12 United States Patent

Boesgaard

US011902417B2

US 11,902,417 B2
Feb. 13, 2024

(10) Patent No.:
45) Date of Patent:

(54) COMPUTER-IMPLEMENTED METHOD OF
PERFORMING FORMAT-PRESERVING
ENCRYPTION OF A DATA OBJECT OF
VARIABLE SIZE

(71) Applicant: PII GUARD APS, Greve (DK)

(72) Inventor: Martin Staal Boesgaard, Solrod Strand

(DK)
(73) Assignee: PII GUARD APS, Greve (DK)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35

U.S.C. 154(b) by 85 days.
(21) Appl. No.: 16/764,121

(22) PCT Filed: Nov. 14, 2018

(86) PCT No.: PCT/EP2018/081210
§ 371 (c)(1).
(2) Date: May 14, 2020

(87) PCT Pub. No.:. W02019/096837
PCT Pub. Date: May 23, 2019

(65) Prior Publication Data
US 2020/0396056 Al Dec. 17, 2020
(30) Foreign Application Priority Data
Nov. 14, 2017 (EP) oo 17201619
(51) Inmt. CL
HO4L 9/06 (2006.01)
HO3M 7/30 (2006.01)
HO4L 9/32 (2006.01)
(52) U.S. CL
CPC HO4L 9/0618 (2013.01); HO3M 7/6005
(2013.01); HO3M 7/607 (2013.01);
(Continued)

Format-preserving
Encryption

Plaintext

!

Compression /

Encoding
Ke
Y — Inner
Encryption
Tweak yP

!

Decompression /
Decoding

v

Ciphertext

(38) Field of Classification Search
CPC HO4L 9/0618; HO4L 2209/20; HO4L
2209/34; GO6F 21/6245
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,189,095 Bl 2/2001 Coppersmith et al.
0,635,011 B1* 4/2017 Wuooooeeiiinnnn HO4L 9/0861
(Continued)

OTHER PUBLICATTONS

Extended European Search Report from corresponding EP Appli-
cation No. 17201619.8, dated Apr. 23, 2018.

(Continued)

Primary Examiner — Ellen Tran
(74) Attorney, Agent, or Firm — Workman Nydegger

(57) ABSTRACT

A computer-implemented method of encrypting a data
object of variable size utilizing an nner encryption algo-
rithm can take a variable size iput and of outputting, as its
output, an encrypted version of the variable size input. The
method comprises compressing or encoding the data object
in 1ts totality to obtain a compressed or encoded version of
the data object 1n a format compatible with the inner
encryption algorithm, encrypting, by the inner encryption
algorithm, the compressed or encoded version of the data
object to obtain an encrypted version of the data object, and
decompressing or decoding the encrypted version of the data
object to obtain a decompressed or decoded version of the
encrypted version of the data object, which constitutes a
format-preserved encrypted version of the data object.

14 Claims, 21 Drawing Sheets

Format-preserving
Decryption

Ciphertext

!

Compression /
Encoding

!

Ke
Y~ Innher ‘

Decryption

!

Decompression /
Decoding

I

Plaintext

US 11,902,417 B2
Page 2

(52) U.S. CL

CPC ..., HO3M 7/70 (2013.01); HO4L 9/3242
(2013.01); HO4L 2209/20 (2013.01); HO4L
2209/34 (2013.01)

(56) References Cited
U.S. PATENT DOCUMENTS

9,773,243 B1* 9/2017 Spiescccccoeeee... GO7F 7/1016

2011/0103579 Al 5/2011 Martin et al.
2013/0067225 Al* 3/2013 Shochet GO6F 21/6209
713/165
2013/0339252 Al* 12/2013 Pauker HO4L 9/0625
705/64
2014/0108813 Al* 4/2014 Pauker GOO6F 21/6218
713/189

2016/0247150 Al 8/2016 Spies et al.

2017/0039568 Al* 2/2017 Tunnell GOOF 21/33
2017/0214521 Al* 7/2017 Buschc........ HO4L 9/0618

OTHER PUBLICATIONS

International Search Report and Written Opinion from PCT Appli-

cation No. PCT/EP2018/081210, dated Feb. 22, 2019.

Huffman, “A Method for the Construction of Minimum-
Redundancy Codes,” Proceedings of the I.R.E., Sep. 31, 1952, pp.
1098-1101.

Knuth, “Dynamic Huffman Coding,” Journal of Algorithms, vol. 6,
No. 2, at least as early as Dec. 31 of 1985, pp. 163-180.

Witten et al., “Arithmetic Coding for Data Compression,” Commu-
nications of the Association for Computing Machinery, vol. 30, No.
6, Jun. 30, 1987, pp. 520-540.

Vitter, “Design and Analysis of Dynamic Huflman Codes,” Journal
of the Association for Computing Machinery, vol. 34, No. 4, Oct.
31, 1987, pp. 825-845.

Spies, “Format Preserving Encryption,” Database and Network
Journal, retrieved from www.voltage.com, Dec. 31, 2008, 8 Pages.
Bellare, “Format-Preserving Encryption,” retrieved from the Inter-
net https://eprint.iacr.org/2009/251.pdf, Dec. 31, 2009, 25 Pages.
“Compression and Encryption,” Superuser Community Blog, Mar.
21, 2011, retrieved from https://blog/superuser.com/2011/03/21/
compression-and-encryption/, retrieved on Apr. 23, 2018, 4 Pages.
Law Abiding Citizen, “Packers—Executable Compression and Data
Obfuscation, Malware” retrieved from the Internet Apr. 23, 2018
from https://0X00sec.org/t/'packers-executable-compression-and-
data-obfuscation/847, posted Jul. 29, 2016, 22 Pages.

Canard Sebastien et al: “Running Compression Algorithms in the
Encrypted Domain: A Case-Study on the Homomorphic Execution
of RLE”, 2017 15th Annual Conference on Privacy, Security and
Trust (PST), IEEE, Aug. 28, 2017, pp. 283-28309.

European Examination Report from corresponding Furopean Patent
Application No. 18 800 189.5-1207, Nov. 3, 2022.
Stackoverflow.com, “Is there a simpler way to encrypt an ascu
based code that 1s compatible with punctuation than to make a
dictionary with the ascu values in Python?”, stackovertlow.com/
questions, May 31, 2017, 3 pages, URL: https://stackovertlow.com/
questions/43639183/1s-there-a-simpler-wa**to-encrypt-an-ascii-based-
code-that-1s-compatible-with-pu [retrieved on Nov. 15, 2023].

Summons to attend oral proceedings from Corresponding Furopean
Patent Application No. EP18800189.5, dated Nov. 24, 2023.

* cited by examiner

U.S. Patent Feb. 13, 2024 Sheet 1 of 21 US 11,902,417 B2

Format-preserving Format-preserving
Encryption Decryption
Plaintext Ciphertext
Compression / Compression /
Encoding Encoding
ey Inner ey Inner
Tweak Encriptlon Tweak Decriptlon
Decompression / Decompression /
Decoding Decoding

Ciphertext Plaintext
Figure 1

Format-preserving
Encryption

Plaintext

Message

Compression /
Encoding

00001010 1001 0001 1

Ke
Y Inner
Tweak Encryption

011001101001 1010 1

Decompression /
Decoding

l Sedesdess

Ciphertext

Figure 2

U.S. Patent

Not
lnverse

Inverse

Feb. 13, 2024

Format-preserving
Encryption

Plaintext

I

Compression /

|
|
|
|
v

Decompression / |x
Decoding

e

Ciphertext

T o

Figure 3

Format-preserving
Encryption

Plaintext

S Compression /
Encoding =,

S Decompression/ [g
Decoding

!

Ciphertext

Figure 4

Sheet 2 of 21

l Encoding N

| \‘

| . Inverse
I \.\

I \ ,
| N K
| Inner L

| _ ¢ -—————- R mmmm -
I

| Encryption N

| ’ N
I

I

I

I

I

I

I

l ‘. Inverse
\\

“ /7

) 7
Inner N/

. S Y- -

Encryption TN
b

s N

Decryption

Ciphertext

Compression /
A Encoding

!

Inner
Decryption

Decompression /
Decoding

Plaintext

Decryption

Ciphertext

Compression /
Encoding

'

Inher
Decryption

Decompression /
Decoding

!

Plaintext

Format-preserving

Format-preserving

US 11,902,417 B2

Not
Ilnverse

Inverse

U.S. Patent Feb. 13, 2024 Sheet 3 of 21 US 11,902,417 B2

Format-preserving
Encryption

Plaintext

Compression /
Encoding

Add padding
K
=Y Inner
Tweak Encryption

!

Add padding

Decompression /
Decoding

Ciphertext

Figure §

U.S. Patent Feb. 13, 2024 Sheet 4 of 21 US 11,902,417 B2

Format-preserving
Encryption

Plaintext

Compression /

Encoding Redo with different
configuration to meet

constraints

Ke
. o Inner el

Encryption Repeat to meet

Tweak — constraints

Decompression / Redo with different
Decoding configuration to meet
l | constraints

Ciphertext

Figure 6

U.S. Patent Feb. 13, 2024 Sheet 5 of 21 US 11,902,417 B2

Format-preserving

Encryption
Plaintextl Plaintext2
Compression / Compression /
Encoding Encoding

Combination

Ke
Y Inner

Encryption

Tweak

Split

Decompression / Decompression /

Decoding Decoding

Ciphertextl Ciphertext2

Figure 7

U.S. Patent

Feb. 13, 2024 Sheet 6 of 21

Format-preserving
Encryption

Plaintextl Plaintext2

Combination

Compression /
Encoding

Key
Inner

Encryption
Tweak

Compression /
Encoding

Split

Ciphertextl Ciphertext2

Figure 8

US 11,902,417 B2

U.S. Patent

Feb. 13, 2024

Sheet 7 of 21

Format-preserving Encryption

Plaintext

| Append integrity

|
check value
L — — —

Compression /
Encoding

!

|
| Append integrity

|
| check value
I —

Add padding

| Append integrity
: check value

Key

Tweak

Figure 9

Inher
Encryption

Append integrity
check value

Add padding

Append integrity

check value
L _

Decompression /
Decoding

| Append integrity
: check value

Ciphertext

US 11,902,417 B2

U.S. Patent Feb. 13, 2024 Sheet 8 of 21 US 11,902,417 B2

Format-preserving
Encryption

Plaintext

Compression /
Encoding

! !

