during non-leader node failure. In sequence step
708, the leader node (the first node 760) can reallocate data
slots previously allocated to the second node 770 to itsell.
Thereafter, the leader node can load data associated with the
newly allocated data slots 1nto its n-memory LRU compo-
nent from its persistent storage component. In sequence step
710, the leader node can reallocate data slots previously
allocated to the second node 770 to the third node 775.
Thereafter, the third node 775 can load data associated with
the newly allocated data slots into its 1n memory LRU
component from persistent storage.

In sequence step 712, the leader node can allocate data
slots previously allocated to second node 770 to standby
node 780. Standby node 780 can be a dedicated node that
mitially registers with the node registry but 1s not mitially
allocated with any data slots. In some embodiments, the
persistent storage component of the standby node 780 can be
consistently updated with the data associated with all of the
data slots 1n the cluster system, just as the other nodes 1n the
cluster system. Alternatively, upon standby node 780 being

10

15

20

25

30

35

40

45

50

55

60

65

18

activated it can load data from the persistent storage of one
of the active nodes into 1ts persistent storage, and/or 1n
memory LRU component.

In the event one of the active nodes in the cluster system
fails, the standby node can already be initialized by the
leader node, and can load data associated with the data slots
allocated to it 1nto 1ts m-memory LRU component. While
the replacement node starts up and loads data into its
in-memory LRU component, or persistent storage, other
nodes in the cluster system can handle client request by
utilizing persistent storage when handling client requests
pertaining to the data slots of a failed node.

After the leader node allocates data slots to the standby
node, a new standby node can be automatically launched. In
some embodiments, the new standby node can retrieve and
store data associated with each of the data slots 1n the cluster
system 1nto 1ts persistent storage even before 1t 1s activated
by the leader node.

As set forth herein, exemplary embodiments of the pres-
ent disclosure offers significant benefits over conventional
systems. Compared to conventional systems, exemplary
embodiments can mitigate the impact of node failure 1n
multi node cluster systems, and thus decrease the read and
write time, and latency time caused be increasing trafhic
achieved during deployment.

FIG. 8 illustrates a comparison between the read/write
time ol a conventional cluster system (represented by ref-
erence 802) to the cluster system of exemplary embodiments
described herein (represented by reference 801). In FIG. 8,
the unit of measurement of the y axis 1s milliseconds, and the
unit of measurement of the x axis 1s half hours. The average
read/write time, as well as the maximum and minimum read
and write time, over a period of hours 1s greatly reduced
utilizing the cluster system described 1n exemplary embodi-
ments compared to conventional approaches.

FIG. 9 illustrates a comparison between the latency times
tor gradual tratfic roll out from 50% to 100% 1n conventional
cluster system (represented by reference 902) with the
cluster system of exemplary embodiments described herein
(represented by reference 901). In FIG. 9, the unmit of
measurement of the y axis 1s milliseconds, and the unit of
measurement of the x axis 1s six hours. The average latency
times during increased trathic roll out measured over a period
of time 1s greatly reduced utilizing the cluster system
described 1n exemplary embodiments compared to conven-
tional approaches. Exemplary embodiments further require
less connections to nodes 1n the cluster system than con-
ventional systems while minimizing read/write times and
latency.

FIG. 10 illustrates a comparison between the read latency
times of an alternative conventional system (represented by
reference 1002) with the cluster system of exemplary
embodiments described herein (represented by reference
1001). In FIG. 10, the unit of measurement of the y axis 1s
milliseconds, and the unit of measurement of the x axis 1s
hours. The read latency times over a period of time 1s greatly
reduced utilizing the cluster system described 1n exemplary
embodiments compared to the alternative conventional sys-
tem.

It 1s understood that the systems and methods described
herein may be tangibly embodied 1n one of more physical
media, such as, but not limited to, a compact disc (CD), a
digital versatile disc (DVD), a tfloppy disk, a hard drive, read
only memory (ROM), random access memory (RAM), as
well as other physical media capable of data storage. For
example, data storage may include random access memory

(RAM) and read only memory (ROM), which may be

US 11,907,137 B2

19

configured to access and store data and information and
computer program instructions. Data storage may also
include storage media or other suitable type of memory (e.g.,
such as, for example, RAM, ROM, programmable read-only
memory (PROM), erasable programmable read-only
memory (EPROM), electrically erasable programmable
read-only memory (EEPROM), magnetic disks, optical
disks, floppy disks, hard disks, removable cartridges, flash
drives, any type of tangible and non-transitory storage
medium), where the files that comprise an operating system,
application programs including, for example, web browser
application, email application and/or other applications, and
data files may be stored. The data storage of the network-
enabled computer systems may include electronic informa-
tion, files, and documents stored in various ways, including,
for example, a flat file, indexed file, hierarchical database,
relational database, such as a database created and main-
tained with software from, for example, Oracle® Corpora-
tion, Microsoft® Excel file, Microsoft® Access file, a solid
state storage device, which may include a flash array, a
hybrid array, or a server-side product, enterprise storage,
which may include online or cloud storage, or any other
storage mechanism. Moreover, the figures illustrate various
components (€.g., servers, computers, processors, etc.) sepa-
rately. The functions described as being performed at vari-
ous components may be performed at other components, and
the various components may be combined or separated.
Other modifications also may be made.

