12 United States Patent

US011888708B1

10) Patent No.: US 11,888,708 B1

Madiya et al. 45) Date of Patent: Jan. 30, 2024
(54) SYSTEM AND METHOD FOR USPC e, 709/203, 223, 224
AUTO-DETERMINING SOLUTIONS FOR See application file for complete search history.
DYNAMIC ISSUES IN A DISTRIBUTED
NETWORK (56) References Cited
(71) Applicant: Bank of America Corporation, U.S. PATENT DOCUMENTS
Charlotte, NC (US) 5202971 A 4/1993 Henson et al.
7,490,073 B1* 2/2009 hi GO6N 5/048
(72) Inventors: Tirupathirao Madiya, Hyderabad (IN); Qureshi 706/56
Vishalakshi Nagasai Poosa, Hyderabad 8,255,873 B2* 82012 Lazier GOG6F 3/1415
(IN); Yellaiah Ponnameni, Hyderabad 717/124
(IN); Gourav Mohite, Gurugram (IN); 133322% %? E% iggg El’a(:bur)tf :} al.
' ' 232, 1 antor et al.
Vinothkumar Babu, Chennai (IN) 10,445,351 B2 10/2019 Buryak et al
10,705,823 B2 7/2020 Pitre et al.
(73) Assignee: Bank of America Corporation, 10,713,794 Bl 712020 Hle Zteaf"
Charlotte, NC (US) 10,819,556 B1* 10/2020 Rangasamy HO041. 41/026
10,834,577 B2 11/2020 Raleigh et al.
(*) Notice: Subject to any disclaimer, the term of this 10,963,349 B2 3/2021 Dhamdhere et al.
patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 0 days. Primary Examiner — Thu Ha T Nguyen
(21) Appl. No.: 18/163,775 (57) ABSTRACT
(22) Filed: Feb. 2, 2023 A system fqr auto-determining, splutiong for dynamitic
1ssues comprises a processor associated with a server. The
rocessor detects an application issue assoclated with an
(51) Int. CL processor detects an application 1 ociated with
HO4L 41/16 (2022.01) application running at a network node in a distributed
04T, 411/0853 (2022.01) network. The processor receives a set of data objects asso-
H04L 41/042 (2022'03“) ciated with the application 1ssue. The processor classifies the
(52) US. Cl o set of the data objects of the application issue 1nto one or
iyt | more 1ssue patterns using a machine learning model. The
CPC e HO4L 4171 6 (2013.01); HO4L 41/042 machine learning model 1s trained based on a plurality of
_ _ (20%3'01)! HO4L 41/0853 (2013.01) sets of data objects and 1ssue patterns associated with
(58) Field of Classification Search corresponding previous application issues. The processor

CPC ... HO4L 41/04; HO4L 41/042; HO4L 41/043;
HO4L 41/34; HO4L 41/342; HO4L 41/344;

HO4L 41/12; HO4L 41/142; HO4L 41/06;

HO4L 41/0654; HO4L 41/0286; HO4L

12/40169; HO4L 12/281; HO4L

2012/5626; HO4L 2012/5627; HO4L

67/025; HO4L 43/10; HO4L 43/12; HO4L

43/14

Distributed network 116

processes the one or more 1ssue patterns and application
information through a neural network to determine a series
ol executable operations for solving the application issue.
The processor deploys the series of the executable opera-
tions to solve the application 1ssue occurring at the network
node to prevent a failure operation of the application.

20 Claims, 5 Drawing Sheets

100

Central server 140

Network node 120¢

Application
170

Network node 120d

Applicaticn
170

Reguest 124

Network node 120b

Processor 142 |
5 - _ Network User
peratlinanqeng!ﬂe interface 136 interface 137

|

i1 IMachine learning

t Appication l
m M

Network node 1203

Application
170

_ __ Memory 148
Software Database 140

instructions 130 User profiles 142 l

2 User inter?ace Application issues 146
application 152 ‘155'-“:-' identifier lﬂZ"Data objects 32@
Applications 170

Sense module 154] Application identifiers 172 I

model 156 issue patierns 174
Pattersy identifiers 175

Strategy module Network node addresses 176

Neural netwark Strategic solutions 177

160 lExecutabIe operations ;zﬁl

}

LE

Solution identiflers 179
Action mocule 162 l Previous application issues 180
Previous data nb!'ects 181 l

User request 124

—— s
1 Training data 184| |Time stamps 186

US 11,888,708 B1
Page 2

(56)

10,999,381
11,039,489
11,075,929
11,115,466
11,216,502
11,232,417
11,330,447
11,469,947
2006/0053490

2008/0189420

2010/0306249

2014/0128021

2017/0108236
2017/0126469
2017/0373929
2018/0025303

2019/0178980
2019/0253328
2020/0228419
2021/0258377
2021/0272568
2022/0038353
2022/0222047
2023/0179488

2023/0281317

* cited by examiner

B2
B2
Bl *
B2
B2 *
B2
B2
B2
Al*

Al*

Al*

1=I<

>

* ¥ ¥ %

W

AN AN AN AN AN A
o

1=I<

o>

References Cited

U.S. PATENT DOCUMENTS

Xi1ao et al.
Serravalle
L1
Basavaiah et al.
Levy
Klarman et al.
Lau

Srinivas et al.
Herz

5/2021
6/2021
7/2021
9/2021
1/2022
1/2022
5/2022
10/2022
3/2006

tttttttttttttttttttttttt

iiiiiiiiiiiiiiiiiiii

iiiiiiiiiiiiiiiiiii

8/2008

ttttttttttttttttt

12/2010

ttttttttttttttttttttt

5/2014

4/201
5/201

12/201
1/201

ttttttttttttttttttt

ttttttttttttttttttt

iiiiiiiiiiiiiiiiiii

o0 ~1 ~1 ~J
=
=
0

ttttttttttttttttttttt

6/2019
8/2019
7/2020
8/2021
9/2021
2/2022
7/2022
6/2023

iiiiiiiiiiiiiiiiii
tttttttttttttttttt

ttttttttttttttttttttttt

Arthursson
Akkiraju et al.
Yadav et al.

Todirel
Nainwani

iiiiiiiiiiiiiiii

ttttttttttt

9/2023 Clement

tttttttttttttt

LI I]

LI]

. HO4L 1/0003

. GO6F 18/232

HO4L 63/1425
726/23

HO04L 41/04
709/227

GOO6F 16/9535
707/769
HO4W 68/005

455/405
GOSB 19/042

. HO4L 41/042

HO4L 41/0895

.. G16H 50/20

705/2

A6LB 5/7267
GO6F 11/0709
HO04L 41/50

GOOF 11/3608
HO4L 41/0677

709/224

.. GO6N 3/084

726/25

[OIA

08T sdweys awi| | |$8T eaep buiuiel) ToT

— UolI3a]E]S aNSS
Z8T SI0109A oo !

PCT 1senbal Jasn

US 11,888,708 B1

¢9T 3npow uondy

097
" v_hoEmEm‘_:wz
= 89T
_ g|npow Abaje.1s
D
>
h N
7 oGT [°poll
buiuies| sauiyoep
¢/T s4ayusp! uoned)ddy —
- FGT 9|NPOW ISUDS
X 0/T suopediddy
0 —
~ 85T swalqo exeq|[Z5T Jeynuspi enssy]|| ST Uonedldde
e O T senssi uonedi|ddy SOe o oo
= —
& ¢HT so|joud Jasn 0GT Suonon.ajsul

OPT aseqeleq 21BM]JOS

0LT

35T AOWdN uonedl|ddy

.

— m— PET
/€T 9%epaul OtT °Jeajul auibua uopesado

125N NJOMISN

0L T JOAIDS [R1IUDD

ZF T 1055200.d

00 —o

U.S. Patent

3pOU YJOMISN

0T
uonedl|ddy

EOZT =2POU XIO0OM])oN

()7A
uonedl|ddy

m q0ZT SpOu YIOMISN

¢ T 1S9nbay

01
uonedl|ddy

3071 9POou YIOMISN

9TT 40Miau painqglisiq

U.S. Patent Jan. 30, 2024 Sheet 2 of 5 US 11.888,708 B1

NETWORK NODE 12

USER INTERFACE 20

PROCESSOR NETWORK INTERFACE
202 208

MEMORY APPLICATIONS
204 170

FiG. 2

U.S. Patent Jan. 30, 2024 Sheet 3 of 5 US 11.888,708 B1

300 —\

DETECT AN APPLICATION ISSUE ASSOCIATED WITH
AN APPLICATION RUNNING AT A NETWORK NODE 302

AT A PARTICULAR TIMESTAMP

RECEIVE A SET OF DATA OBJECTS ASSOCIATED
WITH THE APPLICATION ISSUE OCCURRING AT 304
THE TIMESTAMP

CLASSIFY THE PLURALITY OF THE DATA OBJECTS

OF THE APPLICATION ISSUE INTO 306
ONE OR MORE APPLICATION ISSUE PATTERNS

PROCESS, THROUGH A NEURAL NETWORK, THE
ONE OR MORE ISSUE PATTERNS AND APPLICATION
INFORMATION ASSOCIATED WITH THE NETWORK 308
NODE TO DETERMINE A SERIES OF EXECUTABLE
OPERATIONS FOR SOLVING THE APPLICATION ISSUE

IS THE
NETWORK NODE
COMMUNICATING WITH THE
PROCESSOR?

NO

310

YES

DEPLOY THE SERIES OF THE EXECUTABLE
GENERATE A OPERATIONS TO SOLVE THE APPLICATION ISSUE 317
SECURITY ALERT AT THE NETWORK NODE TO PREVENT A FAILURE
OF APPLICATION
316

DETERMINE A DEPLOYMENT RESULT OF 314

THE APPLICATION

FIG. 3

U.S. Patent Jan. 30, 2024 Sheet 4 of 5 US 11.888,708 B1

W00

DETECT AN APPLICATION ISSUE ASSOCIATED WITH AN

APPLICATION RUNNING AT A NETWORK NODE AT A 402
FIRST TIMESTAMP

RECEIVE A FIRST SET OF DATA OBJECTS ASSOCIATED WITH THE 404
APPLICATION ISSUE OCCURRING AT THE FIRST TIMESTAMP

DETECT THE APPLICATION ISSUE ASSOCIATED WITH THE

APPLICATION RUNNING AT THE NETWORK NODE AT A 406
SECOND TIMESTAMP

RECEIVE A SECOND SET OF DATA OBJECTS ASSOCIATED WITH 408
THE APPLICATION ISSUE AT A SECOND TIMESTAMP

DETERMINE A CHANGE BETWEEN A FIRST SET OF THE DATA

OBJECTS AND A SECOND SET OF DATA OBJECTS 410

IDENTIFY, BY A MACHINE LEARNING MODEL AND BASED ON THE
CHANGE BETWEEN THE FIRST SET OF THE DATA OBJECTS AND

THE SECOND SET OF DATA OBJECTS, AN ISSUE PATTERN 412

REPRESENTS AN OPERATION CHANGE OF THE APPLICATION

PROCESS, THROUGH A NEURAL NETWORK, THE IDENTIFIED

ISSUE PATTERN WITH APPLICATION INFORMATION TO 414
DETERMINE A SERIES OF EXECUTABLE OPERATIONS

IS THE
NETWORK NODE
COMMUNICATING WITH THE
PROCESSOR?

