12 United States Patent
Ryu et al.

USO011893269B2

US 11,893,269 B2
Feb. 6, 2024

(10) Patent No.:
45) Date of Patent:

(54) APPARATUS AND METHOD FOR
IMPROVING READ PERFORMANCE IN A
SYSTEM

(71)
(72)

Applicant: SK hynix Inc., Gyeonggi-do (KR)

Inventors: Jun Hee Ryu, Gyeonggi-do (KR);
Kwang Jin Ko, Gyeonggi-do (KR);
Young Pyo Joo, Gyeconggi-do (KR)

(73)

(%)

Assignee: SK hynix Inc., Gyeonggi-do (KR)
Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 64 days.

Notice:

(21) 17/686,915

(22)

Appl. No.:

Filed: Mar. 4, 2022

(65) Prior Publication Data

US 2023/0081829 Al Mar. 16, 2023

(30) Foreign Application Priority Data

Sep. 15, 2021 (KR) 10-2021-0123181

(51) Int. CL
GO6F 3/06

U.S. CL
CPC

(2006.01)
(52)

GOGF 3/0655 (2013.01); GO6F 3/0604
(2013.01); GO6F 3/0679 (2013.01)

Field of Classification Search

CPC GO6F 3/0655; GO6F 3/0604; GO6F 3/0679
See application file for complete search history.

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

10,025,522 B2 7/2018 Helmick
10,649,776 B2 5/2020 Navon et al.
2004/0143706 Al* 7/2004 Johns GOO6F 12/128
711/E12.072
2006/0224784 Al* 10/2006 Nishimoto GO6F 3/0659
710/36
2020/0004685 Al 1/2020 Guim Bernat et al.
2020/0192715 Al 6/2020 Wang et al.

* cited by examiner

Primary Examiner — Jae U Yu
(74) Attorney, Agent, or Firm — IP & T GROUP LLP

(57) ABSTRACT

A memory system 1ncludes a memory device and a control-
ler. The memory device includes plural storage regions
including plural non-volatile memory cells. The plural stor-
age regions have a different data input/output speed. The
controller 1s coupled to the memory device via at least one
data path. The controller performs a readahead operation 1n
response to a read request iput from an external device,
determines a data attribute regarding readahead data,
obtained by the readahead operation, based on a time
difference between reception of the read request and
completion of the readahead operation, and stores the rea-
dahead data in one of the plural storage regions based on the
data attribute.

20 Claims, 24 Drawing Sheets

{‘f‘].UZ i};"].].o
172
RD CMD . Fast 1/0
(Cy, Cy C3, Cy) Region
HOST Memory
(CPU) System 174
< RD DATA Slow /0
(S1, Sy S3 S4) Region
W/O Readahead Op.
CPU Ci | Co | C3 | Ca
W/ Readahead Op. SSD | ¢ g G G -
(Buffer) L—L 22 | 2% | ° Time
N |
. \? /{
READAHEAD DATA BLOCK TO
HIDE I/O MARGIN WHEN CPU

REQUESTS DATA BLOCK

U.S. Patent Feb. 6, 2024 Sheet 1 of 24 US 11,893,269 B2

FIG. 1
102 110
172
RD CMD Fast 1/0
(le CZ; C3; C4) Region
HOST Memory
(CPU) System 174
RD_DATA Slow I/0
(Slr SZr S3f 54)
W/0 Readanhead Op.
W/ Readahead Op.

READAHEAD DATA BLOCK TO
HIDE 1/0 MARGIN WHEN CPU

REQUESTS DATA BLOCK

US 11,893,269 B2

Ajddng abejjon
o7 AJOWB)Y

SJ9p / Ssedp

/ boadp / pIA bhT
&
=
2 110
3 Pojg il 41
= AIOWR|\ AJOWI e J)3 10559046 150H

04T
val 44 OpT 8¢ T bET CET
- (a1
-
=
& 04T OET
3
e OTT
00T

¢ DI

U.S. Patent

150H

01

US 11,893,269 B2

Al
Jabeup|y
M/ I94ing
4
X IN(
— . 1SOH
o AIOWS|N anang)
y *H e
= AJOWSNW NEg PC
s /Wg
WdH ananf)
N., 99
e B 1L 4/1 LSOH
= i 0b-" €1
04T 0ET ¢0T

¢ 9Id

U.S. Patent

U.S. Patent Feb. 6, 2024 Sheet 4 of 24 US 11,893,269 B2

F1G. 4

130

U.S. Patent Feb. 6, 2024 Sheet 5 of 24 US 11,893,269 B2

FIG. 5

100

— 102
302
5 APPLICATION PROGRAM ;
304 306
| BUFFER CACHE i
| (PAGE CACHE READAHEAD i
i 308
; FILE SYSTEM ;
§ 310
i VIRTUAL SSD i
i (SSD MAPPING) ;

110A 1108

Fast SSD Slow SSD

U.S. Patent Feb. 6, 2024 Sheet 6 of 24 US 11,893,269 B2

FIG. 6

402
Application

404
System Call

420
406

Readahead

408
T |

410

Page Cache

412

File System
477

414

Device Mapper Cache S/W & ———-

416
[/0 Scheduler

418
Block Device Driver

U.S. Patent Feb. 6, 2024 Sheet 7 of 24 US 11,893,269 B2

FIG. 7

502
Application
504
Subsystem DLLS
506
System Service Dispatcher

512 508
Readahead(MM
File System M 520
—————————
Latency Sensitiveness

514

516
Device Driver 599
CaChe S/W ______
Hardware Abstraction Layer 518

U.S. Patent Feb. 6, 2024 Sheet 8 of 24 US 11,893,269 B2

FIG. 8
602
Linux Guest 0S
(Virtual Machine}
604
KVM/QEMU
(Hypervisor)
Latency-Sensitive File Read Information
el @ (Class, I/0 Size)

Readahead/Detector
Page Cache

610

014

File-to-LBA Mapper

VM Disk Image File
(on Ext4 File System)

DM-Cache

User Defined Promotion/Demotion API

Meta Cache User Data
Device Device Device

110C 110D
Optane Cache SSD (32GB) ((szof;ss[))

Promotion
Command

US 11,893,269 B2

Sheet 9 of 24

Feb. 6, 2024

U.S. Patent

FIG. 9

READAHEAD

FILE SYSTEM
VIRTUAL SSD
(SSD MAPPING)

APPLICATION PROGRAM
304

BUFFER CACHE
(PAGE CACHE)

READAHEAD
2P MAPPING

332
334

HIL/FTL
User Buffer

]
o
)
\&
-]
e
&N
)
- JSe|4 MO|S
7P,
- 08T
USe|4 MO|S
&
— b8T
-
=
E ysel 15ed
P,
287
&
&
&
=
& 05T

U.S. Patent

)R]

AIOWS|

(vl

13][0.3U0)

Y

06

pPeoyepedy 3
Wby Jayng
Wb ayoe) 83
98¢ 105530014
08¢
Wb 29
Lo 19JiNg WYYA
(8¢
0vZ~
0T "OIA

(el

30RLAU]

1SOH

U.S. Patent Feb. 6, 2024 Sheet 11 of 24 US 11,893,269 B2

FIG. 11

602

BIO STRUCTURE

bi 0 vec bi vec

604
Y
bio vec hio vec bio vec bio vec

606

page

>

U.S. Patent Feb. 6, 2024 Sheet 12 of 24 US 11,893,269 B2

File Blks
(start from Blk0)
T1. Read BIkO Z
4/ %

T2. Read Blk1 | ..Z

Trigger o7

Next RA Z
T5. Read Blk4 (2)(SIZE) Trigger Next RA ’//

(2x Size) >
Trigger Next RA
(2X Size)

PG_readahead page

NN

U.S. Patent Feb. 6, 2024 Sheet 13 of 24 US 11,893,269 B2

FIG. 13
current window anead window
i Py P
I 5ize dn ahead-size g

start ahead start

U.S. Patent Feb. 6, 2024 Sheet 14 of 24 US 11,893,269 B2

FIG. 14

readahead window

i . -
’ async-size R
N

w . >

Size
stat pg_ readahead nage

U.S. Patent Feb. 6, 2024 Sheet 15 of 24 US 11,893,269 B2

FIG. 15

l\fxarray leaf pointer
Null —> IﬁJpage —> %

Not UpToDate UpToDate
First Access: coldmiss [/0O was issued but [/0 was completed
not completed:

rahit, thput

U.S. Patent Feb. 6, 2024 Sheet 16 of 24 US 11,893,269 B2

FIG. 16

30 B ffff _

25 B szf _

% 20 B ff/g _
S

g {5 !/ .

10 B Xf;fff _

Initial window size —
s | | Next window size -----
5 10 15 20 25 30

Request size and last read readahead window, respectively

U.S. Patent Feb. 6, 2024 Sheet 17 of 24 US 11,893,269 B2

FIG. 17

>

Time

SSD Device
>

Time

U.S. Patent Feb. 6, 2024 Sheet 18 of 24 US 11,893,269 B2

FIG. 18

T|me

>
Time
SSD Device

U.S. Patent Feb. 6, 2024 Sheet 19 of 24 US 11,893,269 B2

FIG. 19

Application
>
W Time
>
Time
SSD Device
(Fast-tier)
>

Time

U.S. Patent Feb. 6, 2024 Sheet 20 of 24 US 11,893,269 B2

FIG. 20

802
Application

804

Buffer Cache

806

Readahead

808
File System

LBA

310

Cached Device
812 814

Cache Hit 110A Cache Miss 110B

Cache SSD Eviction Origin SSD
(Fast-tier) (Slow-tier)

U.S. Patent Feb. 6, 2024 Sheet 21 of 24 US 11,893,269 B2

FIG. 21

902
Application

904
Buffer Cache

906 | Latency
Readahead Sensitiveness

908
File System

910

Cached Device

912Cache 914
Block Change ‘

Cache HIt [1 Cache Miss { 1108
Cache SSD Eviction Origin SSD

(Fast-tier) (Slow-tier)

U.S. Patent Feb. 6, 2024 Sheet 22 of 24 US 11,893,269 B2

US 11,893,269 B2

Sheet 23 of 24

Feb. 6, 2024

U.S. Patent

6692 868D |
/69D |+ 968D |~ 568D

| $580 [~—{ bod) [« £eFI~—
259D [+—{'€58)
058D

OvED [+ 8780 [«
LPED 1 998D |+ V80 [

AEmS LEAS LEEE AN EEL, SN LEES LEES LESS AEEL LEES SEES NS LEES LELE AEES LEES LLES SEEL SEES LESS AEES AEEl LENS LAEE SN SN LESS LENS LEAS LENE AN SN, SEES LEES LEES LELE LEms

1 1]
_ |
_ |
_ NN}
(G880 =+ 758D - JIESE IEHW
_ ¢S89 1980 IE M
_ 0580 |—{ €1]|
_ | 6¥80 [+—{'€58D “a m
[L90 J—{ 9¥8] f=—{ S¥ED J—{ ¥E1 |:
98 J-—{191]
_) |01
_ 8 591
_ 190 m

051]
11]!
261 |

€67
e |

rara mmm

938

e AR mAE— ARESR SN TArAR araran

21N,
599

20,

480 |+ 98D

6680 |
£68D <1964 |

oveD +—1 87H0 [+
LyED f=+—19PHD) J=—1 SVvHD [«

it rvivirh i derhe RrEYE Y Y HEER i e rhirhe rhirhr ek rirdE i Y rrlie el Thirkr vk e rHEE AEE AERE A rhirer Thirkie Arhirh riirbh e EREE AEEE v rhir R R B A

a
]
o mmg |
Ly mm_l_l 1
< EEER
]
-
]E
!
|
]
a
1

+—1
i)
)
{.J

-
LY
cr)
(.2

abhol e
eal/va] ia' e

1
)
)

US 11,893,269 B2

Sheet 24 of 24

Feb. 6, 2024

U.S. Patent

CHIICN T |CYCON IO
g YN [—
LONRORO oo ICNIICMIICMIICMCY)| 00 0

I
O
]

¢ DId

o)\ — | IO < lenl~l—
VORORO oo ICMICIICMIICMIICY)| o0 0

I
o
—1

US 11,893,269 B2

1

APPARATUS AND METHOD FOR
IMPROVING READ PERFORMANCE IN A
SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This patent application claims the benefit of Korean

Patent Application No. 10-2021-0123181, filed on Sep. 15,
2021, the entire disclosure of which 1s incorporated herein

by reference.

TECHNICAL FIELD

Embodiments of the present disclosure described herein
relate to a data processing system, and particularly, to an
apparatus and method for enhancing readahead performance
in the data processing system.

BACKGROUND

A data processing system includes a memory system or a
ata storage device. The data processing system can be
eveloped to store more voluminous data in the data storage
evice, store data 1n the data storage device faster, and read
ata stored in the data storage device faster. The memory
system or the data storage device can include non-volatile
memory cells and/or volatile memory cells for storing data.

C
C
C
C

BRIEF DESCRIPTION OF THE DRAWINGS

The description herein makes reference to the accompa-
nying drawings wherein like reference numerals refer to like
parts throughout the figures.

FI1G. 1 1llustrates a data processing system according to an
embodiment of the present disclosure.

FIG. 2 illustrates a data processing system according to
another embodiment of the present disclosure.

FIG. 3 illustrates a memory system according to another
embodiment of the present disclosure.

FIG. 4 illustrates internal configuration included n a
controller shown 1n FIGS. 1 to 3 according to embodiments
of the present disclosure.

FIG. 5 illustrates a first example of the data processing
system supporting a readahead operation according to an
embodiment of the present disclosure.

FIG. 6 illustrates a first example of a host in the data
processing system according to an embodiment of the pres-
ent disclosure.

FI1G. 7 1llustrates a second example of the host 1n the data
processing system according to an embodiment of the pres-
ent disclosure.

FIG. 8 1illustrates a third example of the host 1n the data
processing system according to an embodiment of the pres-
ent disclosure.

FIG. 9 1llustrates a second example of the data processing,
system supporting the readahead operation according to an
embodiment of the present disclosure.

FIG. 10 1llustrates an example of a memory system
supporting the readahead function according to an embodi-
ment of the present disclosure.

FIG. 11 1llustrates a data structure applicable to a virtual
file system according to an embodiment of the present
disclosure.

FIG. 12 illustrates a first example of the readahead
operation according to an embodiment of the present dis-
closure.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 13 illustrates a second example of the readahead
operation according to an embodiment of the present dis-

closure.

FIG. 14 1illustrates a third example of the readahead
operation according to an embodiment of the present dis-
closure.

FIG. 15 illustrates a data indicator assigned for the
readahead operation according to an embodiment of the
present disclosure.

FIG. 16 illustrates a change of window size associated
with the readahead operation according to a data cover ratio
according to an embodiment of the present disclosure.

FIG. 17 illustrates a memory system not supporting the
readahead operation.

FIG. 18 illustrates a memory system performing the
readahead operation on a memory block basis according to
an embodiment of the present disclosure.

FIG. 19 illustrates a memory system securing data with
different priorities through the readahead operation accord-
ing to an embodiment of the present disclosure.

FIG. 20 1llustrates a first example of a system supporting,
the readahead operation according to an embodiment of the
present disclosure.

FIG. 21 1llustrates a second example of a system support-
ing the readahead operation according to an embodiment of
the present disclosure.

FIG. 22 1llustrates the readahead operation in the system
shown 1n FIG. 21 according to an embodiment of the present
disclosure.

FIG. 23 illustrates a cache memory management method
corresponding to a level change of latency sensitiveness
according to an embodiment of the present disclosure.

FIG. 24 illustrates a change of aging regarding cached
data according to an embodiment of the present disclosure.

DETAILED DESCRIPTION

Various embodiments of the present disclosure are
described below with reference to the accompanying draw-
ings. Elements and features of this disclosure, however, may
be configured or arranged differently to form other embodi-
ments, which may be vaniations of any of the disclosed
embodiments.

In this disclosure, references to various features (e.g.,
clements, structures, modules, components, operations,
characteristics, etc.) 1included 1 “one embodiment,”
“example embodiment,” “an embodiment,” “another
embodiment,” “some embodiments,” ‘“various embodi-
ments,” “other embodiments,” “alternative embodiment,”
and the like are intended to mean that any such features may
be included 1n one or more embodiments of the present
disclosure, but may or may not necessarily be combined 1n
the same embodiments.

In this disclosure, the terms “comprise,” “comprising,”
“include,” and “including”™ are open-ended. As used 1n the
appended claims, these terms specily the presence of the
stated elements and do not preclude the presence or addition
ol one or more other elements. The terms 1n a claim do not
foreclose the apparatus from including additional compo-
nents (€.g., an interface unit, circuitry, etc.).

In this disclosure, various units, circuits, or other com-
ponents may be described or claimed as “configured to”
perform a task or tasks. In such contexts, “configured to” 1s
used to connote structure by indicating that the blocks/units/
circuits/components include structure (e.g., circuitry) that
performs one or more tasks during operation. As such, the
block/unit/circuit/component can be said to be configured to

2Lk

US 11,893,269 B2

3

perform the task even when the specified block/unit/circuit/
component 1s not currently operational (e.g., 1s not turned on
nor activated). The block/unit/circuit/component used with
the “configured to” language include hardware, for example,
circuits, memory storing program instructions executable to
implement the operation, etc. Additionally, “configured to”
can include a generic structure (e.g., generic circuitry) that
1s manipulated by software and/or firmware (e.g., an FPGA
or a general-purpose processor executing soltware) to oper-
ate 1n a manner that 1s capable of performing the task(s) at
1ssue. “Configured to” may also include adapting a manu-
facturing process (e.g., a semiconductor fabrication facility)
to fabricate devices (e.g., integrated circuits) that are adapted
to implement or perform one or more tasks.

As used 1n this disclosure, the term ‘circuitry’ or ‘logic’
refers to all of the following: (a) hardware-only circuit
implementations (such as implementations in only analog
and/or digital circuitry) and (b) combinations of circuits and
soltware (and/or firmware), such as (as applicable): (1) to a
combination of processor(s) or (i11) to portions of processor
(s)/software (including digital signal processor(s)), software,
and memory(ies) that work together to cause an apparatus,
such as a mobile phone or server, to perform various
functions) and (c) circuits, such as a microprocessor(s) or a
portion ol a microprocessor(s), that require soitware or
firmware for operation, even 1f the software or firmware 1s
not physically present. This defimition of ‘circuitry’ or
‘logic’ applies to all uses of this term 1n this application,
including in any claims. As a further example, as used in this
application, the term “circuitry” or “logic” also covers an
implementation of merely a processor (or multiple proces-
sors) or portion of a processor and 1ts (or their) accompa-
nying software and/or firmware. The term “circuitry” or
“logic” also covers, for example, and 1f applicable to a
particular claim element, an integrated circuit for a storage
device.