The foregoing description, along with its associated
embodiments, has been presented for purposes of 1llustration
only. It 1s not exhaustive and does not limit the mnvention to
the precise form disclosed. Those skilled in the art may
appreciate from the foregoing description that modifications
and vanations are possible 1n light of the above teachings or
may be acquired from practicing the disclosed embodi-
ments. For example, the steps described need not be per-
formed 1n the same sequence discussed or with the same
degree of separation. Likewise various steps may be omit-
ted, repeated, or combined, as necessary, to achieve the same
or similar objectives. Accordingly, the invention 1s not
limited to the above-described embodiments, but instead 1s
defined by the appended claims 1n light of their tull scope of
equivalents.

What 1s claimed 1s:

1. A node management system, comprising;

a cluster system comprising a plurality of nodes, wherein:

the plurality of nodes includes a first node, and
the first node includes a memory comprising one or
more shards; and
a client device 1n data communication with the plurality
of nodes,
wherein the first node 1s configured to:
recerve a client request,
identity one of the one or more shards based on the
client request,
retrieve shard rules of the identified shard,
determine an allocation of one or more memory slots
of the i1dentified shard based on the client request,
lock the one or more memory slots,
perform one or more operations on the one or more
memory slots associated with the client request
based on the allocation, and
unlock the one or more memory slots.

2. The node management system of claim 1, wherein the
first node 1s further configured to:

determine an allocation of one or more database slots of

the 1dentified shard.,

5

10

15

20

25

30

35

40

45

50

55

60

65

20

lock the one or more database slots, and

perform one or more operations on the one or more
database slots based on the allocation; and
unlock the one or more database slots.

3. The node management system of claim 1, wherein the
first node 1s further configured to perform a hash function on
a key i the client request and a modulo operation to
determine the allocation of the one or more memory slots.

4. The node management system of claim 3, wherein the
modulo operation 1s based on an available number of
memory slots in the shard.

5. The node management system of claim 3, wherein the

first node 1s further configured to:
identily the one of the one or more shard based on one of
a header or footer of the key in the client request or a
container name ol a client certificate associated with
the client request.
6. The node management system of claim 1, wherein the

shard rules comprise one of a cache capacity and a number
ol shards.

7. The node management system of claim 1, wherein the
one or more operations comprise one of a read, write,
update, push, or pull request.

8. The node management system of claim 1, wherein each
of the one or more memory slots 1s associated with a key
value parr.

9. The node management system of claim 2, wherein each
of the one or more storage slots 1s associate with a column
family.

10. A node management method, comprising the steps of:

recerving a client request from a client device;

identifying one of the one or more shard based on the
client request;

retrieving shard rules of the i1dentified shard;

determining an allocation of one or more memory slots of

the 1dentified shard based on the client request;
locking the one or more memory slots;

performing one or more operations on the one or more

memory slots associated with the client request based
on the allocation; and

unlocking the one or more memory slots,

wherein the one or more memory slots are locked when

the one or more operations are performed.

11. The node management method of claim 10, further
comprising;

determining an allocation of one or more database slots of

the 1dentified shard; and

performing one or more operations on the one or more

database slots based on the allocation,

wherein the one or more memory slots are locked when

the one or more operations are performed.

12. The node management method of claim 10, further
comprising updating a memory slot associated with the one
or more storage slot based on the shard rules.

13. The node management method of claim 12, wherein
the one or more memory slots represent a portion of an in
memory least-recently used (LRU) component of the node,
and the one or more storage slots represent one or more
column families of a persistent storage component of the
node.

14. The node management method of claim 13, further
comprising;

periodically backing up data stored in the in memory LRU

component of the node, and the persistent storage
component of the node into an backup persistent stor-
age.

US 11,907,137 B2

21 22
15. The node management method of claim 14, wherein asynchronously update another one of the plurality of
the backup persistent storage i1s one ol a remote storage or nodes when the another one of the plurality of
other disk based storage. | response nodes is an in-region node.
16. The node management method of claim 13, further _ _
combrising: 19. The node management system of claim 18, wherein
prising; 5 _
storing an 1ndex of one or keys processed by the node; and tlya node 1s further contigured toz asynchronously update a
retrieving a backup of data stored in the shard based on different another one of the plurality of nodes based on a key
the 1ndex. in the client request when the another one of the plurality of
17. The node management method of claim 10 further response nodes 1s an a cross-region node.
comprising:

10 20. The node management system of claim 19, wherein

encrvpting a value associated with the memorv slot asso- .
D PHE H the node 1s further configured to:

ciated with the client request; and

storing the encrypted value 1n the memory slot. asynchronously update the another one of the plurality of

18. A node management system, comprising: response nodes when the another one of the plurality of

a plurality of nodes; response nodes 1s an in-region node on a periodic basis;

wherein one of the plurality of nodes 1s configured to: = wherein any update occurring to the one of the nodes
receive a client request from a client device, occurring during a period of time associated with the
update one of a memory slot or storage slot of the one periodic basis is performed as a batch update.

of the plurality of nodes based on the client request,

e 5 = e =
and

	Front Page
	Drawings
	Specification
	Claims