NO

310
YES
GENERATE A DEPLOY THE SERIES OF THE EXECUTABLE
SECURITY ALERT OPERATIONS TO THE NETWORK NODE TO SOLVE 312
THE APPLICATION ISSUE

316
DETERMINE A DEPLOYMENT RESULT OF 314
THE APPLICATION

_En) FIG. 4

U.S. Patent Jan. 30, 2024 Sheet 5 of 5 US 11.888,708 B1

500~

DETECT AN APPLICATION ISSUE ASSOCIATED WITH AN APPLICATION
RUNNING AT A NETWORK NODE AT A PARTICULAR TIMESTAMP,

WHEREIN THE APPLICATION ISSUE COMPRISES A USER REQUEST

WITH AN ISSUE STATEMENT AND A USER INTERACTION ASSOCIATED

WITH ONE OR MORE OPERATION PARAMETERS OF THE APPLICATION

RECEIVE A SET OF DATA OBJECTS ASSOCIATED WITH THE
APPLICATION ISSUE OCCURRING AT THE TIMESTAMP

CLASSIFY, BY A MACHINE LEARNING MODEL, THE SET OF THE DATA
OBJECTS OF THE APPLICATION ISSUE INTO ONE OR MORE
ISSUE PATTERNS

PROCESS, THROUGH A NEURAL NETWORK, THE ONE OR MORE ISSUE
PATTERNS AND APPLICATION INFORMATION ASSOCIATED WITH THE
NETWORK NODE TO DETERMINE A SERIES OF EXECUTABLE

OPERATIONS FOR SOLVING THE APPLICATION ISSUE

IS THE
NETWORK NODE
COMMUNICATING WITH THE
PROCESSOR?

NO

310
YES

IS THE
APPLICATION
RUNNING AT THE NETWORK
NODE?

SECURITY ALERT
DEPLOY THE SERIES OF THE EXECUTABLE OPERATIONS TO
316 THE NETWORK NODE BASED ON THE NETWORK NODE

ADDRESS AND THE APPLICATION IDENTIFIER, WHEREIN
THE SERIES OF THE EXECUTABLE OPERATIONS IS

CONFIGURED TO BE AUTOMATICALLY EXECUTED ON THE
NETWORK NODE TO CORRECT THE ONE OR MORE
PARAMETERS OF THE APPLICATION TO PREVENT A

FAILURE OPERATION OF THE APPLICATION

DETERMINE A DEPLOYMENT RESULT OF THE APPLICATION
e) FIG. S5

NO

510

512

314

502

504

506

508

US 11,888,708 Bl

1

SYSTEM AND METHOD FOR
AUTO-DETERMINING SOLUTIONS FOR
DYNAMIC ISSUES IN A DISTRIBUTED
NETWORK

TECHNICAL FIELD

The present disclosure relates generally to software engi-
neering and mformation security, and more specifically to a
system and method for auto-determining solutions for
dynamic 1ssues 1n a distributed network.

BACKGROUND

An organization may have thousands of network nodes
(e.g., computing devices) which communicate with each
other 1n a distributed network. The organization depends on
data driven technologies with applications running on vari-
ous platforms like on-premise servers, databases, cloud
networks, etc. A great amount of dynamic issues, such as
data processing, application configuration, and memory uti-
lization 1ssues associated with applications and network
nodes may occur in the distributed network. Customer
centric services and ceaseless support are required to pro-
vide evident solutions to these ever-changing i1ssues. Current
technologies are not configured to provide a reliable and
cilicient solution to automatically detecting and solving
these dynamic 1ssues in the distributed network without
human administrator intervention.

SUMMARY

Conventional technology 1s not configured to provide
reliable and eflicient solutions to automatically detecting and
solving dynamic issues or problems occurring in a distrib-
uted network. The disclosed system described 1n the present
disclosure 1s particularly integrated into a practical applica-
tion of auto-detecting dynamic issues and auto-determining,
solutions to solve these dynamic 1ssues 1in the distributed
network. The disclosed system 1s further integrated into an
additional practical application of auto-detecting dynamic
1ssue changes to solve dynamic issues 1n the distributed
network. The disclosed system 1s further integrated into an
additional practical application of implementing auto-cor-
rection to solve dynamic 1ssues 1n the distributed network.

In a current distributed network environment, an organi-
zation may have thousands of network nodes (e.g., comput-
ing devices) which communicate with each other through a
network 1n a distributed network environment. Each net-
work node may be represented as a computing device 1n the
distributed network. Each network node may be a user
device or a server. Status of the applications associated with
the network nodes may dynamically change 1n response to
various situations in the distributed network. Since various
technical issues associated with the network nodes may
constantly change, customer support may receive a plurality
ol service requests regarding various technical 1ssues occur-
ring at the network nodes 1n the distributed network at any
time. For example, an application may not operate well in
lack of memory space at a network node. In another
example, a processor power consumption associated with a
network node may need to be reduced to keep a normal
operation status. In another example, an application con-
figuration may need to be adjusted to allow a user to access
certain data resources 1n the distributed network. Adminis-
trators may not be able to provide solutions to solve these
ever-changing problems and provide timely support. The

10

15

20

25

30

35

40

45

50

55

60

65

2

disclosed system addresses these i1ssues by automatically
detecting dynamic application i1ssues, and determiming and
deploying solutions with executable operations to solve
these 1ssues 1n the distributed network 1n real time.

In some embodiments, the disclosed system automatically
detects and analyzes application status associated with an
application running at a network node. The application
status may be presented as a plurality of data objects and
stored 1n a database. The system detects a dynamic issue
associated with the application running on the network node.
The dynamic 1ssue may be an application 1ssue associated
with a software application or a hardware application asso-
ciated with a device operating at the network node.

In some embodiments, the disclosed system 1s configured
to auto-determine solutions to solve a dynamic 1ssue occur-
ring at the network node in the distributed network. The
system uses a machine learning model to analyze the plu-
rality of the data objects associated with an application 1ssue
and 1dentifies one or more 1ssue patterns for the application
issue. The system further uses a neural network to process
the one or more 1ssue patterns and the application informa-
tion to determine a strategic solution with a series of
executable operations. The series of the executable opera-
tions 1s configured to solve the application 1ssue at the
network node. The system automatically deploys the series
of the executable operations to seamlessly solve the appli-
cation 1ssue to prevent a failure operation of the application
at the network node.

In some embodiments, the disclosed system 1s configured
to auto-detect dynamic i1ssue changes to solve a dynamic
issue 1n a distributed network. For example, the system
detects an application 1ssue associated with an application
by 1dentiiying operation changes between diflerent applica-
tion status of the application. Diflerent application status
may be represented as diflerent sets of data objects at various
timestamps. The system determines the changes between
different sets of data objects as operation changes of the
application 1ssue. The system uses a machine learning model
to analyze the changes of the different sets of data objects
between diflerent timestamps. The system uses the machine
learning model to i1dentify an 1ssue pattern associated with
the operation changes of the application i1ssue. The 1ssue
patten represents the operation changes of the application
1ssue which occurs between different timestamps. The sys-
tem further uses a neural network to process the 1ssue pattern
and the application mmformation to determine a strategic
solution with a series of executable operations. The series of
the executable operations 1s 1indicative of the strategic solu-
tion of the application 1ssue and corresponds to the operation
changes of the application 1ssue. The series of the executable
operations 1s configured to solve the application 1ssue at the
network node. The system automatically deploys the series
of the executable operations to seamlessly solve the appli-
cation 1ssue to prevent a failure operation of the application
at the network node.

In some embodiments, the disclosed system 1s configured
to 1mplement auto-correction to solve dynamic 1ssues 1n a
distributed network. For example, the system detects an
application 1ssue associated with an application running at a
network node at a particular timestamp. The application
issue 1ncludes a user request with an 1ssue statement and a
user interaction associated with one or more operation
parameters ol the application. The application 1ssue may be
presented as a plurality of data objects at a timestamp. The
system uses a machine learning model to analyze the plu-
rality of the data objects and identifies one or more 1ssue
patterns associated with the application 1ssue. The system

US 11,888,708 Bl

3

turther uses a neural network to process the 1ssue pattern and
the application information to determine a strategic solution
with a series of executable operations. The series of the
executable operations 1s configured to solve the application
issue at the network node. The series of executable opera-
tions includes a network node address and an application
identifier. When the system determines that the network
node 1s communicating with the processor and the applica-
tion 1s currently running at the network node, the system
automatically deploys the series of the executable operations
to correct the one or more parameters of the application
running at the network node to prevent a failure operation of
the application.

In one embodiment, a system for auto-determining solu-
tions for dynamic 1ssues 1n a distributed network comprises
a memory and a processor operably coupled to the memory.
The memory 1s operable to store a plurality of sets of
previous data objects associated with corresponding previ-
ous application 1ssues and issue patterns associated with
corresponding applications. Each data object represents an
operation status of a corresponding application. Fach 1ssue
pattern represents a regularity of the operation status of the
corresponding application. The memory 1s operable to store
the plurality of series of executable operations for solving
the previous application issues. The processor detects an
application i1ssue associated with an application running at a
network node at a particular timestamp. The processor
receives a set of data objects associated with the application
1ssue. The processor classifies, by a machine learning model,
the set of the data objects of the application 1ssue 1to one
or more 1ssue¢ patterns. The machine learning model 1is
trained based on the plurality of sets of the data objects and
corresponding 1ssue patterns associated with the correspond-
ing previous application issues. The processor processes,
through a neural network, the one or more 1ssue patterns and
application information associated with the application 1ssue
at the network node to determine a series of executable
operations for solving the application issue. The neural
network 1s trained based on the plurality of the 1ssue patterns
and associations between the 1ssue patterns and the plurality
of series of the executable operations. The processor deploys
the series of the executable operations to solve the applica-
tion 1ssue at the network node to prevent a failure operation
of the application.

In one embodiment, a system for auto-detecting dynamic
1ssue changes 1n a distributed network comprises a memory
and a processor operably coupled to the memory. The
memory 15 operable to store a plurality of sets of previous
data objects associated with corresponding previous appli-
cation i1ssues and 1ssue patterns associated with correspond-
ing applications. Each data object represents an operation
status of a corresponding application. Each 1ssue pattern
represents one or more recurring operation status of the
corresponding application. The memory 1s further operable
to store a plurality of series of executable operations asso-
ciated with the corresponding 1ssue patterns configured to
solve the previous application i1ssues. The processor detects
an application 1ssue associated with an application running
at a network node at a first timestamp. The processor
receives a lirst set of data objects associated with the
application 1ssue occurring at the first timestamp. The pro-
cessor detects the application 1ssue associated with the
application runming at the network node at a second time-
stamp. The processor receives a second set of data objects
associated with the application 1ssue occurring at the second
timestamp. The processor determines a change between a
first set of the data objects and a second set of data objects.

