12 United States Patent

Summers et al.

US011895184B2

US 11,895,184 B2
“Feb. 6, 2024

(10) Patent No.:
45) Date of Patent:

(54) PEER TO PEER REMOTE APPLICATION
DISCOVERY

(71) Applicant: Citrix Systems, Inc., Fort Lauderdale,
FL (US)

(72) Inventors: Jacob Summers, Coral Springs, FL
(US); Rakesh Kumar, Pompano Beach,

FL (US); Julian Petrov, Pembroke
Pines, FLL (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 0 days.

This patent 1s subject to a terminal dis-
claimer.

(21) Appl. No.: 17/693,591
(22) Filed: Mar. 14, 2022

(65) Prior Publication Data
US 2022/0210223 Al Jun. 30, 2022

Related U.S. Application Data

(63) Continuation of application No. 14/324,580, filed on
Jul. 7, 2014, now Pat. No. 11,310,312.

(51) Int. CL

(56) References Cited
U.S. PATENT DOCUMENTS

5,729,682 A
5,999,530 A

3/1998 Marquis et al.
12/1999 LeMaire et al.

(Continued)

FOREIGN PATENT DOCUMENTS

EP 0993165 Al 4/2000
EP 1022876 Al 7/2000
(Continued)

OTHER PUBLICATIONS

The International Search Report and Written Opinion of The Inter-
national Searching Authority dated Feb. 26, 2015 corresponding to
International Application No. PCT/US2014/050221.

(Continued)

Primary Examiner — Suraj M Joshi
Assistant Examiner — Sherman Lin

(57) ABSTRACT

Methods, systems, and computer-readable media for peer to
peer discovery of remote applications are presented. A client
device may discover available remote peers and remotely
access applications hosted thereon. The client device may
send a discovery message over a network and locate one or
more peer devices with available remote access. The peer
device may respond with a list including applications

HO4L 67/025 (2022.01) installed and currently executing application instances that
HO4L 67/1061 (2022.01) the client device may remotely access. The peer device may
(Continued) Qynamically generate the list }:)ased on aqaly;ing‘ applica-
(52) U.S. Cl tions installed on the peer device and application instances
CPC HO4L 67/1072 (2013.01); GOGF 9/5055 executing on the peer device. The: clijant device may 1nitiate
(2013.01); GOGF 9/54 (2013.01); remote access of a selected application hosted on the peer
Cont | q j T device. The peer device may execute the selected application
_ _ (c;-)ntmue) in a remote mode by hooking input and output interfaces
(58) Field of Classification Search‘ | associated with the application, and the application may be
CPC s HO4L 67/1072; HO4L 67/025; HO4L executed 1n a shadow desktop environment. These and other
67/1068; GOGL 9/5055; GUOE 9754 (9}/231; teatures will be discussed further herein.
(Continued) 21 Claims, 10 Drawing Sheets
Peer 1o Peer Application Host 01 |
“General Deskiop 330 3 Secure Deskiop cE Shadow Desktop 350

Local Apphcation { Secwe Application Remote Application
332 3 347 52

R S T SR M T A SO T SO SO S T SO NS T SR IR S SUg SR MO T TR SO M T SR S S e

L.ocal Application i Secure Apphication Remote Applicanion
- x 1 el
334 1 344 354
1

{Operating System 320

I

Hardware Laver - _ 310
Physical Physical Physical Fimware -312.'
Diskis) Device(s) Processor{s)
04 06 108 i Physical Momoty 316
"h-___.___._'-_ .

US 11,895,184 B2

Page 2
(51) Int. CL FOREIGN PATENT DOCUMENTS
GO6l 9/50 (2006.01)
GOGF 9/54 (2006.01) EP 1229443 A2 8/2002
WO 0039678 Al 7/2000
(52) U.S. CL WO 2013046068 Al 4/2013
CPC GO6I 9/542 (2013.01); HO4L 67/025 WO 2013056204 Al 4/2013

(2013.01); HO4L 67/1068 (2013.01)

(58) Field of Classification Search
USPC e 709/203
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,222,529 Bl 4/2001 Ouatu-Lascar et al.
6,738,817 Bl 5/2004 Chen et al.
8,370,431 B1* 2/2013 Wang HO04L. 63/10
709/204
8,539,488 Bl1* 9/2013 Havemose GO6F 9/547
718/100
2003/0156132 Al 8/2003 Gn et al.
2003/0189601 A1 10/2003 Ben-Shachar et al.
2004/0024890 Al 2/2004 Baek et al.
2004/0064702 Al 4/2004 Yu et al.
2005/0080906 Al 4/2005 Pedersen
2005/0120073 Al 6/2005 Cho
2005/0138242 Al 6/2005 Pope et al.
2006/0245268 A1 11/2006 Fritz
2006/0271877 A1 11/2006 Theurer
2007/0174410 Al 7/2007 Croft et al.
2008/0040272 Al1* 2/2008 Eskin HO41. 12/282
705/41
2009/0195537 Al 8/2009 Qiu et al.
2009/0222739 Al 9/2009 Schmieder et al.
2010/0013839 Al 1/2010 Rawson
2010/0325284 A1 12/2010 Heim et al.
2011/0134111 Al 6/2011 Stone
2011/0137991 Al 6/2011 Russell
2011/0185068 Al 7/2011 Schmieder et al.
2012/0054640 Al1* 3/2012 Nancke-Krogh GO6F 9/4843
715/751
2012/0059875 Al 3/2012 Clark
2012/0069131 Al 3/2012 Abelow
2012/0084713 Al 4/2012 Desal et al.
2012/0092277 Al1* 4/2012 Momchilov GO6F 3/041
345/173
2013/0007090 Al1* 1/2013 Sankararaman GO6F 9/46
709/201
2013/0212288 Al 8/2013 Jakubowski
2013/0290858 A1 10/2013 Beveridge
2013/0346494 A1 12/2013 Nakfour et al.
2014/0372506 A1 12/2014 Butner et al.
2015/0012831 Al 1/2015 Boggess

OTHER PUBLICATIONS

Feb. 26, 2016—U.S. Non-Final Oflice Action—U.S. Appl. No.

14/324,580.

International Search Report and Written Opinion of the Interna-
tional Searching Authonty dated Mar. 3, 2015, corresponding to
International Application No. PCT/US2014/050218, 68 pages.
Wikipedia, “Virtual Network Computing,” 6 pages, revisions dated
Jun. 17, 2014, accessed Feb. 13, 2015, retrieved from <http://en.
wikipedia.org/w/index.php?ti>tle=Virtual Network Computing
&oldid=613221122,

Mar. 11, 2016—U.S. Non-Final Oflice Action—U.S. Appl. No.
14/324,646.

Jul. 1, 2016—U.S. Final Oflice Action—U.S. Appl. No. 14/324,646.
Aug. 29, 2016—U.S. Final Oflice Action—U.S. Appl. No. 14/324,580.
Jan. 30, 2017—U.S. Non-final Office Action—U.S. Appl. No.
14/324,646.

Matthew, Windows Shadow command to interact/connect with a
user Remote Desktop Session, Nov. 26, 2013, http://www.techiesweb.
com/windowsshadowcommandtointeractconnectwithasuerremotede
sktopsession/ , accessed on Jan. 9, 2017.

Jun. 22, 2017—U.S. Non-final Office Action—U.S. Appl. No.
14/324,580.

Aug. 25, 2017—U.S. Final Oflice Action—U.S. Appl. No. 14/324,646.
Nov. 30, 2017—U.S. Final Oflice Action—U.S. Appl. No. 14/324,580.
Hobo (http://robinhobo.com/installing-configuring-citrix-xenapp-7 -
5/, Mar. 26, 2014, accessed on Nov. 23, 2017).

Sep. 21, 2018—U.S. Non-final Office Action—U.S. Appl. No.
14/324,646.

Sep. 28, 2018—U.S. Non-final Oflice Action—U.S. Appl. No.
14/324,580.

May 2, 2019—U.S. Final Oflice Action—U.S. Appl. No. 14/324,580.
Dec. 13, 2019—U.S. Non-final Oflice Action—U.S. Appl. No.
14/324,646.

Apr. 6,2020—U.S. Final Office Action—U.S. Appl. No. 14/324,646.
Sep. 4, 2020—U.S. Final Office Action—U.S. Appl. No. 14/324,580.
Mar. 22, 2021—U.S. Non-final Oflice Action—U.S. Appl. No.
14/324,646.

Wikipedia, “Discovery and Launch”, pp. 1-2, available at http://en.
wikipedia.org/wiki/Discovery_And Lanch, last accessed Jan. 23,
2014.

Oct. 4, 2021—U.S. Final Oflice Action—U.S. Appl. No. 14/324,646.
Nov. 23, 2021—U.S. Notice of Allowance—U.S. Appl. No. 14/324,580.
Mar. 7, 2022—U.S. Notice of Allowance—U.S. Appl. No. 14/324,580.

* cited by examiner

U.S. Patent Feb. 6, 2024 Sheet 1 of 10 US 11,895,184 B2

100
>

Processor 105
Memory
110 input/Output Interface ("™135
Operating System 115
Control Logic \ 4120 Network Interface | 140
Applications 125
Data 130
Q7 X
g W
s “u
Server /145 Server /150

FIG. 1

US 11,895,184 B2

Sheet 2 of 10

Feb. 6, 2024

U.S. Patent

P L
L]
A
- - - .-.....-r._r e
e
o
s
.
S
1
I
.__..q.4H.4”.__.”.4”.4H.4”#H;H#H;H;H...H&H&H...H&H;”ﬂ
N N NN AL NLN,
.********************ﬁ.
: : :
3 .
1 L 1
. .
H
i
\ $
1 i
% £ -
3 h
.
" {
-...,rr i ﬂ
= \
a -
LY
L v,
: -~
L .
i .._
' 5
.,
+
'
=1
o

IONS

icati

Operating System
Appi

e e i ol e ol iy ol e ey s e e i s e e e e i i e e i s e i iy s e ki ey ol e i iyl i s e e e e ke e s e e iy s e i iy ol e i s e i e e e i e e i ey e e iy s e i iy sl e sl

—————

-

WAN Interface(s) |

ETWORK

M
ROM
Input/

Qutput
Module

11 LAN Interface(s)

-— .l.l-.
A U P

240 -

T
.r............r....._..._..r.._..._..._..r.._..._..._..r.._........r...........r..........r..........r..........r....rn.r...
-

'.TI.'.'.'.'.TI.'.'.r.'b.lb.'b.'b.lb.'b.'b.lb.'b.'b.lb.'

FIG. 2

90t |
(S)o01A0(T |

US 11,895,184 B2

| (8)10850001¢

[BOISAY] [e01SAY{ |

— ammen wmmmm amama wamem smmen wmemm amamn wemmm smmma wmemm ameen wame ommma esm ammen seeme
vt

e

-

e,

~

s

s

=

9

.4

-

—

gl

M Qoﬁ.muﬂmnwﬁw SJOWRY ﬂcﬂwommn—f 1NV QO—EOZQQ{ 8207

7s¢ W W The 433
uoneorjddy 0wy | - uonedrjddy 2Inoag uorjeoniddy (007

10t 1504 uonedjddy 1094 01 1294

U.S. Patent

US 11,895,184 B2

Sheet 4 of 10

Feb. 6, 2024

U.S. Patent

——— uem emam aeem mam e e e e e ae
=
=

Vv Ol

ﬁ _
M “ aseqeleq 03 pi0233Y 1SOH PpY _
H - Op- “
e > “
. 7YN SuiisoH ddy 489d 03 18ad wunNl1ay _
Be m m
> }Sanbay THN 1SOH puas | “
“ o1 5% 2 “
m - 1sedpeoug 0] Ajday , ,
| 17487 " “
MA 1seopeosg AISAODSH ” m
||||||||||||||||| b e e S

€2 15S0H uonesjddy dzd

07 321N 193

€Tt ai) uonedjddy dzd

S1 oseqeleq p1023Yy 1SOH

0T 991A8Q WD

o
= 34y ‘DN
= Q | ADIE
% < (3d0) 2pon (207 0 “ “ _
L A T T T T T e ~ | |
“ w gOUELSU] 1i8ATY wﬁm? H “ “ ”
w w«/\“ 111111 ”r EO—W@U__QQ.Q meOEwm mwm;.O_U — ” r CO“MMUM_QQ{ WWO_U VY “
— W W m -Z8y “ 08P
— R EECEEEEEEEE. LH-_ WU 03 ndino ce__.«mu_m_aaq PUDG — =~ = =l 2 m
“ . agessapy ynduj Jasn puss— R
{ o * | H_
M ” 74 wif..wm: 0} uoiiedijddy >m_am. J
{ } i
e e e e - - -UOI2BUUOD) Emuu{ 111111111111 ”,.,,.,,.,,.,,.,iii;i& ””
- B S—— ¥ O_HWU_MQQQ o MUWCCOU e L”“ “
= m “” | 8y “ |
\r L - —— O} co;mu__aaqﬁsw 111111 -S{ie13Q UOIIdUUO0) duLRISU| UsHIEd|AAY PUSS ~ - -~ - > “w
> 141 . @@# | _ i |
2 . 2POW 310Way Ut ! ” “ “_
75 ” uoijesndaoy uny M“-m@w ”H ” “ “_
” ¢ 38essaN uoijediddy 14815 ¢ toesiddy 1090§95- M
“ % | ” 09y “ QG
H } ! !
H } ! { | | | ;
-t | e e e e -~ -SUOIRIN Y 1SOH Eﬁmmiiit aaaaaaa --- 10339(95 uoneayddy Aejdsig -
=\ ” H Hm: co;mu;maq .vm“w._._..‘ | " “ 9CH- |
M.,, ! . djenusn m : " w | ._ M”
B e} S1] UO13R3NA Ay 1SOH 180 e . }SOH 30885 .
= A2 M_ .“ S esy w 05y |
== m MW M ,ﬂr 3S17 3ISOH win3iay W.T!.mez 01 3517 1SOH Aejasig - - - .vm
“ “ M %174 rand “m‘wu.wr... |
; } { ﬁ
“ | | _Alum_._ }SOH 19D—«¢ 1BMIAA Gdy HeIS—— “
M ; M ” ﬁwww swwvw
- . , w m
L . E1v . m 10Y 1950
= ST m €2y 1 e sty eseqeleq | | [ypsemain | L
uonjedjddy ajoway | 1s0H ddy dzd : T DIOIBY ISOH | | ddyajoway |
= _ . ddy dzd . w m_ ﬁ _ g
I 0T 391A3Q 4334 0T 931A9Q 1WBID =

U.S. Patent Feb. 6, 2024 Sheet 6 of 10 US 11,895,184 B2

Receive a discovery request seeking

il e 505
available remote peers

Send a response indicating availability of |
remote access 910

Receive a request for a list of available
applications

515

" including instances of applications already (/"520

Send the list in response to the request /525

Recelve a selection of an application or an ' ~530
' instance of an application ,

Start the selected application in a remote |
mode or transform the selected local (/030
instance into a remote mode |

;

Frovide remote access 1o the selected
application or selected instance

540

FIG. 5

U.S. Patent Feb. 6, 2024 Sheet 7 of 10 US 11,895,184 B2

Broadcast a discovery request seeking | ~gp5
available remote peers

v

Receive a response from a peer device | ~g10
indicating that remote access is available

v

Send a request‘to the peer dgvice foralist | ~g15
of available applications

Receive the list of available applncatlons L ~620
hosted by the peer device
Prompt user to select an available 625

application

Initiate remote access of the selected
application

|
(o

FIG. 6

030

US 11,895,184 B2

—
A
Cop
-—
%0 10/
E so1A8(INAINO
=
N

G0.