‘ Extract n bits |—r| Add padding

Key?2

Keyl MAC

Innher
Encryption

Tweak

Add padding

Decompression /
Decoding

Ciphertext

Figure 10

U.S. Patent Feb. 13, 2024 Sheet 9 of 21 US 11,902,417 B2

name@domain.com

Compressing / Compressing / Compressing /

Encoding Encoding Encoding

Combination

Fncoded set of data

Figure 11

name@domain.com

Combination

Compressing /

Encoding

Fncoded set of data

Figure 12

U.S. Patent Feb. 13, 2024 Sheet 10 of 21 US 11,902,417 B2

name@domain.com

Compressing /
Encoding

Compressing /
Encoding

‘ Combination ‘

l

Encoded set of data

Figure 13

U.S. Patent

Feb. 13, 2024

Format-preserving
Encryption

Plaintext

name@domain.com

Encoding /
compressing

0000 101010010001 1

0000 1010 1001 0001 1100

Key Inner

Tweak Encryption

011001101001 1010 1001

Decoding /
Decompressing

lkdeOd@mataZ.Iwzjt

Ciphertext

Sheet 11 of 21

Figure 14

Format-preserving
Decryption

Ciphertext
lkdeOd@mataz.lwzjt

Encoding /
compressing

01100110 1001 1010 1001

Inner
Decryption

0000 1010 1001 0001 1100

Key

Tweak

Remove padding

0000 1010 1001 0001 1

Decoding /
Decompressing

lname@domain.com

Plaintext

IOOIOlOl 1|001OO|00101|1 101 1|00100...

v v v vV et
l"k! fd’ l"e! fOF
Pattern selector=0
Figure 15
Pattern selector table:
0: 1/3 | @| 1/3 1/3
1: |1/4 | @ 2/4 1/4
2: 2/4 @|1/4 1/4
3: |11/4| @] 1/4 1/4 1/4

Figure 16

US 11,902,417 B2

U.S. Patent Feb. 13, 2024 Sheet 12 of 21 US 11,902,417 B2

kdeOdmata2lwzjt
/3 1/3 1/3

'

kdeOd@mata2.lwzjt

Figure 17

U.S. Patent Feb. 13, 2024 Sheet 13 of 21 US 11,902,417 B2

name@domain.com

Compressing / Compressing /
Encoding Encoding

Combination ‘

l

Add padding ‘

Ke
Y — Inner
— Encryption

Add padding

Decompression /
Decoding

'

Ciphertext

Figure 18

U.S. Patent

Production

Data

Feb. 13, 2024

Format-preserving
Encryption

Sheet 14 of 21

Figure 19

Test
Data

Format-preserving Encryption

Compression or
encoding,
configuration 1

Key

Tweak

Decompression /
Decoding,
configuration 1

Plaintext

Detect format
group

Compression or
encoding,
configuration 2

Add Padding

Inner

Encryption

Decompression /
Decoding,
configuration 2

Compression or
encoding,
configuration 3

Decompression /
Decoding,
configuration 3

/—

Ciphertext

Figure 20

US 11,902,417 B2

U.S. Patent

Key

Keyl

Key
Tweakl

Feb. 13, 2024 Sheet 15 of 21 US 11,902,417 B2

name@domain.com eoz@pgmygat.nem

Format-preserving
Encryption

eoz@ pgmygaf.nem name@domain.com

Key

Format-preserving
Decryption

Figure 21

hame@domain.com name@domain.com

Format-preserving
Encryption

eoz@pqgmygaf.nem etmdw@eoan.gj

Key?2

Format-preserving
Encryption

Figure 22

name@domain.com name@domain.com

' '

>

Format-preserving Key)‘ Format-preserving

Encryption Tweak? Encryption
m5or@mrin.orme opmz8@mMo9net.re

Figure 23

U.S. Patent Feb. 13, 2024 Sheet 16 of 21 US 11,902,417 B2

Name City

Encrypted Name Encrypted City

Figure 24
First name Last name E-mail address Phone number
Record 1 | Paul Baker paul67 @hotmail.com |+1(123)456 7890
Record 2 | John je@cyber oft.com +1 (234) 567 8901 > Data records
Record 3 | Alice alice. sml D gmail. com F+14% 45) 678 9012
Data objects
Figure 25

Plaintext Block

l

Block Cipher
Encryption

Key

Ciphertext Block

Figure 26

U.S. Patent Feb. 13, 2024 Sheet 17 of 21 US 11,902,417 B2

Symbol Encoded

Figure 27

Figure 28

Ho,l L,_; R
i

N

Figure 29

| Start |
1

Symbol Encoded interval

Figure 30

U.S. Patent Feb. 13, 2024 Sheet 18 of 21 US 11.902.417 B2

1.0

Figure 31

Figure 32

Decimal rational number Binary rational number

0.47360 0.01111001001111011101
0.47488 .01111001100100011011

Figure 33

U.S. Patent Feb. 13, 2024 Sheet 19 of 21 US 11,902,417 B2

1/3

2/3 =6/9
7/9

8/9

1

Figure 34

m

Encoded value Encoded domain

Figure 35

Encoded Encoded
value domain

Figure 36

U.S. Patent Feb. 13, 2024 Sheet 20 of 21 US 11,902,417 B2

Value Domain Fraction Symbol Encoded domain

Figure 37

Symbol Encoded

(f . 1

d
'
e
HgH
'{] 2
11

rf_ 1
S

“@”
“.com”
“emal

EQD

Repeat last

IH'

Figure 38

Symbol Encoded

Figure 39

U.S. Patent Feb. 13, 2024 Sheet 21 of 21 US 11,902,417 B2

Figure 40

US 11,902,417 B2

1

COMPUTER-IMPLEMENTED METHOD OF
PERFORMING FORMAT-PRESERVING
ENCRYPTION OF A DATA OBJECT OF

VARIABLE SIZE

TECHNICAL FIELD

The present 1nvention relates to format-preserving
encryption of a data object of variable size. A data object of
variable size may for example include an e-mail address, a
name, an address or a text string. Format-preserving encryp-
tion mean that the algorithm is configured to encrypt a data
object of a given format such that the encrypted output has
a similar format.

BACKGROUND OF THE INVENTION

Format-preserving encryption 1s a known technology for
encrypting data objects of a given format in order to achieve
an encrypted form of the data object respecting the same
format as the non-encrypted version.

Format-preserving encryption 1s generally described in
“Format Preserving Encryption” by T. Spies (2008), as
available on the filing data of the present patent
application at https://pdis.semanticscholar.org/231e/
t4a9beccb9etd1064a50eece3366246474b17.pdl and “Format-
Preserving Encryption”™ by M. Bellare et al. (2009, as
available on the filing data of the present patent application
at https://eprint.iacr.org/2009/251 .pdi).

Format-preserving encryption has so far typically been
used to encrypt i1dentification numbers such as credit card
numbers and social security numbers. In the context of
known techniques, credit card numbers and social security
numbers are characterized 1n having a fixed size, 1.e. always
consisting of a predefined number of digits.

SUMMARY OF THE INVENTION

Known methods of format-preserving encryption focus
on encrypting data objects of a fixed-size format, such as
social security numbers or credit card numbers having a
predefined number of digits. Simple methods for fixed-size
format-preserving encryption may be adapted to encrypt a
data object of variable size, such as an e-mail address, by
defining a fixed-size format that matches the given specific
object’s size. For example, i the e-mail address
“name(@domain.com” 1s to be format-preserving encrypted,
a fixed-size format can be defined with 4 characters before
the ‘(@’, 6 characters between the ‘@’ and the °.” and 3
characters after the °.”. Practically, the 4 and 6 and 3
characters may be concatenated and format-preserving
encrypted as a 13-character text string and the ‘@’ and °.’
may then be inserted at the original positions 1 the
encrypted string. As a consequence of this approach, the
encrypted version of the e-mail “name@domain.com™ will
also have 4 characters before the ‘@’, 6 characters between
the ‘@’ and the and 3 characters atfter the as this 1s how the
fixed-size format defined to handle the particular e-mail
address was constructed.

For a true fixed-size format, 1t 1s not a security problem to
preserve the exact format of the non-encrypted data object in
the encrypted data object since all encrypted data objects by
definition will have that format. When all data objects have
the same format, there 1s no information i knowing the
format of a particular data object. But for a varnable-size
format, 1t may constitute a security problem to preserve the
format of the non-encrypted data object 1n the encrypted

10

15

20

25

30

35

40

45

50

55

60

65

2

data object since preserved format information (in the e-mail
example above, that would be the total size and the positions
of the ‘@’ and °.”) 1s non-encrypted information leaked from
the non-encrypted version of the data object to the encrypted
version of the data object. Due to this information leak, the
encrypted data carry imformation which may be used to
identify or exclude one or more possible mput sets of data
from a definite host of possible input sets of data.

On the above background, it 1s an objective of embodi-
ments ol the invention to provide a method which enhances
security and renders format-preserving encryption ol vari-
able-size data object more secure by reducing the format
information leakage.

A first aspect of the mmvention provides a computer-
implemented method of performing format-preserving
encryption of a data object of variable size, the method
utilizing an 1nner encryption algorithm which 1s capable of
taking a variable size input and of outputting, as 1ts output,
an encrypted version of the vanable size input, the method
comprising: compressing or encoding the data object 1n 1ts
totality to obtain a compressed or encoded version of the
data object 1n a format compatible with the mnner encryption
algorithm; encrypting, by use of the inner encryption algo-
rithm, the compressed or encoded version of the data object
to obtain an encrypted version of the data object; decom-
pressing or decoding the encrypted version of the data object
to obtain a decompressed or decoded version of the
encrypted version of the data object; outputting, as a format-
preserved encrypted version of the data object, the decom-
pressed or decoded version of the encrypted version of the
data object.

Information leakage may hence be reduced i1f the data
object 1s compressed or encoded 1n 1ts totality (the com-
pressed or encoded version of the data object including
possible format properties such as position of ‘@’ and °.”)
whereby this format information will also be subject to the
iner encryption, instead of being passed unencrypted to the
output. Compared to the previous example, this method will
ensure that the ‘@’ and °.” typically no longer have the same
position in the encrypted version as in the non-encrypted
version.

Further, the method of the present invention does prefer-
ably not preserve any relation between the length of the
format-preserved encrypted version of the data object and
the length of the original, 1.e. non-encrypted, version of the
data object. In other words, the steps of compressing or
encoding and/or encrypting and/or decompressing or encod-
ing may be configured such that the length of the data object
1s not necessarily preserved, or even such that the length of
the data object 1s (deliberately) altered, in which case the
length of the format-preserved encrypted version of the data
object 1s (always) different from the length of the original,
1.e. non-encrypted, version of the data object.