As used herein, the terms “first,” “second,” “third,” and so
on are used as labels for nouns that they precede, and do not
imply any type of ordering (e.g., spatial, temporal, logical,
etc.). The terms “first” and “second” do not necessarily
imply that the first value must be written before the second
value. Further, although the terms may be used herein to
identily various elements, these elements are not limited by
these terms. These terms are used to distinguish one element
from another element that otherwise have the same or
similar names. For example, a first circuitry may be distin-

guished from a second circuitry.

Further, the term “based on” 1s used to describe one or
more factors that affect a determination. This term does not
toreclose additional factors that may aflect a determination.
That 1s, a determination may be solely based on those factors
or based, at least 1in part, on those factors. Consider the
phrase “determine A based on B.” While 1n this case, B 1s a
tactor that aflects the determination of A, such a phrase does
not foreclose the determination of A from also being based
on C. In other instances, A may be determined based solely
on B.

Herein, an item of data, a data item, a data entry or an
entry of data may be a sequence of bits. For example, the
data item may include the contents of a file, a portion of the
file, a page 1n memory, an object 1n an object-oriented
program, a digital message, a digital scanned 1mage, a part
of a video or audio signal, metadata or any other enfity
which can be represented by a sequence of bits. According,
to an embodiment, the data item may include a discrete
object. According to another embodiment, the data item may

A

10

15

20

25

30

35

40

45

50

55

60

65

4

include a unit of information within a transmission packet
between two different components.

Embodiments of the present disclosure can provide a
memory system, a data processing system, and an operation
process or a method, which can quickly and reliably process
data into a memory device by reducing operational com-
plexity and performance degradation of the data processing
system and the memory system thereby enhancing usage
elliciency of the data processing system and the memory
device.

Embodiments of the present disclosure can provide an
apparatus and a method for improving a readahead operation
performed 1n a memory system so that the memory system
advances a timing of transmitting read data requested by a
host from the memory system to the host in the data
processing system. The memory system can include a plu-
rality of buflers having a different data input/output speed. In
a procedure of storing readahead data prepared through a
readahead operation in the plurality of buflers, the memory
system can determine a data attribute of the readahead data
based on a difference between a first timing of transmitting
the read data to the host and a second timing of preparing the
readahead data. Based on the data attribute, the memory
system can determine a location of storing the readahead
data among the plurality of buflers. Through this procedure,
elliciency of the readahead operation performed with limited
resources of the memory system can be improved.

While a type and a size of data requested from the
memory system by the host 1n the data processing system
may be various, a space of data bufler that can temporarily
store the readahead data obtained through the readahead
operation 1s limited. By calculating a degree of time reduc-
tion spent on outputting read data in response to a read
request as a readahead coverage rate, data with a low
coverage rate can be preferentially prepared in the data
bufler. Through this, 1t 1s possible to determine which data
1s obtained 1n a limited space of the data bufler through the
readahead operation among data stored in the memory
device, so that data input/output performance of the memory
system can be improved.

In an embodiment, a memory system can include a
memory device including plural storage regions including
plural non-volatile memory cells and having a different data
input/output speed; and a controller coupled to the memory
device via at least one data path and configured to perform
a readahead operation in response to a read request mput
from an external device, determine a data attribute regarding
readahead data, obtained by the readahead operation, based
on a time difference between reception of the read request
and completion of the readahead operation, and store the
readahead data in one of the plural storage regions based on
the data attribute.

In the memory system, a first storage region among the
plural storage regions has a faster data input/output speed
than a second storage region among the plural storage
regions.

The controller can be configured to store the readahead
data corresponding to the read request in the first storage
region when the readahead data has a smaller size than a
preset value.

The controller can be configured to store the readahead
data corresponding to the read request in the second storage
region when the readahead data has a larger size than or
equal to the preset value.

The controller can be configured to store the readahead
data corresponding to the read request in the first storage

US 11,893,269 B2

S

region when the reception of the read request 1s earlier than
the completion of the readahead operation.

The controller can be configured to store the readahead
data corresponding to the read request 1n the second storage
region when the reception of the read request 1s later than the
completion of the readahead operation.

The first storage region and the second storage region can
individually include at least one memory block, at least one
memory plane, or at least one memory die.

The first storage region can include a non-volatile
memory cell storing data of a single bit, and the second
storage region can include a non-volatile memory cell
storing data of plural bits.

The second storage region can be used for storing user
data, and the second storage region can be used for storing
meta data associated with the user data.

The controller can be configured to recognize a pattern of
read data requested by read requests input from the external
device, determine the data attribute regarding the readahead
data associated with the read data based on the pattern of the
read data, and store the readahead data 1n one of the plural
storage regions based on the data attribute.

The controller can be configured to determine the data
attribute regarding the readahead data associated with first
read data corresponding to a first read request, based on a
time difference between receptions of the first read request
and a second read request successively mputted following
the first read request.

The memory system can further include a cache memory
configured to temporarily store the readahead data. The
controller can be configured to determine a timing of releas-
ing or evicting the readahead data stored in the cache
memory based on the time difference between the reception
of the read request and the completion of the readahead
operation.

The controller can be configured to assign one of plural
eviction levels to the readahead data, adjust an assigned
eviction level when the readahead data i1s accessed, and
determine the timing of releasing or evicting the readahead
data based on an adjusted eviction level.

The controller can be configured to change a degree of
adjusting the assigned eviction level assigned to the reada-
head data when an amount of the readahead data having at
least one or more specific eviction level among the plural
eviction levels 1s greater than a reference.

The controller can be configured to determine the timing
of releasing or evicting the readahead data based on a least
recently used (LRU) policy when the readahead data stored
in the cache memory has the same eviction level.

In another embodiment, a memory system can include
plural memories having a different data mnput/output speed;
and a controller configured to store readahead data obtained
from the plural memories via a readahead operation in a
builer, and output read data among the readahead data stored
in the builer based on reception of a read request input from
an external device. The controller can be further configured
to determine a priority regarding the readahead data,
obtained by the readahead operation, based on a time
difference between reception of the read request and
completion of the readahead operation, and store the reada-
head data 1n one of the plural memories based on the priority.

The controller can be configured to employ a virtual file
system that associates a logical address scheme used by an
external device and a physical address scheme for 1dentity-
ing locations of a plurality of non-volatile memory cells
included in the plural memories and forms a virtual data
structure based on a correlation corresponding to a data

10

15

20

25

30

35

40

45

50

55

60

65

6

attribute or a data pattern of data stored in the plural
memories. The virtual data structure can include a depth
level, among plural depth levels of the correlation, which 1s
assigned to the data stored in the plural memories.

The controller can be configured to, when the read request
1s mput, perform the readahead operation to obtain data
having a higher depth level than data corresponding to the
read request.

The controller can be configured to: determine the priority
based on a size of data corresponding to the read request;
store the readahead data corresponding to the read request 1n
a first memory among the plural memories, when the rea-
dahead data has a smaller size; and store the readahead data
corresponding to the read request in a second memory
having a slower data input/output speed than the first storage
region among the plural memories, when the readahead data
has a larger size.

The controller can be configured to: store the readahead
data corresponding to the read request 1n a first memory
among the plural memories, when the reception of the read
request 1s earlier than the completion of the readahead
operation; and store the readahead data corresponding to the
read request 1n a second memory having a slower data
input/output speed than the first storage region among the
plural memories, when the reception of the read request 1s
later than the completion of the readahead operation.

A first memory can have a faster data input/output speed
than a second memory among the plural memories. The first
memory and the second memory can individually include at
least one memory block, at least one memory plane, or at
least one memory die.

The controller can be configured to determine a timing of
releasing or evicting the readahead data stored in the bufler
based on the priority.

The controller can be configured to assign one of plural
eviction levels to the readahead data, adjust an assigned
eviction level when the readahead data i1s accessed, and
determine the timing of releasing or evicting the readahead
data based on an adjusted eviction level.

The controller can be configured to change a degree of
adjusting the assigned eviction level assigned to the reada-
head data when an amount of the readahead data having at
least one or more specific eviction level among the plural
eviction levels 1s greater than a reference.

The controller can be configured to determine the timing
of releasing the readahead data based on a least recently used
(LRU) policy when the readahead data stored in the cache
memory has the same eviction level.

In another embodiment, a data mput/output system can
include plural storage devices having a different data mnput/
output speed; a cache memory; and a control device con-
figured to: store readahead data obtained from the plural
storage devices via a readahead operation i1n the cache
memory; output read data, among the readahead data stored
in the cache memory, to an application program based on
reception of a read request iput from the application
program; determine a readahead attribute regarding the
readahead data, obtained by the readahead operation, based
on a first timing of the reception and a second timing of
completion of storing the readahead data in the cache
memory; and store the readahead data in one of the plural
storage devices based on the readahead attribute.

The control device can be configured to detect a pattern of
read data corresponding to the read request and use the
pattern to determine the readahead attribute regarding the

readahead data.

US 11,893,269 B2

7

The control device can be configured to store the reada-
head data corresponding to the read request 1n a storage
device having the fastest data mput/output speed when the
first timing 1s earlier than the second timing.

The control device can be configured to determine a
timing of releasing or evicting the readahead data stored in
the cache memory based on a difference between the first
timing and the second timing.

The control device can be configured to assign one of
plural eviction levels to the readahead data, adjust an
assigned eviction level when the readahead data 1s accessed,
and determine the timing of releasing or evicting the rea-
dahead data based on an adjusted eviction level.

The control device can be configured to change a degree
of adjusting the assigned eviction level assigned to the
readahead data when an amount of the readahead data
having at least one or more specific eviction level among the
plural eviction levels 1s greater than a reference.

The control device can be configured to determine the
timing of releasing or evicting the readahead data based on
a least recently used (LRU) policy when the readahead data
stored 1n the cache memory has the same eviction level.

In another embodiment, an operating method of a circuit
can include controlling a device to store data in a slow
storage region; controlling a cache to cache the data from the
slow storage region; providing the data from the cache 1n
response to a read command; and controlling, after the
providing, the device to move the data from the slow storage
region to a fast storage region, which has a faster mput/
output speed than the slow storage region, when: the data
has a smaller size than a threshold, or the read command 1s
provided before the data 1s completely cached in the cache.

Embodiments of the present disclosure will now be
described with reference to the accompanying drawings,
wherein like numbers reference like elements.

FI1G. 1 1llustrates a data processing system according to an
embodiment of the present disclosure.

Referring to FIG. 1, the data processing system can
include a host 102 and a memory system 110. The host 102
can 1nclude a computing device, a mobile device, a network
device, or the like. The memory system 110 can store data
therein or output stored data to the host 102 according to a
request from the host 102. In FIG. 1, a central processing
unit (CPU) included 1n the computing device 1s shown as an
example of the host 102, and a storage device (SSD)
included 1n the computing device 1s shown as an example of
the memory system 110. Configurations of the host 102 and
the memory system 110 can vary according to an embodi-
ment of the disclosure.

According to an embodiment, the memory system 110
may include plural non-volatile memory regions 172, 174
having a different data mput/output speed. The first non-
volatile memory region 172 and the second non-volatile
memory region 174 may include a plurality of non-volatile
memory cells. The first non-volatile memory region 172 and
the second non-volatile memory region 174 can store data or
output stored data 1n response to a request input from the
host 102. For example, the first non-volatile memory region
172 can have a faster data input/output speed than the second
non-volatile memory region 174. The first non-volatile
memory region 172 and the second non-volatile memory
region 174 can include at least one memory block, at least
one memory plane, or at least one memory die. For example,
the first nonvolatile memory region 172 can include a
memory block mcluding a non-volatile memory cell storing,
one-bit data, while the second non-volatile memory region

10

15

20

25

30

35

40

45

50

55

60

65

8

174 can include a memory bock including a non-volatile
memory cell storing three-bit or four-bit data.

The host 102 may transmit a read command RD_CMD to
the memory system 110. The memory system 110 may
output read data RD_DATA in response to the read com-
mand RD CMD transmitted from the host 102. In the data
processing system described in FIG. 1, data mput/output
performance can be determined based on a transmission
time (e.g., first operating margins, S,, S,, S;, S,) where the
memory system 110 performs a data iput/output operation
to transmit the read data RDD DATA to the host 102 and a
processing time (e.g., second operation margins, C,, C,, Cj;,
C,) where the host 102 processes the transmitted read data
RD_DATA. The host 102 can process the read data
RD_DATA transmitted from the memory system 110. For
example, the host 102 can perform an operation of display-
ing the read data RD_DATA to a user through a display
device or the like. According to an embodiment, a time
required for transmitting and recerving the read command
RD CMD or the read data RD DATA between the host 102
and the memory system 110 might be least significant as
compared with the first operation margins S,, S,, S5, S, and
the second operation margins C,, C,, C,, C,. The time for
transmission/reception might be omitted in FIG. 1.

Referring to FIG. 1, a diflerence of data input/output
performance 1n response to the read command RD_CMD
input from the host 102 could be described based on two
different cases, 1.e., when the memory system 110 supports
the readahead operation (W/Readahead Op.) and when the
memory system 110 does not support the readahead opera-
tion (W/O Readahead Op.).

First, in the case (W/O Readahead Op.) when the reada-
head operation (Readahead Op.) 1s not supported regarding
read commands RD_CMD input from the host 102, the
memory system 110 can find and read first read data corre-
sponding to a first read command RD_CMD from a storage
device to transmit the first read data to the host 102 (during
operation margin S,). The host 102 recerving the first read
data can process the first read data corresponding to the first
read command RD CMD and transmit a second read com-
mand RD_CMD requesting second read data to the memory
system 110 (during operation margin C,). In response to the
second read command RD_CMD requesting the second read
data, the memory system 110 can read the second read data
from the storage device and transmit the second read data to
the host 102 (during operation margin S,). Thereafter, the
host 102 can process the second read data and transmit a
third read command RD_CMD requesting third read data to
the memory system 110 (during the operation margin C,).

When the readahead operation (Readahead Op.) 1s not
supported 1n the memory system 100 (W/O Readahead Op.),
the memory system 110 would find and read data corre-
sponding to a read command RD_CMD of the host 102 after
reception of the read command RD_CMD, to transmit read
data corresponding to the read command RD_CMD to the
host 102. That 1s, the memory system 110 should have the
first operation margins S,, S,, S5, S, spent on finding and
reading data request by the host 102 after the read command
RD_CMD 1s mputted. The host 102 can use second oper-
ating margins C,, C,, C;, C, to process read data RD_DATA
transmitted by the memory system 110. As shown 1n FIG. 1,
when the host 102 has second operating margins C,, C,, Cs,
C,, each following the first operating margins S,, S,, S;, S,
of the memory system 110, data I/O performance of the data
processing system might be not great.

However, 1n the case (W/Readahead Op.) when the rea-
dahead operation (Readahead Op.) 1s supported, the memory

US 11,893,269 B2

9

system 110 can find and read the first read data correspond-
ing to the first read command RD_CMD nput from the host
102 to transmit the first read data to the host 102 (during
operation margin S, of the memory system 110). Further, the
memory system 100 can prepare (1.e., find and read in
advance) other data associated with the first read data even
though the host 102 does not transmit any other read
command to the memory system 110. The host 102 can
process the first read data corresponding to the first read
command RD CMD and transmit a second read command
RD_CMD requesting second read data to the memory
system 110 (during operation margin C, of the host 102).
When the memory system 110 has prepared the second read
data, 1.e., the second read data could be found in the other
data prepared by the memory system 110 without any other
read command, the memory system 110 can transmit the
second read data to the host 102 immediately after the
second read command RD_CMD 1s input. That is, the host’s
operation margin C, for processing the first read data could
be overlapped with the memory system’s operation margin
S, for finding and reading the second read data. The memory
system 110 might not spend time for finding and reading the
second read data after the second read command RD_CMD
1s input, when the second read data has been prepared before
the second read command RD_CMD 1s mput (1.e., through
the readahead operation).

In the case (W/Readahead Op.) when the memory system
110 supports the readahead operation (Readahead Op.), the
memory system 110 can transmit read data to the host 102
in response to a read command RD_CMD 1nput from the
host 102 without a delay for finding and reading the read
data from the storage device. Thus, the host 102 could
process plural read data without a delay time or a waiting,
time between the second operation margins C,, C,, C;, C,
of the host 102. Accordingly, the first operating margins S,,
S,, S5, S, of the memory system 110 for finding and reading
read data in the memory system 110 could be hidden. Data
I/0O performance of the data processing system could be
improved when the readahead operation (Readahead Op.) 1s
supported by the memory system 110.

Moreover, to reduce or avoid a delay 1in a data processing,
operation due to a data input/output operation, the host 102
might transmit to the memory system 110 read commands
RD_CMD regarding data that might not be needed. In this
case, the data processing system could lead to unnecessary
consumption of resources. In addition, to reduce or avoid a
delay 1 a data processing operation due to a data mput/
output operation, reducing the first operation margins S,, S,,
S;, S, for finding and reading read data in the memory
system 110 might be difficult because the memory system
100 includes limited available resources.

According to an embodiment, to enhance and increase
elliciency of the readahead operation, the memory system
110 may determine a correlation between data and control
the data based on the correlation. When the memory system
110 has prepared data in a bufler through a readahead
operation but the host 102 does not request read data among
readahead data, 1t might seem that the memory system 110
Just wastes resources for an internal operation. Accordingly,
the memory system 110 can estimate a pattern regarding at
least one read command RD_CMD or a pattern of read data
corresponding to the at least one read command RD_CMD.

When a size of a bufler having a fast data input/output
speed 1n the memory system 110 1s suflicient, a large amount
of data stored in the first non-volatile memory area 172 and
the second non-volatile memory area 174 could be read in
advance and stored in the buffer. The memory system 110

10

15

20

25

30

35

40

45

50

55

60

65

10

can find read data requested by the host 102 among the large
amount of data stored in the bufler and requests, to transmit
the read data to the host 102. However, there 1s a limitation
ol resources 1n the memory system 110, a pattern of data
requested by the host 102 may be various, and a size of data
requested by the host 102 may also be various. Accordingly,
it might be not a great solution for improving efliciency of
the data I/O performance that the memory system 110 reads
in advance a large amount of data stored in the first non-
volatile memory region 172 and the second non-volatile
memory region 174 to transmit read data to the host 102.