10

15

20

25

30

35

40

45

50

55

60

65

4

The processor 1dentifies, by a machine learning model and
based on the change between the first set of the data objects
and the second set of data objects. An 1ssue pattern repre-
sents an operation change of the application which occurs
between the first timestamp and the second timestamp. The
machine learning model 1s trained based on the plurality of
sets of the data objects and corresponding issue patterns
associated with the corresponding previous application
issues. The plurality of sets of the data objects comprises a
plurality of operation changes associated with the corre-
sponding applications. The processor processes, through a
neural network, the 1ssue pattern with application informa-
tion to determine a series of executable operations associ-
ated with the application 1ssue. The series of the executable
operations 1s indicative of a solution of the application 1ssue
and corresponds to the change of the operation status of the
application. The processor deploys the series of the execut-
able operations to the application running at the network
node to solve the application 1ssue to prevent a failure
operation of the application.

In one embodiment, a system for implementing auto-
correction to solve dynamic 1ssues 1n a distributed network
comprises a memory and a processor operably coupled to
the memory. The memory 1s operable to store a plurality of
sets of previous data objects associated with corresponding
previous operation 1ssues and 1ssue patterns associated with
corresponding applications. Each data object represents an
operation status of a corresponding application. Each 1ssue
pattern represents one or more recurring operation status of
the corresponding application and 1s associated with one or
more executable operations. The memory 1s further operable
to store a plurality of series of executable operations asso-
ciated with the corresponding 1ssue patterns configured to
solve the previous application issues. The processor detects
an application 1ssue associated with an application running
at a network node at a particular timestamp. The application
1ssue comprises a user request with an 1ssue statement and
a user interaction associated with one or more operation
parameters of the application. The processor receives a set of
data objects associated with the application 1ssue occurring
at the timestamp. The processor classifies, by a machine
learning model, the set of the data objects of the application
1ssue 1nto one or more 1ssue patterns. The machine learning
model 1s trained based on the plurality of sets of the data
objects and the 1ssue patterns associated with the corre-
sponding previous application issues. The processor pro-
cesses, through a neural network, the one or more 1ssue
patterns and application information associated with the
application 1ssue at the network node to determine a series
ol executable operations configured to solve the application
issue. The neural network 1s trained based on the plurality of
the 1ssue patterns and associations between the 1ssue patterns
and the plurality of series of the executable operations. The
series ol executable operations comprises a network node
address and an application i1dentifier. The processor deter-
mines whether the network node 1s communicating with the
processor. In response to determining that the network node
1s communicating with the processor, the processor deter-
mines whether the application 1s currently running at the
network node. In response to determining that the applica-
tion 1s currently running at the network node, the processor
deploys the series of the executable operations to the net-
work node based at the network node address and the
application identifier. The series of the executable operations
1s configured to be automatically executed at the network
node to correct the one or more parameters of the application
to prevent a failure operation of the application.

US 11,888,708 Bl

S

The system described 1n the present disclosure provides
practical applications with technical solutions to solve the
technical problems of the previous systems. The disclosed
system provides practical applications which may be
executed to solve underlying computer network operation
1ssues running at particular network nodes 1n the distributed
network system by automatically generating and deploying,
strategic solutions for various dynamic 1ssues. For example,
a sense module, a strategy module, an action module, and
other software models or modules may be integrated 1nto a
soltware application. The server may execute the software
application to process data objects associated with applica-
tion 1ssues, and automatically determine and deploy solu-
tions to solve the application 1ssues occurring at the network
in real time. The practical application may be implemented
by the processor to 1dentify a plurality of 1ssue patterns from
the plurality of sets of the data objects by classifying the
plurality of sets of the previous data objects. The processor
may execute the neural network to determine a solution
identifier for each series of executable operations associated
with a corresponding application issue. The processor may
associate the corresponding solution 1dentifier with the 1ssue
pattern and the corresponding application 1ssue. The prac-
tical application may be implemented by the processor of the
server to deploy the series of the executable operations to the
network node i response to determiming that the network
node 1s communicating with the processor. The series of the
executable operations 1s configured to be automatically
executed at the network node to solve the application 1ssue
before a problem occurs. The processor may determine a
deployment result of the application. For example, the
practical application may prevent network node malfunc-
tion, data access conilict 1ssue, memory capacity 1ssue,
processor capacity issue, etc.

The disclosed system provides several technical advan-
tages that overcome the previously discussed technical prob-
lems. The system determines a series of executable opera-
tions for solving the application 1ssue. The system also
deploys the series of the executable operations for solving
the application 1ssue at the network node to prevent a failure
of application. The application may be implemented to
monitor computer operations on network nodes, sense and
detect network application processing and data communi-
cation 1ssues underling the computer network. For example,
the system may determine optimum solutions corresponding
to different percentages (e.g., 5%, 10%, or 20%) of the
memory needed to be increased so that the application
executed at the network node 1s not failed due to lack of a
memory space.

Thus, the application may be implemented to avoid under-
lying computer application 1ssues in the distributed network,
such as a memory utilization 1ssue, a data accessibility 1ssue,
an application configuration 1ssue, etc. The disclosed system
may automatically identify dynamic 1ssues in real time and
solve them with intelligent solutions to provide ceaseless
support to all applications 1n the distributed network. Fur-
ther, the system may detect application 1ssue based on user
requests user interactions with an application or system and
provide corresponding solutions issue 1n real time. The
solutions are generated and deployed to the corresponding
network nodes based on dynamic nature of 1ssues.

The disclosed system provides seamless support with
end-to-end automation on classifying dynamic 1ssues or user
requests 1nto 1ssue patterns. The disclosed system deter-
mines executable strategies based on the issue patterns to
solve the potential 1ssues or problems associated with appli-
cations and devices which are operating at certain network

10

15

20

25

30

35

40

45

50

55

60

65

6

nodes. The disclosed system provides an automated issue
determining and solution deployment process without
administrator intervention at a faster pace. By preventing
administrator interactions, the disclosed system can efli-
ciently process user requests and prevent any unnecessary
increases in network resources and bandwidth that are
consumed that would otherwise negatively impact on infor-
mation processing of an organization and the throughput of
the computer system. The disclosed system may 1dentily and
solve potential problems quickly before the problems occur
at certain network nodes in the distributed network. The
disclosed system enables the applications 1ssues to be
resolved without administrator intervention ethiciently. The
disclosed system enables all application i1ssues and user
requests to be resolved on time so that the system may
provide continuous availability of services to the users in the
distributed network.

Certain embodiments of this disclosure may include
some, all, or none of these advantages. These advantages
and other features will be more clearly understood from the
following detailed description taken in conjunction with the
accompanying drawings and claims.

BRIEF DESCRIPTION OF TH.

(L]

DRAWINGS

For a more complete understanding of this disclosure,
reference 1s now made to the following brief description,
taken 1n connection with the accompanying drawings and
detailed description, wherein like reference numerals repre-
sent like parts.

FIG. 1 illustrates an embodiment of a system configured
to auto-detect dynamic 1ssues occurring i a distributed
network and auto-determine and deploy solutions to solve
the dynamic 1ssues according to an illustrative embodiment
of the present disclosure;

FIG. 2 1s a block diagram of an example network node of
the system of FIG. 1;

FIG. 3 illustrates an example operational flow of a method
for auto-determining solutions to solve dynamic 1ssues 1n a
distributed network:

FIG. 4 1llustrates an example operational flow of a method
for auto-detecting dynamic 1ssue changes to solve dynamic
1ssues 1n a distributed network:; and

FIG. 5 1llustrates an example operational flow of a method
for implementing auto-correction to solve dynamic issues 1n
a distributed network.

DETAILED DESCRIPTION

As described above, previous technologies fail to provide
cllicient and reliable solutions to automatically detect and
solve dynamic 1ssues associated with applications 1n a
distributed network. This disclosure presents various sys-
tems and methods for automatically detecting dynamic
issues, and determining and deploying solutions with
executable operations to solve the dynamic issues in the
distributed network by referring to FIGS. 1-5.

System Overview

FIG. 1 illustrates one embodiment of a system 100 that 1s
configured to automatically detect dynamic issues, deter-
mine and deploy the solutions to solve the dynamic issues
occurring i a distributed network. In one embodiment,
system 100 comprises a central server 130, a plurality of
network nodes 120a-1204 (e.g., computing devices), and a
network 110. Each network node 120 represents a comput-
ing device, such as a user device or a server which 1s coupled
to the network 110 1n a distributed network 116. Network

US 11,888,708 Bl

7

110 enables the communication between components of the
system 100. The system 100 transmits data between central
server 130 and network nodes 120a-1204 through the net-
work 110. Central Server 130 comprises a processor 132 in
signal commumnication with a memory 138. Memory 138
stores software instructions 150 that when executed by the
central server 130, cause the central server 130 to execute
one or more functions described herein. The central server
130 1s in commumnication with each network node 120 via the
network 110. The central server 130 may monitor operation
status of a plurality of applications 170 operating at different
network nodes 120 in the distributed network 116 in the
system 100. In other embodiments, system 100 may not
have all the components listed and/or may have other
elements 1nstead of, or in addition to, those listed above.

In some embodiments, the system 100 may be imple-
mented by the central server 130 to automatically detect
dynamic 1ssues occur to each network node 120, and deter-
mine and deploy solutions with corresponding executable
operations 178 to solve the application 1ssues 146 occurring
at corresponding network nodes 120. Each dynamic 1ssue
may be an application 1ssue 146 associated with a software
application or a hardware application associated with a
device operating at the network node 120. For example, an
application 1ssue 146 may be a memory utilization issue, a
data accessibility 1ssue, or an application configuration 1ssue
associated with an application 170 running at a network
node 120. The central server 130 may detect an application
1ssue 146 associated with an application 170 running at the
network node 120. The central server 130 automatically
detects and analyzes an application status associated with
one or more applications 170 running at the one or more
network nodes 120. The application status may be presented
as a set of data objects 148 and stored in a database 140. The
central server 130 uses a machine learning model 156 to
classily the set of the data objects 148 of the application
issue 146 mto one or more issue patterns 174. The central
server 130 uses a machine learning model 156 to analyze the
plurality of the data objects 148 and identily one or more
1ssue patterns 174 associated with the application 1ssue 146.
The central server 130 further uses a neural network 160 to
determine a strategic solution 177 with a series of executable
operations 178 for solving the application issue 146 based
on the one or more 1ssue patterns 174. The central server 130
automatically deploys the series of the executable operations
178 to solve the application 1ssue 146 to reduce the chances
of a failed operation of the application 170 at the network
node 120.

In one embodiment, a system 100 may be implemented by
the central server 130 to auto-detect dynamic 1ssue changes
in the distributed network 116. The central server 130
detects an application 1ssue 146 at a network node 120 and
receives a first set of data objects 148 associated with the
application 1ssue 146 occurring at the first timestamp 186.
The central server 130 receives a second set of data objects
148 associated with the application 1ssue 146 occurring at
the second timestamp 186. The central server 130 deter-
mines a change between a first set of the data objects 148 and
a second set of data objects 148. The central server 130 uses
a machine learning model 156 to analyze the change
between a first set of the data objects 148 and a second set
of data objects 148. The central server 130 1dentifies an 1ssue
pattern 174 representing the operation change of the appli-
cation 1ssue 146 or the application 170 between the first
timestamp 186 and the second timestamp 186. The central
server 130 further uses a neural network 160 to process the
1ssue pattern 174 and the application information to deter-

10

15

20

25

30

35

40

45

50

55

60

65

8

mine a strategic solution 177 with a series of executable
operations 178. The sernies of the executable operations 178
1s 1indicative of a solution of the application 1ssue 146 and
corresponds to the operation change of the operation status
of the application 170. The series of the executable opera-
tions 178 1s configured to solve the application 1ssue 146 at
the network node 120. The central server 130 automatically
deploys the series of the executable operations 178 to the
network node 120 to solve the application issue 146 to
prevent a failure operation of the application 170 at the
network node 120.