It will be understood that, whilst the method of perform-
ing format-preserving encryption of the data object, the
inner encryption algorithm, which 1s capable of taking a
variable size mput, need not be format-preserving 1n 1tself.
The steps of compressing or encoding, on the one hand,
and/or decompressing or decoding, on the other hand, may
have format-preserving properties. The step of compressing
or encoding as well as the step of decompressing or decod-
ing may thus be carried out to retain format-preserving
capabilities of the method according to the invention, even
though the mner encryption algorithm is not necessarily
format-preserving in 1itself. In one example, the data object
to be encrypted may be provided 1n a format with a plurality
of degrees of freedom, such as length, position of predeter-

US 11,902,417 B2

3

mined characters, types of character sets applied, etc.,
whereas the mner encryption algorithm may allow fewer or
only a single degree of freedom, such as number of bits (in
case the mner encryption algorithm operates on bit strings),
or an 1teger interval/domain (in case the mner encryption
algorithm operates on integers within a given domain). The
steps ol compressing or encoding may include sub-steps of
determining a format of the data object (e.g. automatically or
through user input or other types of input), and the step of
decompressing or decoding and/or the step of outputting
may include the sub-step of rendering the format-preserved
encryption version of the data object in the same format as
the data object.

In the present context, “a format compatible with the inner
encryption algorithm™ should be understood to mean that the
step of compressing produces an output which the inner
encryption algorithm is capable of taking as an put, such
as, for example, a simplified input 1 the form of, e.g., a
string of bits or an integer within a given domain. Thus, 11
the inner encryption algorithm accepts binary input only,
then the step of compressing or encoding should produce the
compressed or encoded version of the data object 1n a binary
format, even though the data object has not been 1n a binary
format prior to the compression or encoding step.

Herein “format-preserving encryption” may be under-
stood to mean encryption, in which an iput to be encrypted
as well as an encrypted output fulfils a predetermined
definition of a given format. For instance, the format of the
encrypted version of the data object may share predeter-
mined attributes with the format of the original, 1.e. non-
encrypted version of the data object. Thus, the format of the
data object may have at least one predetermined attribute
which 1s reproduced in the format-preserved encrypted
version of the data object. The at least one predetermined
attribute may be one which 1s readable or ascertainable by a
human. For example, the at least one predetermined attribute
may comprise one or more predetermined characters in the
data object, such as one or more of the characters ‘@), point
(°.”), comma (%,”), colon (*:”), semi-colon (*;”), a dollar sign
(‘$"), °§ °, etc., and/or one or more predetermined Latin or
Greek letters and/or one or more alphanumeric numbers.
The at least one predetermined attribute may further com-
prise a position within the data object of the one or more
predetermined characters in the data object.

The expression “format-preserving properties” ol a
method or a step should be understood to mean that at least
one predetermined attribute of the data object 1s reproduced
or retaimned by the method or step concerned.

Optionally, the data object may be processed by a com-
pression algorithm to obtain a version compatible with the
inner encryption algorithm and/or decompressed in order to
convert the output of the iner encryption into the resulting
encryption version of the data object. One advantage of
using compression and/or decompression 1s that this method
can reduce the correlation between the size of the data object
and the size of the encrypted version of the data object as
compression typically converts different characters into out-
put of different size and decompression typically consumes
different sizes of input in order to output different characters.
Another potential advantage of using compression 1s that it
may reduce the size of the object to be encrypted by the inner
encryption which allows for other security techniques such
as adding padding or integrity check information at an
appropriate step of the steps of the prevent inventions.

In preferred embodiments of the present invention, the
terms “encoding” and “decoding’™ are distinctive relative to
the terms “compression” and “decompression’”, 1n that

10

15

20

25

30

35

40

45

50

55

60

65

4

encoding and decoding algorithms use a mapping table with
fixed-size encoded symbols whereas compression and
decompression algorithms use a mapping table with vari-
able-size encoded symbols.

Optionally, padding (a pre-defined or random amount of
extra information, the mmformation itself being predefined
and/or random) may be added as part of the format-preserv-
ing encryption process. By, as an example, adding a random
amount ol padding information or by padding with an
amount of information which ensures that the total size of
the padded data reaches a fixed size, the correlation between
the size of the data object and the size of the encryption
version of the data object can be reduced or even eliminated.

Thus, format information leakage resulting from unen-
crypted passing of format information from input data object
to the format-preserving encrypted output can be reduced or
avoilded. Likewise, size information leakage can be reduced
or avoided since the correlation between size of iput data
object and the {format-preserving encrypted output 1is
reduced or elimiated.

In a second aspect the invention provides a computer-
implemented method of performing format-preserving
encryption of a data object of variable size, the data object
having a predefined format and comprising a plurality of
characters occurring in at least two sequences of text char-
acters mutually separated by predefined format-defining
characters, wherein the plurality of characters and the for-
mat-defining characters define at least one format property
of the data object, the method comprising: compressing or
encoding at least one of: the at least two sequences of text
characters and the format-defining characters; and the at
least two sequences of text characters and the at least one
format property to obtain an encoded set of data; encrypting
the encoded set of data by use of an inner encryption
algorithm which 1s capable of taking a variable size mput
and of outputting, as 1ts output, an encrypted version of the
variable size input, to obtain an encrypted set of data;
decompressing or decoding the encrypted set of data to
obtain a decoded encrypted set of data fulfilling the pre-
defined format of the data object; outputting the decoded
encrypted set of data as a format-preserved encrypted ver-
sion of the data object.

The sequences of text characters as well as the format-
defining characters and/or the format property are thus
encoded, whereby the cryptographic strength of the format-
preserving encryption method of the second aspect of the
invention 1s increased relative to other methods, 1n which the
format-defining characters and/or the format property are
omitted from encoding.

Thus, as explained above 1n relation to the method of the
first aspect of the invention, this method may reduce leakage
of format information and/or size information from the mput
data object to the format-preserving encrypted data object.

In a third aspect the mvention provides a computer-
implemented method of performing format-preserving
encryption of a data object of variable size, the data object
having a predefined format, the method comprising: com-
pressing or encoding, by use of a reversible compression or
encoding algorithm, the data object to obtain a compressed
or encoded version of the data object; encrypting the com-
pressed or encoded version of the data object by use of an
iner encryption algorithm which i1s capable of taking a
variable size mput and ol outputting, as its output, an
encrypted version of the variable size mput, to obtain an
encrypted version of the data object; decompressing or
decoding, by use of a reversible decompression or decoding
algorithm, the encrypted version of the data object to obtain

US 11,902,417 B2

S

a decompressed or decoded encrypted version of the data
object fulfilling the pre-defined format of the data object;
outputting the decompressed or decoded encrypted version
ol the data object as a format-preserved encrypted version of
the data object; wherein the decompression or decoding
algorithm 1s different from a reversed version of the com-
pression or encoding algorithm.

Thanks to the decompression or decoding algorithm being
different from a reversed version of the compression or
encoding algorithm, the algorithms may be tailored such that
the compression or encoding algorithm accepts inputs where
the decompression or decoding algorithm cannot generate
such output, for example because the decompression or
decoding algorithm does not utilize the full capabilities or
accepted values of the given format and/or because the
compression or encoding algorithm cannot produce certain
values of the compressed or encoding version of the data
object. Thus, mapping tables for compression, encoding,
decompression, and/or decoding with undefined output val-
ues may be applied. This may 1n particular be an advantage
when using encoding and decoding algorithms which
encode data by mapping each symbol of the input into
fixed-size encoded versions. In particular, the use of difler-
ent encoding and decoding mappings may resolve con-
straints that would otherwise exist 11 a mapping table was to
be applied, as such mapping table would have had to allow
any value to be mapped 1n two directions (1.e. any possible
value 1n a non-encoded data object would have had to be
encodeable and at the same time, any possible value 1n an
encoded data object would have had to be decodeable).

Another potential advantage of using different decom-
pression or decoding algorithms vs. compression or encod-
ing algorithms 1s that the format-preserving encryption can
be constructed such that 1s tolerant to (minor) format errors
in the mput but at the same time guarantees that the format
of the encrypted output 1s strictly valid.

As used herein, the term “format-preserving encryption”
means that the output data resulting from the claimed
method, 1.e. ciphertext, have the same format as i1ts input
data, 1.e. of the plaintext. Thus, the ciphertext (1.e. the
encrypted data) has the same format as a predefined format
of the plaintext (1.e. the data object). Thus, for example one
or more predefined characters in the plaintext (1.e. data
object) also occur 1n their original, non-encrypted form 1n
the ciphertext. For example, 1n case the method 1s configured
to encrypt email addresses including ‘@’ and °.” characters,
then the output will appear as an email address also 1nclud-
ing ‘@’ and characters. Generally, format-preserving
encryption ensures that its output adheres to a definition of
a given format of the original data object.

The mner encryption and decryption algorithms may
include any suitable method for converting plamntext into
ciphertext that 1s not easily understood unless an appropriate
cryptographic key 1s used for decryption. The algorithms
may be of any kind known per se. For example, symmetric
or asymmetric encryption algorithms may be used. Appli-
cable algorithms include AES, RSA, and the like. Whilst
these encryption algorithms are generally not format-pre-
serving on their own, the method of the present invention 1s
format-preserving due 1its Iformat-preserving properties
which, i preferred embodiments, result from the format-
preserving capabilities rendered by the compressing or
encoding steps, and/or by the decompressing or decoding
step and/or by the outputting step.

As used herein, the term “encoding’ refers to the step of
converting data 1n one format 1nto another format, such as by
conversion of a text string into a bit string. The converted,

5

10

15

20

25

30

35

40

45

50

55

60

65

6

1.e. encoded, bit string normally has a size directly propor-
tional to the size of the input data, but 1t may alternatively

be of a size which 1s not directly proportional to the input
size. By directly proportional size 1s meant that an mput of
a given size, such as three characters, always results 1n an
encoded bit string of a predetermined size, e.g., 18 bits.
Encoding may be reversible by decoding to convert the
encoded data back into their original form.

In the present context “compression’ means conversion of
data into from one format into another format, such as by
conversion of a text string 1nto a bit string. The compressed
bit string normally has a size which 1s not directly propor-
tional to the size of the mput data. Thus, an mput of a given
s1ze, such as three characters, may result in a compressed
output bit string of a size which depends from the actual
value (1.e. content) of the mput characters. Compression
may be reversible by decompression to convert the encoded
data back into the original form.

In the method of the first aspect of the present invention,
the decompression step preferably does not perform 1nverse
operations relative to the compression step for the perfor-
mance of format-preserving encryption. However, for
decryption purposes, a decompression step 1s necessarily
used, which 1s the inverse of the compression procedure
applied for encryption. Likewise, for decryption, a compres-
s10n step 1s necessarily utilized, which 1s the inverse of the
decompression procedure used for encryption.