90IA8(Indu| Jas

.4
&
—
-
< IOIAS i}
S A WD
&=

U.S. Patent

LCL
J1807
UONBIUAL)

iding

SCL
1307
uoneorddy

LCL

anan() 1nduy

0CL douelsuf uonedijddy

O]/ D180 WeI3oid

CeL
SOINIXA L.
MOPUT A\

eeL
” 01807
- uonjisoduwio)

U.S. Patent Feb. 6, 2024 Sheet 9 of 10 US 11,895,184 B2

Begin initiating an instance of an application L8805
in a remote access mode

v

Dynamically assign a port to the instance of | ~g1(
the application

'

Store a mapping between the port and the | ~g15
instance of the application

v

HOOK one or more APls assc?cia:ted with the | ~goq
instance of the application

e

Communicate the mapping to a remote
client

Receive user input from the remote client L 830
through the port

Provide the user input to the instance of the
application using the hooked APIs

'
(e

FIG. 8

/825

/835

U.S. Patent Feb. 6, 2024 Sheet 10 of 10 US 11,895,184 B2

Begin initiating an instance of an application L Q05
in a remote access mode

¥

Hook one or more APls associated with the
instance of the application and a window [910
composition moduie

¥

Mark an application window with an
identifier using a hooked API| associated »N 915
with the instance of the application

v

Recognize the application window based on
the identifier using a hooked API associated \/"3820
with the window composition module

y

Extract the application window /925

v

Send the app!icatigpemindow {o a remote 930

(o

FIG. 9

US 11,895,184 B2

1

PEER TO PEER REMOTE APPLICATION
DISCOVERY

RELATED APPLICATION

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 14/324,580 entitled “Peer to Peer Remote
Application Discovery,” which i1s related to a commonly
assigned patent application, U.S. patent application Ser. No.
14/324,646, filed concurrently herewith, entitled “Providing
Remote Access to Applications Through Interface Hooks,”
the disclosure of which 1s hereby expressly incorporated by
reference in 1ts entirety.

FIELD

Aspects of the disclosure relate to computer hardware and
software. In particular, one or more aspects of the disclosure
generally relate to computer hardware and software for
remote execution ol applications on one or more devices.

BACKGROUND

Various kinds of computing devices, from personal com-
puters to mobile devices, are becoming increasingly popular.
In addition, people are increasingly using these devices for
both business purposes and personal uses. As these devices
continue to grow 1n popularity and people continue to use
them for an ever-growing number of reasons, the users of
these devices have demanded and will continue to demand
greater convenience, lunctionality, and ease-of-use from
theirr computing devices and the computer software with
which they interact.

Historically, servers may provide a client with remote
access to a specific application. The client may initiate a
connection with the server and view/control the application
executing on the server. However, a user may be required to
provide the identity of the server as well as identify the
specific application to be remotely accessed. This may
present problems when the user does not know the 1dentity
of the server or what applications are provided.

These servers may provide a client with remote access to
a selected application by receiving user iput from the client
and playing the received user iput back on a user session.
The remote user input may be placed 1n an operating system
input queue, and the user session may be configured such
that the operating system input queue feeds into the selected
application. Desktop output generated by the server may be
forwarded to the remote client. This may present problems
where multiple applications in a user session receive user
input intended for other applications, and where output
forwarded by the server may include some windows
occluded by other windows.

SUMMARY

Aspects of the disclosure relate to various systems and
techniques that provide more convenient, functional, and
casy-to-use ways for users to remotely access soltware
applications, particularly in 1nstances in which a user seeks
to access an application provided on a host computing
device from a client computing device. Aspects discussed
herein may accomplish this by providing communication
between client and host devices without need for a dedicated
remote server and remote client brokering infrastructure. In
addition, certaimn aspects of the disclosure may provide
particular advantages where a user desires to access an

10

15

20

25

30

35

40

45

50

55

60

65

2

application 1nstance already running on another computing
device. Certain aspects of the disclosure may be useful
where a user seeks to remotely access an application from a
smart phone, tablet computer, or other type of touch-enabled
mobile computing device.

Some aspects discussed herein may provide peer to peer
discovery of remote applications. In some embodiments, a
client device may discover available remote peers and
remotely access applications hosted on a peer device. The
client device may send a discovery message over a network
and locate one or more peer devices with available remote
access. This may provide for dynamic discovery of available
peers without requiring a preconfigured host list or server
interaction, according to some aspects. The peer device may
respond with a list including applications installed and
currently executing application instances that the client
device may remotely access. This may provide for simplified
identification of remote applications as remote applications
may be automatically discovered and a user of the peer
device need not manually specily applications that are
available, according to some aspects. The client device may
initiate remote access of a selected application hosted on the
peer device. These and other features will be discussed
further herein.

For example, and as will be described further below, a
user who had been working on a document mn a word
processor at his desktop computer can later access that
document as he had been working on it from another device,
such as his mobile device. The mobile device may dynami-
cally identify available peer devices, discover the desktop
computer, receive a list of remotely available applications
including the open instance of the word processor, and
initiate remote access of the open instance of the word
processor. Thus, according to some aspects disclosed herein,
a user may be provided with ready access to his information
and applications regardless of physical presence at a device
storing that information and executing the applications,
potentially providing a better user experience and improving
access to iformation.

Other aspects discussed herein may provide remote access
to applications hosted on a peer device by executing those
applications 1n a shadow desktop. A remotely accessible
instance of an application may be executed 1n a remote mode
through use of hooks mto one or more 1nput and/or output
interfaces associated with the remote 1mstance of the appli-
cation. By way of these hooks, output from the remote
instance may be redirected to a remote user and 1mput from
the remote user may be transmitted to the remote 1nstance.
The remote 1mstance may be executed 1n a shadow desktop
of the peer device that i1s separate and/or segregated from
other desktops provided by the peer device. A local user of
the peer device may recerve output from and provide input
to applications executing in a local mode, but input and/or
output interfaces associated with an application executing 1n
a remote mode may be redirected to the client device.

Some aspects described herein may provide a method for
providing remote access to hosted applications. The method
may comprise receiving a discovery request from a client
secking available remote peers. The discovery request may
be received by a peer device. The peer device may send a
response indicating that remote access 1s available. The peer
device may receive a request from the client for a list of
available applications for remote access. The peer device
may generate the list of available applications based on a
listing of one or more applications installed on the peer
device and one or more application nstances executing on
the peer device. The list of applications may be sent to the

US 11,895,184 B2

3

client by the peer device. In response to receiving a selection
of one of the applications in the list of available applications,
the peer device may provide the client with remote access to
the selected application. The selected application may be an
application installed on the peer device or an application
instance executing on the peer device.

In some embodiments, the discovery request may be a
broadcast message sent on a network shared by the peer
device and the client device. The discovery request may
contain authentication information related to the remote
access request. The selected application may be executed 1n
a background or shadow desktop environment of the peer
device and may be segregated from other applications
executing on the peer device. One or more 1put and/or
output interfaces associated with the selected application or
application instance may be hooked into or otherwise modi-
fied such that output from the application instance 1s redi-
rected to the client and mput from the client 1s redirected to
the application instance.

The peer device may execute a first instance ol an
application 1n a local mode such that a local user of the peer
device may operate the first instance. The first instance may
be included on the list of applications sent to the client. The
first instance may be selected for remote access, and the peer
device may provide remote access to the {first mstance by
transforming the first instance from the local mode to a
remote mode.

Other aspects described herein may enable a host device
to provide remote access to applications executing 1n a user
session by hooking one or more application programming
interfaces (APIs) (or other interfaces) associated with an
application instance and a window composition module.
Dynamically assigned ports may be generated and used to
allow a client device to provide remote user mput to an
application mstance operating in a remote access mode. One
or more APIs associated with the application instance may
be hooked to provide the remote user input to an iput queue
of the application instance, bypassing an operating system
input queue 1n some embodiments. APIs associated with the
application instance and the window composition module
may be hooked to allow the host device to recognize window
textures generated by the application instance. These rec-
ognized window textures may be sent to the remote client
device.

Some aspects described herein may provide a method
including initiating, by a host device, an instance of an
application 1n a remote access mode. The instance of the
application may be placed in the remote access mode by
assigning a port to the instance of the application and
hooking one or more APIs associated with the mstance of the
application. The host device may receive user mput from a
remote client through the assigned port. The host device may
provide the received user mput to the application instance
using the hooked APIs. Output from the application instance
operating in the remote access mode may be sent to the
client device, and the output may include an application
window associated with the application instance.

In some embodiments, the host device may notify the
remote client of the port assigned to the application instance.
The host device may maintain a mapping between the
dynamically assigned port and the application istance. User
input recerved via the port may be 1dentified as intended for
the application istance based on the mapping.

Other aspects described herein may provide a method
including initiating, by a host device, an istance of an
application 1n a remote access mode. The instance of the
application may be 1nitiated 1n the remote access mode by

10

15

20

25

30

35

40

45

50

55

60

65

4

hooking one or more APIs associated with the instance of the
application and one or more APIs associated with a window

composition module. The host device may provide remote
user input to the application mstance. The host device may
identify an application window associated with the instance
of the application using the hooked APIs. The identified
application window may be extracted as an image from the
window composition module, and the extracted application
window may be sent to a client device.

In some embodiments, 1dentifying the application win-
dow may comprise marking the application window with an
identifier using an API associated with the application
instance and recognizing the i1dentifier using an API asso-
ciated with the window composition module. The i1mage
data associated with the application window may be
extracted during a composition process of the window
composition module.

Other aspects described herein may provide a method
including mitiating, by a host device, an instance of an
application 1n a remote access mode. The host device may
initiate the remote access mode by assigning a port to the
instance of the application, hooking one or more input APIs
associated with the instance of the application, hooking one
or more output APIs associated with the instance of the
application, and hooking one or more composition APIs
associated with a window composition module. The host
device may receive user input from a remote client through
the assigned port, and the host device may provide the
received user input to the application instance using the
hooked input APIs. The host device may identify an appli-
cation window associated with the istance of the applica-
tion using a hooked API, such as the hooked output APIs.
The host device may extract the application as an i1mage
from the window composition module. The extracted image
may be send to the remote client as output associated with
the application instance.

In some embodiments, the host device may notify the
remote client of the port assigned to the instance of the
application. The host device may store a mapping between
the port and the 1nstance of the application that identifies that
input received on the port 1s intended for the application
instance. The host device may mark the application window
with an i1dentifier using an API associated with the instance
of the application, and the host device may recognize the
application window based on the identifier during process-
ing by the window composition module using an API
associated with the window composition module.

These features, along with many others, are discussed 1n
greater detail below.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure 1s illustrated by way of example
and not limited 1n the accompanying figures 1n which like
reference numerals indicate similar elements and 1n which:

FIG. 1 depicts an example of a computing device that may
be used 1n 1implementing one or more aspects of the disclo-
sure 1n accordance with one or more illustrative aspects
discussed herein;

FIG. 2 depicts an 1llustrative remote-access system archi-
tecture that may be used 1n accordance with one or more
illustrative aspects described herein;

FIG. 3 depicts an 1llustrative computer system architec-
ture that may be used in accordance with one or more
illustrative aspects described herein;

FIGS. 4A-4B depict a process tlow diagram 1n accordance
with one of more aspects discussed herein;

US 11,895,184 B2

S

FIG. 5 depicts a flowchart that 1llustrates a method of peer
to peer remote application discovery in accordance with one
or more illustrative aspects discussed herein;

FIG. 6 depicts a flowchart that illustrates another method
ol peer to peer remote application discovery in accordance
with one or more illustrative aspects discussed herein;

FI1G. 7 depicts an 1llustrative computer system that may be
used to provide remote access to an application;

FIG. 8 depicts a flowchart that illustrates a method of
providing remote access to an application in accordance
with one or more illustrative aspects discussed herein; and

FIG. 9 depicts a flowchart that 1llustrates another method
of providing remote access to an application 1n accordance
with one or more illustrative aspects discussed herein.

DETAILED DESCRIPTION

In the following description of the various embodiments,
reference 1s made to the accompanying drawings 1dentified
above, which form a part hereot, and 1n which 1s shown by
way of 1illustration various embodiments 1n which various
aspects of the disclosure may be practiced. Other embodi-
ments may be utilized, and structural and functional modi-
fications may be made, without departing from the scope
discussed herein. Various aspects are capable of other
embodiments and of being practiced or being carried out 1n
various different ways. In addition, the phraseology and
terminology used herein are for the purpose of description
and should not be regarded as limiting. Rather, the phrases
and terms used herein are to be given their broadest inter-
pretation and meaning. The use of “including” and “‘com-
prising” and variations thereof 1s meant to encompass the
items listed thereafter and equivalents thereof as well as
additional 1tems and equivalents thereof.

According to some aspects discussed herein, a client
device may discover available remote peers and remotely
access applications hosted thereon. The client device may
send a discovery message over a network and locate one or
more peer devices that provide remote access. This may
allow dynamic discovery of available peers without requir-
ing a preconfigured host list, according to some aspects. The
peer device may respond with a list of applications the client
device may remotely access, including installed applications
and currently executing application instances. This may
provide for simplified 1dentification of remote applications
as remote applications may be automatically discovered and
a user of the peer device need not manually specily appli-
cations that are available, according to some aspects. The
client device may itiate remote access of a selected appli-
cation hosted on the peer device. These and other features
will be discussed further herein.

In some embodiments, a peer device may receive a
broadcast request from a client device secking available
remote peers. The peer device may respond to the client
device indicating that the peer device has available remote
access and provide a host address of the peer device. The
peer device may generate a list of available remote appli-
cations including locally executing application instances and
installed application. The list may be generated based on a
listing of locally executing application instances and/or a
listing of applications installed on the peer device, and
provide this list to the client device. A user of the client
device may select one of the available application 1nstances
or installed applications for remote access, and the peer
device may receive this selection from the client device. The

10

15

20

25

30

35

40

45

50

55

60

65

6

peer device may provide the client device with remote
access to the selected application, as described further
herein.