According to an embodiment, to enhance or improve
elliciency and performance of a readahead operation the
memory system 110 can perform a readahead operation to
obtain data from the first non-volatile memory region 172
and the second non-volatile memory region 174, check a
time from temporarily storing the data to outputting stored
data to the host 102 1n response to a read request of the host
102, and determine a data attribute of the data obtained
through the readahead operation. After determining the data
attribute of the readahead data, the memory system 110 may
determine whether it 1s eflective to store the readahead data
in either the first non-volatile memory region 172 or the
second non-volatile memory region 174. Herein, the first
non-volatile memory region 172 and the second non-volatile
memory region 174 have a diflerent data input/output speed.

For example, the memory system 110 can be configured
to determine a coverage rate of the readahead data based on
a first time point of temporarily storing the readahead data
in an internal bufler via the readahead operation associated
with read data requested by the host 102 and a second time
point of receiving a read command RD_CMD, which 1s
input from the host 102, regarding the readahead data stored
in the internal bufler. When the second time point at which
the host 102 requests data 1s later than the first time point at
which the memory system 110 obtains the data in advance
via the readahead operation, the memory system 110 can
determine that 1t 1s not necessary to store the data in the first
non-volatile memory region 172 having a faster data input/
output speed. This might indicate that, even if that data 1s
stored 1n the second non-volatile memory region 174 having,

a slower data input/output speed, the memory system 110
can determine that an operatlon margin for obtaining the
data mto the internal bufler might be sufliciently secured
betore the second time point when the host 102 requests the
corresponding data.

Conversely, when the second time point at which the host
102 requests the data 1s closer than the first time point at
which the memory system 110 obtains the data 1n advance,
or the second time point 1s earlier than the first time point,
the memory system 110 can store the data in the first
non-volatile memory region 172 having a faster data input/
output speed. In this case, the faster the memory system 110
reads 1n advance into the internal bufler, the faster the
memory system 110 can output the data in response to the
request of the host 102.

According to an embodiment, the memory system 110
may determine where to store data in a plurallty of builers
according to a size of the data. Here, the size of the data may
be associated with a size of the read data RD DATA that 1s
sequentially or continuously read and output 1n response to
read command(s) RD_CMD, or a size of readahead data
which 1s a target of the readahead operation associated with
the read data RD_DATA. For example, the memory system
110 can use the size of the data as a reference for estimating
a pattern 1n which the host 102 uses the read data RD_CMD.

If 1t 1s estimated that the amount of sequential read data to

US 11,893,269 B2

11

be subsequently read 1s larger than a predetermined thresh-
old based on a start address of data 1in the read command
transmitted by the host 102, an operation margin to process
the corresponding data in the host 102 may also become
greater, and 1t might be estimated that efliciency of preparing
the data 1n advance through the readahead operation 1s not
great. In this case, the memory system 110 may store the
data in the second non-volatile memory area 174 having a
slower data mput/output speed. For example, when it 1s
estimated that an amount of data requested by the host 102
1s larger than a threshold based on a pattern (e.g., sequential
read or random read) of read commands RD_CMD 1nput
from the host 102, the memory system 110 can determine
that an operation margin for preparing the data in advance
through the readahead operation 1s suflicient, and store the
data 1n the second non-volatile memory region 174 having
a slower data input/output speed.

Conversely, when i1t 1s estimated that an amount of
requested data 1s not larger than the threshold based on the
pattern of the read commands RD_CMD input from the host
102, the memory system 110 can determine that obtaining
the data in advance 1s advantageous to improve data 1/O
performance. In this case, the memory system 110 may store
the data 1n the first non-volatile memory region 172 having,
a faster data iput/output speed.

As described above, the memory system 110 may include
plural memory regions 172, 174 having a different data
input/output speed. The plural memory regions 172, 174
may be implemented 1n various forms in the memory device
150 (refer to FIGS. 2 to 3) for storing data in the memory
system 110. The memory system 110 performs the reada-
head operation (Readahead Op.) to obtain readahead data.
The memory system 110 can determine a data attribute of the
readahead data, based on a diflerence between a first time
point at which the readahead data i1s obtained and stored in
a buller through the readahead operation and a second time
point at which the memory system 110 outputs the reada-
head data to the host 102 1n response to a read request input
from the host 102, or a size of data which 1s estimated to be
requested by the host 102. Further, the memory system 110
can determine where to store the data among the plural
memory regions 172, 174 based on the data attribute of the
readahead data. If 1t 1s determined that the readahead data 1s
required to be output at a faster rate, the memory system 110
can store the readahead data in the first non-volatile memory
region 172 which can operate at a faster data iput/output
speed among the plural memory regions. Conversely, 11 1t 1s
determined that the readahead data 1s not required for fast
input/output, the readahead data may be stored 1n the second
non-volatile memory region 174 having a slower data input/
output speed among the plural memory regions.

Hereinafter, descriptions will be made focusing on opera-
tions or components that can be techmcally distinguished
between the controller 130 and the memory device 150
described 1n FIG. 1 and FIGS. 2 to 4. Specifically, a flash
translation layer (FTL) 240 in the controller 130 will be
described 1n more detail with reference to FIGS. 3 to 4.
According to an embodiment, roles and functions of the
flash translation layer (F'TL) 1n the controller 130 may be
varied.

FIGS. 2 and 3 illustrate some operations that may be
performed by the memory system 110 according to one or
more embodiments of the present disclosure.

Referring to FI1G. 2, the data processing system 100 may
include a host 102 engaged or coupled with a memory
system, such as memory system 110. For example, the host

10

15

20

25

30

35

40

45

50

55

60

65

12

102 and the memory system 110 can be coupled to each
other via a data bus, a host cable and the like to perform data
communication.

The memory system 110 may include a memory device
150 and a controller 130. The memory device 150 and the
controller 130 in the memory system 110 may be considered
components or elements physically separated from each
other. The memory device 150 and the controller 130 may be
connected via at least one data path. For example, the data
path may include a channel and/or a way.

According to an embodiment, the memory device 150 and
the controller 130 may be components or elements func-
tionally divided. Further, according to an embodiment, the
memory device 150 and the controller 130 may be 1mple-
mented with a single chip or a plurality of chips. The
controller 130 may perform a data mput/output operation 1n
response to a request mput from the external device. For
example, when the controller 130 performs a read operation
in response to a read request mput from an external device,
data stored in a plurality of non-volatile memory cells
included 1n the memory device 150 is transferred to the
controller 130.

As shown 1n FIG. 2, the memory device 150 may include
a plurality of memory blocks 152, 154, 156. The memory
block 152, 154, 156 may be understood as a group of
non-volatile memory cells in which data 1s removed together
by a single erase operation. Although not illustrated, the
memory block 152, 154, 156 may include a page which 1s a
group ol non-volatile memory cells that store data together
during a single program operation or output data together
during a single read operation. For example, one memory
block may include a plurality of pages.

For example, the memory device 150 may include a
plurality of memory planes or a plurality of memory dies.
According to an embodiment, the memory plane may be
considered to be a logical or a physical partition including at
least one memory block, a driving circuit capable of con-
trolling an array including a plurality of non-volatile
memory cells, and a bufler that can temporarly store data
inputted to, or outputted from, non-volatile memory cells.

In addition, according to an embodiment, the memory die
may include at least one memory plane. The memory die
may be understood to be a set of components implemented
on a physically distinguishable substrate. Each memory die
may be connected to the controller 130 through a data path.
Each memory die may include an interface to exchange an
item ol data and a signal with the controller 130.

According to an embodiment, the memory device 150
may include at least one memory block 1352, 154, 156, at
least one memory plane, or at least one memory die. The
internal configuration of the memory device 150 shown 1n
FIGS. 1 and 2 may be different according to performance of
the memory system 110. An embodiment of the present
disclosure 1s not limited to the internal configuration shown
in FIG. 2.

Reterring to FIG. 2, the memory device 150 may include
a voltage supply circuit 170 capable of supplying at least
some voltage mto the memory block 152, 154, 156. The
voltage supply circuit 170 may supply a read voltage Vrd, a
program voltage Vprog, a pass voltage Vpass, or an erase
voltage Vers into a non-volatile memory cell included 1n the
memory block. For example, during a read operation for
reading data stored 1n the non-volatile memory cell included
in the memory block 152, 154, 156, the voltage supply
circuit 170 may supply the read voltage Vrd into a selected
non-volatile memory cell. During the program operation for
storing data in the non-volatile memory cell included 1n the

US 11,893,269 B2

13

memory block 152, 154, 156, the voltage supply circuit 170
may supply the program voltage Vprog into a selected
non-volatile memory cell. Also, during a read operation or a
program operation performed on the selected nonvolatile
memory cell, the voltage supply circuit 170 may supply a
pass voltage Vpass 1nto a non-selected nonvolatile memory
cell. During the erasing operation for erasing data stored 1n
the non-volatile memory cell included 1n the memory block
152, 154, 156, the voltage supply circuit 170 may supply the
erase voltage Vers into the memory block.

The memory device 150 may store information regarding,
various voltages which are supplied to the memory block
152, 154, 156 based on which operation 1s performed. For
example, when a non-volatile memory cell 1n the memory
block 152, 154, 156 can store multi-bit data, plural levels of
the read voltage Vrd for recognizing or reading the multi-bit
data 1tem may be required. The memory device 150 may
include a table including information corresponding to plu-
ral levels of the read voltage Vrd, corresponding to the
multi-bit data 1tem. For example, the table can include bias
values stored 1n a register, each bias value corresponding to
a specific level of the read voltage Vrd. The number of bias
values for the read voltage Vrd that 1s used for a read
operation may be limited to a preset range. Also, the bias
values can be quantized.

The host 102 may include a portable electronic device
(e.g., a mobile phone, an MP3 player, a laptop computer,
etc.) or a non-portable electronic device (e.g., a desktop
computer, a game player, a television, a projector, etc.).

The host 102 may also include at least one operating
system (OS), which can control functions and operations
performed 1n the host 102. The OS can provide interoper-
ability between the host 102 engaged operatively with the
memory system 110 and a user who intends to store data in
the memory system 110. The OS may support functions and
operations corresponding to user’s requests. By way of
example but not limitation, the OS can be classified mnto a
general operating system and a mobile operating system
according to mobility of the host 102. The general operating
system may be split into a personal operating system and an
enterprise operating system according to system require-
ments or a user environment. As compared with the personal
operating system, the enterprise operating systems can be
specialized for securing and supporting high performance
computing.

The mobile operating system may be subject to support
services or functions for mobility (e.g., a power saving
function). The host 102 may 1nclude a plurality of operating
systems. The host 102 may execute multiple operating
systems 1nterlocked with the memory system 110, corre-
sponding to a user’s request. The host 102 may transmit a
plurality of commands corresponding to the user’s requests
into the memory system 110, thereby performing operations
corresponding to the plurality of commands within the
memory system 110.

A controller 130 in the memory system 110 may control
a memory device 150 1n response to a request or a command
input from the host 102. For example, the controller 130 may
perform a read operation to provide data read from the
memory device 150 to the host 102 and may perform a write
operation (or a program operation) to store data mput from
the host 102 1n the memory device 150. In order to perform
data iput/output (I/0O) operations, the controller 130 may
control and manage internal operations of reading data,
programming data, erasing data, or the like.

According to an embodiment, the controller 130 may
include a host interface 132, a processor 134, error correc-

10

15

20

25

30

35

40

45

50

55

60

65

14

tion circuitry (ECC) 138, a power management unit (PMU)
140, a memory interface 142, and a memory 144. Compo-
nents included 1n the controller 130 as 1illustrated 1n FIG. 2
may vary according to structures, functions, operation per-
formance, or the like, regarding the memory system 110.

For example, the memory system 110 may be imple-
mented with any of various types of storage devices, which
may be electrically coupled with the host 102, according to
a protocol of a host interface. Non-limiting examples of
suitable storage devices include a solid state drive (SSD), a
multimedia card (MMC), an embedded MMC (eMMC), a
reduced size MMC (RS-MMC), a micro-MMC, a secure
digital (SD) card, a mini-SD, a micro-SD, a universal serial
bus (USB) storage device, a universal tlash storage (UFS)
device, a compact flash (CF) card, a smart media (SM) card,
a memory stick, and the like. Components may be added to
or omitted from the controller 130 according to implemen-
tation of the memory system 110.

The host 102 and the memory system 110 each may
include a controller or an interface for transmitting and
receiving signals, data, and the like, 1n accordance with one
or more predetermined protocols. For example, the host
interface 132 in the memory system 110 may include an
apparatus capable of transmitting signals, data, and the like
to the host 102 or recerving signals, data, and the like from
the host 102.

The host intertace 132 included 1n the controller 130 may
receive signals, commands (or requests), and/or data input
from the host 102 via a bus. For example, the host 102 and
the memory system 110 may use a predetermined set of rules
or procedures for data communication or a preset interface
to transmit and receive data therebetween. Examples of sets
of rules or procedures for data communication or interfaces
supported by the host 102 and the memory system 110 for
sending and receiving data include Universal Serial Bus
(USB), Multi-Media Card (MMC), Parallel Advanced Tech-
nology Attachment (PATA), Small Computer System Inter-
tace (SCSI), Enhanced Small Disk Interface (ESDI), Inte-
grated Drive Electronics (IDE), Peripheral Component
Interconnect Express (PCle or PCl-e), Senal-attached SCSI
(SAS), Serial Advanced Technology Attachment (SATA),
Mobile Industry Processor Interface (MIPI), and the like.
According to an embodiment, the host interface 132 1s a type
of layer for exchanging data with the host 102 and 1is
implemented with, or driven by, firmware called a host
interface layer (HIL). According to an embodiment, the host
interface 132 can include a command queue.

The Integrated Drive Electronics (IDE) or Advanced
Technology Attachment (ATA) may be used as one of the
interfaces for transmitting and receiving data and, for
example, may use a cable including 40 wires connected 1n
parallel to support data transmission and data reception
between the host 102 and the memory system 110. When a
plurality of memory systems 110 are connected to a single
host 102, the plurality of memory systems 110 may be
divided 1nto a master and a slave by using a position or a dip
switch to which the plurality of memory systems 110 are
connected. The memory system 110 set as the master may be
used as a main memory device. The IDE (ATA) may include,
for example, Fast-ATA, ATAPI, or Enhanced IDE (FIDE).

A Serial Advanced Technology Attachment (SATA) inter-
face 1s a type of serial data commumication interface that 1s
compatible with various ATA standards of parallel data
communication interfaces which are used by Integrated
Drive Electronics (IDE) devices. The 40 wires 1n the IDE
interface can be reduced to six wires 1n the SATA interface.
For example, 40 parallel signals for the IDE can be con-

US 11,893,269 B2

15

verted into 6 serial signals for the SATA interface. The SATA
interface has been widely used because of 1ts faster data
transmission and reception rate and 1ts less resource con-
sumption in the host 102 used for the data transmission and
reception. The SATA interface may connect up to 30 external
devices to a single transcerver included in the host 102. In
addition, the SATA nterface can support hot plugging that
allows an external device to be attached to or detached from
the host 102, even while data communication between the
host 102 and another device i1s being executed. Thus, the
memory system 110 can be connected or disconnected as an
additional device, like a device supported by a universal
serial bus (USB) even when the host 102 1s powered on. For
example, 1 the host 102 having an eSATA port, the memory

system 110 may be freely attached to or detached from the
host 102 like an external hard disk.

Small Computer System Interface (SCSI) 1s a type of
serial data communication interface used for connecting a
computer or a server with other peripheral devices. The
SCSI can provide a high transmission speed, as compared
with other interfaces such as IDE and SATA. In the SCSI, the
host 102 and at least one peripheral device (e.g., memory
system 110) are connected 1n series, but data transmission
and reception between the host 102 and each peripheral
device may be performed through a parallel data commu-
nication. In the SCSI, it 1s easy to connect or disconnect a
device such as the memory system 110 to or from the host
102. The SCSI can support connections of 15 other devices
to a single transceiver included 1n host 102.

Serial Attached SCSI (SAS) can be understood as a serial
data communication version of the SCSI. In the SAS, the
host 102 and a plurality of peripheral devices are connected
in series, and data transmission and reception between the
host 102 and each peripheral device may be performed 1n a
serial data communication scheme. The SAS can support
connection between the host 102 and the peripheral device
through a serial cable instead of a parallel cable, to easily
manage equipment using the SAS and enhance or improve
operational reliability and communication performance. The
SAS may support connections of eight external devices to a
single transceiver included in the host 102.

The Non-volatile memory express (NVMe) 1s a type of
interface based at least on a Peripheral Component Inter-
connect Express (PCle) designed to increase performance
and design flexibility of the host 102, servers, computing
devices, and the like equipped with the non-volatile memory
system 110. The PCle can use a slot or a specific cable for
connecting a computing device (e.g., host 102) and a periph-
eral device (e.g., memory system 110). For example, the
PCle can use a plurality of pins (e.g., 18 pins, 32 pins, 49
pins, or 82 pins) and at least one wire (e.g., x1, x4, x8, or

x16) to achueve high speed data communication over several
hundred MB per second (e.g., 250 MB/s, 300 MB/s,

084.6250 MB/s, or 1969 MB/s). According to an embodi-
ment, the PCle scheme may achieve bandwidths of tens to
hundreds of Giga bits per second. The NVMe can support an
operation speed of the non-volatile memory system 110,
such as an SSD), that 1s faster than a hard disk.

According to an embodiment, the host 102 and the
memory system 110 may be connected through a universal
serial bus (USB). The Universal Serial Bus (USB) 1s a type
of scalable, hot-pluggable plug-and-play serial interface that
can provide cost-eflective standard connectivity between the
host 102 and peripheral devices such as a keyboard, a
mouse, a joystick, a printer, a scanner, a storage device, a
modem, a video camera, and the like. A plurality of periph-

10

15

20

25

30

35

40

45

50

55

60

65

16

eral devices such as the memory system 110 may be coupled
to a single transceiver included 1n the host 102.

Referring to FIG. 2, the error correction circuitry 138 can
correct error bits of data read from the memory device 150,
and may 1nclude an error correction code (ECC) encoder and
an ECC decoder. The ECC encoder may perform error
correction encoding of data to be programmed 1n the
memory device 150 to generate encoded data into which a
parity bit 1s added, and store the encoded data 1n the memory
device 150. The ECC decoder can detect and correct error
bits contained 1n the data read from the memory device 150
when the controller 130 reads the data stored in the memory
device 150. For example, after performing error correction
decoding on the data read from the memory device 150, the
error correction circuitry 138 determines whether the error
correction decoding has succeeded or not, and outputs an
mstruction signal (e.g., a correction success signal or a
correction fail signal), based on a result of the error correc-
tion decoding. The error correction circuitry 138 may use a
parity bit, which has been generated during the ECC encod-
ing process for the data stored in the memory device 150, 1n
order to correct the error bits of the read data. When the
number of the error bits 1s greater than or equal to the
number of correctable error bits, the error correction cir-
cuitry 138 may not correct the error bits and instead may
output the correction fail signal indicating failure 1n correct-
ing the error bits.