By analogy, 1n the method of the second and third aspects
of the present invention, decoding 1s preferably not the
inverse ol the encoding for the performance of format-
preserving encryption. However, for decryption purposes, a
decoding step 1s necessarily used, which is the inverse of the
encoding procedure applied for encryption. Likewise, for
decryption, an encoding step 1s necessarily utilized, which 1s
the inverse of the decoding procedure used for encryption.

In the present context, the term *“bit string” refers to a
sequence of bits. The term “text string”” refers a sequence of
characters that may include letters, digits, special characters,
and/or spaces or other non-alphanumeric characters.

Herein, “integer” means whole numbers including num-
bers exceeding the size of the native register size capability
of the computer system, in which the methods of the
invention are executed. Some programming languages
include software library support for dealing with integers
larger than the native capability of the computer system,
these are sometimes referred to as Biglnteger.

E-mail address has been used as an example of a variable-
s1ze format 1n this text. Other examples could be a person’s
name, a postal address, a free-text text string, a structured
text-based file, such as an XML, JSON, CSV or TXT
file’/document, or a part thereof, a text string descripting a
medical diagnosis, a product name, or a country name. Many
variable-size formats use format-defining characters. As an
example, the string “John Doe” contains a person’s name,
where the space in between “John” and “Doe” indicates
where to split the text string 1n order to obtain the two
components composing the full name: the first name “John™
and the last name “Doe”.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention will now be further
described with reference to the accompanying drawings,
wherein:

FIGS. 1-14 are flow charts illustrating embodiments of
format-preserving encryption methods according to the first,
second and third aspects of the invention;

US 11,902,417 B2

7

FIGS. 15-17 illustrate decoding of bit strings into valid
email addresses:

FIG. 18 1llustrates how a data object may be split into
components before being compressed or encoded as part of
the format-preserving encryption process;

FI1G. 19 1llustrates how the present invention may be used
to produce test data from production data;

FIG. 20 1llustrates how the format of a data object may be
detected and compressed or encoded according to the
detected format as part of the format-preserving encryption
pProcess;

FIGS. 21-24 illustrate how different keys and/or tweaks
may be used for format-preserving encryption;

FIG. 25 1llustrates three data records consisting of each
four data objects;

FI1G. 26 1llustrates a block cipher;

FIGS. 27-40 illustrate methods for compressing, decom-
pressing, encoding and decoding.

DETAILED DESCRIPTION OF EMBODIMENTS
OF THE INVENTION

A cryptographic system for format-preserving encryption
and format-preserving decryption 1s illustrated in FIG. 1.
Format-preserving encryption is illustrated in the left side of
the figure and format-preserving decryption 1s illustrated in
the right side of the figure. Format-preserving encryption
comprises the steps of compressing or encoding the plaintext
(plaintext 1s the nput to the format-preserving encryption)
into a compressed or encoded version of the plaintext. The
compressed or encoded plaintext 1s then encrypted using an
inner encryption algorithm which may also take a key and/or
a tweak as input to obtain an encrypted version of the
plaintext. Finally, the ciphertext (the encrypted version of
the plaintext) 1s obtained by decompressing or decoding the
encrypted version of the plaintext. Format-preserving
decryption 1s performed by first compressing or encoding
the ciphertext and then decrypting the compressed or
encoded version of the ciphertext using the same key and/or
tweak as used during format-preserving encryption. The
decrypted version of the ciphertext 1s then decompressed or
decoded to obtain the plaintext.

The same system 1s shown in FIG. 2 with an example
added. The text “message” 1n given as iput (plaintext) to the
system. The compression or encoding step converts the
plaintext text string “message” into the bit string 0000 101
1001 0001 1 (spaces between the blocks of 4 bits are added
for readability). The compressed or encoded version of the
plaintext i1s then encrypted. The mnner encryption algorithm
1s 1n this example also given a key and a tweak. The
encrypted version of the plaintext 1s in this example a bit
string of the same size as the compressed or encoded version
of the plaintext. This encrypted version of the plaintext is
decompressed or decoded 1n order to get a ciphertext, 1n this
case “seaesaess’’, which has the same format as the plaintext;
in this example, the format 1s defined as a text string
consisting only non-capital characters in the range ‘a’ to ‘z’.
However, 1n this example, the ciphertext has a different size
than the plaintext.

One implementation of a tweak could be to compute as
hash over the key and the tweak and use the result as key for
the mner encryption algorithm. Another implementation
could be to compute has MAC over the tweak using the key
as the MAC’s key. The result or a value dernived thereot can
be used as key for the inner encryption algorithm. Another
implementation could be to apply a block cipher where the
key 1s used as key to the block cipher and the tweak 1s used

5

10

15

20

25

30

35

40

45

50

55

60

65

8

as plaintext. The block ciphers result (ciphertext) or a value
derived thereot could be used as key for the imnner encryption
algorithm.

It will thus be appreciated that, in an embodiment of the
invention, the output format-preserved encrypted version of
the data object (the ciphertext) may has a different size than
the mput data object (the plaintext). For some formats, 1t 1s
an advantage that the ciphertext has a different size than the
plaintext as this reduces the mformation leakage as expli-
cated 1n the above summary of the invention.

The system 1illustrated in FIG. 1 can be adapted to operate
on plaintext of a given format and to generate ciphertext of
the same format. The decompression or decoding step in
format-preserving encryption can for example be con-
structed such that it ensures that format requirements are met
in the generated ciphertext. For example, when the format to
format-preserving encrypt 1s a text string with e-mail
address format, the format-preserving encryption may be
configured to handle a text string that has a ‘@’ and that 1t
has at least one aiter the ‘(@’. A trivial method to ensure this
1s stmply to decompress or decode the encrypted version of
the plaintext ito a set of characters valid in an e-mail
address with the exception of ‘@’ and add then nsert ‘@’
and °.” at random legal positions of the decompressed or
decoded set of characters. Another method 1s to decompress
or decode a part of the encrypted version of the plaintext into
a set of characters valid i an e-mail address with the
exception of ‘@’ and °.” and decompress or decode the
remaining part of the encrypted version of the plaintext into
positions of where to msert ‘@’ and °.” 1n the decompressed
or decoded set of characters.

Generally, FIGS. 1 and 2 illustrate embodiments of the
first, second and third aspects of the invention.

(Given that the data object (plaintext) 1s compressed in 1ts
totality, information leakage may be reduced as explicated in
the above summary of the invention.

FIGS. 3 and 4 illustrates that different algorithms or
different configurations of algorithms can be used as long as
the decompression or decoding step used for format-pre-
serving decryption (lower right on the figure) 1s the inverse
of the compression or encoding step used for format-
preserving encryption (upper left on the figure) and the inner
decryption step 1n format-preserving decryption 1s the
inverse of the mmner encryption step in format-preserving
encryption and the compression or encoding step used for
format-preserving decryption 1s the iverse of the decom-
pression or decoding step used for format-preserving
encryption.

FIG. 3 illustrates that the decompression or decoding 1n
format-preserving may not be the inverse of the compression
or encoding 1n format-preserving encryption. Likewise, the
decompression or decoding in format-preserving decryption
may not be the inverse of the of the compression or encoding
in format-preserving decryption.

FIG. 4 1llustrates that the decompression or decoding 1n
format-preserving may be the inverse of the compression or
encoding 1n format-preserving encryption. Likewise, the
decompression or decoding in format-preserving decryption
may be the mverse of the of the compression or encoding in
format-preserving decryption.

It will thus be appreciated that, in an embodiment of the
invention, the steps of compressing or encoding and decom-
pressing or decoding utilize different schemes, such as a:
different configurations of a compression and decompres-
s1on algorithm, b: different configuration of an encoding and
decoding algorithm, ¢: compression used at one step and
decoding used at another step, or d: encoding used at one

US 11,902,417 B2

9

step and decompression used at another step. Generally,
utilization of a diflerent scheme for compression or encod-
ing and decompression or decoding has the advantage that 1t
simplifies the design of a format-preserving encryption for
variable size data objects. Constructing a compression or an
encoding algorithm that can take any valid formatted data
object and convert 1t into a form compatible with encryption
and where its inverse can convert any form of the encrypted
version of any plamtext into a validly formatted plaintext
may oiften be more cumbersome than constructing two
algorithms for compression/encoding and decompression/
decoding, respectively.

FIG. 5 1llustrates how padding can be added before the
iner encryption step and/or after the mner encryption step.
Padding before inner encryption may be performed to satisty
constraints 1mposed by the encryption algorithm (for
example 1f the encryption algorithm only supports certain
sizes of mput or impose other constraints on the input).
Padding may be performed to satisiy constraints imposed by
the decompression or decoding algorithm (for example a
mimmum size). Padding may be performed to reduce cor-
relation between size of plaintext and size of ciphertext.
Padding may expand the compressed plaintext to a fixed size
in order to remove correlation between size of plaintext and
s1ze of ciphertext.

It will thus be appreciated that, in an embodiment of the
invention, at least one of the compressed or encoded version
of the data object and the encrypted version of the data
object comprises a bit string, the method further comprising
padding at least one of the compressed or encoded version
of the data object and the encrypted version of the data
object by adding one or more bits of padding information to
the at least one of the compressed or encoded version of the
data object and the encrypted version of the data object prior
to either one of the steps of encrypting and decompressing.
Generally, utilization of padding may increase the security
by reducing correlation between ciphertext and plaintext or
may make the compressed or encoded version of the data
object or the encrypted version of the data object compatible
with encryption or decompression or decoding algorithms.

Padding may contain random data. Padding may contain
predefined data. Padding may contain data dernived from
plaintext, key or tweak.

By padding with non-predictable data, for example ran-
dom data, the overall encryption algorithm can become
non-deterministic, 1.e. 1f the same message 1s encrypted two
times with the same key (and same tweak, 11 used), the
output will be different (or diflerent with a given probability,
dependent on likelthood of collisions 1n the padding data).
But still, the decryption algorithm can bring back the origi-
nal plamtext. An advantage of non-deterministic encryption
1s that someone with access to encrypted records cannot
determine 11 the corresponding non-encrypted records con-
tain values that are repeated.

It will thus be appreciated that, in an embodiment of the
invention, the step of encrypting and/or any preceding step
1s carried out to render the encrypted version of the data
object non-deterministic.

By padding with predicable data or data that can repeat-
edly be recreated, the overall encryption algorithm can
become deterministic, 1.e. 1f the same message 1s encrypted
two times with the same key (and same tweak, 1f used), the
output will be the same. An advantage ol deterministic
encryption 1s that relations between data objects and data
records are preserved. This can for example be an advantage
if encrypted data 1s used as test data.