As one specific example of a scenario 1n which one or
more aspects illustrated herein may be practiced, the client
device may be a tablet computer operated by a user, and the
peer device may be a desktop computer available to the user.
The user may have been previously working on the desktop
computer, such as by opening a document 1n a word pro-
cessing application on the desktop computer. The user may
have made changes to the document or located an important
piece of imformation 1n the document as presented in the
instance of the word processing application executing on the
desktop computer. The user may, for example, then proceed
to a meeting and take the tablet computer to the meeting. The
user may operate a remote application viewer installed on
the tablet computer to select the desktop computer as a host,
select the mstance of the word processing application that
the user previously interacted with, and access that instance
remotely using the tablet computer. The tablet computer may
present the user with the instance of the word processing
application as he left 1t on the desktop computer. Methods
and systems supporting one or more of these features are
described in further detail below.

Other aspects described herein may enable a host device
to provide remote access to applications executing 1n a user
session by hooking one or more APIs (or other interfaces)
associated with an application instance and a window com-
position module. Dynamically assigned ports may be gen-
erated and used to allow a client device to provide remote
user mput to an application instance operating 1n a remote
access mode. One or more APIs associated with the appli-
cation instance may be hooked to provide the remote user
input to an mput queue of the application 1nstance, bypass-
Ing an operating system input queue in some embodiments.
APIs associated with the application mstance and the win-
dow composition module may be hooked to allow the host
device to recognize window textures generated by the appli-
cation instance. These recognized window textures may be
sent to the remote client device. As a result, according to
some aspects, a host device may enable remote access to the
application instance by providing remote input to the appli-
cation instance and forwarding output from the application
instance to the remote client device. Methods and systems
supporting one or more of these features are described 1n
further detail below.

As noted above, certain embodiments are discussed
herein that relate to providing peer to peer discovery of
remote applications. Before discussing these concepts in
greater detail, however, several examples of computing
devices and system architectures that may be used in 1mple-
menting and/or otherwise providing various aspects of the
disclosure will first be discussed with respect to FIGS. 1 and
2.

FIG. 1 depicts an example of a computing device 100 that
may be used 1in implementing one or more aspects of the
disclosure 1n accordance with one or more illustrative
aspects discussed herein. For example, computing device
100 may, 1n some instances, implement one or more aspects
of the disclosure by reading and/or executing instructions
and performing one or more actions accordingly. In one or
more arrangements, computing device 100 may represent,
be mcorporated into, and/or include a desktop computer, a
mobile device (e.g., a laptop computer, a tablet computer, a
smart phone, any other type of mobile computing device,
etc.), and/or any other type of data processing device.
Computing device 100 may, in some instances, operate 1n a

US 11,895,184 B2

7

standalone environment. In other instances, computing
device 100 may operate 1n a networked environment. For
example, computing device 100 may, in some instances, be
connected to and/or otherwise in communication with one or
more other computing devices that may be local to and/or
physically remote from computing device 100.

As seen 1 FIG. 1, computing device 100 may, 1n some
embodiments, include a processor 105, memory 110, an
input/output intertace 135, and a network interface 140.
These are only some examples of the components and/or
subsystems that may be included 1n computing device 100 1n
some embodiments. In other embodiments, computing
device 100 may include two or more of any and/or all of
these components (e.g., two or more processors, two or more
memories, etc.) and/or other components and/or subsystems
not listed here.

In some embodiments, processor 105 may control overall
operation ol computing device 100, including operation of
one or more of the other components included 1n computing
device 100, such as memory 110, input/output interface 135,
and/or network interface 140. Memory 110 may, for
instance, store software, instructions, data, and/or other
information. For example, soitware may be stored in
memory 110 and/or other storage to provide instructions to
processor 105 for configuring the generic computing device
100 mto a special purpose computing device in order to
perform one or more of the various functions discussed
herein.

In some arrangements, memory 110 may store, provide,
and/or otherwise include an operating system 115, control
logic 120, one or more applications 125, and/or data 130.
Operating system 115 may, for example, control overall
operation of computing device 100. Control logic 120 may,
for instance, mstruct computing device 100 and/or various
components included therein, including processor 105, to
perform and/or otherwise provide various aspects of the
disclosure. The one or more applications 125 may, for
example, provide secondary, support, and/or other function-
alities that may be used in conjunction with various aspects
of the disclosure. Additionally, data 130 may, for instance,
be used 1n performing one or more aspects of the disclosure
and, 1n some 1nstances, may include one or more databases,
data tables, and/or the like.

In some arrangements, input/output interface 135 may
include a keyboard, mouse, display, printer, scanner, optical
reader, stylus, and/or one or more other components. For
example, input/output interface 135 may include various
interface units and/or drives for reading, writing, displaying,
and/or printing files and/or other data. In some embodi-
ments, mmput/output interface 135 may include an audio
interface that includes one or more microphones for captur-
ing audio mput and/or one or more speakers for providing
audio output. Additionally or alternatively, input/output
interface 135 may include a video display device for pro-
viding textual, audiovisual, and/or graphical output.

In some embodiments, at least one display included in
and/or otherwise provided by input/output interface 135 may
be a touch-sensitive display screen (also known as a “touch
screen”). Such a touch screen may, for instance, be config-
ured to display graphical content rendered and/or otherwise
generated by computing device 100. In addition, the touch
screen may be configured to receive user input from a user
of computing device 100, including touch-based user mnput
provided by the user using a stylus, finger, or other pointing,
aspect that 1s operated, controlled, and/or otherwise used by
the user of the computing device 100 to interact with the
touch screen.

10

15

20

25

30

35

40

45

50

55

60

65

8

As 1ndicated above, computing device 100 may, 1n some
instances, operate in a networked environment supporting
connections to one or more remote computers, servers,
and/or devices. Such connectivity may, in some embodi-
ments, be provided by network 1nterface 140. For example,
network interface 140 may include one or more communi-
cation interfaces, ports, adapters, antennas, and/or other
clements to facilitate various network connections. Such
network connections may include local area network (LAN)
connections, wide area network (WAN) connections (e.g., to
the Internet), and/or any other types of connections. In some
arrangements, LAN connections may be established and/or
provided via a dedicated LAN interface and/or adapter,
and/or WAN connections may be established and/or pro-
vided via a dedicated WAN 1nterface and/or adapter. Other
connections may, for example, be established and/or pro-
vided via other communication interfaces, such as wired
communication iterfaces (e.g., Ethernet), wireless commu-
nication interfaces (e.g., wireless LAN (WLAN), cellular,
Bluetooth, etc.), and/or other communication interfaces.

As seen 1 FIG. 1, computing device 100 may, in some
instances, be connected to and/or in communication with
one or more servers, such as server 145 and server 150. Such
servers may, for instance, implement one or more aspects of
computing device 100 and, accordingly, may include one or
more processors, memories, and/or the like. Some connec-
tions to the one or more servers may be established via a
L AN (e.g., the connection between computing device 100
and server 145), while other connections to the one or more
servers may be established via a WAN (e.g., the connection
between computing device 100 and server 150). In some
embodiments, some or all of the one or more servers may be
virtual servers that are provided by software being executed
on one or more computing devices.

In addition, one or more aspects of the disclosure may be
embodied in computer-usable or readable data and/or com-
puter-executable instructions, such as 1n one or more pro-
gram modules, executed by one or more computers or other
devices as discussed herein. Generally, program modules
include routines, programs, objects, components, data struc-
tures, etc. that perform particular tasks or implement par-
ticular abstract data types when executed by a processor in
a computer or other device. The modules may be written 1n
a source code programming language that 1s subsequently
compiled for execution, or may be written 1n a scripting
language such as (but not limited to) HITML or XML. The
computer executable 1nstructions may be stored on a com-
puter readable medium such as a nonvolatile storage device.
Any suitable computer readable storage media may be
utilized, mncluding hard disks, CD-ROMs, optical storage
devices, magnetic storage devices, and/or any combination
thereof. In addition, various transmission (non-storage)
media representing data or events as discussed herein may
be transierred between a source and a destination 1n the form
of electromagnetic waves traveling through signal-conduct-
ing media such as metal wires, optical fibers, and/or wireless
transmission media (e.g., air and/or space). Various aspects
discussed herein may be embodied as a method, a data
processing system, or a computer program product. There-
fore, various functionality may be embodied in whole or 1n
part 1n software, firmware, and/or hardware or hardware
equivalents such as integrated circuits, field programmable
gate arrays (FPGA), and the like. Particular data structures
may be used to more eflectively implement one or more
aspects ol the disclosure, and such data structures are
contemplated as being within the scope of computer execut-
able 1nstructions and computer-usable data discussed herein.

US 11,895,184 B2

9

Further, some aspects of the disclosure may also be
operational with numerous other general purpose or special
purpose computing system environments or configurations.
Examples of other computing systems, environments, and/or
configurations that may be suitable for use with aspects
discussed herein include, but are not limited to, personal
computers, hand-held or laptop devices, multiprocessor sys-
tems, microprocessor-based systems, set top boxes, pro-
grammable consumer electronics, network PCs, minicom-
puters, distributed computing environments that include any
of the above systems or devices, and the like.

With further reference to FIG. 2, one or more aspects
described herein may be implemented 1n a remote-access
environment. FIG. 2 depicts an example system architecture
including a peer device 201 in an illustrative computing
environment 200 that may be used according to one or more
illustrative aspects described herein. In some embodiments,
peer device 201 may correspond to computing device 100
(FIG. 1) and/or have similar components. Peer device 201
may be used as a peer 206a 1n a single-peer or multi-peer
environment configured to provide remote access to appli-
cations by client devices. Peer device 201 may have a
processor 203 for controlling overall operation of the device
and 1ts associated components, including RAM 205, ROM
207, I/O module 209, and memory 215, as in computing
device 100. Peer device 201 may, in some embodiments, be
a personal computer or a desktop computer.

I/O module 209 may include a mouse, keypad, touch
screen, scanner, optical reader, and/or stylus (or other input
device(s)) through which a local user of peer device 201 may
provide mput, and may also include one or more of a speaker
for providing audio output and a video display device for
providing textual, audiovisual, and/or graphical output. Soft-
ware may be stored within memory 213 and/or other storage
to provide instructions to processor 203 for configuring peer
device 201 1nto a special purpose computing device 1n order
to perform various functions as described herein. For
example, memory 215 may store soltware used by peer
device 201, such as an operating system 217, application
programs 219, and an associated database 221.

Peer device 201 may operate 1n a networked environment
supporting connections to one or more remote computers,
such as client devices 240. Client devices 240 may be
personal computers, mobile devices, laptop computers, and/
or tablets that include many or all of the elements described
above with respect to generic computing device 100 (FI1G. 1)
or peer device 201. In some embodiments, client device 240
may be a mobile device or tablet computer used by the same
user as that of peer device 201. The network connections
depicted i FIG. 2 include a local area network (LAN) 2235
and a wide area network (WAN) 229, but may also include
other networks. When used in a LAN networking environ-
ment, peer device 201 may be connected to the LAN 2235
through a network interface or adapter 223. When used 1n a
WAN networking environment, peer device 201 may
include a modem 227 or other wide area network interface
for establishing communications over the WAN 229, such as
computer network 230 (e.g., the Internet). It will be appre-
ciated that the network connections shown are illustrative
and other means ol establishing a communications link
between the computers may be used. Peer device 201 and/or
client devices 240 may also be mobile terminals (e.g.,
mobile phones, smartphones, personal digital assistants
(PDAs), notebooks, etc.) imncluding various other compo-
nents, such as a battery, speaker, and antennas (not shown).

As shown 1n FIG. 2, one or more client devices 240 may
be 1n communication with one or more peer devices 206a-

10

15

20

25

30

35

40

45

50

55

60

65

10

2067 (generally referred to herein as “peer device(s) 2067).
The client device(s) 240 may in some embodiments be
referred to as a single client device 240 or a single group of
client devices 240, while peer device(s) 206 may be referred
to as a single peer device 206 or a single group of peer
devices 206. In one embodiment a single client device 240
communicates with more than one peer device 206, while 1n
another embodiment a single peer device 206 communicates
with more than one client device 240. In yet another
embodiment, a single client device 240 communicates with
a single peer device 206.

In one embodiment, the client machine 240 may be a
virtual machine. The virtual machine may be any virtual
machine, while 1n some embodiments the virtual machine
may be any virtual machine managed by a Type 1 or Type
2 hypervisor, for example, a hypervisor developed by Citrix
Systems, IBM, VMware, or any other hypervisor. In some
aspects, the virtual machine may be managed by a hyper-
visor, while 1n aspects the virtual machine may be managed
by a hypervisor executing on a peer device 206 or a
hypervisor executing on client device 240.

Some embodiments include a client device 240 that
displays application output generated by an application
remotely executing on a peer device 206 or other remotely
located machine. In these embodiments, the client device
240 may execute a virtual machine receiver program or
application to display the output in an application window,
a browser, or other output window. Applications, as used
herein, are programs that execute after an instance of an
operating system (and, optionally, also the desktop) has been
loaded.

The peer device 201, in some embodiments, uses a remote
presentation protocol or other program to send data to a
thin-client or remote-display application executing on the
client device 240 to present display output generated by an
application executing on peer device 201. The thin-client or
remote-display protocol can be any one of the following
non-exhaustive list of protocols: the Independent Comput-
ing Architecture (ICA) protocol developed by Citrix Sys-
tems, Inc. of Ft. Lauderdale, Florida; or the Remote Desktop
Protocol (RDP) manufactured by the Microsoit Corporation
of Redmond, Washington.

Having discussed several examples of the computing
system architecture that may be used in providing and/or
implementing various aspects of the disclosure, a number of
embodiments will now be discussed 1n greater detal.

In some embodiments, and according to some aspects
discussed herein, a peer device, such a peer device 201, may
receive a broadcast request from a client device, such as
client device 240, seeking available remote peers. The peer
device may respond to the client device indicating that the
peer device has available remote access and provide a host
address of the peer device. The client device may request a
list of available remote applications from the peer device.
The peer device may generate the list of available remote
applications based on a listing of locally executing applica-
tion 1nstances and/or a listing of applications installed on the
peer device and send the list of available remote applications
to the client device. The client device may receive a selec-
tion of one of the available executing 1nstances or installed
application for remote access and send that selection to the
peer device. The peer device may provide the client device
with remote access to the selected application, as described
further herein with respect to FIG. 3.