According to an embodiment, the error correction cir-
cuitry 138 may perform an error correction operation based
on a coded modulation such as a low density parity check
(LDPC) code, a Bose-Chaudhuri-Hocquenghem (BCH)
code, a turbo code, a Reed-Solomon (RS) code, a convolu-
tion code, a recursive systematic code (RSC), a trellis-coded
modulation (TCM), a Block coded modulation (BCM), or
the like. The error correction circuitry 138 may include all
circuits, modules, systems, and/or devices for performing
the error correction operation based on at least one of the
above described codes. The error correction circuitry 138
shown 1n FIG. 2 can include at least some of the components
included in the controller 130 shown 1n FIG. 1.

For example, the ECC decoder may perform hard deci-
s1ion decoding or soft decision decoding on data transmitted
from the memory device 150. The hard decision decoding
can be understood as one of two methods broadly classified
for error correction. The hard decision decoding may include
an operation of correcting an error bit by reading digital data
of ‘0’ or 1’ from a non-volatile memory cell 1n the memory
device 150. Because the hard decision decoding handles a
binary logic signal, the circuit/algorithm design or configu-
ration may be simpler and a processing speed may be faster
than the soft decision decoding.

The soft decision decoding may quantize a threshold
voltage of a non-volatile memory cell 1n the memory device
150 by two or more quantized values (e.g., multiple bit data,
approximate values, an analog value, and the like) in order
to correct an error bit based on the two or more quantized
values. The controller 130 can receive two or more alphabets
or quantized values from a plurality of non-volatile memory
cells 1n the memory device 150, and then perform a decod-
ing based on information generated by characterizing the
quantized values as a combination of information such as
conditional probability or likelihood.

According to an embodiment, the ECC decoder may use
a low-density parity-check and generator matrix (LDPC-
GM) code among methods designed for the soft decision
decoding. The low-density parity-check (LDPC) code uses
an algorithm that can read values of data from the memory

US 11,893,269 B2

17

device 150 1n several bits according to reliability, not simply
data of 1 or O like the hard decision decoding, and 1iteratively
repeats 1t through a message exchange 1n order to 1mprove
reliability of the values. Then, the values are finally deter-
mined as data of 1 or 0. For example, a decoding algorithm
using LDPC codes can be understood as probabilistic decod-
ing. The hard decision decoding in which a value output
from a non-volatile memory cell 1s coded as 0 or 1. Com-
pared to the hard decision decoding, the soft decision
decoding can determine the value stored in the non-volatile
memory cell based on the stochastic information. Regarding,
bit-flipping which may be considered an error that can occur
in the memory device 150, the soft decision decoding may
provide improved probability of correcting the error and
recovering data, as well as providing reliability and stability
of corrected data. The LDPC-GM code may have a scheme
in which internal LDGM codes can be concatenated 1n series
with high-speed LDPC codes.

According to an embodiment, the ECC decoder may use,
for example, low-density parity-check convolutional codes
(LDPC-CCs) for the soft decision decoding. The LDPC-CCs
may have a scheme using a linear time encoding and a
pipeline decoding based on a variable block length and a
shift register.

According to an embodiment, the ECC decoder may use,
for example, a Log Likelihood Ratio Turbo Code (LLR-TC)
for the soft decision decoding. A Log Likelithood Ratio
(LLR) may be calculated as a non-linear function for a
distance between a sampled value and an ideal value. In
addition, a Turbo Code (TC) may include a simple code (for
example, a Hamming code) in two or three dimensions and
repeat decoding 1n a row direction and a column direction to
improve reliability of values.

The power management umt (PMU) 140 may control
clectrical power provided to the controller 130. The PMU
140 may monitor the electrical power supplied to the
memory system 110 (e.g., a voltage supplied to the control-
ler 130) and provide the electrical power to components
included 1n the controller 130. The PMU 140 may not only
detect power-on or power-ofl, but also generate a trigger
signal to enable the memory system 110 to urgently back up
a current state when the electrical power supplied to the
memory system 110 1s unstable. According to an embodi-
ment, the PMU 140 may include a device or a component
capable of accumulating electrical power that may be used
1N an emergency.

The memory interface 142 may serve as an interface for
handling commands and data transferred between the con-
troller 130 and the memory device 150, 1n order to allow the
controller 130 to control the memory device 150 1n response
to a command or a request mput from the host 102. The
memory interface 142 may generate a control signal for the
memory device 150 and may process data input to, or output
from, the memory device 150 under the control of the
processor 134 1n a case when the memory device 150 1s a
flash memory.

For example, when the memory device 150 includes a
NAND flash memory, the memory interface 142 includes a
NAND flash controller (NFC). The memory interface 142
can provide an interface for handling commands and data
between the controller 130 and the memory device 150. In
accordance with an embodiment, the memory interface 142
can be implemented through, or driven by, firmware called
a Flash Interface Layer (FIL) for exchanging data with the
memory device 150. The memory interface 142 can include
the execution queue 180 or the plurality of group queues

182, 184, 186 shown 1n FIG. 1.

10

15

20

25

30

35

40

45

50

55

60

65

18

According to an embodiment, the memory interface 142
may support an open NAND flash iterface (ONF1), a toggle
mode, or the like, for data input/output with the memory
device 150. For example, the ONF1 may use a data path (e.g.,
a channel, a way, etc.) that includes at least one signal line
capable of supporting bi-directional transmission and recep-
tion 1 a unit of 8-bit or 16-bit data. Data communication
between the controller 130 and the memory device 150 can
be achieved through at least one interface regarding an

asynchronous single data rate (SDR), a synchronous double
data rate (DDR), a toggle double data rate (DDR), or the

like.

The memory 144 may be used as a working memory of
the memory system 110 or the controller 130, while tem-
porarily storing transactional data of operations performed
in the memory system 110 and the controller 130. For
example, the memory 144 may temporarily store read data
output from the memory device 150 1n response to a read
request from the host 102 before the read data 1s output to
the host 102. In addition, the controller 130 may temporarily
store write data input from the host 102 1n the memory 144
before programming the write data in the memory device
150. When the controller 130 controls operations, such as a
data read operation, a data write or program operation, a data
erase operation, etc., of the memory device 150, data trans-
mitted between the controller 130 and the memory device
150 of the memory system 110 may be temporarily stored in
the memory 144. For example, the memory 144 can include
the data buffer 164 shown in FIG. 1.

In addition to the read data or write data, the memory 144
may store information (e.g., map data, read requests, pro-
gram requests, etc.) used for mputting or outputting data
between the host 102 and the memory device 150. Accord-
ing to an embodiment, the memory 144 may include one or
more of a command queue, a program memory, a data
memory, a write buller/cache, a read bufler/cache, a data
bufler/cache, a map bufler/cache, and so on. The controller
130 may allocate some storage space in the memory 144 for
a component which 1s established to carry out a data
input/output operation. For example, the write buller estab-
lished 1n the memory 144 may be used to temporarily store
target data subject to a program operation.

In an embodiment, the memory 144 may be implemented
with a volatile memory. For example, the memory 144 may
be mmplemented with a static random access memory
(SRAM), a dynamic random access memory (DRAM), or
both. Although FIG. 2 illustrates, for example, the memory
144 disposed within the controller 130, embodiments are not
limited thereto. The memory 144 may be located within or
external to the controller 130. For instance, the memory 144
may be embodied by an external volatile memory having a
memory interface transierring data and/or signals between
the memory 144 and the controller 130.

The processor 134 may control the overall operations of
the memory system 110. For example, the processor 134 can
control a program operation or a read operation of the
memory device 150 1n response to a write request or a read
request entered from the host 102. According to an embodi-
ment, the processor 134 may execute firmware to control the
program operation or the read operation in the memory
system 110. Herein, the firmware may be referred to as a
flash translation layer (FTL). An example of the FTL will be
described 1n detail, referring to FIGS. 3 and 4. According to
an embodiment, the processor 134 may be implemented
with a microprocessor, a central processing unit (CPU), or

the like.

US 11,893,269 B2

19

According to an embodiment, the memory system 110
may be implemented with at least one multi-core processor.
The multi-core processor 1s a type of circuit or chip 1n which
two or more cores, which are considered distinct processing,
regions, are integrated. For example, when a plurality of
cores 1n the multi-core processor drive or execute a plurality
of flash translation layers (FTLs) independently, a data
input/output speed (or performance) of the memory system
110 may be improved. According to an embodiment, the
data input/output (I/O) operations 1n the memory system 110
may be imndependently performed through different cores in
the multi-core processor.

The processor 134 1n the controller 130 may perform an
operation corresponding to a request or a command 1nput
from the host 102. Further, the memory system 110 may
perform an operation independent from a command or a
request mput from the host 102. In one case, an operation
performed by the controller 130 in response to the request or
the command mput from the host 102 may be considered a
foreground operation, while an operation performed by the
controller 130 independently from the request or the com-
mand 1put from the host 102 may be considered a back-
ground operation. The controller 130 can perform fore-
ground or background operations for reading, writing, or
erasing data 1 the memory device 1350. In addition, a
parameter set operation corresponding to a set parameter
command or a set feature command as a set command
transmitted from the host 102 may be considered a fore-
ground operation. As a background operation that 1s per-
formed without a command transmitted from the host 102,
the controller 130 can perform garbage collection (GC),
wear leveling (WL), bad block management for identifying
and processing bad blocks, or the like.

According an embodiment, substantially similar opera-
tions may be performed as both the foreground operation
and the background operation. For example, when the
memory system 110 performs garbage collection in response
to a request or a command 1nput from the host 102 (e.g.,
Manual GC), the garbage collection can be considered a
foreground operation. When the memory system 110 per-
forms garbage collection independently of the host 102 (e.g.,
Auto GC), the garbage collection can be considered a
background operation.

When the memory device 150 includes a plurality of dies
(or a plurality of chips) each including a plurality of non-
volatile memory cells, the controller 130 may perform
parallel processing regarding plural requests or commands
input from the host 102 1n order to improve performance of
the memory system 110. For example, the transmitted
requests or commands may be divided into plural groups
including at least some of a plurality of planes, a plurality of
dies, or a plurality of chips included 1n the memory device
150, and the plural groups of requests or commands are
processed individually or 1n parallel 1n each plane, each die
or each chip.

The memory interface 142 in the controller 130 may be
connected to the plurality of dies or chips in the memory
device 150 through at least one channel and at least one way.
When the controller 130 distributes and stores data in the
plurality of dies through each channel or each way in
response to requests or commands associated with a plural-
ity of pages including non-volatile memory cells, a plurality
of operations corresponding to the requests or the commands
can be performed simultaneously or in parallel 1n the plu-
rality of dies or planes. Such a processing method or scheme
can be considered as an interleaving method. Because a data
input/output speed of the memory system 110 increases by

5

10

15

20

25

30

35

40

45

50

55

60

65

20

operating with the interleaving method, data I/O perfor-
mance of the memory system 110 can be improved.

By way of example but not limitation, the controller 130
can recognize statuses of a plurality of channels (or ways)
associated with the plurality of dies included 1n the memory
device 150. The controller 130 may determine a status of
cach channel or each way as one of a busy status, a ready
status, an active status, an 1dle status, a normal status, and an
abnormal status. The determination of which channel or way
an instruction (and/or a data) 1s delivered through by the
controller can be associated with a physical block address.
The controller 130 may refer to descriptors delivered from
the memory device 150. The descriptors may include a block
or page ol parameters describing something about the
memory device 150. The descriptors can have a predeter-
mined format or structure. For instance, the descriptors may
include device descriptors, configuration descriptors, unit
descriptors, and the like. The controller 130 may refer to, or
use, the descriptors to determine which channel(s) or way(s)
1s used to exchange an instruction or data.

Referring to FIG. 2, the memory device 150 in the
memory system 110 may include a plurality of memory
blocks 152, 154, 156. Each of the plurality of memory
blocks 152, 154, 156 includes a plurality of non-volatile
memory cells. According to an embodiment, the memory
block 152, 154, 156 can be a group ol non-volatile memory
cells erased together. The memory block 152, 154, 156 may
include a plurality of pages which 1s a group of non-volatile
memory cells read or programmed together.

In one embodiment, each memory block 152, 154, or 156
may have a three-dimensional stack structure for a high
integration. Further, the memory device 150 may include a
plurality of dies, each die including a plurality of planes,
cach plane including the plurality of memory blocks 152,
154, 156. A configuration of the memory device 150 may be
changed depending on performance of the memory system
110.

FIG. 2 illustrates the memory device 150 that includes the
plurality of memory blocks 152, 154, and 156. The plurality
of memory blocks 1352, 154, and 156 may be any of
single-level cell (SLC) memory blocks, multi-level cell
(MLC) memory blocks, or the like, according to the number
of bits that can be stored in one memory cell. An SLC
memory block includes a plurality of pages implemented by
memory cells, each memory cell storing one bit of data. An
SLC memory block may have higher data I/O operation
performance and higher durability than the MLC memory
block. The MLC memory block includes a plurality of pages
implemented by memory cells, each memory cell storing
multi-bit data (e.g., two or more bits of data). The MLC
memory block may have larger storage capacity for the same
space compared to the SLC memory block. The MLC
memory block can be highly integrated 1n a view of storage
capacity.

In an embodiment, the memory device 150 may be
implemented with MLC memory blocks such as a double
level cell (DLC) memory block, a triple-level cell (TLC)
memory block, a quadruple-level cell (QLC) memory block,
and a combination thereof. The DLC memory block may
include a plurality of pages implemented by memory cells,
cach memory cell capable of storing 2-bit data. The TLC
memory block can include a plurality of pages implemented
by memory cells, each memory cell capable of storing 3-bit
data. The QLC memory block can include a plurality of
pages implemented by memory cells, each memory cell
capable of storing 4-bit data. In another embodiment, the
memory device 150 can be implemented with a block

US 11,893,269 B2

21

including a plurality of pages implemented by memory cells,
cach memory cell capable of storing five or more bits of
data.

According to an embodiment, the controller 130 may use
a MLC memory block included in the memory device 150
as an SLC memory block that stores one-bit data 1mn one
memory cell. A data mput/output speed of the multi-level
cell (MLC) memory block can be slower than that of the
SLC memory block. That 1s, when the MLC memory block
1s used as the SLC memory block, a margin for a read or
program operation can be reduced. For example, the con-
troller 130 may perform a data input/output operation with
a higher speed when the MLC memory block 1s used as the
SL.C memory block. Thus, the controller 130 may use the
MLC memory block as a SLC buller to temporarily store
data because the bufler may require a high data input/output
speed for improving performance of the memory system
110.

Further, according to an embodiment, the controller 130
can program data in an MLC a plurality of times without
performing an erase operation on a specific MLC memory
block included in the memory device 150. In general,
non-volatile memory cells do not support data overwrite.
However, the controller 130 may program 1-bit data 1n the
MLC a plurality of times using a feature 1n which the MLC
1s capable of storing multi-bit data. For an MLC overwrite
operation, the controller 130 may store the number of
program times as separate operation information when 1-bit
data 1s programmed 1n an MLC. According to an embodi-
ment, an operation for uniformly levelling threshold volt-
ages of the MLCs may be carried out before another 1-bit
data 1s programmed in the same MLCs, each having stored
another-bit data.

In an embodiment, the memory device 150 1s embodied as
a non-volatile memory such as a tlash memory, for example,
as a NAND flash memory, a NOR tflash memory, or the like.
In another embodiment, the memory device 150 may be
implemented by at least one of a phase change random
access memory (PCRAM), a ferroelectrics random access
memory (FRAM), a spin transier torque random access
memory (SU-RAM), and a spin transier torque magnetic
random access memory (STT-MRAM), or the like.

Referring to FIG. 3, the controller 130 1n a memory
system operates along with the host 102 and the memory
device 150. As illustrated, the controller 130 includes the
host interface 132, a flash translation layer (FTL) 240, the
memory 1interface 142, and the memory 144 previously
identified with reference to FIG. 2.

According to an embodiment, the error correction cir-
cuitry 138 1llustrated in FIG. 2 may be included in the flash
translation layer (FTL) 240. In another embodiment, the
error correction circuitry 138 may be implemented as a
separate module, a circuit, firmware, or the like, which 1s
included in or associated with the controller 130.

The host mterface 132 may handle commands, data, and
the like transmitted from the host 102. By way of example
but not limitation, the host interface 132 may include a
command queue 56, a bufler manager 352, and an event
queue 54. The command queue 56 may sequentially store
the commands, the data, and the like received from the host
102, and output them to the buller manager 52, for example,
in an order 1n which they are stored 1n the command queue
56. The builer manager 32 may classily, manage, or adjust
the commands, the data, and the like received from the
command queue 56. The event queue 54 may sequentially
transmit events for processing the commands, the data, and
the like recetved from the bufler manager 52. For example,

10

15

20

25

30

35

40

45

50

55

60

65

22

the host interface 132 can include the direct memory access
(DMA) control circuitry 162 shown in FIG. 1.

A plurality of commands or data of the same characteristic
may be transmitted from the host 102, or a plurality of
commands and data of different characteristics may be
transmitted to the memory system 110 after being mixed or
jumbled by the host 102. For example, a plurality of com-
mands for reading data, 1.e., read commands, may be deliv-
ered, or a command for reading data, 1.e., a read command,
and a command for programming/writing data, 1.e., a write
command, may be alternately transmitted to the memory
system 110. The host interface 132 may sequentially store
commands, data, and the like, which are transmitted from
the host 102, in the command queue 56. Thereafter, the host
interface 132 may estimate or predict what type of internal
operations the controller 130 will perform according to the
characteristics of the commands, the data, and the like,
which have been transmitted from the host 102. The host
interface 132 may determine a processing order and a
priority of commands, data and the like based on their
characteristics.

According to the characteristics of the commands, the
data, and the like transmitted from the host 102, the bufler
manager 52 in the host imterface 132 i1s configured to
determine whether the buller manager 52 should store the
commands, the data, and the like in the memory 144, or
whether the buller manager 52 should deliver the com-
mands, the data, and the like to the flash translation layer
(FTL) 240. The event queue 54 receives events, transmitted
from the bufler manager 52, which are to be internally
executed and processed by the memory system 110 or the
controller 130 1n response to the commands, the data, and
the like, and delivers the events to the flash translation layer
(FTL) 240 1n the order of the events imnput to the event queue
54.