In one embodiment, a system 100 may be implemented by
the central server 130 to implement auto-correction to solve
dynamic 1ssues 1n a distributed network 116. Each dynamic
1Issue may be an application i1ssue 146 associated with a
soltware application or a hardware application running at the
network node 120. For example, the central server 130
detects an application 1ssue 146 associated with an applica-
tion 170 running at a network node 120 at a particular
timestamp 186. The application 1ssue 146 may be associated
with a user request 124 which includes an 1ssue statement
164 and a user interaction associated with one or more
operation parameters of an application 170. The central
server 130 may automatically detect and analyze an appli-
cation status associated with the application 170 running at
the network node 120. The central server 130 may generate
textual data of an operation status of the application 170 to
represent the application 1ssue 146 occurring at the network
node 120. The central server 130 may convert the textual
data of the operation status of the application 170 1nto a set
of data objects 148 associated with the application 1ssue 146.
The application status may be presented as a set of data
objects 148 and stored 1n a database 140. The central server
130 uses a machine learning model 156 to analyze the
plurality of the data objects 148 and identily one or more
issue patterns 174 associated with the application 1ssue 146.
The central server 130 further uses a neural network 160 to
process the one or more 1ssue patterns 174 and the applica-
tion 1iformation to determine a strategic solution 177 with
a series ol executable operations 178. The series of the
executable operations 178 1s indicative of a solution of the
application 1ssue 146. The series of executable operations
178 1s associated with a network node address 176 and an
application 1dentifier 172. When the central server 130
determines that the network node 120 1s communicating
with the processor 132 and the application 170 1s currently
running at the network node 120, the central server 130
automatically deploys the series of the executable operations
to the network node 120. The series of the executable
operations 1s configured to be automatically executed at the
network node 120 to correct the one or more parameters of
the application 170 to prevent a failure operation of the
application 170.

System Components

Network 110 may be any suitable type of wireless and/or
wired network, including, but not limited to, all or a portion
of the Internet, an Intranet, a private network, a public
network, a peer-to-peer network, the public switched tele-
phone network, a cellular network, a local area network
(LAN), a metropolitan area network (MAN), a wide area
network (WAN), and a satellite network. The network 110
may be configured to support any suitable type of commu-
nication protocol as would be appreciated by one of ordinary
skill 1n the art.

FIG. 2 1s a block diagram of an embodiment of a network
node 120 1 FIG. 1. The network node 120 1s generally any
device that 1s configured to process data and interact with

US 11,888,708 Bl

9

users. Examples of the network node 120 include, but are not
limited to, a personal computer, a desktop computer, a
workstation, a server, a laptop, a tablet computer, a mobile
phone (such as a smartphone), etc. The network node 120
may include a user interface, such as a display, a micro-
phone, keypad, or other appropriate terminal equipment
usable by user. The network node 120 may include a
hardware processor, memory, and/or circuitry configured to
perform any of the functions or actions of the network node
120 described herein.

The network node 120 comprises a processor 202, a
memory 204, a user intertace 206, network interface 208,
and other components 1n the system 100. The processor 202
comprises one or more processors operably coupled to and
in signal communication with memory 204, user interface
206, network interface 208, and other components in the
system 100. The one or more processors 1s any electronic
circuitry including, but not limited to, state machines, one or
more central processing unit (CPU) chips, logic units, cores
(e.g., a multi-core processor), field-programmable gate array
(FPGASs), application specific integrated circuits (ASICs), or
digital signal processors (DSPs). The processor 202 may be
a programmable logic device, a microcontroller, a micro-
processor, or any suitable combination of the preceding. The
one or more processors are configured to process data and
may be implemented 1n hardware or software. For example,
the processor 202 may be 8-bit, 16-bit, 32-bit, 64-bit or of
any other suitable architecture. The processor 202 may
include an arithmetic logic unit (ALU) for performing
arithmetic and logic operations, processor registers that
supply operands to the ALU and store the results of ALU
operations, and a control unit that fetches mstructions from
memory and executes them by directing the coordinated
operations of the ALU, registers and other components. The
one or more processors are configured to implement various
istructions. For example, the one or more processors are
configured to execute mstructions to implement the function
disclosed herein, such as some or all of those described with
respect to FIGS. 1 and 3-5. Network interface 208 may be
configured to use any suitable type ol communication pro-
tocol and enable wired and/or wireless communications. as
would be appreciated by one of ordinary skill 1n the art.

The memory 204 of the network node 120 stores and/or
includes a plurality of applications 170. Each application
170 may be a software, mobile, or web application 1nstalled
at the network node 120 to perform specific functions. The
application 170 can be accessed from the network node 120.
Each application 170 may be associated with an organiza-
tion that provides services and/or products to users. For
example, an application 170 may be used by a user to access
a user intertace application 152 to interact with the organi-
zation for an application service through the central server
130. The application 170 may be used by a user to submit a
user request 124 associated with an application 1ssue 146.
The application 170 may allow users to access their user
profiles 142 via the network nodes 120. A user profile 142
may be stored 1n a database 140 communicatively coupled
with the components of the central server 130.

In some examples, each network node 120 may include a
database or a storage architecture, such as a network-
attached storage cloud, a storage area network, a storage
assembly, computer storage disk, computer memory unit,

computer-readable non-transitory storage media directly (or
indirectly) coupled to one or more components of the system

100.

10

15

20

25

30

35

40

45

50

55

60

65

10

Central Server

Central server 130 1s generally a server, or any other
device configured to process data and communicate with
network nodes 120 via the network 110. The central server
130 1s organized in a distributed manner and be implemented
in the cloud. The central server 130 1s generally configured
to oversee the operations of the network nodes 120, as
described further below 1n conjunction with the operational

flows of the methods 300, 400 and 500 described in FIGS.
3-5.

Processor 132 may comprise one or more processors
operably coupled to the memory 138. The processor 132 1s
any electronic circuitry, including, but not limited to, state
machines, one or more central processing unit (CPU) chips,
logic units, cores (e.g., a multi-core processor), field-pro-
grammable gate array (FPGAs), application-specific inte-
grated circuits (ASICs), or digital signal processors (DSPs).
The processor 132 may be a programmable logic device, a
microcontroller, a microprocessor, or any suitable combina-
tion of the preceding. The one or more processors are
configured to process data and may be implemented 1n
hardware or software. For example, the processor 132 may
be 8-bit, 16-bit, 32-bit, 64-bit, or of any other suitable
architecture. The processor 132 may include an arithmetic
logic unit (ALU) for performing arithmetic and logic opera-
tions. The processor 132 registers the supply operands to the
ALU and stores the results of ALU operations, and a control
umt that fetches instructions from memory and executes
them by directing the coordinated operations of the ALU,
registers and other components. The one or more processors
are configured to implement various instructions. For
cxample, the one or more processors are configured to
execute 1nstructions (e.g., soltware instructions 150) to
implement the operation engine 134. An operation engine
134 may include, but 1s not limited to, one or more separate
and imndependent soitware and/or hardware components of a
central server 130. In this way, the processor 132 may be a
special-purpose computer designed to implement the func-
tions disclosed herein. In one embodiment, the processor
132 1s implemented using logic units, FPGAs, ASICs, DSPs,
or any other suitable hardware. The processor 132 1s con-
figured to operate to perform one or more operations as
described in FIGS. 3-5.

Network interface 136 1s configured to enable wired
and/or wireless communications (e.g., via network 110). The
network interface 136 1s configured to communicate data
between the central server 130 and network nodes 120,
databases, systems, or domains. For example, the network
interface 136 may comprise a WIFI interface, a local area
network (LAN) interface, a wide area network (WAN)
interface, a modem, a switch, or a router. The processor 132
1s configured to send and receive data using the network
interface 136. The network interface 136 may be configured
to use any suitable type of communication protocol as would
be appreciated by one of ordinary skill in the art.

Memory 138 may be volatile or non-volatile and may
comprise a read-only memory (ROM), random-access
memory (RAM), ternary content-addressable memory
(TCAM), dynamic random-access memory (DRAM), and
static random-access memory (SRAM). Memory 138 may
be a non-transitory computer-readable medium 1mple-
mented using one or more disks, tape drives, solid-state
drives, and/or the like. Memory 138 1s operable to store the
soltware instructions 150 and/or any other data or instruc-
tions. The soitware mstructions 150 may store any suitable
set of istructions, logic, rules, or code operable to be
executed by the processor 132 to implement the processes
and embodiments described below. In an example operation,

US 11,888,708 Bl

11

the memory 138 may store a user iterface application 152,
a sense module 1354, a strategy module 158, an action
module 162, and other program modules which are 1mple-
mented 1n computer-executable software instructions, such
as software instructions 150. The user interface application
152 1s configured to facilitate communications and opera-
tions of the central server 130 through a user interface 137
of the central server 130. The sense module 154 may be
implemented by a machine learning model 156 and one or
more other software models. The machine learning model
156 may comprise machine learning algorithms including
support vector machine, random forest, k-means clustering,
ctc. The machine learning model 156 may be trained to
classity a set of the data objects 148 of the application 1ssue
146 into one or more 1ssue patterns 174. The strategy module
158 may include a neural network 160 and one or more other
solftware models. The neural network 160 may be imple-
mented by a plurality of neural network (NN) layers, Con-
volutional NN (CNN) layers, Long-Short-Term-Memory
(LSTM) layers, Bi-directional LSTM layers, Recurrent NN
(RNN) layers, a Generative Adversarial Network (GAN),
and the like. The neural network 160 may be trained to
process the one or more 1ssue patterns 174 and application
information associated with an application 1ssue 146 to
determine a strategic solution 177 with a series of executable
operations 178 for solving the application issue 146.

Database 140 may be a remote database, a cloud database,
or an on-site internal database. Database 140 may be
coupled to or in communication with and accessed by the
central server 130 via the network 110. As 1llustrated in FIG.
1, the database 140 may be an internal database and stored
in the memory 138. The database 140 stores mnformation
including user profiles 142, application issues 146 with 1ssue
identifiers 147, applications 170 with application i1dentifiers
172, 1ssue patterns 174 with pattern identifier 175, network
node addresses 176, strategic solutions 177 with solution
identifiers 179, previous application 1ssues 180, previous
data objects 181, vectors 182, traiming data 184, time stamps
186. A plurality of application 1ssues 146 include a plurality
ol sets of data objects 148. Each application 1ssue 146 may
include a corresponding set of data objects 148 associated
with a solution identifier 179. A plurality of strategic solu-
tions 177 include a plurality of series of executable opera-
tions 178. Each strategic solution 177 includes a correspond-
ing series of executable operations 178.