FIG. 3 depicts an illustrative configuration of a computing,
device, such as computing device 100, as a peer to peer
application host 301 (also referred to herein as “peer device

US 11,895,184 B2

11

301) for providing one or more client device with remote
access to applications 1nstalled on and/or executing on host
301. In some embodiments, peer to peer application host 301
may correspond to peer device 201 as illustrated in FIG. 2
and communicate with one or more client devices, such as
client device 240, over a network, such as network 230.

Included 1n peer device 301 1s a hardware layer that can
include one or more physical disks 304, one or more
physical devices 306, one or more physical processors 308
and one or more physical memories 316. In some embodi-
ments, firmware 312 can be stored within a memory element
in the physical memory 316 and can be executed by one or
more of the physical processors 308. Peer device 301 may
turther include an operating system 320 that may be stored
in a memory element in the physical memory 316 and
executed by one or more of the physical processors 308.
Programs or executable instructions stored in the physical
memory 316 can be executed by the one or more processors
308 of peer device 301.

Peer device 301 may run an operating system 320, such
as WINDOWS, UNIX, LINUX, 10S, ANDROID, SYM-
BIAN, and the like, which may provide one or more
desktops for executing applications. As used herein, a desk-
top refers to a graphical environment or space 1n which one
or more applications may be hosted and/or executed. A
desktop may include a graphical shell providing a user
interface for an instance of an operating system in which
local and/or remote applications can be itegrated. Appli-
cations may 1nclude programs that execute after an instance
of an operating system (and, optionally, also the desktop) has
been loaded. Peer device 301 may store one or more
applications on physical disks 304 and/or physical memory
316. Each of the one or more applications may be installed
on peer device 301 and available to local and/or remote
users. An application may be executable on physical pro-
cessor 308, and multiple instances of an application may be
executed and run concurrently. Each application and
instance of an application may be associated with one or
more input and output interfaces, drivers, and/or application
programming interfaces (APIs). These interfaces, drivers,
and APIs may capture and transmit input and/or output to
and from the application or application instance.

Peer device 301 may, through operating system 320,
provide one or more desktops for executing applications.
For example, general desktop 330 may be provided for local
execution ol applications by a local user. Output from
applications executing in general desktop 330, such as local
applications 332 and 334, may be provided to the local user
of peer device 301, and input from the local user may be sent
to applications executing 1n general desktop 330 as appro-
priate. Local applications 332 and 334 may be instances of
one or more applications 1nstalled on peer device 301. As
one example, local application 332 may be an instance of a
word processor application installed on peer device 301.
Applications executing in general desktop 330 may be
executed 1n a general/unsecured mode and have access to
physical disks 304, physical device 306, and/or physical
memory 316. Local applications 332 and 334 may commu-
nicate with and interact with each other within general
desktop 330. Through general desktop 330, a local user of a
peer device 301, such as a personal computer or a desktop
computer, may operate and interact with applications
executing on peer device 301 through input/output interfaces
provided by peer device 301. For example, output from local
applications 332 and 334 may be provided to a local user
through a display by way of an output interface of peer
device 301, and nput recerved by an mput interface of peer

10

15

20

25

30

35

40

45

50

55

60

65

12

device 301 may be provided to local applications 332 and
334. Applications executing on the general desktop 330 may
generate a windowed presentation for output to the local
user, and operating system 320 may combine windowed
presentations of one or more applications in order to gen-
crate a combined presentation of general desktop 330. For
example, the windows associated with local applications
332 and 334 may have a z-order associated with them, and
the windows may be combined such that one window
appears on top of and obscures another based on the z-order.

In some embodiments, peer device 301 may provide one
or more secure desktops 340 for executing one or more
applications in a secure mode. Although illustrated as one
secure desktop, a different secure desktop 340 may be
created for each instance of an application executing in a
secure mode, such as secure applications 342 and 344.
Applications executing 1 a secure desktop environment,
such as secure applications 342 and 344, may be adapted for
execution 1n the secure mode. Applications 1n secure desk-
top 340 may be segregated and kept separate from other
applications executing on peer device 301, such as applica-
tions executing on general desktop 330 or on other secure
desktops. In some embodiments, still other desktops may be
provided by peer device 301, such as authentication desk-
tops or screen saver desktops, for example.

According to some aspects herein, peer device 301 may
facilitate remote access of applications by providing one or
more shadow desktops 350 for background execution of
remote applications, such as remote applications 352 and
354. Shadow desktop 350 may be a separate desktop envi-
ronment from general desktop 330, secure desktop 340, and
any other desktops provided by operating system 320 and/or
peer device 301. Shadow desktop 350 may also be referred
to as a background desktop. Instances of applications
executing 1 shadow desktop 350 may be segregated from
other applications executing on peer device 301. Applica-
tions executing in shadow desktop 350 may be unable to
interact with applications executing on other desktop envi-
ronments. Further, applications executing in shadow desktop
350 may be adapted or otherwise transiformed to execute 1n
a remote mode. An instance of an application may be
operating 1n a remote mode where output of the instance 1s
redirected to a remote client and input from the client 1s
transmitted to the first istance. By contrast, an instance
executing in a local mode may receive mput from a local
user of the device and provide output to the local user.

Peer device 301 may execute an instance of an applica-
tion, such as remote application 352, in a remote mode by
hooking 1nto mput and output interfaces associated with the
application istance. The interfaces may be hooked such that
output of the mstance is redirected to a client and input from
the client 1s transmitted to the instance. The input and output
interfaces may be system and/or application level hooks,
drivers, and/or application programming interfaces (APIs)
associated with the application and/or application instance.
When the application 1s executed in a remote mode, 1n some
embodiments, output from the application may be sup-
pressed as to the local user and the application might not
directly receive mput from a local user of peer device 301.
By hooking or otherwise modifying input/output interfaces
associated with remote application 352, client device 240
may be provided with remote access to remote application
352 hosted on peer device 301. The hooks or modifications
may be limited in scope such that they redirect input/output
relating to the particular remote application instance but not
other instances of that application. Peer device 301, 1n some
embodiments, may use a remote presentation protocol or

US 11,895,184 B2

13

other program to send data to a thin-client or remote-display
application executing on the client device 240 to present
display output generated by an application executing on peer
device 301. As discussed above, client device 240 may
execute a virtual machine recerver program or application to
display the output in an application window, a browser, or
other output window.

In some embodiments, peer device 301 may operate to
provide remote access to a locally executing instance of an
application by transforming the mstance from a local mode
to a remote mode. A first mnstance ol an application, such as
local application 334, may be executed on peer device 301
in a general desktop 330. A local user of peer device 301
may view output from and provide mput to the locally
executing 1nstance, local application 334. For example, local
application 334 may be an instance of a word processing
application and may display a requested document. It may
be determined that peer device 301 should provide remote
access to the locally executing instance of the application,
such as when a client requests remote access to that instance
(discussed further below in regard to FIGS. 4A-B, 5, and 6).
Peer device 301 may transiform the locally executing
instance from the local mode to the remote mode by trans-
ferring execution of the istance from the general desktop
330 to a shadow desktop 350 and hooking into input/output
interfaces associated with the locally executing instance. For
example, the locally executing instance of the word pro-
cessing application may be mitially run 1n a local mode
where 1t provides output to a local user of peer device 301
and receives mput from the local user. Peer device 301 may
determine to provide remote access to the instance of the
word processor and transform 1t into a remote mode and
transier execution of the instance to shadow desktop 350.
Peer device 301 may hook 1nto or otherwise adapt one or
more input interfaces and/or APIs associated with the
instance of the word processing application such that the
instance will recetve input from a remote client device
instead of the local user. Peer device 301 may also hook into
or otherwise adapt one or more output interfaces and/or APIs
associated with the instance such that output from the

instance will be sent to the remote client device instead of

the local user. Once the locally executing instance of the
word processing application has been transformed into the
remote mode, a user of the remote device may view the
instance and the document that was previously being view
by the local user, for example.

In some embodiments, an application nstance may be
executed 1n the shadow desktop 1n a remote mode, yet a local
user of the peer device may remotely access the application
instance ifrom a remote viewer in the general desktop. That
1s, peer device 301 may isolate the application instance 1n
shadow desktop 350 and hook one or more input/output
interfaces associated with the application instance so that
input/output for the application 1s redirected. However, the
local user of peer device 301 may act as the remote client
through a remote application viewer executmg in general
(fesktop 330. The remote application viewer may serve as
the “remote” client for the application instance, and the
hooks may operate to redirect mput from the local user
through the remote viewer to the 1solated application
instance executing 1n a remote mode 1n the shadow desktop.

Having discussed an architecture that may be used to

provide remote access to applications and instances of

applications hosted by a peer device as shown i FIG. 3,
discussion will now turn to a method of discovering remote
peers and available applications thereon, as illustrated in

FIGS. 4A-B, 5, and 6.

10

15

20

25

30

35

40

45

50

55

60

65

14

FIGS. 4A and 4B together illustrate a process flow of a
method for peer to peer discovery of remote applications,
according to some aspects discussed herein. As illustrated 1n
FIGS. 4A and 4B, a client device 410 may communicate
with a peer device 420 to discover available applications for
remote access. Client device 410 and peer device 420 may
together form part of a peer to peer remote application
system.

As one specific example of a scenario 1 which one or
more aspects 1llustrated 1n FIGS. 4A and 4B may be prac-
ticed, client device 410 may be a tablet computer operated
by user 401, and peer device 420 may be a desktop computer
available to user 401 (FIG. 4B). User 401 may have been
previously working on the desktop computer, such as by
opening a document 1n a word processing application on the
desktop computer. User 401 may have made changes to the
document or located an important piece of information in the
document as presented 1n the mstance of the word process-
ing application executing on peer device 420. User 401 may,
for example, then proceed to a meeting and take the tablet
computer to the meeting. User 401 may operate a remote
application viewer 417 installed on the tablet computer to
select the desktop computer as a host, select the mstance of
the word processing application that user 401 previously
interacted with, and access that instance remotely using the
tablet computer. User 401 may be presented on the tablet
computer with the instance of the word processing applica-
tion as he left 1t on the desktop computer. A process flow
supporting one or more of these features 1s described 1n
detail below 1n regard to FIGS. 4A and 4B.

FIG. 4A illustrates a first portion of the process flow
where the client device 410 may seek to discover available
peer devices, such as peer device 420. Client device 410 may
include a peer to peer (P2P) application client 413 {for
discovering available remote peers. Client device 410 may
include host record database 415 for storing information
about discovered remote peers. Although P2P application
client 413 and host record database 415 are illustrated 1n
FIG. 4A as part of client device 410, in some embodiments
they may be implemented separately from and 1n commu-
nication with client device 410. Peer device 420 may include
a peer to peer (P2P) application host 423 for responding to
discovery requests and providing remote access to applica-
tions hosted by peer device 420. P2P application client 413
may be an application installed on client device 410 to
enable client device 410 to discover peers and remote access
applications hosted by those peers. Similarly, P2P applica-
tion host 423 may be an application installed on peer device
420 to respond to discovery requests by clients, provide the
clients with available applications, and initiate remote
access ol an application hosted on peer device 420 by a
client.

In step 432, P2P application client 413 may send a
discovery message over a network seeking available remote
peers. In some embodiments, the discovery message may be
a broadcast message sent on a network shared by client
device 410 and peer device 420. The discovery message may
be broadcast on a local area network or wireless network in
which client device 410 1s a member. In some embodiments,
the discovery message may be sent using the Simple Service
Discovery Protocol (SSDP) for discovery of network ser-
vices. In some embodiments, the discovery message may
include authentication information and/or access credentials
identifying the client device 410 or a user of the client device
410. For example, the discovery message may contain a user
name, password, and/or secure key associated with the peer
to peer remote application system. The discovery request

US 11,895,184 B2

15

may be broadcast over the network and received by one or
more peers directly, rather than sent to a remote access
brokering service. The discovery message may be config-
ured such that peer devices having remote access capability
may recognize the request and respond as appropriate. The
client device 410 may send the discovery message over the
network without knowing the identity of any available peers.
As a result, client device 410 need not be pre-configured
with knowledge of peer device 420. Instead, client device
410 may dynamically discover peer device 420 by sending
the discovery message seeking peers with remote access
capability. At step 434, P2P application host 423 may
respond to the discovery message, indicating that remote
access 1s available at peer device 420. In some embodi-
ments, the response may be sent as a SSDP message.

At step 436, after receiving the response to the discovery
message, P2P application client 413 may request a host URL
from P2P application host 423. The host URL may specity
an address client device 410 can use to remotely access
applications hosted on P2P application host 423. In some
embodiments, the request for the host URL may be trans-
mitted as a hypertext transier protocol (HTTP) request. At
step 438, P2P application host 423 may respond to the
request by providing a peer to peer application hosting URL
tor client device 410 to use 1n accessing remote applications
hosted on peer device 420. In other embodiments, P2P
application host 423 may provide host access information 1n
addition to or in lieu of the hosting URL, such as an IP
address or other information client device 410 may use to
access remote applications on peer device 420. At step 440,
P2P application client 413 may provide the hosting URL or
other information to host record database 415 for inclusion
as a host record.

FIG. 4B illustrates a second portion of the process flow
where a user 401 may operate client device 410 to select a
discovered host, such as peer device 420, view a list of
available applications, and select an application to begin
remote access. The process flow 1llustrated in FIG. 4B may
occur sequentially to the process flow 1llustrated 1n FIG. 4A,
or the discovery process illustrated in FIG. 4A may be
carried out in advance. In some embodiments, the discovery
process 1llustrated in FIG. 4A may occur during the process
illustrated 1n FIG. 4B, such as after steps 442 or steps 444
where the list of peers 1s retrieved from the host record
database 415. Further illustrated in FIG. 4B, client device
410 may include a remote application viewer 417 and peer
device 420 may include one or more remote applications
425. Although client device 410 1s 1llustrated with remote
application viewer 417, host record database 415, and P2P
application client 413 as separate modules, 1n other embodi-
ments these may be combined, such as into one module, or
they may be implemented in more than one device in
communication with one another.

In step 442, user 401 may request that client device 410
begin executing or otherwise initiate remote application
viewer 417. Remote application viewer 417 may be installed
on client device 410 and may serve as a front end or user
interface for P2P application client 413, allowing user 401 to
remotely access applications hosted on one or more peer
devices, such as peer device 420. Remote application viewer
may then, in step 444, request or otherwise retrieve a host
list from the host record database 415. The host list may
have been dynamically generated according to the steps
discussed above 1n FIG. 4A. In some embodiments, the host
list may have been generated prior to remote application
viewer 417 starting on client device 410. In other embodi-
ments, the host list may be generated 1in response to remote

10

15

20

25

30

35

40

45

50

55

60

65

16

application viewer 417 starting or 1n response to a request
for the host list. At step 446, the host record database 415
may return the host list to remote application viewer 417.