In accordance with an embodiment, the flash translation
layer (F'IL) 240 illustrated in FIG. 3 may implement a
multi-thread scheme to perform data mput/output (I/O)
operations. A multi-thread FTL may be mmplemented
through a multi-core processor using multi-thread included
in the controller 130.

In accordance with an embodiment, the flash translation
layer (FTL) 240 may include a host request manager (HRM)
46, a map manager (MM) 44, a state manager 42, and a
block manager 48. The host request manager (HRM) 46 may
manage the events transmitted from the event queue 54. The
map manager (MM) 44 may handle or control map data. The
state manager 42 may perform garbage collection (GC) or
wear leveling (WL). The block manager 48 may execute
commands or instructions onto a block in the memory
device 150.

By way of example but not limitation, the host request
manager (HRM) 46 may use the map manager (MM) 44 and
the block manager 48 to handle or process requests accord-
ing to read and program commands and events which are
delivered from the host iterface 132. The host request
manager (HRM) 46 may send an inquiry request to the map
manager (MM) 44 to determine a physical address corre-
sponding to a logical address which 1s entered with the
events. The host request manager (HRM) 46 may send a read
request with the physical address to the memory interface
142 to process the read request, 1.¢., handle the events. In one
embodiment, the host request manager (HRM) 46 may send
a program request (or a write request) to the block manager
48 to program data to a specific empty page storing no data
in the memory device 150, and then may transmit a map
update request corresponding to the program request to the

US 11,893,269 B2

23

map manager (MM) 44 1 order to update an item relevant
to the programmed data in information of mapping the
logical and physical addresses to each other.

The block manager 48 may convert a program request
delivered from the host request manager (HRM) 46, the map
manager (MM) 44, and/or the state manager 42 into a flash
program request used for the memory device 150, 1n order
to manage flash blocks in the memory device 150. In order
to maximize or enhance program or write performance of
the memory system 110, the block manager 48 may collect
program requests and send flash program requests for mul-
tiple-plane and one-shot program operations to the memory
interface 142. In an embodiment, the block manager 48
sends several flash program requests to the memory inter-
face 142 to enhance or maximize parallel processing of a
multi-channel and multi-directional flash controller.

In one embodiment, the block manager 48 may manage
blocks 1n the memory device 150 according to the number
of valid pages, select and erase blocks having no valid pages
when a free block 1s needed, and select a block including the
least number of valid pages when it 1s determined that
garbage collection 1s to be performed. The state manager 42
may perform garbage collection to move valid data stored in
the selected block to an empty block and erase data stored
in the selected block so that the memory device 150 may
have enough free blocks (i.e., empty blocks with no data).
When the block manager 48 provides information regarding
a block to be erased to the state manager 42, the state
manager 42 may check all tlash pages of the block to be
crased to determine whether each page of the block 1s valid.

For example, to determine validity of each page, the state
manager 42 may identily a logical address recorded 1n an
out-of-band (OOB) area of each page. To determine whether
cach page 1s valid, the state manager 42 may compare a
physical address of the page with a physical address mapped
to a logical address obtained from an inquiry request. The
state manager 42 sends a program request to the block
manager 48 for each valid page. A map table may be updated
by the map manager 44 when a program operation 1s
complete.

The map manager 44 may manage map data, e.g., a
logical-physical map table. The map manager 44 may pro-
cess various requests, for example, queries, updates, and the
like, which are generated by the host request manager
(HRM) 46 or the state manager 42. The map manager 44
may store the entire map table 1n the memory device 150
(c.g., a flash/non-volatile memory) and cache mapping
entries according to the storage capacity of the memory 144.
When a map cache miss occurs while processing inquiry or
update requests, the map manager 44 may send a read
request to the memory interface 142 to load a relevant map
table stored 1n the memory device 150. When the number of
dirty cache blocks 1n the map manager 44 exceeds a certain
threshold value, a program request may be sent to the block
manager 48, so that a clean cache block 1s made and a dirty
map table may be stored in the memory device 150.

When garbage collection 1s performed, the state manager
42 copies valid page(s) mto a free block, and the host request
manager (HRM) 46 may program the latest version of the
data for the same logical address of the page and currently
1ssue an update request. When the state manager 42 requests
the map update 1n a state in which the copying of the valid
page(s) 1s not completed normally, the map manager 44
might not perform the map table update. This 1s because the
map request 1s 1ssued with old physical information when
the state manger 42 requests a map update and a valid page
copy 1s completed later. The map manager 44 may perform

10

15

20

25

30

35

40

45

50

55

60

65

24

a map update operation to ensure accuracy when, or only 1f,
the latest map table still points to the old physical address.

FIG. 4 illustrates internal configuration of the controller
shown 1n FIGS. 1 to 3 according to an embodiment of the
present disclosure.

Referring to FIG. 4, the flash translation layer (FTL) 240
in the controller 130 can be divided into three layers: an
address translation layer ATL; a virtual flash layer VFL; and
a flash Interface Layer FIL.

For example, the address translation layer ATL may
convert a logical address LA transmitted from a file system
into a logical page address. The address translation layer
ATL can perform an address translation process regarding a
logical address space. That 1s, the address translation layer
ATL can perform an address translation process based on
mapping imnformation to which the logical page address LPA
of the flash memory 140 1s mapped to the logical address LA
transmitted from the host. Such logical-to-logical address
mapping information (heremnafter referred to as L2L map-
ping) may be stored in an area in which metadata is stored
in the memory device 150.

The virtual flash layer VFL may convert the logical page

address LPA, which 1s mapped by the address translation
layer ATL, into a virtual page address VPA. Here, the virtual
page address VPA may correspond to a physical address of
a virtual memory device. That 1s, the virtual page address
VPA may correspond to the memory block 60 1n the memory
device 150. If there 1s a bad block among the memory blocks
60 1n the memory device 1350, the bad block may be
excluded by the virtual flash layer VFL. In addition, the
virtual flash layer VFL can include a recovery algorithm for
scanning a scan area to restore the logical-to-virtual address
mapping information (L2V mapping) stored in the memory
device 150 and mapping information in the data region for
storing user data. The recovery algorithm can be capable of
recovering the logical-to-virtual address mapping informa-
tion (L2V mapping). The wvirtual flash layer VFL may
perform an address conversion process regarding the virtual
address space, based on the logical-to-virtual address map-
ping information (L2V mapping) restored through the recov-
ery algorithm.
The flash interface layer FIL can convert a virtual page
address of the virtual flash layer VFL into a physical page
address of the memory device 150. The flash interface layer
FIL performs a low-level operation for interfacing with the
memory device 150. For example, the flash interface layer
FIL can 1nclude a low-level driver for controlling hardware
of the memory device 150, an error correction code (ECC)
for checking and correcting an error 1n data transmitted from
the memory device 150, and a module for performing
operations such as Bad Block Management (BBM).

FIG. 5 illustrates a first example of the data processing
system supporting a readahead operation according to an
embodiment of the present disclosure.

Referring to FIG. 5, the data processing system 100 may
include a host 102 and a plurality of memory systems 110A,
110B. The host 102 can secure data stored 1n the plurality of
memory systems 110A and 110B through a readahead opera-
tion. The plurality of memory systems 110A, 110B may have
different mput/output performance.

The application program 302 in the host 102 can generate
a read command for securing data stored in the plurality of
memory systems 110A, 110B. A bufler cache (page cache)
304 in the host 102 can temporarily store data generated by
the application program 302 or temporarily store data
requested by the application program 302. For example,
when the application program 302 generates a read com-

US 11,893,269 B2

25

mand, the read command 1s transmitted to one among the
plurality of memory systems 110A, 110B. One among the
plurality of memory systems 110A, 110B can receive the
corresponding read command. When one among the plural-
ity of memory systems 110A, 110B outputs data correspond-
ing to the read command to the host 102, the host 102 can
store the data in the bufler cache 304. The application
program 302 can use the corresponding data stored in the
bufler cache 304. During this procedure, the application
program 302 may wait for the data corresponding to the read
command without performing an additional operation. This
may deteriorate data mput/output performance of the data
processing system 100.

To improve the data input/output performance of the data
processing system 110, readahead control circuitry 306 in
the host 102 can perform a readahead operation to obtain
data 1 advance, which 1s not requested but could be
requested soon by the application program 302 from the
plurality of memory systems 110A, 110B, and store the
obtained data in the builer cache 304.

A file system 308 and a virtual file system 310 in the host
102 can associate data generated by the application program
302 to an address system used by the host 102 and a storage
space included 1n the plurality of memory systems 110A,
110B. Herein, a file 1s a set or a group of information such
as a program or data. For example, a file 1s a ‘consecutive
concatenation of bytes.” Because the file does not have a
specific structure and information/data 1s continuously con-
nected 1n units of bytes, a start and an oflset of the file could
be specified with an address of byte unit. On the other hand,
a space for storing data or information may be described as
a disk. A disk can store data in units of fixed blocks, and
input and output of all disks can be made 1n units of sectors.
Generally, a block can have a size of 512 bites. Data or
information may be configured 1n units of bytes, but the disk
may store data 1n units of blocks rather than bytes. Thus, the
file system 308 may perform a connection and matching
operation between files and blocks of the disk.

The data storage space included 1n the plurality of
memory systems 110A, 110B may support data read or
program operation in units of pages, but data erase operation
may be performed 1n units of memory blocks. The virtual file
system 310 may establish, manage, and control a connection
relationship between the file system 308 and the plurality of
memory systems 110A, 110B.

The readahead control circuitry 306 1n the host 102 can
perform a readahead operation for obtaining 1n advance data
stored 1n the plurality of memory systems 110A, 110B and
store the read-ahead data in the bufler cache 304. The
readahead operation performed by the read-ahead control
circuitry 306 can be performed with a different speed based
on whether the readahead data 1s stored in the first memory
system 110A having a faster data mnput/output speed or the
second memory system 110B having a slower data mput/
output speed among the plurality of memory systems 110A,
110B. Therefore, when a speed at which the application
program 302 processes data (1.e., a speed at which data 1s
taken from the bufler cache 304) 1s fast, the readahead
control circuitry 306 needs to secure or obtain the readahead
data at a faster speed. If data 1s stored 1n the first memory
system 110A, the readahead operation could be performed
faster. On the other hand, when the speed at which the
application program 302 processes data 1s not fast, the
readahead control circuitry 306 has a suilicient operation
margin for the readahead operation so that the readahead
data could be easily secured. Such data might be stored 1n
the second memory system 110B.

10

15

20

25

30

35

40

45

50

55

60

65

26

According to an embodiment, when the host 102 inter-
works with the plurality of memory systems 110A, 110B
having a different data input/output speed, the readahead
control circuitry 306 in the host 102 can track the readahead
data and determine a data attribute of the readahead data.
Based on the data attribute, the file system 308 and the

virtual file system 310 can determine which one of the first
memory system 110A and the second memory system 110B
the readahead data 1s stored in. For example, the file system
308 and the virtual file system 310 can relocate the reada-
head data from the first memory system 110A to the second
memory system 110B or vice versa.

FIG. 6 illustrates a first example of a host 1n the data
processing system according to an embodiment of the pres-
ent disclosure. Specifically, FIG. 6 describes an example 1n
which the host 102 includes a Linux kernel structure.

Referring to FIG. 6, the host 102 can include an applica-
tion program 402 configured to generate a read command for
data, a virtual file system manager 406 configured to control
a virtual file system (VES), a readahead control circuitry 408
configured to perform a readahead operation to obtain data
stored 1n a memory system 1n conjunction with the virtual
file system (VFES), a page cache memory 410 configured to
temporarily store readahead data, a file system 412 config-
ured to check a location of read data requested by the
application program 402 and generate related information, a
device mapper 414 configured to map a physical address
identified by the file system 412 to a higher-level virtual
block device, an mput/output scheduler 416 configured to
determine or change a sequence or an order of data mput/
output operations and allocate resources to the data mput/
output operations, and a block device driver 418 configured
to perform data communication with the memory system for
the data input/output operations. Herein, a virtual block
device could be considered an interface with applications
that appears to the applications as a memory device, such as
a standard block device. The virtual block device interacts
with additional elements to do data deduplication to files at
the block level such that one or more files accessed using the
virtual block device have at least one block which 1s shared
by the one or more files.

The application program 402 in the host 102 may generate
a read command RD_CMD transmitted to the memory
system 110. A system call control circuitry 404 can generate
a call or an event corresponding to the read command
RD CMD. The call or the event can be understood as a
signaling scheme 1n which a plurality of functions or mod-
ules communicate with each other in the host 102.

The wvirtual file system manager 306 in the host 102
provides a common file model so that various types of file
systems can be used universally. The host 102 may use at
least one of various file systems according to a manufacturer
or an operating system (OS). For example, when the host
102 includes Microsoit’s Windows as an operating system,
a Microsoit file system such as MS-DOS, VFAT, or NTFS
may be used. If the host 102 includes Apple’s operating
system, a file system such as Apple Macintosh (HFS) may
be used. Although the file system used by the host 102 may
be various, the virtual file system manager 306 can provide
the common {ile model. Accordingly, when converted
through a Virtual File System (VFS), data storage and output
in a storage space such as a memory system can be unified
whatever file system the host 102 uses.

According to an embodiment, the file system 412 shown
in FIG. 6 can correspond to the file system 308 described
with reference to FIG. 3.

US 11,893,269 B2

27

The device mapper 414 can form a basis of a logical
volume manager (LVM), a software-based Redundant Array
of Inexpensive or Independent Disk (RAID), disk encryp-
tion, and the like. Further, the device mapper 414 can
perform additional functions such as a file system snapshot.
Herein, RAID can be used to create and use multiple
physical disks as one logical disk to reduce cost and improve
reliability and include independently available storage
devices that can be used to protect data and improve disk
performance. The software-based RAID can support man-
agement and control of storage space with an operating
system, program, and the like 1n the host 102.

The host 102 supporting the readahead operation can
include the readahead control circuitry 408. The readahead
control circuitry 408 may select readahead data based on a
virtual file system (VES). The readahead control circuitry
408 can store the readahead data 1n the page cache memory
410. Herein, the page cache memory 410 can be a memory
area used to improve data input/output (I/0O) performance by
reducing access to a storage space such as a memory system
through a virtual flash layer (VFL). The readahead control
circuitry 408 can store the file read once 1n the page cache
memory 410. When access to the same data (e.g., a read
command) occurs through the system call control circuitry
404, the data may be read and delivered from the page cache
memory 410 instead of reading the corresponding data from
the storage space of the memory system, or the like.

When the application program 402 of the host 102 gen-
erates a read command for an ofiset of a specific file, the
readahead control circuitry 408 can first check whether data
corresponding to the read command 1s stored in the page
cache memory 410. There are two cases. When the corre-
sponding data 1s cached 1n the page cache memory 410, 1t 1s
a page cache hit. When the corresponding data 1s not cached,
it 1s a page cache fault. In the two cases, a subsequent
processing of the read command can be different.

First, 1n a case of the page cache hit, data stored in the
page cache memory 410 can be transmitted to the applica-
tion program 402 of the host 102 1n response to the read
command RD_CMD of the host 102. The read operation
corresponding to the read command RD_CMD may be
quickly terminated, or the read operation might be not
performed within the memory system 110. Conversely, 1n a
case of the page cache fault, the readahead control circuitry
408 can generate a structure (e.g., a bio structure, a request
structure, or etc.) for reading data based on file level
111f0rmat1011 corresponding to the read command RD_CMD.
For example, the bio (Block 1/0O) structure 1s a structure that
groups several blocks mnto a segment for data processing,
which can be considered as a basic unit of data input/output
(TO). The bio structure can include information regarding
the block device driver 418 that performs the data I/O and
information regarding a memory region storing data asso-
ciated with the data I/O. The readahead control circuitry 408
may request, through the bio (Block I/O) structure, input/
output operation for data stored 1n a storage space such as a
memory system. Data transierred from a storage space such
as a memory system may be stored in the page cache
memory 410. When the readahead control circuitry 408
outputs data corresponding to the read command RD_CMD
from the page cache memory 410, the read operation may be
finished.

Readahead detection circuitry 420 may calculate a time
difference between the reception of the read command
RD_CMD transmitted by the application program 402 of the
host 102 and the completion of the readahead operation.
Through this, the readahead detection circuitry 420 may

10

15

20

25

30

35

40

45

50

55

60

65

28

calculate or estimate how much time a data input/output
operation 1s reduced through the readahead operation based
on whether readahead 1s hit or missed. The readahead
detection circuitry 420 can determine a coverage rate based
on the time difference between the reception of the read
command RD_CMD and the completion of the readahead
operation or a reduced time caused by the readahead opera-
tion. For example, the smaller the time difference, the lower
the coverage rate. The greater the time difference, the higher
the coverage rate.

According to an embodiment, the readahead detection

circuitry 420 may calculate a size of data corresponding to
the read command RD CMD.

Based on values calculated by the readahead detection
circuitry 420, a cache memory controller 422 may determine
a start time of the readahead operation, a size of data secured
or obtained through the readahead operation, and the like.
Based on the values calculated by the readahead detection
circuitry 420, a priority of the readahead data can be
determined. When 1t 1s determined that the data needs to be
output to the application program 402 in the host 102 more
quickly, the readahead control circuitry 408 can determine
that the readahead data 1s stored 1n a storage device or a
storage space having a faster data input/output speed. On the
other hand, when it 1s determined that the data does not need
to be output to the application program 402 1n the host 102
more quickly, the readahead control circuitry 408 can deter-
mine that the readahead data 1s stored 1n a storage device or
a storage space having a slower data mput/output speed.

According to an embodiment, the readahead detection
circuitry 420 can calculate a coverage rate of the readahead
data, so that the readahead data may be stored 1n a first cache
memory capable of performing a faster operation when a
coverage rate of the readahead data 1s lower. Conversely,
when the coverage rate calculated by the readahead detec-
tion circuitry 420 increases, the readahead data may be
stored 1n a second cache memory having a low data mput/
output performance.

FIG. 7 illustrates a second example of the host 1n the data
processing system according to an embodiment of the pres-
ent disclosure. Specifically, FIG. 7 illustrates an example 1n
which the host 102 includes a window-based structure.

Retferring to FIG. 7, an application program 302 in the
host 102 may generate a read command for obtaining data.
For the security and compatibility of the operating system 1n
the host 102, the application program 502 might be blocked
to directly call a kemel system resource. Instead of the
application program 502, the subsystem (or system DLL)
504 can support making a kernel call for the application
program 502. In response to the kernel call generated by the
subsystem 504, allocation of system resources may be
determined through a system service dispatcher 506. For
example, the system service dispatcher 506 can include a
scheduler. The system service dispatcher 506 may allocate
system resources to be used in response to a call of the
subsystem 504. For example, the system service dispatcher
506 can allocate system resources based on usage efliciency
of system support, throughput, return time, waiting time,
response time, and the like.