Operation Engine

In some embodiments, the operation engine 134 may be
implemented by the processor 132 to monitor operations of
a plurality of applications 170 running at various network
nodes 120 in a distributed network 116. The operation
engine 134 may be implemented by the processor 132 to
automatically detect dynamic issues associated with appli-
cations 170 operating at the network nodes 120. The opera-
tion engine 134 may be implemented by the processor 132
to determine and deploy the solutions to solve the dynamic
1ssues to prevent or avoid failure operations of the applica-
tions 170 at the corresponding network nodes 120 in real
time.

In some embodiments, the operation engine 134 may be
implemented by the processor 132 to execute a sense
module 154 with the software instructions 150 to automati-
cally detect and collect operation status of a plurality of
applications 170 which operate at corresponding network
nodes 120 at various timestamps 186 1n real time. The sense
module 154 may be executed to 1dentily certain application
issues 146 which may cause failure operations of the cor-
responding applications 170 at the network nodes 120. The

10

15

20

25

30

35

40

45

50

55

60

65

12

sense module 154 may include a machine learming model
156 which 1s tramned to identify issue patterns 174 of the
application 1ssues 146 associated with the applications 170
running at the network nodes 120.

In some embodiments, the operation engine 134 may be
implemented by the processor 132 to execute the strategy
module 158 with the software mnstructions 150 to automati-
cally determine strategic solutions 177 based on the 1ssue
patterns 174 for the application issues 146. Each strategic
solution 177 may include a series of executable operations
178. The series of executable operations 178 1s configured to
solve each corresponding application 1ssue 146 to prevent a
failure operation of the application 170 at the corresponding
network node 120 1n real time.

In some embodiments, the operation engine 134 may be
implemented by the processor 132 to execute an action
module 162 with the software instructions 150 to automati-
cally deploy the each corresponding strategic solution 177
with the series of the executable operations 178 to solve each
application 1ssue 146. This process may prevent a failure
operation of the application 170 before a problem or related
to the application 1ssue 146 occurs at the corresponding
network node 120. The operation of the disclosed system
100 1s described below.

Detecting Dynamic Issues Occurring 1 a Distributed Net-
work

This process may be implemented by central server 130 to
execute the sense module 154 to detect dynamic issues
occurring at various network nodes 120 i a distributed
network 116. In one embodiment, the sense module 154 may
be executed by the processor 132 to track and detect
operation status of a plurality of applications 170 and
associated devices operating at the network nodes 120. The
central server 130 may detect and receive corresponding
application information associated with the applications 170
running at the network nodes 120 in real time.

An application 1ssue 146 may be associated with the
applications 170 running at a network node 120. The sense
module 154 may be executed by the processor 132 to detect
operation data of the network node 120. The operation data
of the network node 120 may include network node status
and signals from or sent to the network node 120. If the
network node 120 1s active and communicates with the
processor 132 of the central server 130, the sense module
154 may be executed by the processor 132 to detect current
traflic into the network node 120 and current output of the
network node 120. If the network node 120 does not
communicate with the processor 132 of the central server
130, there 1s no signal sent to the central server 130 or from
the network node 120. The network node 120 does not
respond to any requests from the central server 130. The
sense module 154 may be executed by the processor 132 to
receive the operation data of the network node 120 and store
it 1n the database 140. The sense module 154 may be
executed by the processor 132 to process the operation data
of each network node 120 and detect any dynamic applica-
tion 1ssues 146 associated with the network node 120 1n real
time.

The sense module 154 may be executed by the processor
132 to identity an application 1ssue 146 associated with a
soltware application 170 or a network device operating with
the soltware application 170 at a network node 120. In some
embodiment, the sense module 154 may be executed by the
processor 132 to receive application information associated
with application 1ssues 146 occurring at certain network
nodes 120 through a blockchain network using a distributed
hash technology. The application information may include

US 11,888,708 Bl

13

textual data of an operation status of the application 170. The
central server 130 may store and update the textual data of
the operation status of the application 170 1n the database
140 1n real time.

The operation status of the application 170 may include
one or more measurable {features of CPU utilization,
memory capacity, memory utilization, a user login informa-
tion, memory boundary, data accessibility associated with
the application 170, network node address 176, network
node status, mput data, output data, an application 1ssue
statement 164, timestamps 186, and any other data associ-
ated with the application 170 and the corresponding network
node 120. One or more measurable features of the CPU
utilization may represent processor performance associated
with the network node 120. The input data may represent
various signals received by the network node 120 from users
or other network nodes 120. In some embodiments, one or
more measurable features of the operation status of an
application 170 may include one or more operation param-
cters associated with CPU utilization, memory utilization,
memory boundary, signals from and sent to a network node
120, user activities of accessing the application 170, network
node address 176, network node status, or a certain time of
period.

The sense module 154 may be executed by the processor
132 to 1identify a plurality of dynamic application 1ssues 146,
such as memory utilization, network port, data accessibility,
application operation configuration, resource contention,
etc.

In one embodiment, the sense module 154 may be
executed by the processor 132 to detect an application 1ssue
146, such as a memory utilization 1ssue associated with the
application 170 running at the network node 120. For
example, the application 170 may require a certain memory
capacity to run properly at the network node 120. The central
server 130 may receive application information of the appli-
cation 170, such as a memory utilization capacity, a memory
boundary, a free memory, etc. The sense module 154 may be
executed by the processor 132 to detect that the memory
utilization of the application 170 may cross the memory
boundary. The application 170 requires more memory to
operate properly at the network node 120. The central server
130 needs to provide a solution to ensure that enough
memory 1s assigned to the application 170 to prevent a
tailure operation of the application 170 at the network node
120. The sense module 154 may be executed by the pro-
cessor 132 to 1dentily such a memory utilization issue before
the memory utilization of the application 170 crosses the
memory boundary.

In one embodiment, an application 1ssue 146 may be
associated with a processor performance 1ssue occurring at
a network node 120. The sense module 134 may be executed
by the processor 132 to monitor the processor performance
such as power consumption. The central server 130 may
receive the processor performance miformation and the cor-
responding operation data. The sense module 154 may be
executed by the processor 132 to identily an application
1ssue 146 associated with power consumption of a processor
at the network node 120 based on the processor performance
information and the corresponding operation data.

In one embodiment, an application 1ssue 146 may be
related to a data access contilict 1ssue associated with an
application 170 running at the network node 120. For
example, different users may request to access to a file stored
in the memory 138 or the database 140. The sense module
154 may be executed by the processor 132 to detect various
data access 1ssues associated with the data access request

10

15

20

25

30

35

40

45

50

55

60

65

14

based on the user inputs, application operations, and opera-
tion results. For example, a user may access to the applica-
tion 170 for data processing. Some functions associated with
the application 170 may be configured to be authorize some
users to access but block other users from accessing. The
user may request to access some portions of the file asso-
ciated with the application 170 but not be able to access
them from a network node 120. The reason 1s some portions
of the file may be read or write locked for the user. The
central server 130 may store user inputs, application opera-
tions, and operation results associated with a user request
124 to access the file associated with the application 170.

In some embodiments, the sense module 154 may be
executed by the processor 132 to generate textual data of an
operation status of the application 170 to represent the
application i1ssue 146 occurring at the network node 120.
The sense module 154 may be executed by the processor 132
to convert the textual data of the operation status of the
application 170 1nto a set of data objects 148. The set of the
data objects 148 may 1nclude a set of vectors 182 with a set
of numerical values. The set of the vectors 182 are vector
representations of the corresponding operation status asso-
ciated with the application 1ssue 146.

In some embodiments, a database 140 may store a plu-
rality of sets of previous data objects 181 associated with a
plurality of previous application 1ssues 180. The previous
application 1ssues 180 previously occurred at various net-
work nodes 120. Each previous application 1ssue 180 may be
represented by a set of previous data objects 181. Each set
of the previous data objects 181 may include a correspond-
ing set of vectors 182 with a set of numerical values.
Identity Issue Patterns of Application Issues

This process may be implemented by the central server
130 to execute the sense module 154 to 1dentily one or more
1ssue patterns 174 for an application 1ssue 146 based on a set
of data objects 148. The set of the data objects 148 repre-
sents the application 1ssue 146 occurring at a network node
120 at a titmestamp 186. Each 1ssue pattern 174 represents
one or more recurring operation status of the application
170. Each 1ssue pattern 174 1s associated with a strategic
solution 177 with a series of executable operations 178.
Each strategic solution 177 may be represented as solution
identifier 179. In some embodiments, the sense module 154
may include a machine learning model 156 used to 1dentify
one or more 1ssue patterns 174 based on the set of data
objects 148 associated with the application 1ssue 146.

The machine learming model 156 may be trained with
training data 184. The tramning data 184 may include a
plurality of sets of previous data objects 181 associated with
corresponding previous application issues 180, 1ssue pat-
terns 174, pattern identifiers 175, a plurality of strategic
solutions 177 with series of executable operations 178, and
any other data associated with the plurality of the previous
application 1ssues 180. The database 140 may store difierent
issue patterns 174. FEach 1ssue pattern corresponds to a
strategic solution 177 for an application 1ssue 180.

The trained machine learning model 156 may be used to
identily one or more 1ssue patterns 174 based on a set of data
objects 148 associated with an application 1ssue 146 occur-
ring at a network node 120. For example, the sense module
154 may be executed by the processor 132 to i1dentily an
issue pattern 174 based on the plurality of data objects 148
associated with a memory utilization issue.

In some embodiments, the machine learning model 156
may be trained to classily a plurality of sets of the previous
data objects 181 associated with the previous application
issues 180 to generate multiple clusters of 1ssue patterns 174.

US 11,888,708 Bl

15

Each cluster of the i1ssue patterns 174 may include one or
more 1ssue patterns 174 for an application 1ssue 180. Each
1ssue pattern 174 for an application 1ssue 180 has a pattern
identifier 175.

In some embodiments, the sense module 154 may be
executed by the processor 132 to identily an application
issue 146 by processing a user request 124 with an 1ssue
statement 164 for an application 1ssue 146. For example, the
sense module 154 may be executed by the processor 132 to
identify the application 1ssue 146, such as a data access
conilict 1ssue associated with an application 170 runming at
a network node 120. The 1ssue statement 164 may include a
set of data objects 148 of the data access contlict 1ssue. The
sense module 154 may be executed by the processor 132 to
process the set of data objects 148 to generate one or more
1ssue patterns 174 for the data access contlict 1ssue.
Identity Issue Patterns of Application Issues Based on
Operation Changes

This process may be implemented by the central server
130 to execute the sense module 154 to 1dentily one or more
1ssue patterns 174 based on operation changes associated
with an application 1ssue 146 occurring at a network node
120.

The sense module 154 may be executed by the processor
132 to automatically detect the operation changes associated
with the application 1ssue 146 occurring at a network node
120 at various timestamps 186. The operation changes may
represent changes between different sets of data objects 148.
The changes between diflerent sets of data objects 148
correspond to operation changes between different applica-
tion status for the application 1ssue 146. The plurality of sets
of the previous data objects 181 stored in the database 140
may include the changes between different sets of previous
data objects 181 corresponding to operation changes of the
previous application issues 180.