At step 448 remote application viewer 417 may present
the host list to user 401. Remote application viewer may
generate a user interface including the list of available hosts
that responded to the discovery process described above in
FIG. 4A. The user interface may be presented to user 401 on
a display associated with client device 410, and user 401
may select a host including in the list. The host list may
include 1dentifying information about the peer devices that
responded to the discovery request, such as a name, network
identifier, IP address, operating system, description, users,
device type, availability, current load, capabilities, any com-
bination thereotf, and the like. User 401 may be prompted to
select a host to begin remote application access, and 1n step
450 user 401 may select a host presented by remote appli-
cation viewer 417.

At step 452, remote application viewer 417 may send a
request to the selected host, peer device 420, to get a list of
applications available for remote access. The request may be
sent using the host URL or other identifier associated with
the selected host record and previously retrieved 1n the steps
of FIG. 4A. The request may include authentication data,
such as a secure key or password. The request for an
application list may be received by peer to peer application
host 423 executing on peer device 420.

In step 453, peer device 420 may, through P2P application
host 423, generate a list of applications peer device 420 has
available for remote access by client device 410. The list of
available applications may include one or more applications
installed on peer device 420 as well as one or more appli-
cation instances executing on peer device 420. The list may
be generated by P2P application host 423 based on analyzing
a listing of applications 1nstalled on peer device 420 and a
listing of mstances of applications executing on peer device
420. Peer device 420 may i1dentily installed applications
through mechanisms provided by the operating system, such
as an application launcher, start menu, system registry,
shortcuts to applications, and the like. Peer to peer applica-
tion host 423 may analyze the 1nstalled applications on peer
device 420 to automatically determine which applications
are available without requiring a user of peer device 420 to
manually 1dentity each application to make available and/or
publish. Peer to peer application host 423 may analyze a list
of runming instances of applications and include those
instances 1n the list returned to client device 410. Peer to
peer application host 423 may include locally executing
instances of applications 1n the application list, and more
than one instance of a particular application may be included
in the application list. As a result, peer to peer application
host 423 may respond to client device 410 with a list of
applications available for remote access automatically and
without a user of peer device 420 having to manually
identify particular applications as available remotely.

In step 454, peer to peer application host 423 may return
the list of available applications to remote application
viewer 417 on client device 410. Remote application viewer
417 may generate an application selector based on the
returned list of available applications and application
instances, and user 401 may be presented with the applica-
tion selector 1n step 456. In step 458, user 401 may select an
application or instance included in the application selector to
initiate remote access on client device 410. In step 460,
remote application viewer 417 may send a message to peer
to peer application host 423 requesting remote access to the
selected application or instance.

US 11,895,184 B2

17

In step 462, P2P application host 423 may start the
selected remote application 425. If selected remote applica-
tion 425 1s an instance ol an application and 1s already
running on peer device 420, P2P application host 423 may
utilize the selected instance and need not start a new
instance, in some embodiments. As described above 1n
regard to FIG. 3, the selected application or instance may be
executed 1 a remote mode such that output from the
application or instance 1s redirected to client device 410 and
input from client device 410 1s transmitted to the application
or instance. In some embodiments, an executing application
instance may be transformed into the remote mode by way
ol hooking input and output interfaces, drivers, APIs, and the
like associated with the application or instance. The hooks
into input and output interfaces may, in some embodiments,
be done within the scope of the selected instance of the
application. The hooks may be limited to that instance of the
application 1n the remote mode, and other instances of the
application may be unaflected and continue to behave nor-
mally (that 1s, recerve input from and send output to a local
user). In other embodiments, the hooks may be made at an
application level.

In some embodiments, the application may be executed in
a shadow desktop on peer device 420 or execution of the
selected instance may be transferred to the shadow desktop,
as discussed above in regard to FIG. 3. The hooks may, 1n
some embodiments, be made at a desktop level within the
shadow desktop, such that all input and output interfaces
within the shadow desktop are redirected to/from the client
device 410. In other embodiments, the executing application
may remain on a general desktop of peer device 420 but still
be 1n the remote mode as a result of hooks 1into one or more
interfaces associated with the executing application. Where
the application 1n the remote mode remains on the general
desktop, peer device 420 may shiit a local display to a
screensaver or otherwise obscure display of output from
applications executing on peer device 420 and operated by
client device 410.

In some embodiments, the application instance may be
executed 1 a remote mode using the methods discussed
turther below 1n regard to FIGS. 7, 8, and 9. As will be
described further, 1n some embodiments a host system, such
as the peer device, may execute an instance of the applica-
tion 1 a remote mode by hooking one or more APIs
associated with the application instance and dynamically
assigning a network communication port to the application
instance. The host system may send an 1dentifier of the port
assigned to the instance of the application to a remote client,
and the remote client may send user mput to the istance of
the application by sending the user input to the port. The host
system may hook APIs related to user mput, and the host
system may use the hooked APIs to provide the remote user
input to the instance of the application. For example, the host
system may provide the remote user mput to the application
instance by injecting the user input into a user mput queue
of the application instance. The host system may also
provide output from the application instance to the remote
client 1n the form of an application window by hooking one
or more APIs associated with a window composition man-
ager. The window composition manager may manage the
aggregation, combination, and/or composition ol window
output from multiple applications executing on the host
device and may be provided by an operating system asso-
ciated with the host device. Using the hooked APIs associ-
ated with the application mstance, the host system may mark
an application window with an 1dentifier, such as a window
handle. The identifier may be used by the host system to

10

15

20

25

30

35

40

45

50

55

60

65

18

recognize the application window 1in data retrieved by the
hooked APIs associated with the window composition man-
ager. The marked application window (associated with the
application instance) may be extracted and sent to the
remote client as output from the application instance. The
host system may extract the marked application window and
discard window textures other than those corresponding to
the application window. These and other aspects of systems
and techniques for providing remote access to an application
are discussed further below 1n regard to FIGS. 7, 8, and 9.

Continuing with FIG. 4, 1n step 464, P2P application host
423 may receive application information from remote appli-
cation 425. This application information may be used by
P2P application host to determine connection details to
provide to client device 410 for connecting to the hosted
application instance. Peer device 420, in some embodi-
ments, may use a remote presentation protocol or other
program to send data to a thin-client or remote-display
application executing on the client device 410 to present
display output generated by instance ol the application
hosted on peer device 420. P2P application host 423 may
determine application instance connection details based on
the application information and send the application instance
connection details to remote application viewer 417 1n step
466.

Remote application viewer 417 may receive the applica-
tion 1nstance connection details and may 1nitiate a connec-
tion to the hosted remote application instance in step 468.
Any suitable protocol for establishing a remote access
connection between client device 410 and peer device 420
may be used. For example, the remote access connection
may be established according to a remote presentation
protocol used by peer device 420. As another example the
remote access connection may be established using the
WEBRTC protocol. In step 470, the remote application may
accept the remote access connection and begin redirecting
output to client device 410 and receiving mnput from client
device 410.

In steps 472-478, user 401 may remotely access and
operate the selected application instance hosted on peer
device 420. In step 472, remote application viewer 417 may
present a user interface or other output from remote appli-
cation 425 to user 401. In some embodiments, client device
410 may execute a virtual machine receiver program or
application to display the output in an application window,
a browser, or other output window. In step 474, for example,
remote application viewer 417 may receive user mput from
user 401. For example, user 401 may click, point to, tap,
touch, or otherwise select a control included in output from
remote application 425 as presented on a display associated
with client device 410. In step 476, remote application
viewer 417 may send a user mput message to remote
application 425 using the remote application connection
previously established. The user input message may be
received by peer device 420 and remote application 425, and
the user mput may be applied to remote application 425
through hooks 1n one or more input interfaces and/or APIs.
Remote application 425 may respond to the user input and
update or otherwise generate output. This output may be
captured by hooks in one or more output interfaces and/or
APIs, and the output may be sent to remote application
viewer 417 1n step 478 where 1t may be presented to user 401
on client device 410. Through this input/output process, user
401 of client device 410 may be able to remotely access and
operate a remote instance ol an application executing on
peer device 420. In some embodiments, the put/output
process described through steps 474-478 may be imple-

US 11,895,184 B2

19

mented according to one or more aspects of the methods
discussed below 1n regard to FIGS. 8 and 9.

In step 480, user 401 may 1ssue a command to close the
remote application. In step 482, remote application viewer
417 may send the command to close the remote application
and terminate the remote connection. Remote application
425 may close when the remote access 1s terminated. Addi-
tionally and/or alternatively, 1n some embodiments remote
application 425 may revert to a local mode 1n optional step
484. For example, where the selected application instance 1n
step 460 1s an 1stance then already executing on peer device
420, the mstance may revert back to a local mode once user
401 terminates the remote access. For example, peer device
420 may remove or otherwise terminate the hooks used to
redirect the input/output interfaces associated with the appli-
cation instance. A local user of peer device 420 may then
receive output and provide mput to the application instance
as normal. Thus, according to some embodiments, an appli-
cation instance may be opened on the peer device and used
by a local user, remotely accessed and controlled by a
remote user on a client device, and returned to the control of
the local user after the remote access terminates.

Having discussed a process flow of a method for peer to
peer discovery of remote applications, discussion will now
turn to a method of providing clients with remote access to
applications 1n a peer to peer remote access system, accord-
ing to some aspects discussed herein and illustrated 1n FIG.
5.

FIG. 35 illustrates a method of responding to discovery
requests for remote peers and providing remote access to a
selected application or instance 1n accordance with one or
more 1llustrative aspects discussed herein. In one or more
embodiments, the method 1llustrated 1n FIG. 5 and/or one or
more steps thereol may be performed by a computing device
(e.g., generic computing device 100). Additionally or alter-
natively, the method illustrated in FIG. 5 and/or one or more
steps thereol may, 1n some 1nstances, be performed by a peer
device configured to provide remote access to one or more
applications installed thereon. In other embodiments, the
method 1llustrated in FIG. 5 and/or one or more steps thereof
may be embodied 1n computer-executable mstructions that
are stored in a computer-readable medium, such as a non-
transitory computer-readable memory.

In step 505, the peer device may receive a discovery
request seeking available remote peers. This discovery
request may be broadcast on a network shared by the peer
device and a client device that sent the discovery request.
The discovery request may contain authentication informa-
tion or other information about the client device such that the
peer device may determine whether to respond indicating,
that remote access 1s available.

In step 510, the peer device may send a response indi-
cating the availability of remote access. The response may
indicate that the peer device 1s configured to support the type
of remote access requested by the client device. In some
embodiments, the peer device may also include an address,
URL, or other information usable by the client device to
access the peer device for further inquiry. In some embodi-
ments, this additional information may be sent 1n response
to a request from the client device for connection informa-
tion after the peer device has responded indicating the
availability of remote access.

In step 515, the peer device may receive a request for a list
of available applications installed on the peer device and
application instances executing on the peer device. The

10

15

20

25

30

35

40

45

50

55

60

65

20

request may include authentication information or other
information about the client device or the remote access
sought.

In step 520, the peer device may generate the list of
available applications for remote access. The list may be
generated based on a listing of applications installed on the
peer device and/or on a listing of application instances
already running on the peer device. The list may include one
or more nstalled applications and one or more application
instances executing on the peer device. The list may include
more than one instance of an application installed on the
device, as described above.

In step 5235, the peer device may send the list of available
applications and application instances to the requesting
client device.

In step 530, the peer device may receive a selection of an
application or application instance from the client device.
For example, the client device may present a user with a user
interface including the list of applications and application
instances. The user may select one of the applications or
application instances, and the client device may communi-
cate this selection to the peer device. Responsive to the
user’s selection, the client device may communicate with the
peer device seeking to establish remote access to the
selected application or application instance.

In step 535, the peer device may start the selected
application 1n a remote mode and/or transform the selected
application instance mto a remote mode. As described
above, this may include hooking into one or more nput
and/or output interfaces associated with the selected appli-
cation or application mnstance. In the remote mode, output
from the application mstance may be redirected to the client
device and input from the client device may be transmitted
to the application instance. The interface hooks may be of
limited scope and apply to the particular instance of the
application, rather than the installed application generally.
The remote 1nstance of the application may be hooked 1n
such a manner that input/output of that instance 1s redirected
to/from the client device, but other instances of that appli-
cation continue to send input/output to a local user of the
peer device. In some embodiments, the peer device may start
the selected application 1n a remote mode according to one
or more aspects of the methods discussed below 1n regard to
FIGS. 8 and 9.

In step 540, the peer device may provide the client device
with remote access to the selected application or application
instance. The peer device may provide the client device with
remote application instance connection information that
may be used to 1mitiate a remote access connection with the
application instance hosted on the peer device. The peer
device may execute one or more remote access protocols to
allow the client device to remotely access and/or operate the
remote application instance. The client device may use the
remote application instance connection information to 1ni-
tiate a remote access connection with the remote application
hosted on the peer device. The peer device and/or the remote
application 1nstance may accept the remote access connec-
tion and provide a user of the client device with remote
access until the connection 1s terminated or remote access
otherwise ends.

Having discussed a method of providing clients with
remote access to applications 1n a peer to peer remote access
system, discussion will now turn to a method of discovering
peers and requesting remote access to applications 1n a peer
to peer remote access system, according to some aspects
discussed herein and 1llustrated 1n FIG. 6.

US 11,895,184 B2

21

FIG. 6 illustrates a method of discovering available peer
devices and requesting remote access to application
instances hosted on a peer device, 1n accordance with one or
more 1llustrative aspects discussed herein. In one or more
embodiments, the method 1llustrated in FIG. 6 and/or one or
more steps thereol may be performed by a computing device
(e.g., generic computing device 100). Additionally or alter-
natively, the method illustrated in FIG. 6 and/or one or more
steps thereol may, in some instances, be performed by a
client device, such as a mobile device or tablet computer,
configured to discover remote peers and connect to one or
more remote applications. In other embodiments, the
method 1llustrated in FIG. 6 and/or one or more steps thereof
may be embodied 1n computer-executable instructions that
are stored in a computer-readable medium, such as a non-
transitory computer-readable memory.

In step 6035, the client device may send a discovery
request on a network seeking available remote peer devices.
In some embodiments, as illustrated in FIG. 6, the discovery
request may be a broadcast message. The message may be
broadcast on a network shared by the client device and a
peer device, such as a wireless network or local area
network. The message may include authentication informa-

tion and/or other data regarding permissions or 1dentity of
the client device.

In step 610, the client device may receive a response from
one or more peer devices indicating that remote access may
be available. The response may provide host access infor-
mation for the peer device, or the client device may send a
request to the peer device for the host access information.
The client device may store the responses and the associated
host access information 1n a host record database for later
use as a host list. The host list may be presented to a user of
the client device, and the user may select one of the peer
devices 1n the host list to mitiate remote access of that peer
device.