Afile system 512 included 1n the host 102 may correspond
to the file system 308 described 1n FIG. 3 and the file system
412 described 1n FIG. 4. Readahead control circuitry 508
may correspond to the reada head control circuitry 408
described with reference to FIG. 6. A readahead detection
circuitry 520 may correspond to the readahead detection
circuitry 420 described with reference to FIG. 6.

US 11,893,269 B2

29

A core kernel 516 included in the host 102 may provide
system resources requested by the application program 502
while the application program 502 is executed. The core
kernel 516 can eiliciently manage limited system resources
including hardware in the host 102 to carry out processes
performed by the application program 302. The core kernel
516 may support security, resource management, and the

like.
A Hardware Abstraction Layer (HAL) 518 in the host 102

serves as a bridge between physical hardware included 1n the
host 102 and software running on the host 102, such as an
operating system (OS). The hardware included 1n the host
102 and peripheral devices such as the memory system 110
which 1s engaged with the host 102 can be implemented in
various forms. Designing or implementing software such as
an operating system (OS) for various types ol hardware
might not be etlicient. Accordingly, the hardware abstraction
layer 518 can establish an abstracted structure so that the
soltware can recognize and use various types and structures
of hardware regardless of physical differences between types
and structures of hardware. By using the abstract structure
set by the hardware abstraction layer 518, the software might
not need to differently access the hardware and the periph-
eral devices based on individual characteristics of the hard-
ware and the peripheral devices.

A device driver 514 in the host 102 can correspond to the
device mapper 414, the mput/output scheduler 416, and the
block device driver 418 described with reference to FIG. 4.
The readahead detection circuitry 520 may determine a data
attribute of the readahead data obtained through the reada-
head operation and transmit the data attribute of the reada-
head attribute to a cache memory controller 522. Here, the
data attribute of the readahead data can be determined by a
coverage rate or latency sensitivity. The cache memory
controller 522 can determine a location 1n a storage device,
1.e., where the device driver 514 could store the readahead
data, in response to the data attribute of the reada head data.
Here, the storage device can include a plurality of memory
regions or a plurality of memory systems having diflerent
data mput/output performance.

FIG. 8 illustrates a third example of the host 1n the data
processing system according to an embodiment of the pres-
ent disclosure.

Referring to FIG. 8, the host 102 may simultaneously
operate a plurality of operating systems 1n a single comput-
ing device based on virtualization technology. The host 102
may 1nclude an operating system (OS) as well as a guest
operating system (Guest OS) 602 which 1s soitware installed
on a partitioned disk or a virtual machine that 1s used for
another operating system diflerent from the operating sys-
tem (OS) contained 1n the host 102.

The host 102 can include a hypervisor 604. The hyper-
visor 604 may be understood as software capable of sched-
uling a plurality of operating systems (OSs) on a single
computing device (physical machine). The hypervisor 604
may be largely divided into two types. One 1s a native type
that can be operated only through the hypervisor 604 with-
out an operating system 1nstalled in a computing device, and
the other 1s a hosted type in which the hypervisor 604 1s
executed over an operating system 1nstalled 1n the comput-
ing device. It 1s a hosted type. Examples of the hosted type
hypervisor 604 include emulation-based QEMU and simu-
lation-based KVM. Emulation means providing hardware
and architecture that do not exist in the host 102 as a service
to the virtual machine. Simulation means providing a service
to a virtual machine based on hardware and architecture
existing 1n the host 102.

10

15

20

25

30

35

40

45

50

55

60

65

30

According to an embodiment, the host 102 may include a
readahead control circuitry 608 and a page cache memory
610. The readahead control circuitry 608 can correspond to
the readahead control circuitry 306 described in FIG. S, the
readahead control circuitry 408 described 1in FIG. 6, or the
readahead control circuitry 508 described in FIG. 7. The
readahead control circuitry 608 can include a readahead
detection circuitry. The page cache memory 610 may cor-
respond to the page cache memory 410 described with

reference to FIG. 6 or the page cache memory 610 described
with reference to FIG. 8.

The host 102 can include a virtual disk image file manager
612. The virtual disk image file manager 612 can correspond
to the file system 412 described with reference to FIG. 6 and
the file system 512 described with reference to FIG. 7.
According to an embodiment, the virtual disk 1mage file
manager 612 can use an extended file system (version 4),
which 1s an mmproved version of Linux journaling file
systems.

The host 102 may include a file-to-logical address map-
ping manager 614. When the virtual disk image file manager
612 receives a request (filemap, @), which 1s for mapping
a file, which 1s a continuous concatenation of bytes, to a
logical address (LBA), from the file manager 612, the
file-logical address mapping manager 614 can map the file
to a logical address (LBA). The readahead control circuitry
508 may collect read information about a file based on the
logical address (LBA) assigned by the file-logical address
mapping manager 614. Here, the read mformation can
include a size of file or data, a readahead attribute (a data
attribute of the readahead data), and the like. For example,
the size of data (I/O si1ze) may be determined based on how
many logical addresses are successively mapped according
to a size of the file. I1 the readahead attribute corresponding
to the coverage rate 1s determined by calculating the cov-
crage rate alter the corresponding data i1s obtained through
the readahead operation, the readahead attribute can be
assigned to the logical address associated with the readahead
data. The readahead control circuitry 508 may determine a
readahead attribute of the readahead data and may check a
previously determined readahead attribute of the readahead
data.

The host 102 may include a cache memory manager 622.
The cache memory manager 622 may retrieve read data
corresponding to a read command from storage spaces
110C, 110D, the read command handled by the virtual disk
image file manager 612 and the file-logical address mapping
manager 614. The file-logical address mapping manager 614
can transmit a request (promotion command, (3)) for obtain-
ing data 1n advance from the storage spaces 110C, 110D to
the cache memory manager 622 according to the readahead
attribute. The cache memory manager 622 can obtain data
from the storage spaces 110C, 110D 1n response to the
request transmitted from the file-logical address mapping
manager 614 and store the read data in a cache memory.

The cache memory manager 622 may support multi-level
cache hierarchies. In response to the request forwarded from
the file-logical address mapping manager 614, the cache
memory manager 622 can support demotion and promotion.
The demotion 1s an operation for performing exclusive
caching 1n the multi-level cache layer to mitigate duplicate
replication of the same data at multiple levels. The promo-
tion 1s an operation for performing exclusive caching in the
multi-level cache layer to use an adaptive probabilistic
filtering technology to reduce overheads of demotion.
Demotion and promotion supported by the cache memory

US 11,893,269 B2

31

manager 622 can be adjusted or changed to increase efli-
ciency ol the readahead operation.

The host 102 may interwork with a plurality of memory
systems 110C, 110D having different data input/output
speeds. The third memory system 110C among the plurality
of memory systems 110C and 110D can include an Optane
memory. According to an embodiment, the Optane memory
may include both a volatile memory and a non-volatile
memory. The Optane memory may have a slower data
input/output speed than that of a cache memory but a faster
data mput/output speed than the fourth memory system
110D. The cache memory manager 622 may store metadata
information, caching information, and the like 1n the third
memory system 110C having a faster data input/output
speed. On the other hand, the cache memory manager 622
may store user data in the fourth memory system 110D
having a slower data input/output speed than the third
memory system 110C. According to an embodiment, the
host 102 may determine whether to store the corresponding,
data 1n a location having a faster or slower data input/output
speed among the plurality of memory systems 110C, 110D
according to a type of data.

FI1G. 9 illustrates a second example of the data processing
system supporting the readahead operation. In an embodi-
ment shown 1 FIG. 35, the host 102 1n the data processing
system 100 can perform the readahead operation. But, 1n an
embodiment described 1n FIG. 9, both the host 102 and the
memory system 110 of the data processing system 110 can
perform the readahead operation individually.

Referring to FIG. 9, the data processing system 100 can
include a host 102 and a memory system 110. The host 102
may obtain data stored in the memory system 110 through a
readahead operation. Further, the memory system 110 can
also perform another readahead operation 1n response to a
request from the host 102.

The memory system 110 may include a memory device
150 including a plurality of non-volatile memory cells and
a controller 130 capable of controlling data input/output
operations performed in the memory device 150 and per-
forming a read-ahead operation to obtain data in advance
from the memory device 150. The memory device 150 can
include a plurality of storage regions 342, 344 having
different data input/output performance. A first storage
region 342 among the plurality of storage regions 342, 344
may include a single-level cell block (SLC) capable of
storing one-bit data in a single non-volatile memory cell
included therein. Among the plurality of storage regions
342, 344, the second storage region 344 may include a
multi-level cell block (MLC) capable of storing multi-bit
data 1n a single non-volatile memory cell included therein.
As an example of the multi-level cell block (MLC), there 1s
a quadruple-level cell block (QLC) that stores 4-bit data 1n
a single non-volatile memory cell included therein.

The application program 302 1n the host 102 can generate
a read command for securing data stored in the memory
system 110. The bufller cache (page cache) 304 1n the host
102 may temporarily store data generated by the application
program 302 or temporarily store data requested by the
application program 302. For example, after the application
program 302 generates a read command, the read command
can be transmitted to the memory system 110. When the
memory system 110 transmits data corresponding to the read
command to the host 102, the host 102 can store transmitted
data in the bufler cache 304. The application program 302
may use the data stored i1n the bufler cache 304. During this
procedure, if the application program 302 does not perform
another operation and waits for the data corresponding to the

10

15

20

25

30

35

40

45

50

55

60

65

32

read command, this may deteriorate data input/output per-
formance of the data processing system 100.

To improve the data input/output performance of the data
processing system 110, the readahead control circuitry 306
in the host 102 can perform the readahead operation for
obtaining data in advance to store the data 1n the bufler cache
304. Here, the readahead data might not be requested but
estimated to be requested soon by the application program
302, which can be determined based on the data correspond-
ing to the read command generated by the application
program 302.

The file system 308 and the virtual file system 310 1n the
host 102 can associate data generated by the application
program 302 to an address system used by the host, as well
as a location of data storage space included in the memory
system 110.

The memory system 110 may receive a read command
from the host 102. The controller 130 1n the memory system
110 may include a host interface and a flash translation layer
332. The host interface and flash translation layer 332 may
correspond to the host interface 132 and the flash translation
layer 240 described with reference to FIGS. 2 to 4.

The readahead control circuitry 336 1n the controller 130
can read in advance data stored in the memory device 150
and store readahead data 1in the bufller 334, 1n response to a
read command transmitted from the host 102. The host 102
can perform a readahead operation in response to a read
command generated by the application program 302, so that
the host 102 can transmit a read command for data to be
secured through the readahead operation to the memory
system 110. Because the host 102 and the memory system
110 can perform readahead operation individually, reada-
head data obtained by the readahead control circuitry 306
included in the host 102 and readahead data obtained by the
readahead control circuitry 336 included in the memory
system 110 may be the same or different. However, 1t the
host 102 and the memory system 100 perform readahead
operations based on read requests or read commands gen-
erated by the same application program 302, the readahead
data obtained by the readahead control circuitry 306 and the
readahead control circuitry 336 might be more likely to be
identical. When the memory system 110 does not perform
the readahead operation, the readahead operation of the host
102 might be delayed due to the time required for internal
operations of the memory system 110 until data correspond-
ing to the read command transmitted from the host 1s output.
Based on the read command transmitted from the host 102
and the logical address corresponding to the read command,
mapping circuitry 338 can transmit information about data
belonging to the readahead operation from the memory
device 150 to the readahead control circuitry 336. The
readahead control circuitry 336 can perform a readahead
operation based on the information transmitted from the
mapping circuitry 338.

On the other hand, the readahead control circuitry 336 can
determine the coverage rate for the readahead data based on
a first time point at which the readahead data stored in the
memory device 150 1s obtained 1n advance and stored in the
bufler 334 through the readahead operation and a second
time point at which the readahead data 1s transmitted to the
host 102. The readahead control circuitry 336 can relocate or
change a storage location of the readahead data when the
data mput/output command 1s not transmitted from the host
102 (e.g., 1n an 1dle state) according to the coverage rate. For
example, data requiring faster data iput/output can be
stored 1n the first storage region 342 among the plurality of
storage regions 342, 344. Data which does not need faster

US 11,893,269 B2

33

data input/output can be stored in the second storage region
344 among the plurality of storage regions 342, 344.

FIG. 10 1illustrates an example of a memory system
supporting the readahead function according to an embodi-
ment of the present disclosure.

Referring to FIG. 10, the memory system can include a
controller 130 and a memory device 150. The controller 130
can mclude a host interface 132, a tlash translation layer 240,
and a memory mterface 142. The memory device 150 can
include a plurality of memory regions 182, 184, 186 having
a different data input/output speed. Among the plurality of
memory regions 182, 184, 186, a first memory region 182
may have a higher data input/output speed than second and
third memory regions 184, 186.

The host intertace 132 and the memory interface 142 in
the controller 130 can correspond to the host interface 132
and the memory interface 142 described with reference to

FIGS. 2 to 3.

The flash translation layer 240 within the controller 130
may include a processor 280, a data bufler 282, a garbage
collection manager 284, a cache memory manager 286, and
a bufler management and readahead controller 288. The
bufler management and readahead controller 288 can
include, or be associated with, the readahead detection
circuitry 290. The processor 280 may correspond to the
processor 134 described with reference to FIG. 2. Also, the
data builer 282 can be an area established 1n the memory 144
described with reference to FIG. 2.

The garbage collection manager 284 may perform gar-
bage collection on memory blocks included in the plurality
of memory regions 182, 184, 186 1n the memory device 150.
When relocating valid data stored in the memory block to a
new Iree block, the garbage collection manager 284 can
reflect the readahead attribute determined by the bufler
management and read-ahead controller 288 and can transier
the valid data to one of the plurality of memory regions 182,
184, 186 based on the readahead attribute.

The bufler management and read-ahead controller 288
may evict data stored in the data bufler 282 or store data,
obtained 1n advance from the memory device 150, in the
data bufler 282. The bufler management and read-ahead
controller 288 may read in advance data stored in the
memory device 150 (without reception of a read command
corresponding to the data) and store the data in the data
bufler 282. The readahead detection circuitry 290 in the
bufler management and read-ahead control unit 288 can
recognize the first time point at which the corresponding
data 1s read 1n advance. When the bufler management and
read-ahead controller 288 outputs data stored in the data
bufler 282 1n response to a request from the host 102, the
corresponding data may be evicted. The readahead detection
circuitry 290 in the bufler management and read-ahead
control unit 288 can recognize the second time point at
which the corresponding data 1s transmitted to the host 102.

The readahead detection circuitry 290 included in the
builer management and readahead controller 288 can deter-
mine the coverage rate based on the first time point and the
second time point. The readahead detection circuitry 290 can
determine a readahead attribute of the readahead data based
on the coverage rate. The cache memory manager 286 can
modily or maintain metadata or the readahead attribute of
the readahead data based on the coverage rate. When meta-
data for the corresponding data 1s modified by the cache
memory manager 286, the garbage collection manager 284
can determine which memory region the corresponding data
1s stored in based on the readahead attribute.

10

15

20

25

30

35

40

45

50

55

60

65

34

FIG. 11 illustrates a data structure applicable to a virtual
file system according to an embodiment of the present
disclosure. Various types of data structures can be set 1n a
virtual file system (VFS) used by the memory system 110.
As an example, in FIG. 11, a bio structure 602 that can be
used for data input/output in a block device will be
described. Herein, the block device could be considered a
data storage device that supports reading and (optionally)
writing data 1n fixed-size blocks, sectors, or clusters.

A minimum unit for accessing data stored in the memory
system 110 can be defined as a sector, which may be
determined according to the configuration of the memory
device 150. Typically, a sector may have a size of 512 bytes.
When the memory device 150 stores a large amount of data,
the size of the sector may be increased. In a block unit access
supported by the block device driver 418 described 1n FIG.
6, a block 1s considered a multiple of a sector. The block can
have a different size according to a file system used by the

memory system 110. For example, a block may have a size
of 512 B, 1 KB, 2 KB, or 4 KB, and each block may consist

ol continuous sectors.

Typically, a block can be set to be equal to or smaller than
the size of a page in the memory device 150. If the size of
a block 1s larger than the size of the page 606, the controller
130 would perform an additional operation to control the
data input/output operation. This 1s because the memory
device 150 can support page-based input/output.

A segment may indicate an area for storing data while the
controller 130 performs a data input/output (I/0) operation
with the memory device 150. For example, the segment may
indicate a partial arca 1n the page cache memory 410
described with reference to FIG. 6. One block may be
located at the same page in the memory device 150, but a
data input/output operation between the controller 130 and
the memory device 150 may be performed on plural blocks.
Accordingly, a segment may correspond to data stored 1n a
single page or plural pages.

Referring to FIGS. 2 to 3, a data input/output operation
between the controller 130 and the memory device 150 can
include an operation of transferring data stored in the
memory 144 to the memory device 150 (PROGRM), or
transferring data stored in the memory device 150 to the
memory 144 (READ). When a data input/output operation 1s
performed for plural blocks, data corresponding to the plural
blocks may not be stored 1in consecutive pages (1.€., con-
secutive positions) 1n the memory device 150.

Referring to FIG. 11, the controller 130 can generate a bio
structure 602 for performing a data input/output operation in
block units. For example, in a case of a data mput/output
operation for a single block, the bio structure 602 may have
one bio. However, 1n the case of a data input/output opera-
tion for plural blocks, the bio structure 602 may have a bio
array structure bio_vec 604. The bio array structure bio_vec
604 can correspond to different pages 606 in the memory
device 150. For example, data corresponding to the bio array
structure (bi1o_vec, 604) may be stored 1n consecutive posi-
tions 1n the memory device 150 or may be stored 1n different
positions apart from each other.

The bio structure 602 may store a segment using the bio
array structure bio_vec 604. A segment may be stored 1n the
form of a page and may include information related thereto.
The memory system 110 may input/output data correspond-
ing to a plurality of segments 1n a single data input/output
operation. Therefore, the bio structure 602 can support the
data mput/output operation through the bio array structure

bio vec 604.

US 11,893,269 B2

35

FIG. 12 illustrates a first example of the readahead
operation according to an embodiment of the present dis-
closure.

Referring to FIG. 12, the data File Blks stored in the
memory device 150 can be arranged 1n block units. In FIG.
12, each block-sized data 1s shown as a single box (1.e., a
block).