10

15

20

25

30

35

40

45

50

55

60

65

10

Padding algorithms are typically constructed in a way
such that they can be reversed, e.g. the padding can be
removed before or during the mnner decryption. Padding may
use a known algorithm for padding, such as ANSI X.923,
ISO 10126, PKCS7, or ISO/IEC 7816-4. Padding may
comprise adding one bit with the value 1 and any number of
bits with the value O (or 1 and 0 may be swapped).

Padding may respect the format of the compressed plain-
text and/or format of encryption algorithm, including binary,
integer, or iteger with a domain.

When decrypting a ciphertext, the padding may have to be
removed before and/or after the decryption step. Most
padding schemes are constructed such that the padding can
be removed by means of an appropriate algorithm. In some
designs of the system, padding may not need to be removed
alter the decryption step, for example 1f the compression
used during encryption have embedded size information or
end-of-data marker(s) 1 the compressed data, since the
decompression during decryption then can know when 1t
does not need to process more decrypted decompressed
ciphertext.

FIG. 6 1llustrates a method for ensuring that the generated
ciphertext meet eventual format property constraints. If the
encryption of a plaintext leads to a ciphertext not meeting a
format property constraint (for example exceeds size maxi-
mum, does not contain required characters, contain illegal
characters, or an e-mail address does not have a valid format,
¢.g. does not contain one ‘@’ and one or more
subsequent °.”), the decompression or decoding can be
performed again on the encrypted compressed plaintext, but
with a different decompression algorithm or decoding algo-
rithm or with a different decompression algorithm configu-
ration (for example a different symbol mapping) or decoding
algorithm configuration. This may, if needed, be repeated
based on a set of available decompression algorithms or a set
of available decompression algorithm configurations. In
order to ensure that the appropriate decompression algo-
rithm or decompression algorithm configuration 1s used for
decompression 1n the decryption tlow as part of format-
preserving decryption, 1t may be needed to embed informa-
tion 1n the generated ciphertext. An example could be that 1T
the first letter of the ciphertext 1s a capital letter, then
decompression method 1 1s used; else decompression
method 2 15 used.

Another method 1s to repeat the encryption step where the
output of the previous encryption step 1s used as input to the
next encryption step until decompression of the output of the
compression step leads to a ciphertext which meets the
constraints.

It will thus be appreciated that, in an embodiment of the
invention, the steps of a: compressing or encoding, b:
encrypting and c¢: decompressing or decoding are performed
by use of a first set of configuration data by use of a first set
of algorithms 1n steps a, b and c, the method further
comprising the steps of: determining a format property, such
as a size, ol the format-preserved encrypted version of the
data object; determining 1f the format property of the format-
preserved encrypted version of the data object complies with
a predetermined constraint; and 1f the characteristic fails to
comply with the predetermined constraint: redoing at least
one of steps a, b and ¢ by use of second configuration data
different from the first configuration data and/or use of
second type of algorithm 1n at least one of steps a, b and ¢
different from the first algorithms to obtain a new format-
preserved encrypted version of the data object. Generally,
utilization of redoing a step with a different configuration
may allow the format-preserving encryption to respect cer-

US 11,902,417 B2

11

tain constraints on format properties on the ciphertext. The
step may be carried out repetitively until the predefined
constraint 1s met.

It will thus be appreciated that, in an embodiment of the
invention, the steps of a: compressing or encoding, b:
encrypting and c¢: decompressing or decoding are performed
by use of a first set of configuration data by use of a first set
of algorithms i steps a, b and ¢, the method further
comprising the steps of: determining a format property, such
as a size, of the format-preserved encrypted version of the
data object; determining 1f the format property of the format-
preserved encrypted version of the data object complies with
a predetermined constraint; and 1f the characteristic fails to
comply with the predetermined constraint: applying the
encryption algorithm to the encrypted version of the data
object to obtain a further encrypted version of the data
object, and decompressing the further encrypted compressed
version of the data object to obtain a new format-preserved
encrypted version of the data object. Generally, utilization of
applying the inner encryption algorithm on the encryption
version of the data object may allow the format-preserving,
encryption to respect certain constraints on format properties
on the ciphertext. The mner encryption algorithm may be
utilized repetitively until the predefined constraint 1s met.

Another method 1s to repeat the entire format-preserving
encryption on the ciphertext of the previous application of
the format-preserving encryption until the format property
constraints are met.

FIG. 7 illustrates how a number (two or more) of plaintext
objects can be format-preserved encrypted together. The
plaintext objects are first compressed or encoded individu-
ally. Then, the results of the compression or encoding are
combined using a suitable method. The combined data 1n
processed by the inner encryption and thereafter split again.
The split objects are decompressed or decoded to arrive at
the ciphertext objects. FIG. 8 illustrates another method for
format-preserved encryption of a number of plaintext
objects together. In this method, the combination 1s per-
tformed before the compression or encoding. In one embodi-
ment, the number of ciphertext objects 1s equal to the
number of plaintext objects. In one embodiment, each
ciphertext object has the same format as a corresponding
plaintext object. In one embodiment, the type of at least one
ol the ciphertext objects and corresponding plaintext objects
have a fixed-size format and the split step has been designed
such that i1t ensures that the fixed-size ciphertext objects waill
have the appropriate size. In one embodiment, padding data
1s added before or after iner encryption.

An mtegrity check value (also known as authentication
data) may be embedded into the ciphertext by the format-
preserving encryption to allow verification of the integrity of
the ciphertext as part of the format-preserving decryption or
independent of the format-preserving decryption. FIG. 9
illustrates how the integrity check value can be appended or
integrated at any step. The integrity check value may be
computed as a MAC (message authentication code) fully or
partly computed on plaintext or data derived from the
plaintext. The key to the MAC may be the same key as used
for encryption or derived from the encryption key or from a
key where the encryption key 1s also derived. The integrity
check value may be derived from a hash function fully or
partly computed on plamntext or data derived from the
plaintext.

FIG. 10 illustrates encryption with embedded integrity
check information. In the left side of the figure, the plaintext
1s processed by a MAC function given a key. The output
from the MAC function 1s then further processed to extract

10

15

20

25

30

35

40

45

50

55

60

65

12

n bits of information. In the right side of the figure, the
plaintext 1s compressed or encoded and padding 1s added to
the compressed or encoded plaintext. This padding includes
the n bits extracted from the result of the MAC function.
This padded compressed plaintext i1s encrypted, further
padded and decompressed or decoded 1n order to arrive at
the ciphertext. The key used for MAC computation may be
the same or different from the key used for inner encryption.
The key used for MAC computation may be derived (fully
or in part) from another key; the key used for imnner encryp-
tion may be derived (fully or in part) from the same other
key.

It will thus be appreciated that, in an embodiment of the
invention, adding authentication data to at least one of the
data object, the compressed or encoded version of the data
object, the encrypted version of the data object, and the
format-preserved encrypted version of the data object; and

authenticating at least one of the data object, the com-
pressed version of the data object, the encrypted version of
the data object, and the format-preserved encrypted version
of the data object by verifying the authentication data added
during the further operations. Generally, utilization of
embedded authentication data enhances security be allowing
the recerver of an encrypted data object to verity if the data
object 1s authentic or 1f 1t has been tampered.

FIG. 11 illustrates a method for compressing or encoding,
a text string formatted as an e-mail address where the text
string 1s first split at the ‘@@’ and thereafter split at the
subsequent °.” (one or more). In this example, the splits lead
to three text strings, which are compressed or encoded
individually. The compressed or encoded text strings are
then combined to get an encoded set of data which can be
encrypted using an mner encryption algorithm. The entire
process of compressing or encoding and combining should
be executable 1n a reversible manner. The reversibility can
for example be ensured by encoding EOD markers during
the compression or encoding steps (may be omitted from
one), such that, during decompression or decoding, 1t can be
determined when one substring ends and the next begins.
Another method could be to include compressed or encoded
size information. In this example, 1t 1s straight forward to
assemble the substrings into the plaintext in when the
encoding 1s reversed, simply by taking the first substring, a
‘t@’ and the second substring and combine them. To that
intermediate string, °.” and the next substring 1s appended
(repeatedly if the plamntext has several °.” after the ‘@’).

FIG. 12 illustrates a method for compressing or encoding,
a text string formatted as an e-mail address where the text
string 1s first split at the ‘@’ and thereafter split at the
subsequent (one or more). In this example, the splits lead to
three text strings, which are combined before being com-
pressed or encoded 1n order to get the encoded set of data.

FIG. 13 1illustrates how format properties, such as the
positions of ‘@’ and °.” can be compressed and encoded and
then combined with the compressed or encoded version of
the substrings 1n order to achieve the encoded set of data.

It will thus be appreciated that, in an embodiment of the
invention, the data object comprises a plurality of characters,
and wherein the step of compressing or encoding utilizes a
scheme which maps one or more of the characters into a
mapped partial output, and wherein the scheme 1s configured
to 1dentily at least one predetermined format property of the
data object, and wherein the scheme 1s further configured to
map the one or more characters and the format property, so
as to render the compressed or encoded version of the data
object dependent from the one or more characters and the at
least one format property. Generally, compressing or encod-

US 11,902,417 B2

13

ing format properties allows for compressing or encoding
data objects of complex structures.

FI1G. 14 illustrates format-preserving encryption of a data
object of a predefined format, 1n this example the e-mail
address “name(@domain.com”. The format of an e-mail
address 1s characterized by being a text string containing: 1.
One or more characters, numbers, or certain symbols. 2. One
‘(@’, 3. One or more (typically two or more) text strings of
characters separated by The entire e-mail address 1s encoded
character-by-character into a bit string using a reversible
encoding which can accept any character which 1s legal 1n
the format of an e-mail address, including ‘@’ and °.”. The
encoded e-mail address bit-string 1s appended by a number
of padding bits. The padded encoded e-mail address 1is
encrypted using an inner encryption algorithm given a key
and optionally a tweak. The encrypted padded encoded
¢-mail address 1s decoded 1nto a text string having a valid
¢-mail address format using an appropriate decoding algo-
rithm. This decoding algorithm 1s constructed such that it
ensures that the e-mail address contains exactly one ‘@’ and
at least one °.” after the (@’ where each ‘@’ and °.” have at
least one character on both sides. Decryption of the
encrypted e-mail address can be performed by first decoding
the encrypted e-mail address into a bit string. This bt string,
1s decrypted and the padding 1s removed. This bit string 1s
then encoded in order to arrive at the plamtext e-mail
address.