In step 615, the client device may send a request to the
selected peer device for a list of available applications and
application instances. In some embodiments, the request
may include authentication information and/or other data
about the client device, such as device capabilities, prefer-
ences, and the like.

In step 620, the client device may receive the list of
available applications hosted by the peer device. The list
may 1nclude one or more applications installed on the peer
device and available for remote access. Additionally and/or
alternatively, the list may include one or more application
instances executing on the peer device and available for
remote access. The list may include information about each
available application, such as name, version, capabilities,
description, limitations, last access, execution start time,
open files, application istance status, user notes, and/or any
other suitable information.

In step 623, the client device may generate a user interface
presenting the list of applications available for remote access
to the user. The user may be prompted to select one of the
applications and application instances included in the list.
The user mterface may include some or all of the informa-
tion received with the list of applications available for
remote access. The client device may analyze the returned
list of applications from the peer device and determine a
subset of the applications to present to the user. For example,
the client device may determine that an application included
in the list cannot be properly presented on the client device
and may remove that application from the list presented to
the user.

10

15

20

25

30

35

40

45

50

55

60

65

22

In step 630, the client device may 1nitiate remote access
of the selected application hosted by the peer device. The
client device may transmit an indication of the application or
application instance selected by the user to the peer device.
The peer device may prepare the selected application or
application mstance for remote access and provide the client
device with application instance remote access information.
The client device may use this remote access information to
initiate a remote access connection with the selected remote

application using one or more protocols for remotely access-
ing applications. The client device may send mput from the
user to the remote application by way of a remote access
protocol. For example, the client device may send user input
to a port associated with the remote application instance, as
discussed further below in regard to FIG. 8. The client
device may recerve output from the remote application and
present the output to the user. For example, the client device
may receive an application window associated with the
remote application instance, as discussed further below in
regard to FIG. 9. In some embodiments, the remote appli-
cation may be presented to the user in a window, browser,
and/or desktop provided by the client device. Remote access
of the application may continue until the user 1ssues a
command to close the remote application or remote access
1s otherwise terminated.

One or more aspects of the disclosure may allow users to
remotely access applications or application instances hosted
on a peer device using a client device. By way of the peer
to peer remote application discovery techniques discussed
herein, a user of the peer device may not need to precon-
figure each application that 1s to be made available remotely,
in some embodiments. Additionally, 1n some embodiments,
a locally executing instance of an application on the peer
device may be made available to a remote client device
dynamically and without a user of the peer device having to
manually i1dentily the instance as remotely accessible. For
example and as described above, a user who had been
working on a document in a word processor at his desktop
computer can later access that document as he had been
working on 1t from another device, such as his mobile
device. The mobile device may dynamically 1dentify avail-
able peer devices, discover the desktop computer, receive a
list of remotely available applications including the open
instance of the word processor, and 1nitiate remote access of
the open 1nstance of the word processor. Thus, according to
some aspects disclosed herein, a user may be provided with
ready access to his information and applications regardless
of physical presence at a device storing that information and
executing the applications, potentially providing a better
user experience and improving access to mnformation.

Having discussed methods for peer to peer discovery of
remote application, as depicted 1 FIGS. 4, 5, and 6, dis-
cussion will now turn to systems and methods for providing
remote access to an instance of an application, as depicted
in FIGS. 7, 8, and 9. As noted above, the techniques for
providing remote access discussed below 1n regard to FIGS.
7, 8, and 9 may be used to implement one or more aspects
of the peer to peer discovery of remote application methods
discussed 1n regard to FIGS. 4, 5, and 6, 1n some embodi-
ments. For example, the peer device may implement one or
more aspects of the techniques depicted in FIGS. 7, 8, and
9. The techniques described below may also be utilized 1n
any suitable setting where 1t 1s desirable for a host device to
provide client devices with remote access to an instance of
an application. For example, the techniques depicted 1n
FIGS. 7, 8, and 9 may be used 1n an application virtualiza-

US 11,895,184 B2

23

tion environment to provide client devices with remote
access to applications hosted on a host device, such as a
SErver.

FIG. 7 depicts illustrative system 700 for providing
remote access to an mnstance ol an application. Included in
system 700 are host device 701 and remote client device
703. Host device 701 and client device 703 may each be one
or more computing devices, such as computing device 100
or computing device 200 and/or may have similar compo-
nents. Host device 701 may be configured to provide one or
more client devices 703 with remote access to applications
installed on and/or executing on host device 701. Client
device 703 may be remote from host device 701 and the two
devices may communicate over a network. In some embodi-
ments, host device 701 may correspond to peer device 201
as illustrated 1 FIG. 2 and communicate with one or more
remote client devices 703, such as client device 240, over a
network, such as network 230.

Host device 701 of FIG. 7 may include an operating
system that may be stored in physical memory and executed
by one or more physical processors, similarly to peer device
301 discussed above 1n regard to FIG. 3. Host device 701
may run an operating system, such as WINDOWS, UNIX,
LINUX, 10S, ANDROID, SYMBIAN, and the like, which
may provide one or more desktops for executing applica-
tions. As used herein, a desktop refers to a graphical envi-
ronment or space in which one or more applications may be
hosted and/or executed. A desktop may include a graphical
shell providing a user interface for an 1nstance of an oper-
ating system 1n which local and/or remote applications can
be integrated. Applications may include programs that
execute after an instance of an operating system (and,
optionally, also the desktop) has been loaded. Host device
701 may store one or more applications on physical disks
and/or physical memory. Each of the one or more applica-
tions may be installed on host device 701 and available to
local and/or remote users. An application may be executable
on the physical processors, and multiple 1nstances of an
application may be executed and run concurrently. Each
application and instance of an application may be associated
with one or more mput and output interfaces, drivers, and/or
application programming interfaces (APIs). These inter-
faces, drivers, and APIs may capture and transmit input
and/or output to and from the application or application
instance.

Program logic 710 may be stored by host device 701 and
executed to implement one or more aspects of the techniques
described herein, including the methods depicted 1n FIGS. 8
and 9. By executing program logic 710, host device 701 may
be configured to 1nitiate an istance of an application, such
as application instance 720, 1n a remote mode. By executing
application mstance 720 1n a remote mode, 1n some embodi-
ments, host device 701 may be configured to provide user
input recerved from remote client device 703 to application
instance 720 and to provide output from application instance
720, such as an application window, to client device 703.
Host device 701 may utilize a window composition module
730 to combine application windows associated with one or
more executing instances of applications on host device 701
into a composite desktop output.

Host device 701 may, in some embodiments, imtiate
application instance 720 in a remote mode such that user
input recerved by client device 703 may be provided to
application instance 720 and output generated by application
instance may be provided to client device 703. In some
embodiments, host device 701 may mmitiate application
instance 720 1 a remote mode 1n response to a request by

10

15

20

25

30

35

40

45

50

55

60

65

24

client device 703. For example, client device 703 may seek
peers ollering remote access 1n a peer to peer remote
application discovery system, such as that described above.
As another example, client device 703 may be a remote
client accessing an application virtualization environment
provided by and/or associated with host device 701. Host
device 701 may begin imitiating application instance 720 1n
a remote mode by executing the appropriate application
stored 1n memory. For example, host device 701 may create
a thread corresponding to application instance 720 when the
application 1s launched. Application instance 720 may
include application logic 725, output generation logic 723,
and an input queue 727.

Host device 701 may mnitiate application instance 720 1n
a remote mode by hooking one or more input and output
interfaces associated with application instance 720 and
dynamically assigning a network port 740 to application
istance 720. Host device 701 may hook APIs related to user
iput, and the host system may use the hooked APIs to
provide remote user mput recerved from client device 703 to
application 1nstance 720. Host device 701 may also provide
output from application instance 720 to client device 703 1n
the form of an application window by hooking one or more
APIs associated with a window composition manager 730.
Window composition manager 730 may manage the aggre-
gation, combination, and/or composition of window output
from multiple applications executing on host device 701 and
may be provided by an operating system associated with
host device 701. Using one or more ol the hooked APIs
associated with application instance 720, the host system
may mark an application window with an identifier, such as
a window handle. The i1dentifier may be used by the host
system to recognize the application window in data retrieved
by the hooked APIs associated with window composition
manager 730. Based on the identifier, host device 701 may
distinguish between a window texture associated with appli-
cation instance 720 and a window texture associated with
another application. The marked application window (asso-
ciated with application instance 720) may be extracted and
sent to client device 703 as output from application instance
720. The output sent to the client device may include the
extracted application window as 1mage data, and may omit
window textures associated with other applications.

Host device 701 may hook, intercept, modily, and/or
otherwise adapt one or more 1nput interfaces associated with
application instance 720 in order to provide remote user
input to application instance 720. The iput interfaces may
be system and/or application level hooks, drivers, and/or
application programming interfaces (APIs) associated with
the application and/or application istance 720. In some
embodiments, host device 701 may hook, intercept, modity,
and/or otherwise adapt interfaces such as APIs at a thread
level. For example, host device 701 may hook the one or
more mput interfaces associated with application instance
720 by injecting a dynamic link library (DLL) into a thread
corresponding to application 1nstance 720. Such hooks may
be of limited scope and apply to the particular instance of the
application corresponding to the thread and not other
instances of the same application. The hooked APIs may be
associated with an mput queue 727 of application instance
720. The hooked APIs may, in some embodiments, be used
to 1nject remote user mput mnto mput queue 727 and may
bypass a general operating system input queue. Through the
hooked APIs, host device 701 may provide remote user input
to application instance 720.

Host device 701 may dynamically assign a network
communication port 740 to application instance 720. Port

US 11,895,184 B2

25

740 may be assigned and/or operate 1n accordance with any
appropriate network transport protocol, such as the Trans-
mission Control Protocol (TCP) or the User Datagram
Protocol (UDP). Port 740 may be any numbered port, and an

existing port may be assigned to application instance 720 1if 5

an application corresponding to the existing port 1s no longer
executing. When application instance 720 1s mitiated 1n a
remote mode, host device 701 may select an available
network communication port 740 (or generate a port 740)
and create a mapping between port 740 and application
instance 720. For example, the mapping may comprise the
port assigned for mput (port 740), a window handle asso-
ciated with application instance 720, and a process 1d
associated with application instance 720. The mapping may
be used to identily incoming network communications as
designated for application instance 720, such as network
communications including user mput from client device
703. Network communications received by host device 701
on (or designating) port 740 may be processed by host
device 701 using program logic 710, and remote user mput
included 1n the network communication may be provided to
application instance 720. Additionally and/or alternatively,
one or more 1mterfaces associated with application instance
720 may be modified to monitor port 740 for available user
input. Other network information may also be used to map
network communications to a target application instance.
For example, an identifier may be assigned to a remotely-
accessible application instance and network communica-
tions bearing that identifier may be forwarded to the appro-
priate application instance using the hooked APIs.

Host device 701 may communicate the assigned port 740
to client device 703 by sending the mapping and/or any other
identifying information. Client device 703 may use the
mapping or other mformation about the port to send user
input commands and/or data to application instance 720.
Client device 703 may receive user mput from a user mput
device 705 associated with client device 703, and client
device 703 may send this user input to host device 701. User
input device 705 may be any suitable user input device, such
as a keyboard, pointing device (e.g., mouse, touchpad,
touchscreen, etc.), microphone, camera, and the like. Client
device 703 may execute a virtual machine receiver program
or application to display output associated with application
instance 720 in an application window, a browser, or other
output window. Client device 703 may distinguish between
received user input associated with (remote) application
istance 720, such as that recerved 1n a remote access viewer
(e.g., a virtual machine receiver program), and user input
received 1n other contexts that are not associated with
application 1stance 720. Client device 703 may send user
input intended for application instance 720, such as that
received 1n the remote access viewer, to host device 701 1n
network communications directed to port 740.

Network communications received by host device 701
from client device 703 via port 740 may be processed by
program logic 710. Host device 701 may determine, based
on the identity of port 740, that received data 1s intended for
application instance 720. Additionally and/or alternatively, a
thread associated with application instance 720 may monitor
port 740 and process received data on that port. Remote user
input data recerved via port 740 may be provided to appli-
cation instance 720 using one or more nput interfaces
associated with application instance 720, such as one or
more APIs. As described above, these APIs may be hooked
or otherwise modified to inject and/or otherwise provide
remote user input to application instance 720. Generally,
input 1n an operating system input queue may be provided to

10

15

20

25

30

35

40

45

50

55

60

65

26

an active application having focus 1n a given user session
having multiple applications executing. If application
istance 720 1s a background application 1n the user session
(1.e. does not have focus 1n the user session), then user input
placed 1n the operating system input queue may be directed
to the focus application rather than application instance 720.
The one or more APIs associated with application instance
720 may be hooked 1n such a manner as to allow host device
701 to iject the recerved remote user mmput into an mput
queue 727 associated with application instance 720. The
received remote user input may bypass the operating system
input queue and, 1n some embodiments, may be directly
iserted into mput queue 727 associated with application
instance 720. Application instance 720 may process mnput 1n
input queue 727 using, for example, application logic 725.
Application instance 720 may generate output, such as an
application window, using output generation logic 723. This
application window may be provided to a window compo-
sition module 730, and image data associated with the
application window may be extracted by host device 701
and sent to client device 703, as will be discussed further
below.

Output generated by application instance 720 (through
output generation logic 723) may be provided to window
composition module 730. Host device 701 may execute
multiple applications at once, including more than one
instance of a single application, and each application may
generate visual output corresponding to an application win-
dow. This visual output may be provided to window com-
position module 730 for the generation of a composite
desktop output. Window composition module 730 may
receive and/or generate window textures 735, which may
include 1mage data corresponding to respective application
windows provided by applications executing on host device
701. The image data included 1n window textures 735 may
be 1n a bitmap 1mage format. Through composition logic
733, window composition module 730 may aggregate, com-
bine, and/or compose window textures 735 to create a
composite desktop output based on a z-order associated with
the corresponding application windows. The composite
desktop output may present the application windows 1n a
layered fashion with some application windows occluded by
others. An application window associated with an active
application may appear on top of other application windows,
and the other application windows may be hidden or par-
tially occluded. Due to this occlusion, it may be diflicult to
extract an 1mage texture corresponding to an application
window associated with a background application (e.g., an
application other than the focused application) from the
composite desktop output generated by the window com-
position module. Some aspects described herein may over-
come this difliculty by marking an application window
associated with a remote-accessible application and then
recognizing a window texture associated with the remote-
accessible application based on the marking and during the
window composition process.