For example, the controller 130 would access a first block
blk0 to a fourth block blk3 among the data (File Blks) stored
in the memory device 150 in response to a read command
RD_CMD to be transmitted to the memory device 150. After
reading the first block blk0 at the first time point T1 (Read
Blk0), the controller 130 can read data from the second
block blk1 to the fourth block blk3 and store read data in the
page bufler memory included 1n the bufier 334 shown in
FIG. 9. When the data corresponding to the second block
Blk1 1s output 1n response to the read command RD_CMD
transmitted from an external device, a readahead operation
RA can be triggered based on the information included in the
second block Blk1 (the second block Blk1 is slash-marked).
The second block blkl can include information regarding
the readahead operation for double size data (1.e., eight
blocks from the fifth block to twelith block). The controller
130 can secure the information stored in the second block
blk1 at the second time point T2 (Read Blkl) and transmit
a readahead command to the memory device 150 based on
the information.

After securing data for the fifth block blk4 from the
memory device 150 1n response to the readahead command,
data corresponding to the fifth block blk4 can be output at a
time point T35 1n response to the read command RD_CMD
transmitted from the external device. When the data corre-
sponding to the fifth block blk4 1s output to the host 102,
another readahead operation RA could be triggered based on
trigger information included in the fifth block blk4. The fifth
block blk4 may include the trigger information regarding the
readahead operation for double size data (i.e., sixteenth
blocks from the thirteenth block to the 28th block). For the
readahead operation, the controller 130 can transmit the
readahead command to the memory device 150.

According to an embodiment, when the controller 130 can
find data corresponding to the read command RD_CMD
transmitted from the external device in the page bufler
memories (or page cache memories) 410, 610 (1.¢., a page
cache hit), another readahead operation can be performed. In
addition, as a page cache hit occurs, a size of readahead data
that 1s obtained through the readahead operation can be
doubled. The controller 130 can read data 1n advance from
the memory device 150 to output data secured by the
readahead operation to an external device. The controller
130 can sequentially or continuously access and read related
data in response to the readahead command and store
accessed data 1n the page bufler memories 410, 510.

FIG. 13 illustrates a second example of the readahead
operation according to an embodiment of the present dis-
closure.

Referring to FIG. 13, the memory system 110 can estab-
lish and manage two windows (current window, ahead
window) to perform pipelining readahead operations. The
two windows can be divided into a current window and an
ahead window. For example, while a data input/output
operation 1n response to a read command RD_CMD trans-
mitted from the application program 302 of the host 102 can
be performed 1n the current window, the memory system 110
can perform a readahead operation in the ahead window
asynchronously. When a window for the data input/output
operation 1n response to the read command RD_CMD 1s

10

15

20

25

30

35

40

45

50

55

60

65

36

changed from the current window to the ahead window, the
ahead window could be considered the current window.
Further, the memory system 110 can set a new ahead
window, and then another readahead operation can be per-
formed asynchronously 1n the new ahead window.

Moreover, performance of the readahead operation can be
changed depending on when the memory system 110 sets a
new ahead window. Referring to FIG. 11, based on a time
point when a page cache hit occurs with respect to data
corresponding to a specific block, the memory system 110
can set a new ahead window and determine whether to
perform a new readahead operation.

FIG. 14 1illustrates a third example of the readahead
operation according to an embodiment of the present dis-
closure.

Referring to FIG. 14, the memory system 110 may set and
manage only one window (readahead window) instead of
two windows (current window, ahead window) to perform a
read-ahead operation by pipelining. Also, the memory sys-
tem 110 may set an asynchronous size variable (async_size)
for determining a start time or a frequency of the readahead
operation performed asynchronously. When the number of
pages of readahead data that are not yet consumed (e.g., not
used by the host 102) 1n the page bufler memories 410, 510
talls below a preset threshold, the memory system 110 can
perform another readahead operation. This method can
support the memory system 110 to perform pipelining
readahead operations 1n a single readahead window only.

Specifically, a trigger or a flag for a next readahead
operation can be included 1n a single window (readahead
window). Referring to FIG. 14, the trigger or the flag
PG_readahead page can be added at a position (start+size—
async_size) obtained by adding a size of data (e.g., number
of pages) read in advance from a start position (start) and
subtracting the asynchronous size variable (async_size)
from the added value. If the memory system 110 outputs
data corresponding to a marked page (e.g., with the trigger
or the flag) to an external device, the memory system 110
could perform another readahead operation.

Referring to FIGS. 12 to 14, the memory system 110 can
establish at least one window for performing the readahead
operation or insert a mark, a trigger, or a flag i1n the at least
one window differently. Accordingly, there may be a difler-
ence 1n efliciency and performance of the readahead opera-
tion performed by the memory system 110.

FIG. 15 illustrates a data indicator assigned for the
readahead operation according to an embodiment of the
present disclosure.

Referring to FIG. 15, the readahead control circuitry 408,
508, 336 can mark or set various states regarding the
readahead data. For example, a read command for the
readahead data prepared in the page cache memories 410,
510 or the buffer 334 might not occur. In this case, a data
indicator for the readahead data in the page cache memories
410, 510 or the bufler 334 may be set to a miss state (Null)
indicating that data 1s not used even though the data has been
read 1n advance. If a read command for the readahead data
1s generated but the data 1s not yet completely output 1n
response to the read command, the data indicator for the
corresponding data may be set as an output standby state
(Not UpToDate). Thereafter, when the data 1s completely
output in response to the read command for the correspond-
ing data, the data for the corresponding data may be set as
an output end state (UpToDate).

According to an embodiment, the readahead control cir-
cuitry 408, 508, 336 can change a data indicator for the
readahead data 1n the page cache memories 410, 510 or the

US 11,893,269 B2

37

builer 334 (state transition). Based on the change of the data
indicator, the readahead detection circuitry 420, 520, 290
can calculate the coverage rate regarding the readahead data.

FIG. 16 illustrates a change of window size associated
with the readahead operation based on a data cover ratio
according to an embodiment of the present disclosure.

Referring to FIGS. 12 to 14 and 16, an initial setting for
a readahead operation window can be increased by two
times (solid line). However, the memory system 110 can
determine a priority for the readahead data in response to the
coverage rate and store the readahead data 1n one of a
plurality of cache memories according to the priority. Cov-
crage rates of the readahead data might not all be the same.
Accordingly, 1 a location at which the readahead data 1s
stored 1s changed according to the priority of the readahead
data, a size of the readahead data stored in the page cache
memories 410, 510 may increase gradually, rather than
double (dotted line).

Because internal configuration and resources of the
memory system 110 are limited, resources that are allocated
tor the page cache memories 410, 510 can also be limited.
Accordingly, when consumption of internal resources con-
sumed for the readahead operation gradually increases, the
memory system 110 could easily utilize or allocate the
limited resources for other purposes, so that the performance
of the memory system 110 could be improved or enhanced.

Hereinaliter, an improvement and an effect of the reada-
head operation of the memory system 110 will be described
with reference to FIGS. 17 and 19.

FIG. 17 1llustrates a memory system not supporting the
readahead operation.

Referring to FIG. 17, 1n a case when the memory system
does not perform a readahead operation, the memory system
can read and transmit data 1n response to a read command.
An application program of the host can handle transmitted
data after the memory system transmits read data in response
to the read command. As described 1n FIG. 1, the host
application program might not continuously process data
because of waiting data corresponding to the read command.
A processing time C,, C,, C; of the host application program
could be delayed by an operation margin 10_S,, 10_S,,
[O_S, for the memory system to read and transmit the data
in response to the read command.

FIG. 18 illustrates a memory system performing the
readahead operation on a block basis according to an
embodiment of the present disclosure. Herein, a size of
readahead data obtained through the readahead operation
could be determined on a block basis, a file basis, or etc.
according to an embodiment.

Referring to FIG. 18, the memory system can perform a
readahead operation, but the memory system and the data
bufler have a slower data iput/output performance.

When the application program 1n the host sends a reada-
head command RA or the memory system detects a pattern
ol sequentially accessing data, files, or blocks requested by
the application program through the read command, the
memory system can perform the readahead operation to
obtain data 1n advance (prepare data). In this way, 1t 1s
possible to hide the time and the operation margin required
for mput/output of data in the memory system, so that the
operation of the application program can be performed faster
because the application program might not wait for obtain-
ing data.

In a case when data 1s requested {first (@), the data does
not exist in the page cache memories 410, 5310, and the
memory system should read the data from the non-volatile
memory device (I0_S,), store the read in the bufler

10

15

20

25

30

35

40

45

50

55

60

65

38

(Bui_S,), and output the data stored in the bufler to the
application program (S,). While these processes are carried
out, the memory system can perform a readahead operation
RA regarding estimated data which might include second
data which could be requested second.

While the application program processes {irst requested
data (C,), the memory system may read the second data
from the memory device (I0_S,) and store the second data
in the bufter (But_S,). When the application program
requests the second data (@)j the memory system can
output the second data which has been already prepared 1n
the buller to the application program. In addition, the
memory system may perform another readahead operation
RA regarding third data which could be requested third.
After the application program requests the second data, the
application program might not wait for the second data by an
operation margin for the I/O operation in the memory
system, and the second data could be processed without a
significant delay (C,).

For example, the time (C,) for processing the second data
by the application program can be faster than that of
processing other data. The application program can request
the third data and process the third data (@) alter processing
the second data (C,).

For example, the memory system can internally allocate
the same resources for the readahead operation so that an
operation speed or an operation margin for the readahead
operation could be same. When the application program can
request the third data (@), it might be likely that the
readahead operation regarding the third data might be not
completed. That 1s, 1n the memory system, the operations for
reading the third data from the non-volatile memory device
(I0_S,) and storing the third data 1n the bufler (Buf_S,)

might still be 1n progress. After the memory system reads the
third data in advance, stores the third data in the bufler
(Bul_S;) and outputs the third data to the application
program, the application program could process the third
data (C,).

In this procedure, with respect to the third data, it may not
be possible to completely hide the operation margin for the
readahead operation performed inside the memory system.
That 1s, the effect of the readahead operation of the memory
system decreases from the point 1n time (@) when the
application program requests the third data to the point 1n
time (C,) when the third data 1s processed. In the case of the
third data, an operation margin due to the readahead opera-
tion can be decreased by a section (@) from the time when
the readahead operation on the third data is started to the
time when the third data i1s requested.

The readahead detection circuitry 336 described with
reference to FIG. 9 can calculate a coverage rate from the
first data to the third data. As comparing the above-described
processes, €.g., the coverage rates from the first data to the
third data are compared, the coverage rate of the second data
1s the largest. The coverage rate of the third data 1s smaller
than that of the second data but 1s greater than that of the first
data. The coverage rate of the first data may be the lowest.
Accordingly, when the third data and the first data are
located (or relocated) 1n a faster data butler or data cache, the
coverage rate of the memory system can be increased. To
this end, the memory system 110 can store frequently used
and frequently accessed blocks 1n at least one non-volatile
cache region 342.

The memory system 110 can perform a readahead opera-
tion and calculate a coverage rate for block-unit data that 1s
a target of the readahead operation. Based on the coverage
ratio, the memory system 110 can copy or move block data

US 11,893,269 B2

39

from the memory device 150 to the at least one non-volatile
cache region 342. The at least one non-volatile cache region
342 can have a higher data mput/output speed than other
regions 344 1n the memory device 150.

FIG. 19 1llustrates a memory system securing data with
different priorities through the readahead operation accord-
ing to an embodiment of the present disclosure.

Referring to FIG. 19, as described with reference to FIG.
18, the memory system 110 can perform the read-ahead
operation for the first to third data and calculate the coverage
rates regarding the first to third data. The first to third data
could be copied or moved 1n the memory device 150 having
a faster data input/output speed, and the memory device 150
can be associated with a data bufler such as the at least one
non-volatile cache region 342 having a faster data input/
output speed than another cache area or other regions 344.

When the application program requests the first data, the
first data does not exist in the page cache memories 410,
510. The memory system should read the data from the
non-volatile memory device (10_S,), store the read 1n the
buffer (Buf_S,), and output the data stored 1n the bufler to
the application program (S,). While these processes are
carried out, the memory system can perform a readahead
operation RA regarding estimated data which might include
second data which could be requested second.

While the application program processes first requested
data (C,), the memory system may read the second data
from the memory device (I0_S,) and store the second data
in the bufler (Bul_S,). When the application program
requests the second data, the memory system can output the
second data which has been already prepared 1n the bufler to
the application program. In addition, the memory system
may perform another readahead operation RA regarding
third data which could be requested third. After the appli-
cation program requests the second data, the application
program might not wait for the second data by an operation
margin for the I/O operation 1n the memory system, and the
second data could be processed without a significant delay
(Ca).

As 1n the case described 1n FIG. 18, the time (C,) for
processing the second data by the application program can
be faster than that of processing other data. The application
program can request the third data and process the third data
(@) alter processing the second data (Cz)

Because the memory system 110 copies or moves the first
to third data 1n the memory device 150 having a faster data
input/output speed and outputs the first to third data through
the at least one non-volatile cache region 342. When the
application program requests the third data and tries to
process the third data at the time pomnt C,, the memory
system can prepare the third data 1n advance by reading the
third data from the nonvolatile memory device (I0_S3) and
store the thuird data in the bufler (Bui_S3). Accordingly,
when the memory system 110 outputs the third data read in
advance from the bufler to the application program, the
application program can process the third data without a
significant delay or waiting (C3). In this method, 1n relation
to the third data, it 1s possible to completely hide the
operation margin for the readahead operation performed
inside the memory system 110. That 1s, performance of the
data processing system can be improved depending on
where data target for the readahead operation 1s stored 1n a
memory device or a data buller having faster or slower speed
for data input/output.

FI1G. 20 1llustrates a first example of a system supporting,
the readahead operation according to an embodiment of the
present disclosure.

10

15

20

25

30

35

40

45

50

55

60

65

40

Reterring to FIG. 20, the system can include an applica-
tion 802 that generates a read command or a write command,
and a plurality of memory systems 110A, 110B that store
data 1n response to the write command and outputs stored
data 1n response to the read command. The plurality of
memory systems 110A, 110B can have a different data
input/output speed. For example, the first memory system
110A among the plurality of memory systems 110A, 110B
can have a faster data mput/output speed than the second
memory system 110B.

First, the system may check whether data corresponding,
to a read command generated by the application 802 1s
included 1n the bufler cache memory 804. When the data
corresponding to the read command cannot be found 1n the
bufler cache memory 804, the system may transmit the read
command to the readahead control circuitry 806. The rea-
dahead control circuitry 806 can not only perform an opera-
tion for obtaining the data corresponding to the read com-
mand from the plurality of memory systems 110A, 110B, but
also can read or obtain in advance other data related to the
data and store the other data in the bufler cache memory 804.

The readahead control circuitry 806 can transmit {file
information to the file system 808, so that the data corre-
sponding to the read command and related data could be
secured and obtained 1n advance. The file system 808 can
convert the file information, transmitted from the readahead
control circuitry 806, into device mmformation which corre-
sponds to the plurality of memory systems 110A, 110B.

The cache manager 810 that receives the device informa-
tion for a read operation from the file system 808 can include
a lookup table 812 and an eviction circuitry 814. The cache
manager 810 can check where data corresponding to the
device information is stored among the plurality of memory
systems 110A, 110B by referring to the lookup table 812.
The eviction circuitry 814 in the cache manager 810 can
determine whether to keep or release or evict the data stored
in the buller cache memory 804 to secure an empty space for
storing new data in the bufler cache memory 804. The
eviction circuitry 814 can evict some of the data stored in the
bufler cache memory 804 according to a preset policy based
on a logical address (LBA) received from the file system
808. For example, the eviction circuitry 814 can remove data
stored 1n the builer cache memory 804 according to a policy
such as Least Recently Used (LRU) or Least Frequently
Used (LFU).

After checking the location of the data based on the
lookup table 812, the system can read the data stored in the
plurahty of memory systems 110A, 110B and store the data
in the bufler cache memory 804. In this case, a time required
for reading the data stored in the plurality of memory
systems 110A, 110B and storing the data 1n the buller cache
memory 804 may vary depending on a data mput/output
speed of the memory system 1n which the data i1s stored.
Referring to FIGS. 18 to 19, such a difference may cause a
difference 1n performance of data input/output operations
performed 1n response to a read command generated by the
application 802.

According to an embodiment, the system can change a
location of data in response to the eflect of the readahead
operation of the data stored in the plurality of memory
systems 110A, 110B having different data input/output per-
formance. For example, when the application 802 generates
a read command for data after the data has been read in
advance into the bufler cache memory 804 by the readahead
control circuitry 806, the data prepared in the bufler cache
memory 804 can be delivered into the application 802. This
case can be understood as a cache hit. On the other hand,

US 11,893,269 B2

41

although data 1s read i1n advance by the readahead control
circuitry 806 and stored 1n the builer cache memory 804, the
application 802 may not generate a read command for the
corresponding data. This case can be understood as a cache
miss.

For example, the system can store {irst data corresponding
to a cache hit 1n the first memory system 110A having a
higher data input/output speed among the plurality of
memory systems 110A, 110B. Conversely, the system can
store the second data corresponding to a cache miss in the
second memory system 110B having a slower data iput/
output speed among the plurality of memory systems 110A,
110B. The system may give the first data corresponding to
the cache hit a higher priority than the second data corre-
sponding to the cache miss. Further, 11 1t 1s determined that
the space for storing data 1n the first memory system 110A
1s 1nsuilicient, the system could move data stored 1n the first
memory system 110A to the second memory system 110B
based on a priority assigned to the data. According to an
embodiment, the priority of data can be determined accord-
ing to a cache memory management policy such as a cache
hit or a cache miss, least recently used (LRU) or least
frequently used (LFU).

FI1G. 21 1llustrates a second example of a system support-
ing the readahead operation.

Referring to FIG. 21, the system can 1nclude an applica-
tion 902 that generates a read command or a write command,
and a plurality of memory systems 110A, 110B that store
data 1n response to the write command and output stored
data 1n response to the read command. The plurality of
memory systems 110A, 110B can have a different data
input/output speed. The system can also include a bufler
cache memory 904, readahead control circuitry 906, a file
system 908, and a cache manager 910. The cache manager
910 can include a lookup table 912 and an eviction circuitry
914. The system 1illustrated 1n FIG. 21 may include substan-
tially the same components as the system 1llustrated 1n FIG.
20. However, regarding an operation of managing the bufler
cache memory 904, there are diflerences between the sys-
tems described with reference to FIGS. 20 and 21. Herein-
after, the system will be described based on these difler-
ences.