FIG. 15 1llustrates an example of a first step of a decoding,
algorithm for decoding a bit string into a test string having
a valid e-mail address format. The first two bits of the bit
string used to select a pattern for where to nsert ‘@’ and °.’.
using a pattern selector table as illustrated 1n FIG. 16. The
remaining bits of the bit string are decoded 1nto a text string,
contaiming characters which are valid at any position at an
¢-mail address. Finally, ‘@’ and °.” are inserted into the
decoded text string according to the pattern as illustrated 1n
FIG. 17 1n order to form a text string having a valid e-mail
address format. To encode this text string back into a bit
string, the positions of the ‘@’ and °.” symbols 1n the text
string are determined and using the table 1n FIG. 16, the first
two bits of the bit string are recovered. The text string
excluding the ‘@’ and °.” are then encoded and the result of
this decoding 1s appended to the first two bits already
encoded 1n order to obtain the resulting encoded bit string.

An alternative decoding algorithm could simply decode
the entire bit string into a test string and then 1mnsert a ‘@’ and
*.” thereafter a into the test string at any random or predefine
positions in order to give it a valid e-mail address format. To
encode this string back into a bit string, the ‘@@’ and °.” are
first discarded. Thereafter, the remaining text string 1is
encoded 1nto a bit string.

The encoding used 1n the encryption process may not be
able to generate all possible bit strings. And likewise, the
decoding used 1n the decryption process may not be able to
decode all possible bit strings. But the decoding used 1n the
decryption process should be able to decode any bit string
generated by the encoding 1n the encryption process. And the
encoding used 1n the encryption process should be able to
encode any plaintext adhering to the specified format of the
plaintext. The decoding 1n the encryption process may not be
able to generate all possible ciphertexts. And likewise, the
encoding used 1n the decryption process may not be able to
decode all possible ciphertexts. But the encoding used 1n the
decryption process should be able to encode any ciphertext
generated by the decoding 1n the encryption process.

FIG. 18 illustrates an example of format-preserving
encryption of an e-mail address. First, plaintext string 1s split

10

15

20

25

30

35

40

45

50

55

60

65

14

at the ‘(@’. The substrings before and after ‘(@’ are com-
pressed or encoding using different mapping tables since the
definitions of legal characters are diflerent before and after
‘t@’. The part after ‘@’ may even be converted to lower-
case-only before compression or encoding since that part 1s
not case-sensitive 1n an e-mail address. The compression or
encoding algorithm processing the part after ‘@’ may be
able to recognize common substrings, such as “gmail”,
“yahoo™, “hotmail”, and “.com”, and map these into one
compressed or encoded symbol. The encoded versions of at
least one of the strings may include size information or EOD
marker to guide a decompression or decoding step per-
formed during format-preserving decryption where to split
the two substrings. The two substrings are then combined
and padding may be added. The result 1s then encrypted
using the mner encryption algorithm. The output of encryp-
tion may be further padded to ensure compatibility with
decompression or decoding. Finally, a decompression or
decoding method 1s applied, this method 1s constructed such
that i1t 1s guaranteed that the output ciphertext has a legal
¢-mail format.

FIG. 19 illustrates how format-preserving encryption may
be used to convert data from a production IT system
(potentially being personally identifiable information and/or
confidential information) into test data to be used 1n a
non-production IT system. The format-preserving encryp-
tion can ensure that privacy and confidentiality will not be
compromised by this operation.

FIG. 20 illustrates an example of format-preserving
encryption where the plaintext where the plaintext can
belong to one of a predefined set of format groups. Format
groups can for example be diflerent formats of a person’s
name; one group being names contaimng Latin letters, a
second group containing Arabic letters and third group
containing Chinese letters. Another example of format
groups 1s that the explicit format of a data record it not
known; 1t may have one of several formats, the plaintext can
for example hold either an e-mail address, a person’s name,
or an address. In the example, the first step 1s to detect which
format group matches the plaintext. Thereatfter, the plaintext
1s processed by the appropriate configured compression or
encoding algorithm, padding 1s added, and the result is
processed by the inner encryption algorithm. The encrypted
version of the plaintext 1s then decompressed or decoded,
often with a configuration equvalent to the one used for
compression or encoding such that the ciphertext belong to
the same format group as the plaintext. There may be
applications, however, where i1t 1s not desirable that the
ciphertext belong to the same format group as the plaintext;
in that case the encrypted version of the plaintext may
always be decompressed or decoded into the same format
group or the format group may be chosen at random or
derived from the encrypted version of the plaintext, e.g. by
decompressing or decoding a part of the encrypted version
of the plaintext.

Format-preserving encryption and format-preserving
decryption of an e-mail address 1s 1llustrated 1n FIG. 21. The
c¢-mail address represented by the text string
“name(@domain.com” 1s processed by the encryption algo-
rithm wusing a key into the encrypted test string
“eoz(@pgmygalnem”. The encrypted text string 1s a valid
formatted e-mail address but the original e-mail address
cannot be derived from the encrypted string without know-
ing the key used 1n the encryption step.

Format-preserving encryption under two different keys 1s
illustrated 1n FIG. 22. Even though the same e-mail address
1s given as mput to the same encryption function, the

US 11,902,417 B2

15

encrypted text strings are different since the two encryption
operations used different keys.

Format-preserving encryption may also depend on a
tweak. The tweak 1s given as input to the encryption
algorithm together with the key. As illustrated 1n FIG. 23, 1f
the same mput 1s provided, 1n this example
“name(@domain.com”, this results in different outputs 11 the
tweaks are diflerent even 11 the keys are the same. In contrast
to a key, a tweak may 1n many applications be known to an
adversary without compromising the system’s security.
“Tweak” 1s similar or related to the terms “imitialization
vector”, “IV”, salt or “nonce” 1in many texts. An example of
an encryption setup using tweak is illustrated 1in FIG. 24,
where two data objects named “Name™ and “City”™ are to be
encrypted. The data object named “Name™ 1s encrypted
under the key named “Key2” mto “Encrypted Name”. The
data object named “City” 1s encrypted under “Keyl” and
using “Name” as tweak 1nto “Encrypted City”. As a conse-
quence, 11 two data records have the data objects “Name”
and “City” where “Name” are different, “Encrypted City”
will be different for the two encrypted data records even if
the values of “City” in the non-encrypted data records are
the same. An alternative setup could be that “Encrypted
Name” 1s used as tweak instead of “Name”. A record ID,
such as a database primary key, may also be used as a tweak.
A date and/or time may also be used as a tweak.

FIG. 25 illustrates 3 data records with each 4 data objects
resulting 1n a total of 12 data objects. In the example, the 4
data objects per data records are named “First name™, “Last
name”, “E-mail address” and “Phone number”. The data
records may for example be rows 1n a database table or view,
objects 1n a structured or semi-structured file format or data
records stored 1n memory. The data records may for example
be represented 1n the C++ programming language as a struct
or as a class or 1n the Java programming language as a class.

Records may be nested, 1.e. one field 1n one record may
contain a data object which in 1itself 1s a data record
containing data objects, efc.

It will thus be appreciated that, in an embodiment of the
invention, the data object has been derived from a data
record comprising the data object and at least one associated
data object, and wherein at least one of the steps of a:
compressing or encoding, b: encrypting, ¢: padding and d:
decompressing or decoding depends on at least a portion of
the associated data object or data derived from at least a
portion of the associated data object. Generally, utilization
of a tweak enhances cryptographic strength since it can
ensure that 1f two data objects related to two diflerent data
records have the same values, the encrypted versions of the
two data objects have diflerent values. Thus, an adversary
having access to the encrypted data cannot determine that
the plaintext versions of the two data objects had the same
value.

Some textual or numerical data formats have a fixed size.
Example of fixed-size data formats are credit card numbers,
social security numbers, bank account numbers, phone num-
bers, and postal codes. Note, however, that all these
examples only have a fixed size within certain restrictions,
typically geographical restrictions. For example, a US postal
code may consist of five digits or alternatively five digits
followed by a °-” and four digits whereas a UK postal code
consists of two to four alphanumeric characters, a space and
three alphanumeric characters. The fixed-size data formats
mentioned, with the exception of credit card numbers,
typically have different sizes in different countries. For
credit card numbers, the size 1s often 16 digits, but some
1ssuers use fewer and some use more digits. In reality, credit

5

10

15

20

25

30

35

40

45

50

55

60

65

16

card numbers can be between 12 and 19 digits long. Thus,
an information processing or storage system utilized 1n
embodiments of the present invention may in reality treat
data of these formats as variable-size in order to be able to
handle any possible format.

Some textual or numerical data formats have a variable

s1ze. Examples are names, addresses, e-mail addresses, web
site URLs, labels, monetary amounts, IP numbers, XML,
data, JSON data, and free texts. Some of these formats put
requirements on the text characters, digits and/or special
characters digits contained 1n the data object. For example,
an e-mail address must contain a ‘@’ as well as at least one
after the ‘@’. Another example 1s that most information
processing or storage systems impose limits on the size of
the data objects.

Data objects may also be of binary nature like for example
a file containing a file or a compressed archive or encrypted
information. Binary data objects may be stored directly 1n
files or as binary objects 1n databases or within data records
or converted to text form (for example via hexadecimal
encoding or base64 encoding). Binary data converted or
encoded to text may be used 1n similar as other textual data.

In some mformation processing or storage applications,
some or all data objects may be empty or may hold the value
null to indicate that the data object 1s not populated.

In one embodiment of the present invention, a structured
or semi-structured file or data object, such as XML, or
JSON, 1s encrypted using format-preserving encryption. The
method may for example be constructed such that element
content and attribute values are encrypted but overall file
structure, element tags and attribute keys/names are not
altered. In one embodiment, only element content of certain
clement types/elements with certain names or only attribute
values of certain types of attributes/attributes with certain
keys/names are encrypted.

A conventional block cipher as 1llustrated 1n FI1G. 26 takes
a block of a fixed size, usually 128 bits, as mnput and encrypts
it mnto a block of the same size. The un-encrypted input 1s
typically called plaintext and the encrypted output 1s usually
called ciphertext. The block cipher also takes a key as input,
typically with a size of between 128 bits and 256 bits. The
block cipher can decrypt the ciphertext into the original
plaintext provided that the same key 1s given to the decryp-
tion algorithm as was given to the encryption algorithm.

Some block ciphers have a configurable block size such
that the user of the algorithm can choose the size of the
plaintext and ciphertext. There may be some constraints to
the block size, for example a minimum size, a maximum S1Ze
and/or that the size has to be a multiple of for example 2.

Some block ciphers have plaintext and ciphertext which
are integers within a certain domain. For example, 11 the
domain 1s defined as O to 999, any 1integer number between
0 and 999 (both included) can be given as plaintext and the
encryption algorithm will then give a ciphertext also in the
domain from O to 999. The domain may be configurable.
There may be some constraints to the domain, for example
a minimum number of numbers 1n the domain, a maximum
number of numbers in the domain, that the number of
numbers 1n the domain must be a multiple of for example 2,
that the number of numbers must be a power of 2, and/or that
it can be factonized into two factors of similar size. Block
ciphers operating on a domain may be suitable to operate on
output of the compression algorithm 1illustrated in FIGS. 34
to 37.