Host device 701 may hook, intercept, modily, and/or
otherwise adapt one or more output interfaces associated
with application mstance 720 and interfaces associated with
window composition module 730 1n order to extract visual
output associated with application instance 720, such as a
window texture corresponding to an application window
associated with application mstance 720. The output inter-
faces associated with application instance 720 may be
system and/or application level hooks, drivers, and/or appli-
cation programming interfaces (APIs) associated with the
application and/or application nstance 720. In some

US 11,895,184 B2

27

embodiments, host device 701 may hook, intercept, modity,
and/or otherwise adapt interfaces such as APIs at a thread
level. For example, host device 701 may hook the one or
more mput interfaces associated with application instance
720 by injecting a dynamic link library (DLL) 1into a thread
corresponding to application 1mstance 720. Such hooks may
be of limited scope and apply to the particular instance of the
application corresponding to the thread and not other
instances of the same application. The hooked APIs may be
associated with output generation logic 723 of application
instance 720.

The hooked output interfaces associated with application
instance 720 may be used to mark and/or otherwise 1dentily
an application window and/or other output generated by
output generation logic 723. An application window may be
marked with a window handle or other 1dentifier, and host
device 701 may utilize this marking to recognize output
associated with application instance 720 during processing
by window composition module 730. For example, one or
more pixels of the application window may be modified
and/or adjusted to include the window handle or other
identifier. This may be done in such a manner that the visual
change to the application window 1s small, such as where a
window handle 1s encoded 1n less-significant bits of a pixel
value. In some embodiments, the window handle may be
encoded or watermarked in a predetermined area, pixel,
and/or set of pixels. For example, the window handle may be
encoded 1n a pixel in the middle of the left-most column of
the application window.

One or more APIs (or other interfaces) associated with
window composition module 730 may be hooked, inter-
cepted, modified, and/or otherwise adapted to recognize a
window texture associated with application instance 720
based on the handle or identifier encoded in the application
window. In some embodiments, one or more of the APIs
associated with window composition module 730 may be
hooked and/or adapted through overriding the interfaces by
wrapping the APIs (or other interfaces) in derived interfaces
that forward calls to the API after hook processing. During,
the window composition process, window composition
module 730 may incrementally process individual window
textures 733 as 1t generates a composite desktop output.
Program logic 710 may hook and/or modily one or more
APIs associated with window composition module 730 to
determine whether an individual window texture 735 was
marked with the window handle or other identifier associ-
ated with application mstance 720. The hooked APIs asso-
ciated with window composition module 730 may utilize a
mapping to identily the window handle or other i1dentifier
associated with application instance 720. For example, host
device 701 may use the hooked APIs associated with win-
dow composition module 730 to determine whether a pre-
determined pixel or range of pixels 1n a window texture 1s
encoded with the window handle. If a window texture 1s not
encoded with the window handle (or other identifier) cor-
responding to application instance 720, processing continues
(e.g., window composition module 730 may proceed to a
next window texture). If the window texture has the encoded
window handle, it may be determined that the window
texture corresponds to output of application instance 720,
and the window texture may be extracted and sent as image
data to client device 703. The extracted 1mage data may
include window textures associated with application
instance 720, and may omit window textures associated with
other applications (1.e., those not recognmized as associated
with application istance 720). In some embodiments, the
window texture data may be 1n a bitmap format and may be

5

10

15

20

25

30

35

40

45

50

55

60

65

28

converted to JPEG format as part of the extraction. Client
device 703 may receive the window texture associated with
application instance 720 and present the window texture to
a user by way of output device 707.

As described above, some aspects may hook, intercept,
adapt, and/or otherwise modily one or more APIs (or other
interfaces) associated with an application instance and/or a
windows composition module. The window composition
module, in one embodiment, may be a desktop window
manager, such as that provided by the Windows 8 operating
system provided by the Microsoft Corporation of Redmond,
WA The window composition module may be associated
with one or more graphics drivers, frameworks, or other
visual processing modules. For example, the graphics frame-
works may include DirectX, Direct3D, and/or DirectX
Graphics Infrastructure (DXGI) provided by the Microsoft
Corporation. APIs associated with the application instance,
the window composition module, and/or any other related
graphics frameworks or modules may be hooked using any
suitable technique for modifying the behavior of the API
and/or the host device as described herein. For example, 1n
some embodiments an operating system detour-type hook
may be used, such as Microsolt detours using in the Win-
dows operating system. These detours may be used to hook
graphics drivers or other modules mvolved in rendering
visual information, such as those associated with DirectX or
Direct3D provided by Microsoit Corporation. For example,
Microsoit detours may be used to hook various graphic
framework APIs such as CreateDXGIFactory, CreateDXGI-
Factoryl, D3D10CreateDevicel, and
D3D10CreateDeviceAndSwapChainl. In some embodi-
ments, nterface-based hooking may be used where an
interface 1s overridden using a derived object. The host
device may store a reference and/or pointer to an original
object providing the interface, generate a derived object
providing the hook functionality, and cause calls to the
derived object to be forwarded to the original object after
hook processing. In some embodiments, virtual table hook-
ing may be used to hook interface APIs that may not be
documented and belong to a derived private interface of a
known public interface. In some embodiments, the hooks
may be implemented by injecting a dynamic link library
(DLL) into a process, such as by SetWindowsHookEX
which 1jects a DLL into a newly created process or Cre-
ateRemoteThread which injects a DLL 1n an already running
process from a system service.

Having discussed a system for providing remote access to
an mstance of an application, as depicted in FIG. 7, discus-
sion will now turn to a method of providing remote user
input to an instance of an application executing on a host
device, according to some aspects described herein and
illustrated in FIG. 8.

FIG. 8 illustrates a method of providing user input
received from a remote client device to an instance of an
application executing on a host device, 1n accordance with
one or more illustrative aspects described herein. In one or
more embodiments, the method 1llustrated 1n FIG. 8 and/or
one or more steps thereol may be performed by a computing
device (e.g., generic computing device 100). Additionally or
alternatively, the method illustrated 1n FIG. 8 and/or one or
more steps thereol may, 1n some instances, be performed by
a host device (such as host device 701 of FIG. 7) configured
to provide remote access to one or more applications
installed thereon. In other embodiments, the method 1illus-
trated 1n FIG. 8 and/or one or more steps thereol may be
embodied 1n computer-executable instructions that are

US 11,895,184 B2

29

stored 1n a computer-readable medium, such as a non-
transitory computer-readable memory.

In step 805, a computing device, such as a host device,
may begin initiating an instance of an application 1n a remote
access mode. In some embodiments, step 805 may be
performed 1n response to recerving a request from a client to
initiate an application and/or application instance 1n a
remote access mode. For example, a client device may issue
the request as part of a peer to peer remote application
process, such as that depicted in FIG. 5. The host device may
start executing an instance of a selected application. In some
embodiments, an 1nstance of the application may already be
executing and the client may request remote access to the
already executing instance, in which case processing pro-
ceeds to step 810.

In step 810, the host device dynamically assign a network
communication port to the application instance The port
may be assigned and/or operate in accordance with any
appropriate network transport protocol, such as the Trans-
mission Control Protocol (TCP) or the User Datagram
Protocol (UDP). The port may be any suitable port, and the
host device may dynamically and/or incrementally generate
the ports. When the application instance 1s initiated in a
remote mode, the host device may generate a new network
communication port to assign to the application instance. In
some embodiments, an existing port may be assigned to the
application instance if an application corresponding to the
existing port 1s no longer executing.

In step 815, the host device may create a mapping
between the assigned port and the application instance. In
some embodiments, the mapping may comprise the port
assigned for input, a window handle associated with the
application instance, and a process 1d associated with the
application instance. The mapping may be used to 1dentily
the application instance as a remote-accessible application.
The mapping may indicate that incoming network commu-
nications on the assigned port are intended for the applica-
tion instance, such as network communications including
user mput from a client device.

In step 820, the host device may hook one or more APIs
(or other interfaces) associated with the instance of the
application. The hooks may enable the host device to
provide remote user mput to the application instance. In
some embodiments, the host device may hook, intercept,
modity, and/or otherwise adapt interfaces such as APIs at a
thread level. For example, the host device may hook the one
or more 1nput interfaces associated with the application
instance by imjecting a dynamic link library (DLL) mnto a
thread corresponding to the application instance. Such hooks
may be of limited scope and apply to the particular instance
of the application corresponding to the thread and not other
instances of the same application. The hooked APIs may, 1n
some embodiments, be used to 1nject remote user mput nto
an 1nput queue associated with the application instance and
may bypass a general operating system input queue.

Although illustrated as sequential steps for clarity, steps
805-820 may be performed 1n any order. Alternatively, steps
805-820 may be combined and/or performed as a single step.
That 1s, the host device may initiate the application instance
in a remote access mode by executing an instance of the
application, hooking one or more APIs associated with the
application instance, dynamically assigning a port to the
application instance, and/or storing a mapping of the port
and the application instance.

In step 825, the host device may communicate the map-
ping and/or other information associating the port and the
application instance to a client device. The host device may

10

15

20

25

30

35

40

45

50

55

60

65

30

communicate a portion of the mapping information stored
by the host device. For example, the host device may send
the client device a port associated with a requested appli-
cation instance, but may keep internal data such as window
handles and process 1ds secret from the client device. The
client device may utilize the mapping information to send
user iput to the application instance operating 1n the remote
access mode. A user of the client device may provide user
input using any suitable user mmput device, such as a key-
board, pointing device (e.g., mouse, touchpad, touchscreen,
etc.), microphone, camera, and the like. The client device
may execute a virtual machine receiver program or appli-
cation to display output associated with the application
instance 1n an application window, a browser, or other output
window. The client device may distinguish between received
user iput associated with the (remote) application 1nstance,
such as that received 1 a remote access viewer (e.g., a
virtual machine receiver program), and user mput recerved
in other contexts that are not associated with the application
instance. The client device may send user input intended for
the remote application instance, such as that received 1n the
remote access viewer, to the host device in network com-
munications directed to the port provided by the host device.

In step 830, the host device may receive network com-
munications from the client device via the port assigned to
the application instance. The host device may determine,
based on the identity of the port that received the data, that
the received data 1s intended for the application instance
operating 1n the remote access mode. For example, a thread
associated with the application instance may monitor the
port assigned to the application instance and process data
received on that port, based on the hooks and/or modifica-
tions made during step 820.

In step 835, remote user mput data received via the port
may be provided to the application instance using one or
more ol the hooked APIs (or other interfaces) associated
with the application instance. As described above, these
APIs may be hooked or otherwise modified to inject and/or
otherwise provide remote user mput to the application
instance. The one or more APIs associated with the appli-
cation mstance may be hooked in such a manner as to allow
the host device to 1nject the received remote user mput nto
an input queue associated with the application instance,
bypassing an operating system 1nput queue of a user session.
The user session may have more than one application, and
the remote-accessible application instance may be a back-
ground application within the user session. The application
instance may process mput 1n the input queue associated
with the application instance, and the application instance
may generate output that may be provided to the client
device. For example, the application instance may generate
an application window. The host device may i1dentily the
application window, extract image data associated with the
application window, and forward the 1mage data to the client
device.

In some embodiments, a host device may implement steps
805-820 and other steps by hooking particular interfaces and
messages associated with the application instance. For
example, the host device may 1ject a module such as a DLL
into a process associated with the application instance. Data
may be shared between the host device and the client device
using a virtual input data mapping which may identify a
process 1d, top window handle, and assigned port corre-
sponding to the application instance operating in the remote
access mode. This data may be maintained i a shared
portion of the DLL, and the application instance may be able
to access the virtual input data mapping through the DLL. A

US 11,895,184 B2

31

thread may be spawned from a load section of the DLL when
the DLL 1s 1njected in to the application instance, and the
thread may wait for the virtual input data mapping to be set
by the server. Once the mapping 1s set, the DLL may begin
monitoring the assigned port to receive user mput from a
remote client device. The DLL may create a TCP/UDP
socket on the assigned port in order to receive the data. A
service thread may be spawned to handle recerved input
data, and the service thread may push the received imnput data
into an application instance specific input queue. The host
device may hook direct input interfaces associated with the
application instance during imtialization, and in some
embodiments when the application instance queries a
DINPUT 1nterface for input data it may receive the remote
user mput from the mput queue associated with the appli-
cation instance. In some embodiments, some of the PAIS
hooked may include raw mput APIs, DINPUT interfaces,
Windows Process, GetMessageA, GetMessageW, GetRaw-
InputData, GetKeyState, GetKeyboardState, and the like. A
hook 1nto a get message APIs may wait for remote user input
and may forward remote messages to the application
instance while discarding local messages. When the user
exits the application mstance operating in the remote mode,
the host device may execute a cleanup operation to remove
and/or undo hooks created by the host device, such as by
restoring original interface handling objects.

Having discussed a method of providing remote user
input to an instance ol an application executing on a host
device, as 1llustrated 1n FIG. 8, discussion will now turn to
a method of providing output from an instance of an
application operating 1n a remote mode to a client device,
according to some aspects described herein and illustrated 1n
FIG. 9.

FI1G. 9 illustrates a method of providing output associated
with an instance of an application operating 1n a remote
mode on a host device to a client device, 1n accordance with
one or more 1llustrative aspects described herein. In one or
more embodiments, the method 1llustrated 1in FIG. 9 and/or
one or more steps thereol may be performed by a computing
device (e.g., generic computing device 100). Additionally or
alternatively, the method illustrated in FIG. 9 and/or one or
more steps thereof may, 1n some instances, be performed by
a host device (such as host device 701 of FIG. 7) configured
to provide remote access to one or more applications
installed thereon. In other embodiments, the method 1llus-
trated 1n FIG. 9 and/or one or more steps thercof may be
embodied 1 computer-executable instructions that are
stored 1n a computer-readable medium, such as a non-
transitory computer-readable memory.

In step 905, a computing device, such as a host device,
may begin mitiating an instance of an application in a remote
access mode. In some embodiments, step 905 may be
performed 1n response to recerving a request from a client to
iitiate an application and/or application instance in a
remote access mode. For example, a client device may 1ssue
the request as part of a peer to peer remote application
process, such as that depicted in FIG. 5. The host device may
start executing an 1nstance of a selected application. In some
embodiments, an 1nstance of the application may already be
executing and the client may request remote access to the
already executing instance, in which case processing pro-
ceeds to step 910.

In step 910, the host device may hook, intercept, modity,
and/or otherwise adapt one or more output APIs (or other
interfaces) associated with the application istance and one
or more composition APIs (or other interfaces) associated
with a window composition module. These APIs may be

10

15

20

25

30

35

40

45

50

55

60

65

32

hooked 1n order to extract visual output associated with the
application instance, such as a window texture correspond-
ing to an application window associated with the application
instance.