In one embodiment, the machine learning model 156 may
be traimned with training data 184. The training data 184 may
include the changes between different sets of previous data
objects 181 associated with corresponding previous appli-
cation 1ssues 180, 1ssue patterns 174, pattern identifiers 175,
a plurality of series of executable operations 178, and any
other data associated with a plurality of the previous appli-
cation 1ssues 180.

The sense module 154 may be executed by the processor
132 to use the tramned machine learning model 156 to
identily one or more 1ssue patterns 174 for an application
issue 146 based on operation changes of the application
issue 146. The data of operation changes of the application
1ssue 146 at a network node 120 are received by the central
server 130 at diflerent timestamps 186. The one or more
1ssue patterns 174 may represent the operation changes of an
application 1ssue 146 which occurs at the network node 120
between different timestamps 186.

The sense module 154 may be executed by the processor
132 to continuously detect and receive application informa-
tion or operation status of the application 1ssue 146 occur-
ring at the network node 120. For example, the sense module
154 may be executed by the processor 132 to detect the
memory utilization information of the application 1ssue 146
1s 1ncreased continuously (e.g., from 60% to 70%) at a
network node 120. The sense module 154 may be executed
to by the processor 132 to determine the changes of memory
utilization of the application 1ssue 146 at diflerent time-
stamps 186. The sense module 154 may be executed by the
processor 132 to generate one or more updated 1ssue patterns
174 dynamically 1n real time. The one or more 1ssue patterns
174 may be updated corresponding to the operation changes

10

15

20

25

30

35

40

45

50

55

60

65

16

for the application 1ssue 146. Further, the one or more
pattern i1dentifier 175 may be dynamically updated corre-
sponding to the updated issue patterns 174 based on the
changed or updated application status for the application
issue 146.

In some embodiments, the sense module 154 may be
executed by the processor 132 to generate refined 1ssue
patterns with corresponding solution operations. For
example, the sense model may generate different clusters of
issue patterns 174 for diflerent application 1ssues 146, such
as the memory utilization issue, the data processing 1ssue,
application configuration 1ssue, the data access contlict
1ssue, etc.

In some embodiments, diflerent 1ssue patterns 174 may be
generated for an application 1ssue 146. The sense module
154 may be executed by the processor 132 to process the
plurality of the data objects 148 of the application 1ssue 146
into a cluster of 1ssue patterns 174. Each 1ssue pattern 174
within the cluster 1s associated with a unique strategic
solution 177 with a series of executable operations 178. The
database 140 may store diflerent 1ssue patterns 174 with
cach corresponding strategic solution 177. Dafferent 1ssue
patterns 174 corresponds to different strategic solutions 177.
Each 1ssue pattern 174 may be associate with a strategic
solution 177 and a unique set of executable operations 178.
An application 1ssue 146 may be solved by deploying
executing a strategic solution 177 with the set of executable
operations 178 at the network node 120.

Generate Strategic Solutions to Solve Application Issues

In some embodiments, the strategy module 158 may be
executed by the processor 132 to generate a strategic solu-
tion 177 to solve an application 1ssue 146 to prevent a failure
operation of the application 170 at the network node 120.
The strategic solution 177 may include a series of the
executable operations 178 to solve the application 1ssue 146
and prevent a failure of operation of the application 170 at
the network node 120. The series of the executable opera-
tions 178 may include a plurality of executable 1nstructions.

The strategy module 158 may include a neural network
160. The neural network 160 may be trained with training,
data 184 to automatically determine a strategic solution 177
with a series of executable operations 178 based on each
1ssue pattern 174 associated with each application 1ssue 146.
The training data 184 may include solution identifiers 179,
the plurality of series of executable operations 178, a plu-
rality of 1ssue patterns 174, pattern i1dentifiers 175, 1ssue
identifiers 147, application identifiers 172 associated with
the applications 170, network node addresses 176, and any
other data associated with the previous application 1ssues
180.

The process of tramning the neural network 160 may
include converting data of the 1ssue patterns 174 to a
plurality of neural nodes of a neural network 160. The 1ssue
patterns 174 are associated with corresponding previous
application 1ssues 180. The 1ssue patterns 174 are associated
with a plurality of strategic solutions 177 and a plurality of
series ol executable operations 178. The neural network 160
may be tramned by the central server 130 to determine a
solution 1dentifier 179 with a series of executable operations
178 corresponding to one or more 1ssue patterns 174. The
one or more 1ssue¢ patterns 174 are associated with an
application 1ssue 146 for an application 170.

In a training process, the operation engine 134 may be
executed by the processor 132 to train a neural network 160
with the training data 184 to determine a set of strategic
solutions 177 for corresponding application 1ssues 146. The
central server 130 may use the trained neural network 160 to

US 11,888,708 Bl

17

determine a strategic solution 177 based on an 1ssue pattern
174 for an application 1ssue 146. A strategic solutions 177
may 1s associated with a solution 1dentifier 179 and include
a series of executable operations 178. Fach solution 1denti-
fier 179 1s associated with a strategic solution 177, an 1ssue
pattern 1dentifier 175, an 1ssue 1dentifier 147, and an appli-
cation i1dentifier 172.

A trained neural network 160 may be executed by the
processor 132 to process the 1ssue patterns 174 associated
with dynamic application 1ssues 146 and generate a plurality
ol strategic solutions 177 for a plurality of dynamic appli-
cation 1ssues 146 associated with corresponding applications
170, such as memory utilization, network port, data acces-
sibility, runtime data processing related to application opera-
tion configuration, etc. Input data of the neural network 160
may include data of an issue pattern 174 and application
information associated with an application 1ssue 146. Output
data of the neural network 160 may include a strategic
solution 177 with a set of series of executable operations 178
for 1ssue pattern 174 for the particular application 1ssue 146.

For example, the trained neural network 160 may be
executed by the processor 132 to solve the data access
contlict 1ssue associated with file with read or write locked
for the application 1ssue 146 associated with data accessi-
bility. The strategy module 158 may be executed by the
processor 132 to generate an example strategic solution 177
with a series of executable operations 178 to unlock some
objects of the file. The series of executable operations 178
may include configuring writing lock by enable writing
function, automatically unlocking write and send the user
reminder to access, identifying the time interval (e.g., 1
minute) that the application 170 needs to unlock certain data
blocks, sending a notification to the user and ask the user to
wait for the recommended time interval to access the data,
etc.

In another example, the tramned neural network 160 may
be executed by the processor 132 may be implemented to
determine how much memory needs to increase so that the
application 170 1s not failed. The series of the executable
operations 178 may be configured to solve an application
1ssue 146 associated with memory utilization by increasing
a size of memory with a backup memory space. For
example, the strategy module 158 may be executed by the
processor 132 to generate a strategic solution 177 to increase
the memory space by 10% to prevent a failure operation of
application 170.

Deploy Solutions for Dynamic Application Issues

An action module 162 may be executed by the processor
132 to automatically deploy the strategic solutions 177 with
the series of the executable operations 178 to the network
node 120. The series of the executable operations 178 are
configured to seamlessly solve the application 1ssue 146 to
prevent a failure operation of the application 170 without
any manual operations. For example, the action module 162
may be executed by the processor 132 to take control the
application 170 running at the network node 120 and deploy
the solution to the network node where the application 1ssue
146 may happen.

In some embodiments, a series ol example executable
operations 178 to solve the application issue 146 may
include one or more of a solution identifier 179, an 1ssue
pattern 1dentifier 175, an 1ssue 1dentifier 147 of an applica-
tion 1ssue 146, application login authentication information,
one or more security rules to access the application, an
application i1dentifier 172 of an application 170, a network
node 1dentifier indicative of a network node address 176, a
set of executable instructions for solving the application

10

15

20

25

30

35

40

45

50

55

60

65

18

1ssue 146, or a current status of the application associated
with the application 1ssue 146.

In one embodiment, before deploying a strategic solution
177 with a set of series of executable operations 178 to the
network node 120, the action module 162 may be executed
by the processor 132 to identify a status of the application
170, a status of the network node 120, and the components
associated with the application 1ssue 146. For example, the
action module 162 may be executed by the processor 132 to
determine whether the network node 120 1s communicating
with the processor 132. In response to determining that the
network node 120 1s communicating with the processor 132,
the action module 162 may be executed by the processor 132
to further determine whether the application 170 1s currently
running at the network node 120. In response to determining
that the application 170 1s currently running at the network
node 120 and the network node 120 1s communicating with
the processor 132, the action module 162 may be executed
by the processor 132 may deploy the series of the executable
operations 178 to the network node 120 based at the network
node 120 address and the application i1dentifier 172.

For example, the central server 130 may determine
whether the application 1ssue 146 1s related to a software
application 170 or a hardware device failure. For an appli-
cation 1ssue 146 associated with a software failure, the
central server 130 may implement a strategic solution 177 to
restart the network node 120, reinstall the application 170,
etc. For a hardware failure, the central server 130 may
generate a notification to request an administrator to solve
the application 1ssue 146.

In one embodiment, before deploying a strategic solution
177 with a set of series of executable operations 178 to the
corresponding network node 120, the action module 162
may be executed by the processor 132 to identily one or
more 1ssue components associated with the application 1ssue
146 to be solved. The action module 162 may be executed
by the processor 132 to deploy a set of series of executable
operations 178 to the corresponding network node 120 to
configure the one or more 1ssue components associated with
the application 1ssue 146. For example, the one or more 1ssue
components associated with the application 1ssue 146 and
the application 170 may include one or more measurable
features of CPU utilization, memory capacity, memory
utilization, a user login information, memory boundary, data
accessibility associated with the application, network node
address, network node status. The set of series of executable
operations 178 1s configured to be executed at the network
node 120 to solve the application issue 146.

In one embodiment, to solve the application i1ssue 146
related to a memory utilization 1ssue, the action module 162
may be executed by the processor 132 to access the appli-
cation 170 operating at the network node 120 and take over
an administrative privilege with a user login information.
The action module 162 may further be executed by the
processor 132 to apply the series of executable operations
178 to increase a memory capacity of the network node 120
so that the corresponding application 170 runs properly at
the network node 120. In this way, the application 170
running at the network node 120 does not fail due to lack of
a memory space.

Example Operational Flow for Auto-Determining Solutions
for Dynamuitic Issues in a Distributed Network

FIG. 3 illustrates an example tlow of a method 300 for
auto-determining solutions for dynamitic 1ssues 1n a distrib-
uted network 1n the system 100. Modifications, additions, or
omissions may be made to method 300. Method 300 may
include more, fewer, or other operations. For example,

US 11,888,708 Bl

19

operations may be performed by the central server 130 1n
parallel or in any suitable order. While at times discussed as
the system 100, processor 132, operation engine 134, sense
module 154, strategy module 1358, action module 162, or
components ol any of thereol performing operations, any
suitable system or components of the system 100 may
perform one or more operations of the method 300. For
example, one or more operations of method 300 may be
implemented, at least i part, in the form of software
istructions 150 of FIG. 1, stored on non-transitory, tangible,
machine-readable media (e.g., memory 138 of FIG. 1) that
when run by one or more processors (€.g., processor 132 of
FIG. 1) may cause the one or more processors to perform
operations 302-316.