In one embodiment of the present invention, the inner
encryption algorithm comprises a block cipher.

US 11,902,417 B2

17

In one embodiment of the present invention, the inner
encryption algorithm 1s a public key encryption algorithm,
such as RSA.

Data compression 1s the art of representing a data object
in a compact way. Data compression can be either lossless
or lossy. In lossless compression, the exact original data
object can be restored upon decompression whereas in lossy
compression, only an approximate data object can be
restored upon decompression. Lossy compression 1s often
used for compression audio/video content as the lost details
often can be accepted and since the greater compression
ratio typically offered by lossy compression 1s typically
required 1n order to compress the audio/video data down to
an acceptable size.

One method for lossless data compression 1s Huflman
coding. In Huflman coding, a mapping table 1s constructed
between mput symbols and their encoded representation
where the encoded representations typically have diflerent
size. The mapping table 1s typically arranged such that
frequent symbols are encoded into shorter representations
whereas less frequent symbols are encoded into longer
representations.

For use in the present invention, Huffman mapping tables
or other compression/encoding procedures may be con-
structed with priorities other than to mimimize the size of
theirr output. For example, compression/encoding proce-
dures may be tailored to output data having unpredictable
s1ze. The mapping tables may, for example, be generated on
the basis of a cryptographic procedure such that the mapping
table depends on a key. This dependency may for example
be achieved by feeding the key as seed to a pseudo-random
number generator and then use data generated by the
pseudo-random number generator to define the mapping
table or part thereof. A construction where the mapping table
depends on a key may have the advantage that the mapping
table 1s unknown to an adversary which may contribute to
turther security of the solution.

Different parts of a data object may be compressed usmg
different mapping tables. For example, when compressing
an e-mail address, the part before ‘@’ may be compressed
using a mapping table which preserves 1s letters are capital
letters or non-capital letters whereas the part after ‘@’ may
be compressed using a mapping table which 1s not case-
sensitive, since domain names are not case-sensitive. The
switch between the mapping tables can happen seamlessly
simply by monitoring 1f a ‘@’ has been encountered while
processing the data object.

The symbols 1n the mapping table may for example
consist of individual characters, sequences of characters, an
end-of-data marker (sometimes referred to as EOD), prop-
erties (e.g. a character string’s size) or a combination of any
of these. In case several data objects or several distinct parts
ol a data objects are coded together, 1t may be beneficial to
either encode mformation about the objects’ or parts’ sizes
or to msert an end-oi-data marker at the end of each object
or part to indicate where an object or part ends and the next
starts.

As an example, we will encode the text string “message”
using the mapping table 1n FIG. 27. The encoding 1s illus-
trated 1n FIG. 28. ‘m’ 1s encoded as 0000, ‘e’ 1s encoded as
1, etc. The resulting encoded version of ‘message’ becomes
the bit string 00001010100100011.

Decoding a bit string into the original object can be
performed either by searching the mapping table (as illus-
trated in FIG. 27) for symbols matching the bits of the bit
string. An alternative method 1s to build a tree from the
information 1n the mapping table as illustrated in FIG. 29. In

10

15

20

25

30

35

40

45

50

55

60

65

18

this tree, each symbol 1s decoded by starting at the left and
moving step-by-step to the right by going up 1t the next bit
1s 0 and going down if the next bit 1s 1 until a symbol has
been reached. In this way, 0000 becomes ‘m’, 1 becomes ‘¢’
01 becomes s, etc.

For more information, see Huflman, D. (1932). “A
Method for the Construction of Mimmum-Redundancy
Codes”.

The mapping tables may be predefined. The mapping
tables may be derived from some information known both at
time of encoding and time of decoding. The mapping tables
may be adaptive as explamned 1n J. S. Vitter, “Design and
Analysis of Dynamic Huflman Codes™, Journal of the ACM,
34(4), October 1987, pp 825-845 and Donald E. Knuth,
“Dynamic Huflman Coding”, Journal of Algorithm, 6(2),
1985, pp 163-180.

Another method for lossless data compression 1s Arith-
metic Coding, where symbols are encoded into intervals of
rational numbers. A mapping table 1s constructed between
input symbol and a rational number 1nterval as 1llustrated 1n
FIGS. 30 and 31. As an example, we will encode the text
string “‘pizza’ using this mapping as illustrated in FIG. 32.
The first character, ‘p’, 1s encoded as a rational number in the
interval 0.4 to 0.6. To encode the next character, ‘1’, the
interval i FIG. 31 1s scaled to fit 1n the interval 0.4 to 0.6.
The character sequence “p1” 1

p1” 1s thus encoded as the rational
number interval 0.44 to 0.48. This algorithm 1s repeated until
all characters has been encoded. In this way, “pizza”
becomes the interval 0.47360 to 0.47488. To convert this
interval mto a binary representation, the interval 1s first
converted from decimal form to binary form as illustrated 1n
FIG. 33. The shortest binary rational number to {it 1n the
range 1s 0.011110011, from which the heading zero and dot
are removed. The resulting binary encoding of “pizza™ this
way become 011110011. Decoding 1s performed by convert-
ing the binary encoding back into a rational number
(0.011110011 becomes 0.474609375) and then walking
through FIG. 32 from left to right again where the rational
number decide which characters to decode and thus how to
scale the interval 1n FIG. 31.

For more information, see Witten, Ian H.; Neal, Radford
M.; Cleary, John G. (June 1987). “Anthmetic Coding for
Data Compression”.

Another method for compression uses integer numbers
can be constructed by operating with two variables named
value and domain 1n integer form. A design of a mapping
table to encode “message” 1s 1illustrated in FIG. 34. The
characters are distributed as fractions. Often diflerent
denominators will be used and often the most common
symbols will be given the least denominators in order to
grant them a larger part of the encoding space. A mapping
table 1s then constructed by using the denominator describ-
ing the granted part of the encoding space as “encoded
domain” and the numerator as “encoded value” as 1llustrated
in FIG. 35. FIG. 36 shows how “message” 1s then encoded.
For each symbol, the encoded value and encoded domain are
looked up 1n the mapping table. Value and Domain are then
computed. Value 1s the previous value multiplied by
Encoded Domain and added with Encoded Value. Domain 1s
the previous value of Domain multiplied by Encoded
Domain. The initial values of Value and Domain are 1. In

this example, “message” 1s encoded 1nto the value 53643 n
the domain 59049 (1.e. 0 to 59048, both inclusive).

The value 53643 in the domain 59049 can be decoded as
illustrated 1n FIG. 37. The fraction 53643/59049 corre-
sponds to the symbol ‘m’ 1n FIG. 34 since it 1s larger than
or equal to % and less than 1. This 1s written in the first line

US 11,902,417 B2

19

of FIG. 37. The Domain 1n the next line 1s the Domain from
the line above divided by the Encoded Domain. The Value
of the next line 1s the Value of the live above minus the
Domain multiplied by numerator of the Fraction of the line
above (1.e. 53643-(8%6561)). This algorithm 1s repeated
until the Domain reaches 1. In this way, “message” has been
decoded.

It will thus be appreciated that, in an embodiment of the
invention, at least one of the compressed or encoded version
of the data object and the encrypted version of the data
object comprises a pair ol integers representing a domain
variable and a position variable, wherein the position vari-
able represents a value within a range of possible values
defined by the domain variable. Generally, compressing or
encoding a data object 1into a pair of integers representing a
domain variable and a position variable 1s a method allowing
for converting a data object of virtually any format to be
converted into a format which can be encrypted or decrypted
using an encryption algorithm capable of processing a
position variable within a domain.

Padding can be applied to the pair of integers by increas-
ing the domain variable and eventually also modifying the
value vaniable appropriately. The modification to the domain
variable may reflect padding inserted 1n binary padding.

Mapping tables for encoding may contain more than
characters. FIG. 38 illustrate a Huflman mapping table
containing 5 single-character symbols along with 2 multi-
character symbols and two control symbols (EOD 1s end-
of-data marker and Repeat last means repeat last symbol).
Using this mapping table, the test string “mee(@gmail.com”
would be encoded mto 11111-1101-00-11101-100-101-01.

It will thus be appreciated that, in an embodiment of the
invention, the data object comprises a plurality of characters,
and wherein the step of compressing or encoding utilizes a
scheme which maps one or more of the characters into a
mapped partial output, and wherein the scheme 1s configured
to 1dentity at least one predetermined character sequence
within the data object and to map any identified such
predetermined character sequence into a predetermined
value representing the mapped partial output. Generally,
compressing or encoding character sequences can allow the
compressed or ecoded version of the data object to be more
compact which may facilitate less correlation between size
of mput and size of output and/or allow for eventual size
overhead 1mposed by for example padding, encryption or
adding authentication data without the ciphertext version
becoming too big.

The encoded values, encoded intervals or encoded value
and domain 1n mapping tables may be defined dependent on
a key such that the way the algorithms compress and/or
decompress changes as the key changes. Key-dependent
mapping tables may be used to increase the security of the
encryption method. For example, key-dependent decom-
pression during encryption (and corresponding key-depen-
dent compression during decryption) may make it harder for
an attacker to determine and revert the padding added after
the encryption step.

In preferred embodiments of the present invention, the
terms “encoding” and “decoding’” are distinctive relative to
the terms “compression” and “decompression’”, 1n that
encoding and decoding algorithms use a mapping table with
fixed-size encoded symbols whereas compression and
decompression algorithms use a mapping table with vari-
able-size encoded symbols. FIG. 38 illustrates a mapping
table for compression (the “encoded” column have variable

10

15

20

25

30

35

40

45

50

55

60

65

20

s1zed value) whereas FIG. 39 1llustrates a mapping table for
encoding (the “encoded” column have value with same
S1Z¢€).

In one embodiment of the present invention, an encoding,
algorithm 1s configured such that some encoded values are
not utilized as illustrated 1n FIG. 39, where a message to
encode 1s using an alphabet containing the letters “a” to “1”.
As a consequence, some encoded value will not appear 1n an
encoded version of a data object (the binary values 110 and
111 1n the example). Because of this, some bit string are not
valid encoded bit strings as the encoder would never gen-
crate these bit strings (11 non-used encoded values appear 1n
the bit strings). If one attempts to decode an invalid bit
string, the decoder will not know how to represent the
non-used encoded values as a symbol and the decoding
should thus {fail.

In one embodiment of the present mnvention, a decoding
algorithm 1s configured such that some otherwise valid
symbols will are not utilized as illustrated in FI1G. 40, where
the encoded bit string to decode 1s split into two-bit com-
ponents which will then be decoded. As two bits can
represent four values (00, 01, 10, and 11), two symbols of
the used alphabet of 6 letters “a” to “I”” are not used (“¢” and
“1” 1n this example).