Referring to FIG. 20, the eviction circuitry 914 can
determine a priority of data corresponding to the logical
address LBA transmitted from the file system 908. For
example, whether data corresponding to a specific logical
address (LBA) has been recently used or how often the data
has been used can be determined based on the logical
address (LBA) transmitted from the file system 908. On the
other hand, referring to FIG. 21, the eviction circuitry 914
may evict data stored 1n the bufller cache memory 904 based
on information regarding latency sensitiveness transmitted
from the bufler cache memory 904. Here, the latency sen-
sitiveness can be determined from the bufler cache memory
804 based on two time points: a first time point at which data
1s stored 1n the bufler cache memory 904 through a reada-
head operation and the second time point at which the
application 902 requests the data.

According to an embodiment, a processor, a control unit,
or a management unit for the buller cache memory 804 can
check the first time point and the second time point and store
the first time point and the second time point 1n the bufler
cache memory 804.

The eviction circuitry 914 can check an address (a loca-
tion, etc. in storage) ol data based on the lookup table 912,
and determine a priority based on the latency sensitiveness
transmitted from the processor, the control unit, or the

10

15

20

25

30

35

40

45

50

55

60

65

42

management unit for the bufler cache memory 904. The
eviction circuitry 914 can determine when to evict or release
the corresponding data from the bufler cache memory 904
based on the latency sensitiveness or the priority of the data.
For example, an order of eviction from the cache memory
904 could be adjusted.

Moreover, the cache manager 910 can change the location
of the data based on the latency sensitivity. For example,
based on a first time point and a second time point regarding
specific data, 1f a time difference between the two time
points of data 1s shorter than a preset reference, the data can
be stored 1n the first memory system 110A having a faster
data input/output speed. Conversely, 11 the time difference
between the two time points 1s longer than a preset refer-
ence, the data may be stored 1n the second memory system
1106 having a slower data input/output speed. When the
second time point 1s earlier than the first time point, the data
can be stored in the first memory system 110A having a
faster data mput/output speed.

FIG. 22 1llustrates the readahead operation in the system
shown 1n FIG. 21 according to an embodiment of the present
disclosure.

Referring to FIG. 22, the application 902 may generate
read commands for three data blocks F1 Bl, F1 B2,
F1_B3. In response to the read commands of the application
902, the system may check whether there are three data
blocks F1_B1, F1_B2, F1_B3 among data stored in the
bufler cache memory 904 through a readahead operation.

For example, although the second data block F1_B2 1s
stored 1n the buller cache memory 904, the first data block
F1_B1 and the third data block F1_B3 might not be stored.
The second data block F1_B2 may be a case of a cache hit,
and the first data block F1 Bl and the third data block
F1_B3 may be cases of a cache miss. Because the second
data block F1_B2 is stored in the bufler cache memory 904,
the application 902 can obtain the second data block F1_B2
stored 1n the buller cache memory 904. However, the system
needs to read the first data block F1 B1 and the third data
block F1_B3 from the plurality of memory systems 110A,
110B.

The system can check where the first data block F1_B1
and the third data block F1_B3 are stored by referring to the
lookup table 912. Then, the system can obtain the first data
block F1 B1 and the third data block F1 B3 {from the
plurality of memory systems 110A, 110B and stores the first
data block F1 B1 and the third data block F1 B3 in the
bufler cache memory 904. The application 902 can acquire
the first data block F1 B1 and the third data block F1 B3
from the bufler cache memory 904.

After the system obtains the first data block F1_B1 and
the third data block F1_B3 from the plurality of memory
systems 110A, 110B through the lookup table 912 and stores
the first data block F1 B1 and the third data block F1 B3 in
the bufler cache memory 904, the eviction circuitry 914 can
manage and control how long the first data block F1_B1 and
the third data block F1 B3 wazit for a call in the bufller cache
memory 904.

Data stored 1n the bufler cache memory 904 can be stored
in a preset size or unit (e.g., cache block (CB)). Also, each
data block may have a priority. The system can set a priority
for each data block based on latency sensitiveness. For
example, the first data block CB1 to the 100th data block
CB100 can be included in the bufler cache memory 904
according to a priority.

Referring to FIG. 22, the eviction circuitry 914 can
include a plurality of queues corresponding to priorities. For
example, an eviction level can be divided into 64 levels from

US 11,893,269 B2

43

[.1 to L 64, and each data block from the first data block CB1
to the 100th data block CB100 can have a different eviction
level. For example, the second data block CB2 among the
100 data blocks has a 63" level as the second highest
priority among the 64 levels, and the 100th data block
CB100 among the 100 data blocks has the second level 1.2
which 1s the second lowest priority among the 64 levels.
According to an embodiment, data having a first level (L1)
1s most likely to be evicted from the bufler cache memory
904, and data having a 64th level (L.64) is least likely to be
evicted from the buller cache memory 904. In this case, the
100th data block CB100 having the 2% level may be evicted
from the bufler cache memory 904 earlier than the second
data block CB2 having the 637 level. According to another
embodiment, the data having a first level (1) 1s least likely
to be evicted from the buller cache memory 904, and the
data having a 64th level (1L64) 1s most likely to be released
or evicted from the builer cache memory 904. In this case,
the 100th data block CB100 having the 2’ level may be
evicted from the bufler cache memory 904 faster than the
second data block CB2 having the 637 level

A preset number of data may exist 1in each level, and data
having the same level may be evicted 1n a least recently used
(LRU) method. For example, 11 the second data block CB2
among the data blocks having the 63’ level has been more
recently used than the third data block CB3, the third data
block CB3 may be evicted earlier from the bufler cache
memory 904 than the second data block CB2. For example,
when the most recently used one 1s the 95th data block CB95
and the oldest used one 1s the 97th data block CB97 among
three data blocks CB95, CB96, CB97 having the fourth
level, the 97th data block CB97 may be evicted earlier than
the 95th data block CB95.

Moreover, the priority or the eviction level of the 97th
data block CB97 can be adjusted or changed based on
latency sensitivity. For example, 1f the eviction level of the
9’7th data block CB97 i1s changed from the fourth level L4
into the fifth level L5, the sixth level L6, or higher, an
evicting time of the 97th data block CB97 from the bufler
cache memory 904 can be postponed.

FIG. 23 illustrates a cache memory management method
corresponding to a level change of latency sensitiveness
according to an embodiment of the present disclosure.

When a specific data block CBxx 1s stored in the bufler
cache memory 904, the eviction circuitry 914 can assign one
of the first level L1 to the 64th level based on latency
sensitiveness regarding the specific data block CBxx. For
example, 11 the latency sensitiveness of the specific data
block CBxx 1s substantially the same as a preset criterion,
the eviction circuitry 914 may assign a 32" level L32 (e.g.,
an intermediate level) to the specific data block CBxx. If the
latency sensitiveness of the specific data block CBxx 1s less
than the preset criterion, the eviction circuitry 914 can assign
a lower level (e.g., a 30” level) than the 32nd level .32 (the
intermediate value) to the specific data block CBxx. When
the latency sensitiveness of the specific data block CBxx 1s
greater than the preset criterion, the eviction circuitry 914
can assign a higher level (e.g., a 34" level) than the 32nd
level 32 (the mtermediate value) to the specific data block
CBxx.

Referring to FIG. 23, the first data block CB1 to the 100th
data block CB100 can be stored in the bufler cache memory
904. The 53rd data block CB53 may have a 30” level. The
eviction level of the 53rd data block CB53 can be changed
or adjusted based on latency sensitiveness. For example, the
level of the 53rd data block CB33 may increase by one level
to have the 31st level. Alternatively, the level of the 53rd

10

15

20

25

30

35

40

45

50

55

60

65

44

data block CB33 may increase by 2 levels to have the 32nd
level. Alternatively, the level of the 53rd data block CB53
may increase by 3 levels to have the 33rd level.

The level of the 53rd data block CB33 may be adjusted
based on latency sensitiveness. When the level of the 53rd
data block CBS53 increases from the 30th level to the 31st,
32nd, or 33rd level, the 53rd data block CB53 can be stored
in the bufler cache memory 904 for a longer time. Con-
versely, the level of the fifty-third data block CB53 may be
lowered. When the level of the 33rd data block CB33 is
lowered, the 53rd data block CB33 may be evicted from the
bufler cache memory 904 earlier than when the 53rd data
block CB53 has the 30th level.

According to an embodiment, the system may adjust the
level of the 53rd data block CB53 based on latency sensi-
tiveness whenever the application 902 accesses the 53rd data
block CB53. Also, the more frequently used data blocks are,
the more the eviction circuitry 914 needs to avoid the data
blocks from being evicted from the bufler cache memory
904. The eviction circuitry 914 may control a timing at
which data block 1s evicted from the buller cache memory
904 by increasing or decreasing an eviction level of the data
block.

FIG. 24 illustrates a change of aging regarding cached
data according to an embodiment of the present disclosure.
In the embodiment shown 1n FIG. 24, the higher level, the
later evicted.

Referring to FIG. 24, after a data block 1s stored in the
bufler cache memory 904, the application 902 can access the
stored data block. According to an embodiment, as the
application 902 frequently accesses a data block stored 1n
the bufler cache memory 904, an eviction level of the data
block can increase. On the other hand, the eviction level of
the data block to which the application 902 1s not accessed
may be lowered. Through these processes, data blocks
having the 64th level, which 1s the highest level, may be
stored 1n the bufler cache memory 904 can be kept for the
longest time. On the other hand, data blocks corresponding
to the first level, which 1s the lowest level, may have the
shortest time stored in the builer cache memory 904.

As time passes, the number of data blocks having the 64th
level can increase. When the number of data blocks having
the 64th level increases, it may be diflicult to distinguish
priorities between the data blocks having the 64th level. As
time goes by, the number of data blocks having a higher-
level can increase. Then, it becomes difficult to distinguish
a priority between data blocks having a higher-level, and 1t
becomes diflicult to efliciently manage the bufler cache
memory 904.

On the other hand, after the system stores the data block
in the bufler cache memory 904, the system can adjust a
priority of data block, based on latency sensitiveness for the
data block, whenever the application 902 accesses the stored
data block. In addition, the system may set an eviction level
of a data block by comparing the latency sensitiveness of the
data block with a reference. Also, referring to FIG. 23, the
system can adjust a change degree of the eviction level
corresponding to latency sensitiveness.

According to an embodiment, when the number of data
blocks belonging to a specific level or a specific range of
levels 1s greater than those belonging to other levels, the
system may adjust the change degree of the eviction level
corresponding to the latency sensitiveness. Through this, a
time stored 1n the builer cache memory 904 of the data block
having a higher-level can be reduced. That 1s, a data block
frequently accessed by the application 902 might not have a
highest level. For example, when the application 902 desires

US 11,893,269 B2

45

a specific data block, the later the corresponding data block
1s stored 1n the bufler cache memory 904, the higher the
eviction level of the corresponding data. Conversely, 1t the
application 902 accesses a specific data block while the data

block 1s continuously stored in the buil

er cache memory
904, the level of the corresponding data block might be
lowered. The system can adjust the eviction level corre-
sponding to the latency sensitiveness. As time passes and
even though the data access of the application 902 increases,
the number of data blocks having the highest level, which 1s
the 64th level .64, or the lowest level, which 1s the first level
L1, might not be increased significantly.

In addition, the system can continuously perform a bal-
ancing or rebalancing operation, so that the number of data
blocks having an intermediate level i1s greater than the
number of data blocks having the highest level, which 1s the
64th level L64, or the lowest level, which 1s the first level
LL1. For example, the system may determine whether the
number of data blocks corresponding to the upper 20 levels
exceeds 50% of the total to determine whether the data
blocks are concentrated in the upper levels. As the system
continuously performs the balancing or rebalancing opera-
tion on eviction levels of data blocks stored in the bufler
cache memory 904, timings of evicting data blocks from the
bufler cache memory 904 could be eflectively controlled
even though the number of times the application 902
accesses the stored data blocks increases as time passes.

As above described, the memory system according to an
embodiment of the present disclosure can improve data 1/0
performance while performing data I/O operations corre-
sponding to commands mmput from an external device.

In addition, the memory system according to an embodi-
ment ol the present disclosure can efliciently manage
resources used in performing data input/output operations
and suppress unnecessary consumption of resources to
improve data mput/output performance.

In addition, the memory system according to an embodi-
ment of the present disclosure can improve ethiciency of the
readahead operation to advance a timing of transmitting read
data requested by a host from the memory system to the host
of the data processing system.

While the present teachings have been illustrated and
described with respect to the specific embodiments, 1t will be
apparent to those skilled i the art 1n light of the present
disclosure that various changes and modifications may be
made without departing from the spirit and scope of the
disclosure as defined 1n the following claims. Furthermore,

the embodiments may be combined to form additional
embodiments.

What 1s claimed 1s:

1. A memory system, comprising:

a memory device including plural storage regions includ-
ing plural non-volatile memory cells and having a
different data iput/output speed; and

a controller coupled to the memory device via at least one
data path and configured to:

perform a readahead operation i1n response to a read
request mput from an external device,

determine a data attribute regarding readahead data stored
in a bufler, included in the controller, through the
readahead operation, based on a time difference
between reception of the read request and completion
of the readahead operation, and

store the readahead data in one of the plural storage
regions based on the data attribute.

2. The memory system according to claim 1, wherein a

first storage region among the plural storage regions has a

5

10

15

20

25

30

35

40

45

50

55

60

65

46

faster data input/output speed than a second storage region
among the plural storage regions.
3. The memory system according to claim 2, wherein the
controller 1s configured to:
store the readahead data corresponding to the read request
in the first storage region when the readahead data has
a smaller size than a preset value; and

store the readahead data corresponding to the read request
in the second storage region when the readahead data
has a bigger size than or equal to the preset value.

4. A memory system, comprising;:

plural memones having a different data input/output

speed; and

a controller configured to:

store readahead data obtained from the plural memories

via a readahead operation in a bufler included in the
controller, and

output read data among the readahead data stored in the

bufler based on reception of a read request mput from
an external device,

wherein the controller 1s further configured to:

determine a prionty regarding the readahead data

obtained by the readahead operation, based on a time
difference between reception of the read request and
completion of the readahead operation, and

store the readahead data in one of the plural memories

based on the priority.

5. The memory system according to claim 4,

wherein the controller 1s configured to employ a virtual

file system that associates a logical address scheme
used by an external device and a physical address
scheme for identiiying locations of a plurality of non-
volatile memory cells included 1n the plural memories
and forms a virtual data structure based on a correlation
corresponding to a data attribute or a data pattern of
data stored in the plural memories, and

wherein the virtual data structure includes a depth level

among plural depth levels of the correlation, which 1s
assigned to the data stored in the plural memories.

6. The memory system according to claim 5, wherein the
controller 1s configured to, when the read request 1s 1nput,
perform the readahead operation to obtain data having a
higher depth level than data corresponding to the read
request.

7. The memory system according to claim 4, wherein the
controller 1s configured to:

determine the priority based on a size of data correspond-

ing to the read request,

store the readahead data corresponding to the read request

in a first memory among the plural memories, when the
readahead data has a smaller size, and

store the readahead data corresponding to the read request

in a second memory having a slower data input/output
speed than the first storage region among the plural
memories, when the readahead data has a larger size.

8. The memory system according to claim 4, wherein the
controller 1s configured to:

store the readahead data corresponding to the read request

in a first memory among the plural memories, when the
reception of the read request 1s earlier than the comple-
tion of the readahead operation; and

store the readahead data corresponding to the read request

in a second memory having a slower data mnput/output
speed than the first storage region among the plural
memories, when the reception of the read request 1s
later than the completion of the readahead operation.

US 11,893,269 B2

47

9. The memory system according to claim 4, wherein a
first memory has a faster data input/output speed than a
second memory among the plural memories, and the first
memory and the second memory can individually include at
least one memory block, at least one memory plane, or at
least one memory die.

10. The memory system according to claim 4, wherein the
controller 1s configured to determine a timing of releasing or
evicting the readahead data stored in the bufler based on the
priority.

11. The memory system according to claim 10, wherein
the controller 1s configured to:

assign one of plural eviction levels to the readahead data;

adjust an assigned eviction level when the readahead data

1S accessed; and

determine the timing of releasing or evicting the reada-

head data based on an adjusted eviction level.

12. The memory system according to claim 11, wherein
the controller 1s configured to change a degree of adjusting,
the assigned eviction level assigned to the readahead data
when an amount of the readahead data having at least one or
more specific eviction level among the plural eviction levels
1s greater than a reference.

13. The memory system according to claim 10, wherein
the controller 1s configured to determine the timing of
releasing the readahead data based on a least recently used
(LRU) policy when the readahead data stored in the cache
memory has the same eviction level.

14. A data mput and output system, comprising:

plural storage devices having a different data input and

output speed;
a cache memory; and
a control device configured to:
store readahead data obtained from the plural storage
devices via a readahead operation 1n the cache memory,

output read data, among the readahead data stored in the
cache memory, to an application program based on
reception of a read request input from the application
program,

10

15

20

25

30

35

48

determine a readahead attribute regarding the readahead
data, obtained by the readahead operation, based on a
first ttiming of the reception and a second timing of
completion of storing the readahead data 1n the cache
memory, and

store the readahead data in one of the plural storage

devices based on the readahead attribute.

15. The data input and output system according to claim
14, wherein the control device 1s configured to detect a
pattern of read data corresponding to the read request and
use the pattern to determine the readahead attribute regard-
ing the readahead data.

16. The data input and output system according to claim
14, wherein the control device 1s configured to store the
readahead data corresponding to the read request in a storage
device having the fastest data input/output speed when the
first timing 1s earlier than the second timing.

17. The data input and output system according to claim
14, wherein the control device 1s configured to determine a
timing of releasing or evicting the readahead data stored in
the cache memory based on a difference between the first
timing and the second timing.

18. The data mput and output system according to claim
14, wherein the control device 1s configured to assign one of
plural eviction levels to the readahead data, adjust an
assigned eviction level when the readahead data 1s accessed,
and determine the timing of releasing or evicting the rea-
dahead data based on an adjusted eviction level.

19. The data input and output system according to claim
18, wherein the control device 1s configured to change a
degree of adjusting the assigned eviction level assigned to
the readahead data when an amount of the readahead data
having at least one or more specific eviction level among the
plural eviction levels 1s greater than a reference.

20. The data mput and output system according to claim
14, wherein the control device 1s configured to determine the
timing of releasing or evicting the readahead data based on
a least recently used (LRU) policy when the readahead data
stored 1in the cache memory has the same eviction level.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