For example, when the software instructions 150 are
executed, the central server 130 executes an operation
engine 134 to perform operations 1n the method 300 1llus-
trated 1n FIG. 3.

At operation 302, the central server 130 may detect an
application 1ssue 146 associated with an application 170
running at a network node 120 at a particular timestamp 186.

At operation 304, the central server 130 may receive a set
of data objects 148 associated with the application 1ssue 146.

At operation 306, the central server 130 may classily, by
a machine learning model 156, the set of the data objects 148
of the application 1ssue 146 into one or more 1ssue patterns
174. In some embodiments, the machine learning model 156
1s trained based on the plurality of sets of the previous data
objects 181 and corresponding 1ssue patterns 174 associated
with the corresponding previous application 1ssues 180.

At operation 308, the central server 130 may process,
through a neural network 160, the one or more 1ssue patterns
174 and application information associated with the appli-
cation 1ssue 146 at the network node 120 to determine a
series of executable operations 178 for solving the applica-
tion 1ssue 146. In some embodiments, the neural network
160 1s trained based on the plurality of the 1ssue patterns 174
and associations between the issue patterns 174 and the
plurality of series of the executable operations 178.

At operation 310, the central server 130 may determine
whether the network node 120 1s communicating with the
processor 132.

At operation 312, the central server 130 may deploy the
series of the executable operations 178 to the network node
120 1n response to determining that the network node 120 1s
communicating with the processor 132. The series of the
executable operations 178 1s configured to be automatically
executed at the network node 120 to solve the application
issue 146. The central server 130 may deploy the series of
the executable operations 178 to solve the application 1ssue
146 at the network node 120 to prevent a failure operation
of the application 170.

At operation 314, the central server 130 may determine a
deployment result of the application 170. The central server
130 may continuously receive the operation data of the
application 170 running at the network node 120. The
central server 130 may 1dentily operation changes associated
with the application issue 146. For example, the central
server 130 may determine a deployment result of the appli-
cation 170 which indicates that the application 1ssue 146 1s
solved at the network node 120.

At operation 316, the central server 130 may generate a
security alert with an operation status of the network node
120 for further testing the network node 120 1n response to
determining that the network node 120 1s not communicat-
ing with the processor 132 or the network node 120 1s not
communicating with the processor 132.

10

15

20

25

30

35

40

45

50

55

60

65

20

Example Operational Flow for Auto-Detecting Dynamic
Issue Changes 1n a Distributed Network

FIG. 4 1llustrates an example backend operational flow of
a method 400 to auto-detecting dynamic 1ssue changes 1n a
distributed network. Modifications, additions, or omissions
may be made to method 400. Method 400 may include more,
tewer, or other operations. For example, operations may be
performed by the central server 130 in parallel or in any
suitable order. While at times discussed as the system 100,
processor 132, operation engine 134, sense module 154,
strategy module 158, action module 162, and other program
modules which are implemented 1 computer-executable
software instructions, such as software instructions 150, or
components of any of thereol performing operations, any
suitable system or components of the system may perform
one or more operations of the method 400. For example, one
or more operations ol method 400 may be implemented, at
least 1n part, 1n the form of soitware mstructions 150 of FIG.
1, stored on non-transitory, tangible, machine-readable
media (e.g., memory 138 of FIG. 1) that when run by one or
more processors (e.g., processor 132 of FIG. 1) may cause
the one or more processors to perform operations 402-414
and 310-316.

At operation 402, the central server 130 may detect an
application 1ssue 146 associated with an application 170
running at a network node 120 at a first timestamp 186.

At operation 404, the central server 130 may receive a
first set of data objects associated with the application 1ssue
146 occurring at the first timestamp 186.

At operation 406, the central server 130 may detect the
application 1ssue 146 associated with the application 170
running at the network node 120 at a second timestamp 186.

At operation 408, the central server 130 may receive a
second set of data objects associated with the application
issue 146 occurring at the second timestamp 186.

At operation 410, the central server 130 may determine a
change between a first set of the data objects and a second
set of data objects.

At operation 412, the central server 130 may identity, by
a machine learning model 156 and based on the change
between the first set of the data objects and the second set of
data objects, an 1ssue pattern 174 represents an operation
change of the application 170. The operation change of the
application 170 occurs between the first timestamp 186 and
the second timestamp 186. For example, the change between
a first set of the data objects and a second set of data objects
may represent the change associated with the memory
utilization information of the application 1ssue 146 occurring
at the network node 120. For example, the memory utiliza-
tion of the application 170 may be increased (e.g., from 60%
to 70%) at the network node 120 at different timestamps
186. may be executed by the processor 132 to generate one
or more updated 1ssue patterns 174 dynamically in real time.
The central server 130 may identily one or more issue
patterns 174 for the application 1ssue 146 by the machine
learning model 156 and based on the change of the memory
utilization of the application 170.

In some embodiments, the machine learning model 156 1s
trained based on the plurality of sets of the previous data
objects 181 and corresponding 1ssue patterns 174 associated
with the corresponding previous application 1ssues 180. The
plurality of sets of the previous data objects 181 comprise a
plurality of operation changes associated with the corre-
sponding applications 170. At operation 414, the central
server 130 may user a neural network 160 to process the
1ssue pattern 174 with application information to determine
a series ol executable operations 178 associated with the

US 11,888,708 Bl

21

application 1ssue 146. The series of the executable opera-
tions 178 1s indicative of a solution of the application issue
146 and corresponds to the change of the operation status of
the application 170. For example, the central server 130 may
determine a series of executable operations 178 configured
to 1ncrease the memory space by 10% to prevent a failure
operation ol application 170 at the network node 120.

At operation 310, the central server 130 may determine
whether the network node 120 1s communicating with the
processor 132.

At operation 312, the central server 130 may deploy the
series of the executable operations 178 to the network node
120 1n response to determining that the network node 120 1s
communicating with the processor 132. The series of the
executable operations 178 1s configured to be automatically
executed at the network node 120 to solve the application
1ssue 146. The central server 130 may deploy the series of
the executable operations 178 for solving the application
issue 146 at the network node 120 to prevent a failure
operation of the application 170. For example, For example,
the central server 130 may deploy the series of the execut-
able operations 178 to the network node 120 to increase the
memory space by 10% to prevent a failure operation of
application 170.

At operation 314, the central server 130 may determine a
deployment result of the application 170. The central server
130 may continuously receive the operation data of the
application 170 running at the network node 120. The
central server 130 may 1dentily operation changes associated
with the application 1ssue 146. For example, the central
server 130 may determine a deployment result of the appli-
cation 170 which indicates that the application 1ssue 146 1s
solved at the network node 120.

At operation 316, the central server 130 may generate a
security alert with an operation status of the network node
120 for further testing the network node 120 1n response to
determining that the network node 120 1s not communicat-
ing with the processor 132 or the network node 120 1s not
communicating with the processor 132.

Example Operational Flow for Implementing Auto-Correc-
tion to Solve Dynamic Issues 1n a Distributed Network

FIG. § 1llustrates an example backend operational flow of
a method 500 to mmplement auto-correction to solve
dynamic 1ssues in a distributed network. Modifications,
additions, or omissions may be made to method 500.
Method 500 may include more, fewer, or other operations.
For example, operations may be performed by the central
server 130 1n parallel or 1n any suitable order. While at times
discussed as the system 100, processor 132, operation
engine 134, sense module 154, strategy module 158, action
module 162, or components of any of thereol performing
operations, any suitable system or components of the system
may perform one or more operations of the method 300. For
example, one or more operations of method 500 may be
implemented, at least in part, in the form of software
instructions 150 of FIG. 1, stored on non-transitory, tangible,
machine-readable media (e.g., memory 138 of FIG. 1) that
when run by one or more processors (e.g., processor 132 of
FIG. 1) may cause the one or more processors to perform
operations 502-512, 310, and 314-316.

At operation 502, the central server 130 may detect an
application 1ssue 146 associated with an application 170
running at a network node 120 at a particular timestamp 186.
The application 1ssue 146 comprises a user request 124 with
an 1ssue statement 164 and a user interaction associated with
one or more operation parameters of the application 170. For
example, the central server 130 may receive the user request

10

15

20

25

30

35

40

45

50

55

60

65

22

124 with an 1ssue statement 164 about a data access conflict
1ssue associated with a file associated with an application
170. The 1ssue statement 164 may include user iputs, user
interactions with the file, and 1ssue description, and any
other data associated with the application 1ssue 146.

At operation 504, the central server 130 may receive a set
of data objects 148 associated with the application 1ssue 146
occurring at the timestamp 186. The set of data objects 148
may represent the user request 124 and the 1ssue statement
164 associated with the application 170 and the correspond-
ing application 1ssue 146.

At operation 506, the central server 130 may a machine
learning model 156 to classily the set of the data objects of
the application 1ssue 146 1nto one or more 1ssue patterns 174.
The machine learning model 156 1s trained based on the
plurality of sets of the data objects and the 1ssue patterns 174
associated with the corresponding previous application
issues 180.

At operation 508, the central server 130 may use a neural
network 160 to process the one or more 1ssue patterns 174
and application information associated with the application
issue 146 at the network node 120 to determine a series of
executable operations 178. The a series of executable opera-
tions 178 1s configured to solve the application 1ssue 146. In
some embodiments, the series of the executable operations
178 may be configured to be automatically executed at the
network node 120 to correct the one or more parameters of
the application 170 to prevent a failure operation of the
application 170. In some embodiments, the operation status
of the application 170 comprises one or more operation
parameters associated with CPU utilization, memory utili-
zation, memory boundary, signals from and sent to corre-
sponding network nodes, user activities of accessing the
application 170, network node address 176, network node
status, or a certain time of period. In some embodiments, the
one or more operation parameters associated with the appli-
cation 170 may be configured to change an operation status
of the application 170 running at the network node 120. For
example, the series of the executable operations 178 1is
configured to correct one or more operation parameters of
the application 170 to automatically unlocking some objects
of the file and allow the user to access the corresponding
objects of the file.

In some embodiments, the neural network 160 1s trained
based on the plurality of the 1ssue patterns 174 and asso-
ciations between the 1ssue patterns 174 and the plurality of
series of the executable operations 178. The series of execut-
able operations 178 comprises a network node 120 address
and an application i1dentifier 172.

At operation 310, the central server 130 may determine
whether the network node 120 1s communicating with the
processor 132.

At operation 510, the central server 130 may determine
whether the application 170 1s currently runming at the
network node 120 1n response to determining that the
network node 120 1s communicating with the processor 132.

At operation 512, the central server 130 may deploy the
series of the executable operations 178 to the network node
120 based at the network node 120 address and the appli-
cation identifier 172 1n response to determining that the
application 170 1s currently running at the network node 120
and the network node 120 i1s communicating with the
processor 132. For example, the central server 130 may
deploy the series of the executable operations 178 to the
network node 120 to automatically unlocking some objects
of the file and allow the user to access the corresponding
objects of the file.