One variant of encoding using a fixed-size output could be
to use the method illustrated by FIG. 33 but to have a fixed
encoded domain.

One advantage of using a compression algorithm to
convert for example a text string of a given format 1nto a bit
string 1s that 1t can often generate a shorter bit string than the
simpler encoding. One advantage of using a compression
algorithm to convert for example a text string of a given
format into a bit string 1s that the compression algorithm 1s
not bound on any constraints to the size of the number of
encoded values are illustrated in FIGS. 39 and 40.

In the following example, the input/plaintext and output/
ciphertext have the same format but some restrictions are
imposed on the ciphertext format.

Example: In case the mput/plaintext 1s provided in a
format which allows Unicode characters (i.e. character set
which includes a wide range of characters in extend to the
original US ASCII character sets, such as Russian, Arabic or
Hebrew letters) but the encryption system enables the
encrypted messages to use only a restricted subset of the
total character set (e.g. use only ASCII characters) but still
allows that the plaintext data may contain characters outside
of the ASCII character set.

In this case, the solution may encompass encryption
where the encoding/compressing step uses an algorithm
supporting the entire Unicode character set (or a relevant
subset thereol) but the decoding/decompression step only
supports ASCII characters.

Application example: A database of North-American
users. The vast majority of name entries 1n the database only
uses ASCII characters. But few name entries use characters
outside of the ASCII char set. If the encryption should
support the entire Unicode character range, 1t would (in the
simple/naive implementation) use all possible output char-
acters with an even distribution. Thus, non-ASCII characters
would be very dominant in the encrypted version (since
ASCII characters in count of different characters 1 a very
small subset of the total set of available characters). This
would be a contrast the non-encrypted data, where non-
ASCII characters were almost non-existing.

In a more generalized version, one configuration may be
used for encoding/compression and another for decoding/
decompression (swapped for decryption, as shown i FIG.

US 11,902,417 B2

21

3). This setup may even be used to convert from one format
to another format. For example, plain text may be an e-mail,
and the cipher text may be a person’s name. This technique
1s sometimes called format-transforming encryption—the
encryption transforms from one format (e.g. name using the
entire Unicode character set) into another format (e.g. name
restricted to ASCII character set).

The 1nvention claimed 1s:

1. A computer-implemented method for performing for-
mat-preserving encryption and decryption of a data object in
a first format, the data object having a variable size, the
method utilizing an iner encryption algorithm which 1s
capable of taking a variable size mput and of outputting, as
its output, an encrypted version of the variable size input, the
method comprising:

converting the data object to obtain a converted version of

the data object 1n a second format compatible with the
inner encryption algorithm;

encrypting, by use of the inner encryption algorithm and

at least one of a tweak and a key, the converted version
of the data object to obtain an encrypted version of the
data object;

deconverting the encrypted version of the data object to

obtain a deconverted version of the encrypted version
of the data object in a third format;

outputting the deconverted version of the encrypted ver-

sion of the data object 1n the third format;
wherein the combined steps of converting, encrypting,
and deconverting are format-preserving such that the
first format has at least one predetermined attribute
which 1s reproduced or retained 1n the third format;

wherein the output deconverted version of the encrypted
version of the data object 1n the third format has a
different size than the mmput data object in the first
format:

wherein during decryption the data object in the third

format 1s converted into the second format and subse-
quently decrypted using the same at least one of the
tweak and the key used during encryption to obtain a
decrypted data object which 1s subsequently decon-
verted into the first format.

2. The method according to claim 1, wherein at least one
of the converted version of the data object and the encrypted
version of the data object comprises a bit string, the method
turther comprising padding at least one of the converted
version of the data object and the encrypted version of the
data object by adding one or more bits of padding informa-
tion to the at least one of the converted version of the data
object and the encrypted version of the data object prior to
either one of the steps of encrypting and deconverting.

3. The method according to claim 1, wherein the data
object has been derived from a data record comprising the
data object and at least one associated data object, and

wherein at least one of the steps of a: converting, b:

encrypting, ¢: padding and d: deconverting depends on
at least a portion of the associated data object or data
derived from at least a portion of the associated data
object.

4. The method according to claim 1, wherein at least one
of the converted version of the data object and the encrypted
version of the data object comprises a pair of integers
representing a domain variable and a position variable,

wherein the position variable represents a value within a

range of possible values defined by the domain vari-

able.

10

15

20

25

30

35

40

45

50

55

60

65

22

5. The method according to claim 1, wherein the steps of
converting and deconverting utilize different schemes, such
as

different configurations of a compression and decompres-

sion algorithm,

different configuration of an encoding and decoding algo-

rithm,

compression used at one step and decoding used at

another step, or

encoding used at one step and decompression used at

another step.

6. The method according to claim 1, wherein the data
object comprises a plurality of characters, and

wherein the step of converting utilizes a scheme which

maps one or more of the characters into a mapped
partial output, and

wherein the scheme 1s configured to 1dentily at least one

predetermined character sequence within the data
object and to map any identified such predetermined
character sequence 1nto a predetermined value repre-
senting the mapped partial output.

7. The method according to claim 1, wherein the data
object comprises a plurality of characters, and

wherein the step of converting utilizes a scheme which

maps one or more ol the characters into a mapped
partial output, and
wherein the scheme 1s configured to 1dentify at least one
predetermined format property of the data object, and

wherein the scheme 1s further configured to map the one
or more characters and the format property, so as to
render the converted version of the data object depen-
dent from the one or more characters and the at least
one format property.

8. The method according to claim 1, wherein the steps of
a: converting, b: encrypting and c¢: deconverting are per-
formed by use of a first set of configuration data by use of
a {irst set of algorithms 1n steps a, b and ¢, the method further
comprising the steps of:

determining a format property, such as a size, of the

deconverted version of the encrypted version of the
data object;

determining 1f the format property of the deconverted

version of the encrypted version of the data object
complies with a predetermined constraint; and

if the characteristic fails to comply with the predeter-

mined constraint:

redoing at least one of steps a, b and ¢ by use of second

configuration data different from the first configuration
data and/or

use of second type of algorithm 1n at least one of steps a,

b and ¢ different from the first algorithms

to obtain a new deconverted and encrypted version of the

data object.

9. The method according to claim 1, wherein the steps of
a: converting, b: encrypting and c¢: deconverting are per-
formed by use of a first set of configuration data by use of
a first set of algorithms 1n steps a, b and ¢, the method further
comprising the steps of:

determiming a format property, such as a size, of the

deconverted version of the encrypted version of the

data object;

determining 1f the format property of the deconverted
version of the encrypted version of the data object
complies with a predetermined constraint; and

US 11,902,417 B2

23

if the characteristic fails to comply with the predeter-

mined constraint:

applying the encryption algorithm to the encrypted ver-

sion of the data object to obtain a further encrypted
version of the data object, and

decompressing the further encrypted converted version of

the data object

to obtain a new deconverted and encrypted version of the

data object.

10. The method according to claim 1, further comprising
the steps of:

adding authentication data to at least one of the data

object, the converted version of the data object, the
encrypted version of the data object, and the decon-
verted version of the encrypted version of the data
object; and

authenticating at least one of the data object, the con-

verted version of the data object, the encrypted version
of the data object, and the deconverted version of the
encrypted version of the data object by verifying the
authentication data added during further operations.

11. The method according to claim 1, wherein the step of
encrypting and/or any preceding step 1s carried out in such
a way to render the deconverted version of the encrypted
version of the data object non-deterministic.

12. The method according to claim 1, further comprising
the step of embedding a key label into the deconverted
version of the encrypted version of the data object.

13. A computer-implemented method for performing for-
mat-preserving encryption and decryption of a data object in
a first format, the data object having a variable size, the data
object comprising a plurality of characters occurring in at
least two sequences of text characters mutually separated by
pre-defined format-defining characters of the first format,

wherein the plurality of characters and the format-defin-

ing characters define at least one format property of the
data object 1n the first format, the method comprising:
converting at least one of:

the at least two sequences of text characters and the

format-defining characters; and

the at least two sequences of text characters and the at

least one format property to obtain an encoded set of
data 1n a second format;

encrypting the encoded set of data by use of an inner

encryption algorithm and at least one of a tweak and a
key, the mner encryption algorithm being capable of
taking a variable size input and of outputting, as its
output, an encrypted version of the variable size input,
to obtain an encrypted set of data;

deconverting the encrypted set of data to obtain a decon-

verted encrypted set of data 1n a third format, wherein
the combined steps of converting, encrypting, and
deconverting are format-preserving such that the third

5

10

15

20

25

30

35

40

45

50

24

format fulfills the at least one format property of the
data object 1n the first format;
outputting the deconverted encrypted set of data as an
encrypted version of the data object 1n the third format;

wherein the output deconverted set of data in the third
format has a diflerent size than the input data object 1n
the first format;

wherein during decryption the data object in the third

format 1s converted 1nto the second format and subse-
quently decrypted using the same at least one of the
tweak and the key used during encryption to obtain a
decrypted set of data which 1s subsequently decon-
verted into the first format.

14. A computer-implemented method for performing for-
mat-preserving encryption and decryption of a data object in
a first format having predefined format properties, the data
object having a vaniable size, the method comprising:

converting, by use of a first reversible converting algo-

rithm, the data object to obtain a converted version of
the data object 1n a second format;
encrypting the converted version of the data object by use
of an 1nner encryption algorithm and at least one of a
tweak and a key, the mner encryption algorithm being
capable of taking a vaniable size input and of output-
ting, as its output, an encrypted version of the variable
size mnput, to obtain an encrypted version of the data
object;
deconverting, by use of a first reversible deconversion
algorithm, the encrypted version of the data object to
obtain a deconverted encrypted version of the data
object 1n a third format, wherein the combined steps of
converting, encrypting, and deconverting are format-
preserving such that the third format fulfills the pre-
defined format properties of the first format;

outputting the deconverted encrypted version of the data
object;
wherein the first deconversion algorithm 1s different from
a reversed version of the first converting algorithm;

wherein the output deconverted encrypted version of the
data object 1n the third format has a different size than
the mput data object in the first format;
wherein during decryption the data object in the third
format 1s converted into the second format using a
second converting algorithm and subsequently
decrypted using the same at least one of the tweak and
the key used during encryption to obtain a decrypted
data object which 1s subsequently deconverted using a
second deconversion algorithm into the first format;

wherein the second deconversion algorithm 1s an inverse
of the first converting algorithm and the first decon-
version algorithm 1s an mverse of the second convert-
ing algorithm.

	Front Page
	Drawings
	Specification
	Claims