The output APIs (or other interfaces) associated with the
application instance may be hooked, intercepted, modified,
and/or otherwise adapted to mark an application window
with an identifier of the application instance. The output
interfaces may include system and/or application level
hooks, drivers, and/or application programming interfaces
(APIs) associated with the application and/or application
instance. In some embodiments, the host device may hook,
intercept, modily, and/or otherwise adapt interfaces such as
APIs at a thread level. For example, the host device may
hook the one or more mput interfaces associated with the
application instance by injecting a dynamic link library
(DLL) imto a thread corresponding to the application
istance. Such hooks may be of limited scope and apply to
the particular instance of the application corresponding to
the thread and not other instances of the same application.

The composition APIs (or other interfaces) associated
with the window composition module may be hooked,
intercepted, modified, and/or otherwise adapted to recognize
a window texture as associated with the application instance
based on the handle or identifier encoded in the application
window. In some embodiments, one or more of the APIs
associated with the window composition module may be
hooked and/or adapted through overriding the interfaces by
wrapping the APIs (or other interfaces) in derived interfaces
that forward calls to the API after hook processing.

In step 915, the host device may use the hooked output
interfaces associated with the application instance to mark
and/or otherwise identily an application window and/or
other output generated by output generation logic of the
application instance. An application window may be marked
with a window handle or other identifier, and the host device
may utilize this marking to recognize output associated with
the application 1nstance during processing by window com-
position module (in step 920, below). For example, one or
more pixels of the application window may be modified
and/or adjusted to include the window handle or other
identifier. This may be done in such a manner that the visual
change to the application window 1s small, such as where a
window handle 1s encoded 1n less-significant bits of a pixel
value. In some embodiments, the window handle may be
encoded or watermarked 1in a predetermined area, pixel,
and/or set of pixels. For example, the window handle may be
encoded 1n a pixel in the middle of the left-most column of
the application window. Other 1dentifiers may be encoded in
the application window for recognition by the host device,
such as a process 1d or any other suitable information stored
in a mapping associating the application instance with the
identifier.

In step 920, the host device may use the hooked compo-
sition interfaces associated with the window composition
module to analyze 1individual window textures during incre-
mental texture processing by the window composition mod-
ule. The host device may use the hooked composition
interfaces to determine whether an individual window tex-
ture was marked with the window handle or other identifier
associated with the application instance. The hooked APIs
associated with the window composition module may utilize
a mapping to 1dentity the window handle or other 1dentifier
associated with the application instance operating in the
remote mode. For example, the host device may use the
hooked APIs associated with the window composition mod-
ule to determine whether a predetermined pixel or range of

US 11,895,184 B2

33

pixels mm a window texture i1s encoded with the window
handle. If a window texture 1s not encoded with the window
handle (or other 1dentifier) corresponding to the application
instance, processing continues (e.g., the window composi-
tion module may proceed to a next window texture). If the
window texture has the encoded window handle, it may be
determined that the window texture corresponds to output of
the application mstance 1 the remote access mode.

In step 925, the host device may extract the window
texture recognized as corresponding to the application
instance. The window texture may be extracted as image
data, and 1n some embodiments the 1mage data may be 1n a
bitmap format. The image data may be converted to another
suitable format, such as JPEG. In step 930, the recognized
window texture may be sent to the client device. The client
device may receive the window texture associated with the
application mstance and present the window texture to a user
by way of an output device.

In some embodiments, a host device may implement step
910 and other steps by wrapping actual interfaces associated
with Direct3D and DirectX Graphics Infrastructure (DXGI)
into a denived interface. Using a Querylnterface call on a
DXGIFactory object obtained through the DXGI interfaces,
the host device may 1dentily an actual DXGIFactoryDWM
interface associated with a window composition module.
Using virtual table hooking, the host device may modily
and/or adapt a Present function associated with DXGIFac-
toryDWM. The Present function may be called after frame
composition by the window composition module to render
the composite desktop output. Using DLL 1njection meth-
ods, such as through SetWindowsHookEX or CreateRemo-
teThread, the host device may hook 1nto each of the appli-
cation instance, a windows process associated with the
application instance, a shell process and message handler,
and 1dentify a top window for the windows process associ-
ated with the application instance. Using the hooks, the host
device may watermark/mark a particular pixel with the
window handle to the top window 1n response to a window
create, resize, focus change, and/or paint message on the
application window. The particular pixel may be located on
a left or right edge of the application window, and may be
located 1n a center position vertically. In some embodiments,
this may avoid having the application draw over the marked
pixel. In the window composition module, the interface
hooks may be used to watch for embedded windows handles
in each texture during a texture composition process. Tex-
tures may be added to a pixel shader resource prior to
rendering, and the host device may read pixels from the
texture and match embedded windows handles to a mapping,
ol remote-accessible applications using the hooked inter-
taces associated with the window composition module. For
example, the window composition module, such as the
desktop window manager of Windows 8, may call a shader
resource using a function such as OpenShaderResource
when application visibility changes and a PSSetShaderRe-
sources function during composition of each individual
window texture on a D3D10Devicel interface. Through this
process, an individual pixel of the window texture may be
read and the window texture may be recognmized as associ-
ated with the application instance.

In some embodiments, the techniques described above in
regard to FIGS. 8 and 9 may be combined to provide remote
access to applications executing 1n a user session by dynami-
cally assigning ports to application instances in a remote
access mode and hooking one or more APIs (or other
interfaces) associated with the application instance and a
window composition module. The techniques described

10

15

20

25

30

35

40

45

50

55

60

65

34

above 1n regard to FIG. 8 may be used to provide remote
user mput to an application instance operating in a remote
access mode. Dynamically assigned ports may be generated
and used to allow a client device to provide remote user
input to an application instance operating in a remote access
mode. One or more APIs associated with the application
instance may be hooked to provide the remote user input to
an 1nput queue of the application instance, bypassing an
operating system input queue in some embodiments. The
techniques described above 1n regard to FIG. 9 may be used
to provide output from the application instance to the remote
client device. APIs associated with the application instance
and the window composition module may be hooked to
allow the host device to recognize window textures gener-
ated by the application instance. These recognized window
textures may be sent to the remote client device. For
example, the host device may initiate an instance of an
application 1n a remote access mode by assigning a port to
the application instance, hooking one or more mput inter-
faces associated with the application instance, hooking one
or more output interfaces associated with the application
istance, hooking one or more composition 1nterfaces asso-
clated with a window composition module, and storing a
mapping between the application mstance and the assigned
port. The host device may provide remote user input
received via the port to the application instance using the
hooked mput APIs, and the host device may provide output
from the application instance to a remote client device using
the hooked output and composition APIs, as described above
in regard to FIGS. 8 and 9. As a result, according to some
aspects, a host device may enable remote access to the
application instance by providing remote mput to the appli-
cation instance and forwarding output from the application
instance to the remote client device.

One or more aspects of the disclosure may allow users to
remotely access applications or application mstances hosted
on a host device using a client device. By way of the remote
access techniques discussed herein, user input can be
handled on a per-application basis rather than on a user-
session basis. Through dynamically assigned ports and
hooks into APIs associated with an application instance, in
some embodiments, a host device may inject remote user
input mnto an mput queue of a remotely-accessible applica-
tion and bypass an operating system iput queue. By mark-
ing an application window with an i1denftifier and then
recognizing that identifier during window composition pro-
cessing, 1n some embodiments, a host device may extract an
unoccluded application window even where the remote-
accessible application 1nstance 1s operating 1n a background
of a user session and may be occluded by foreground
windows. As a result, according to some aspects disclosed
herein, multiple remote users can be supported within a
single user session on a host device, and the session may
host multiple applications and 1nstances of applications.

As 1llustrated above, various aspects of the disclosure
relate to peer to peer discovery of remote applications,
particularly through identifying peer devices 1n a network by
way of discovery requests. Although the subject matter has
been described 1n language specific to structural features
and/or methodological acts, 1t 1s to be understood that the
subject matter defined in the appended claims 1s not neces-
sarily limited to the specific features or acts described above.
Rather, the specific features and acts described above are
described as some example implementations of the follow-
ing claims.

US 11,895,184 B2

35

What 1s claimed 1s:

1. A method comprising:

initiating, by a peer device, an mstance of an application

hosted on the peer device 1n a remote mode, the remote
mode configured to execute the application in another
desktop and redirect output from the application to a
client device and enable the application to receive mput
from the client device;

transferring, 1n response to the imitiation of the remote

mode, execution of the instance of the application from
a general desktop environment of the peer device to
another desktop environment of the peer device,
wherein the another desktop environment 1s segregated
from other desktops of the peer device;

suppressing mput and output associated with the instance

of the application executing in the another desktop
environment from and to a local user of the peer device;
and

providing, by the peer device, the client device with

remote access to the instance of the application with
use of the another desktop.

2. The method of claim 1, wherein providing the client
device with remote access to the instance of the application
with use of the another desktop 1s performed such that input
and output of the instance of the application are redirected
to the client device 1nstead of the peer device, wherein input
and output associated with other instances of the application
are not redirected to the client device.

3. The method of claim 1, further comprising;:

transmitting a broadcast message on a local area network

shared by the peer device and the client device, wherein
the broadcast message comprises an indication of the
instance of the application hosted on the peer device.

4. The method of claim 1, further comprising:

receiving, from the client device, a second request for a

list of one or more applications currently executing on
the peer device; and

generating the list of the one or more applications cur-

rently executing on the peer device, wherein the list
comprises the instance of the application, and wherein
receiving the request 1s 1n response to a user selection
of the instance of the application from the list.

5. The method of claim 1, further comprising;:

broadcasting a list of one or more applications currently

executing on the peer device to a plurality of client
devices that includes the client device.

6. The method of claim 1, wherein transferring the execu-
tion of the istance of the application comprises:

executing the application 1n the another desktop environ-

ment.

7. The method of claim 1, wherein the instance of the
application 1s executing on the peer device before the
application 1s imitiated 1n the remote mode.

8. The method of claim 1, further comprising:

hooking 1nto input and output interfaces associated with

the 1nstance of the application such that output of the
application 1s redirected to the client device and 1nput
from the client device 1s transmitted to the application.

9. The method of claim 1, further comprising;:

determining that remote access to the instance of the

application 1s terminated; and

transterring the mstance of the application back to a local

mode.

10. The method of claim 1, wherein the local user
accesses the instance of the application executing in the

5

10

15

20

25

30

35

40

45

50

55

60

65

36

another desktop environment as a remote client through a
remote application viewer executing on the general desktop
environment.
11. A method comprising;:
recerving, by a client device, a list of one or more
applications hosted 1n a general desktop environment of
a peer device, wherein the list of the one or more
applications hosted 1n the general desktop environment
of the peer device includes a first nstance of a first
application executing in the general desktop environ-
ment, and the general desktop environment configured
to enable the first nstance to receive, via an input
device of the peer device, user mput from a local user
and provide output, via an output device of the peer
device, to the local user;
imitiating, responsive to a selection of the first instance,
remote access to the first instance of the first applica-
tion by transierring the first instance from the general
desktop environment to a background desktop environ-
ment of the peer device segregated from the general
desktop environment, wherein, the background desktop
environment redirects mput and output of the first
instance to the client device, and wherein mput and
output associated with other instances of the applica-
tion 1n the general desktop environment are provided
via the peer device; and
suppressing mput and output associated with the instance
of the application executing in the background desktop
environment from and to the local user.
12. The method of claim 11, further comprising:
presenting, on a user mterface of the client device, the list
of the one or more applications, wherein the list of the
one or more applications includes the first instance of
the first application and one or more applications that
are currently executing in the general desktop environ-
ment.
13. The method of claim 11, further comprising:
hooking into input and output interfaces associated with
the first instance of the first application such that output
of the first mnstance of the first application 1s redirected
to the client device and mput from the client device 1s
transmitted to the first instance of the first application.
14. The method of claim 11, wherein the peer device 1s a
first peer device, the method further comprising:
broadcasting, by the client device, a discovery request
secking available remote peers, wherein the discovery
request comprises a user credential;
recerving, by the client device and based on verification of
the user credential, a response from a plurality of peer
devices indicating that remote access 1s available,
wherein the plurality of peer devices comprises the first
peer device; and
sending, by the client device and to the first peer device,
a request for the list.
15. A computing device comprising:
one or more processors; and
memory storing instructions that, when executed by the
one or more processors, cause the computing device to:
initiate an instance of an application hosted on the
computing device in a remote mode, the remote
mode configured to execute the application 1n
another desktop and redirect output from the appli-
cation to a client device and enable the application to
receive mput from the client device;
transier, in response to the mitiation of the remote
mode, execution of the instance of the application
from a general desktop environment of the comput-

US 11,895,184 B2

37

ing device to another desktop environment of the
computing device, wherein the another desktop envi-
ronment 1s segregated from other desktops of the
computing device;

suppressing input and output associated with the
instance of the application executing 1n the another
desktop from and to a local user of the computing
device: and

provide the client device with remote access to the
instance of the application with use of the another
desktop.

16. The computing device of claam 135, wherein the
instructions, when executed by the one or more processors,
cause the computing device to provide the client device with
remote access to the mstance of the application with use of
the another desktop such that mput and output of the
instance of the application are redirected to the client device
instead of the computing device, wherein input and output
associated with other instances of the application are not
redirected to the client device.

17. The computing device of claam 135, wherein the
instructions, when executed by the one or more processors,
turther cause the computing device to:

transmit a broadcast message on a local area network

shared by the computing device and the client device,
wherein the broadcast message comprises an indication
of the instance of the application hosted on the com-
puting device.

18. The computing device of claam 15, wherein the
istructions, when executed by the one or more processors,
turther cause the computing device to:

10

15

20

25

38

receive, from the client device, a second request for a list
of one or more applications currently executing on the
computing device; and

generate the list of the one or more applications currently

executing on the computing device, wherein the list
comprises the mstance of the application, and wherein
receiving the request 1s 1n response to a user selection
of the instance of the application from the list.

19. The computing device of claim 15, wherein the
instructions, when executed by the one or more processors,
further cause the computing device to:

broadcast a list of one or more applications currently

executing on the computing device to a plurality of
client devices that includes the client device.

20. The computing device of claim 15, wherein the
instructions, when executed by the one or more processors,
further cause the computing device to:

hook 1nto mput and output interfaces associated with the

instance of the application such that output of the
application 1s redirected to the client device and input

from the client device 1s transmitted to the application.
21. The computing device of claim 15, wherein the
instructions, when executed by the one or more processors,
further cause the computing device to:
determine that remote access to the instance of the appli-
cation 1s terminated; and
transfer the instance of the application back to a local
mode.

	Front Page
	Drawings
	Specification
	Claims