US 11,888,708 Bl

23

At operation 314, the central server 130 may determine a
deployment result of the application 170. The central server
130 may continuously receive the operation data of the
application 170 running at the network node 120. The
central server 130 may 1dentify operation changes associated
with the application 1ssue 146. For example, the central
server 130 may determine a deployment result of the appli-
cation 170 which indicates that the application 1ssue 146 1s
solved at the network node 120.
At operation 316, the central server 130 may generate a
security alert with an operation status of the network node
120 for further testing the network node 120 1n response to
determining that the network node 120 i1s not communicat-
ing with the processor 132 or the network node 120 1s not
communicating with the processor 132.
While several embodiments have been provided in the
present disclosure, 1t should be understood that the disclosed
systems and methods might be embodied 1n many other
specific forms without departing from the spirit or scope of
the present disclosure. The present examples are to be
considered as illustrative and not restrictive, and the inten-
tion 1s not to be limited to the details given herein. For
example, the various elements or components may be com-
bined or integrated with another system or certain features
may be omitted, or not implemented.
In addition, techniques, systems, subsystems, and meth-
ods described and illustrated 1n the various embodiments as
discrete or separate may be combined or integrated with
other systems, modules, techniques, or methods without
departing from the scope of the present disclosure. Other
items shown or discussed as coupled or directly coupled or
communicating with each other may be indirectly coupled or
communicating through some interface, device, or interme-
diate component whether electrically, mechanically, or oth-
erwise. Other examples of changes, substitutions, and altera-
tions are ascertainable by one skilled in the art and could be
made without departing from the spirit and scope disclosed
herein.
To aid the Pattern Oflice, and any readers of any pattern
issued on this application 1n interpreting the claims
appended hereto, applicants note that they do not intend any
of the appended claims to mvoke 35 U.S.C. § 112(1) as 1t
exists on the date of filing hereof unless the words “means
for” or “step for” are explicitly used in the particular claim.
The invention claimed 1s:
1. A system comprising:
a memory operable to store:
a plurality of sets of previous data objects associated with
corresponding previous application issues and 1ssue
patterns associated with corresponding applications,
wherein each data object represents an operation status
of a corresponding application, wherein each 1ssue
pattern represents one or more recurring operation
status of the corresponding application, and
a plurality of series of executable operations for solving
the previous application 1ssues; and
a processor operably coupled to the memory, the proces-
sor configured to:
detect an application 1ssue associated with an applica-
tion running at a network node at a particular time-
stamp;

receive a set ol data objects associated with the appli-
cation 1ssue;:

classily, by a machine learning model, the set of the
data objects of the application 1ssue into one or more
1ssue patterns, wherein the machine learning model
1s trained based on the plurality of sets of the data

10

15

20

25

30

35

40

45

50

55

60

65

24

objects and corresponding issue patterns associated
with the corresponding previous application issues;

process, through a neural network, the one or more
1ssue patterns and application information associated
with the application i1ssue at the network node to
determine a series of executable operations for solv-
ing the application 1ssue, wherein the neural network
1s trained based on the plurality of the 1ssue patterns
and associations between the issue patterns and the
plurality of series of the executable operations; and

deploy the series of the executable operations to solve
the application 1ssue at the network node to prevent
a Tailure operation of the application.

2. The system of claim 1, wherein the previous data
objects and the previous application i1ssues are associated
with corresponding executable operations for the same
application running on different network nodes 1n a distrib-
uted network, and

wherein the previous data objects and the previous appli-

cation issues are associated with the corresponding
applications operating on the same network node 1n the
distributed network.

3. The system of claim 2, wherein the processor 1s further
configured to:

identily a plurality of issue patterns from the plurality of

sets of the data objects by classitying the plurality of
sets of the previous data objects; and

determine associations between the 1ssue patterns and

corresponding executable operations for solving the
previous application issues,

wherein the plurality of sets of the data objects comprise

vector representations ol the corresponding operation
status associated with the previous application issues.

4. The system of claim 3, wherein the processor 1s further
configured to:

determine, by the neural network, a solution 1dentifier for

cach series ol executable operations associated with a
corresponding application issue; and

associate the corresponding solution i1dentifier with the

1ssue pattern and the corresponding application issue.

5. The system of claim 1, wherein the processor 1s further
configured to:

determine whether the network node 1s communicating,

with the processor;

in response to determining that the network node 1s

communicating with the processor, deploy the series of
the executable operations to the network node to solve
the application issue to prevent a failure operation of
the application; and

determine a deployment result of the application.

6. The system of claim 1, wherein the series of the
executable operations comprises one or more of:

a solution 1dentifier,

an 1ssue pattern i1dentifier,

an 1ssue 1dentifier indicative of the application 1ssue,

an application identifier,

a network node identifier indicative of a network node

address,

a current status of the application associated with the

application 1ssue, or

a set ol executable instructions for solving the application

1Ssue.

7. The system of claim 1, wherein the application infor-
mation comprises textual data of an operation status of the
application, and the operation status of the application
comprises one or more measurable features of CPU utiliza-
tion, memory capacity, memory utilization, memory bound-

US 11,888,708 Bl

25

ary, data accessibility associated with the application, net-
work node address, network node status, mput data, output
data, or an application 1ssue statement.

8. A method comprising:

detecting an application i1ssue associated with an applica-

tion running at a network node at a particular time-
stamp:;

receiving a set of data objects associated with the appli-

cation 1ssue:

classitying, by a machine learming model, the set of the

data objects of the application 1ssue into one or more
1ssue patterns, wherein the machine learming model 1s
trained based on a plurality of sets of the data objects
and corresponding i1ssue patterns associated with cor-
responding previous application issues;

processing, through a neural network, the one or more

1ssue patterns and application information associated
with the application 1ssue at the network node to
determine a series of executable operations for solving
the application 1ssue, wherein the neural network 1s
trained based on the plurality of the issue patterns and
associations between the 1ssue patterns and the plurality
of series of the executable operations; and

deploying the series of the executable operations for

solving the application 1ssue at the network node to
prevent a failure operation of the application.

9. The method of claim 8, wherein the previous data
objects and the previous application i1ssues are associated
with corresponding executable operations for the same
application running on different network nodes 1n a distrib-
uted network, and

wherein the previous data objects and the previous appli-

cation issues are associated with the corresponding
applications operating on the same network node 1n the
distributed network.

10. The method of claim 9, turther comprising;:

identifying a plurality of 1ssue patterns from the plurality

of sets of the data objects by classifying the plurality of
sets of the previous data objects; and

determining associations between the 1ssue patterns and

corresponding executable operations for solving the
previous application issues,

wherein the plurality of sets of the data objects comprise

vector representations of the corresponding operation
status associated with the previous application issues.

11. The method of claim 10, further comprising:

determining, by the neural network, a solution i1dentifier

for each series of executable operations associated with
a corresponding application 1ssue; and

associating the corresponding solution identifier with the

1ssue pattern and the corresponding application 1ssue.

12. The method of claim 8, further comprising;:

determining whether the network node 1s communicating,

with the processor;

in response to determining that the network node 1s

communicating with the processor, deploying the series
of the executable operations to the network node,
wherein the series of the executable operations 1is
configured to be automatically executed at the network
node to solve the application i1ssue; and

determining a deployment result of the application.

13. The method of claim 8, wherein the series of the
executable operations comprises one or more of:

a solution identifier,

an 1ssue pattern i1dentifier,

an 1ssue 1dentifier indicative of the application issue,

an application 1dentifier,

5

10

15

20

25

30

35

40

45

50

55

60

65

26

a network node identifier indicative of a network node

address,

a current status ol the application associated with the

application issue, or

a set ol executable instructions for solving the application

1Ssue.

14. The method of claim 8, wherein the application
information comprises textual data of an operation status of
the application, and the operation status of the application
comprises one or more measurable features of CPU utiliza-
tion, memory capacity, memory utilization, memory bound-
ary, data accessibility associated with the application, net-
work node address, network node status, mput data, output
data, or an application 1ssue statement.

15. A non-transitory computer-readable medium storing
instructions that when executed by a processor cause the
processor to:

detect an application 1ssue associated with an application

running at a network node at a particular timestamp;
recerve a set of data objects associated with the applica-
tion 1ssue;

classity, by a machine learning model, the set of the data

objects of the application 1ssue 1nto one or more 1ssue
patterns, wherein the machine learning model 1s trained
based on a plurality of sets of the data objects and
corresponding 1ssue patterns associated with corre-
sponding previous application issues;

process, through a neural network, the one or more 1ssue

patterns and application information associated with
the application 1ssue at the network node to determine
a series of executable operations for solving the appli-
cation 1ssue, wherein the neural network 1s trained
based on the plurality of the 1ssue patterns and asso-
ciations between the 1ssue patterns and the plurality of
series of the executable operations; and

deploy the series of the executable operations to solve the

application issue at the network node to prevent a
tailure operation of the application.

16. The non-transitory computer-readable medium of
claim 15, wherein the previous data objects and the previous
application 1ssues are associated with corresponding execut-
able operations for the same application running on difierent
network nodes 1n a distributed network, and

wherein the previous data objects and the previous appli-

cation issues are associated with the corresponding
applications operating on the same network node 1n the
distributed network.

17. The non-transitory computer-readable medium of
claim 16, wherein the instructions further cause the proces-
sor to:

identily a plurality of issue patterns from the plurality of

sets of the data objects by classitying the plurality of
sets of the previous data objects; and

determine associations between the 1ssue patterns and

corresponding executable operations for solving the
previous application issues,

wherein the plurality of sets of the data objects comprise

vector representations of the corresponding operation
status associated with the previous application issues.

18. The non-transitory computer-readable medium of
claim 17, wherein the instructions further cause the proces-
SOr to:

determine, by the neural network, a solution 1dentifier for

cach series ol executable operations associated with a
corresponding application issue; and

associate the corresponding solution i1dentifier with the

1ssue pattern and the corresponding application 1ssue.

US 11,888,708 Bl

27

19. The non-transitory computer-readable medium of
claim 15, wherein the istructions further cause the proces-
SOr to:
determine whether the network node 1s communicating,
with the processor; d

in response to determining that the network node 1s
communicating with the processor, deploy the series of
the executable operations to the network node, wherein
the series of the executable operations 1s configured to
be automatically executed at the network node to solve
the application issue; and

determine a deployment result of the application.

20. The non-transitory computer-readable medium of
claim 15, wherein the series of the executable operations
comprises one or more of:

a solution identifier,

an 1ssue pattern i1dentifier,

10

15

28

an 1ssue 1dentifier indicative of the application 1ssue,

an application identifier,

a network node 1dentifier indicative of a network node
address,

a current status of the application associated with the
application 1ssue, or

a set ol executable instructions for solving the application
1ssue, and

wherein the application information comprises textual
data of an operation status of the application, and the
operation status of the application comprises one or
more measurable features of CPU utilization, memory
capacity, memory utilization, memory boundary, data
accessibility associated with the application, network
node address, network node status, input data, output
data, or an application 1ssue statement.

¥ K H oK ¥

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. . 11,888,708 B1 Page 1 of 1
APPLICATIONNO. :18/163775

DATED : January 30, 2024
INVENTOR(S) : Madiya et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page

Under Inventors Item (72), Line 4, please delete, “Tirupathirao Madiya™ and please insert
-- Tirupathi Rao Madiya --, therefor.

Signed and Sealed this
Fourteenth Day of May, 2024

Katherine Kelly Vidal
Director of the United States Patent and Trademark Olffice

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

