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310

Receive mput data including conditional mformation and image information

Generate synthesized 1image by applymg mput data to 1mage generation neural
network that maintains geometric mformation included 1 image information
and transforms remaining image mformation based on conditional mformation
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(Generate first synthesized image corresponding to conditional mformation
using image generation neural network based on 1mage information

Generate second synthesized tmage corresponding to the transformed
conditional mformation using image generation neural network
based on image mformation

Train image generation neural network by comparing tirst synthesized
image and second synthesized image based on transformation relationship
of conditional mformation
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1

COMPUTING METHOD AND APPARATUS
WITH IMAGE GENERATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit under 35 USC § 119(a)
of Korean Patent Application No. 10-2020-0150120, filed

on Nov. 11, 2020, in the Korean Intellectual Property Oflice,
the entire disclosure of which 1s 1ncorporated herein by

reference for all purposes.

BACKGROUND

Field

The following description relates to computing method
and apparatus with 1mage generation.

2. DESCRIPTION OF RELATED ART

With the development of artificial neural networks
(ANNs), various methods are being developed to generate
an 1mage representing an object, such as a human face or
nature, that has relatively irregular and various structural
variations and that 1s similar to a real object such that 1t 1s
difficult to distinguish between the generated object and the
real object.

However, for example, 11 an image representing an object
with a partially restricted structure, such as an indoor space
or a cityscape, 1s generated, 1t 1s diflicult to fully consider a
three-dimensional (3D) geometry during generation of a
desired scene according to existing transformation methods.
Accordingly, an image in which a straight line or perspective
within a region does not properly match may be generated.
A user may easily find that the generated 1image 1s fake. If an
input 1mage contains an artifact with a prominent straight
line, vanishing points according to a perspective view may
be easily defined and conspicuous, so that the user may
casily identily that the generated image 1s a fake 1image.

SUMMARY

This Summary 1s provided to mtroduce a selection of
concepts 1 a sumplified form that are further described
below 1n the Detailed Description. This Summary 1s not
intended to 1dentily key features or essential features of the
claimed subject matter, nor 1s 1t intended to be used as an aid
in determining the scope of the claimed subject matter.

In one general aspect, there 1s provided a method of
generating an image, the method including receiving nput
data comprising conditional information and 1mage infor-
mation, generating a synthesized image by applying the
input data to an 1mage generation neural network configured
to maintain geometric information of the image information
and to transform the remaining image imnformation based on
the conditional information, and outputting the synthesized
1mage.

The method may include receiving depth information
corresponding to the conditional information, and extracting
feature information from the depth information, wherein the
generating of the synthesized image comprises generating
the synthesized image by applying the mput data and the
feature mnformation to the image generation neural network
that maintains the geometric information included in the
image information and that transforms the remaining image
information based on the conditional information.
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2

The 1mage generation neural network may be trained by
a first loss generated based on a comparison between a first
synthesized image that corresponds to the conditional infor-
mation and 1s transformed based on a transformation rela-
tionship of the conditional information and a second syn-
thesized 1mage that corresponds to the conditional
information and 1s transformed based on depth information
corresponding to the conditional information.

The conditional information may include structure infor-
mation of any one or any combination of semantic infor-
mation, edge information, and skeleton information.

The method may include receiving depth information
corresponding to the conditional information, generating a
first synthesized image corresponding to the conditional
information by the 1mage generation neural network based
on the image information, transforming the conditional
information based on the depth information, generating a
second synthesized image corresponding to the transformed
conditional information by the image generation neural
network based on the image information, and training the
image generation neural network by comparing the first
synthesized image and the second synthesized image based
on a transformation relationship of the conditional informa-
tion.

In another general aspect, there 1s provided a method of
training a neural network, the method comprising receiving
training data comprising conditional information and 1mage
information, receiving depth information corresponding to
the conditional information, generating a first synthesized
image corresponding to the conditional information by an
image generation neural network based on the 1mage infor-
mation, transiforming the conditional information based on
the depth information, generating a second synthesized
image corresponding to the transformed conditional infor-
mation by the image generation neural network based on the
image information, and training the 1image generation neural
network by comparing the first synthesized image and the
second synthesized image based on a transformation rela-
tionship of the conditional information.

The training of the 1image generation neural network may
include transforming the first synthesized image based on
the transformation relationship of the conditional informa-
tion, and generating a first loss based on a first difference
between the transformed first synthesized image and the
second synthesized 1mage.

The generating of the first loss may include generating the
first loss to maintain a geometry consistency between the
transformed first synthesized image and the second synthe-
s1ized 1mage.

The mmage generation neural network may include
inversely transforming the second synthesized image based
on the transformation relationship of the conditional infor-
mation, and generating a second loss based on a second
difference between the inversely transformed second syn-
thesized 1mage and the first synthesized 1mage.

The generating of the second loss may include generating,
the second loss to maintain a geometry consistency between
the inversely transformed second synthesized image and the
first synthesized image.

The transforming of the conditional information may
include unprojecting the training data to a three-dimensional
(3D) space by a transformation relationship based on the
depth information, and transforming the conditional infor-
mation by projecting the unprojected tramning data to a
viewpoint.
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The conditional information may include structure infor-
mation of any one or any combination of semantic infor-
mation, edge information, and skeleton information.

The method may include extracting a first geometric
feature from the conditional information, and extracting a 5
second geometric feature from the first synthesized image,
wherein the traiming of the image generation neural network
turther comprises generating a third loss for training the
image generation neural network, based on a diflerence
between the first geometric feature and the second geometric 10
feature.

The method may include extracting a third geometric
feature from the transformed conditional information, and
extracting a fourth geometric feature from the second syn-
thesized 1image, wherein the training of the 1mage generation 15
neural network turther comprises generating a fourth loss for
training the 1mage generation neural network, based on a
difference between the third geometric feature and the fourth
geometric feature.

The method may include transforming a second geometric 20
teature extracted from the first synthesized image based on
the depth immformation, wherein the training of the image
generation neural network comprises generating a fifth loss
for training the 1image generation neural network, based on
a difference between the transformed second geometric 25
feature and a fourth geometric feature extracted from the
second synthesized 1mage.

The method may include extracting depth feature infor-
mation from the depth information, wherein the generating
of the first synthesized image further comprises generating 30
the first synthesized image corresponding to the depth
feature information and the conditional mnformation by the
image generation neural network based on the image infor-
mation.

The transforming of the conditional information may 35
include transforming the conditional information and the
depth feature information based on the depth information.

The generating of the second synthesized image may
include generating the second synthesized image corre-
sponding to the transformed conditional information and the 40
transformed depth feature information by the image genera-
tion neural network based on the 1mage information.

The method may include any one or any combination of
training an image discrimination neural network to estimate
the first synthesized 1mage as a fake image, training the 45
image discrimination neural network to estimate the second
synthesized image as the fake 1image, and training the 1mage
discrimination neural network to estimate the image infor-
mation as a real image.

The method may include generating a synthesized image 50
by applying the mput data to the trained 1mage generation
neural network, and outputting the synthesized image.

In another general aspect, there 1s provided an apparatus
for generating an 1mage, the apparatus including a commu-
nication interface configured to receive mput data including 55
conditional mmformation and 1image information, a processor
configured to generate a synthesized image by applying the
input data to an 1mage generation neural network configured
to maintain geometric information of the image information
and to transform the remaining image information based on 60
the conditional information, and an output device configured
to output the synthesized image.

In another general aspect, there 1s provided a method of
training a neural network, the method including receiving
training data comprising image information, conditional 65
information, and depth information corresponding to the
conditional information, extracting depth feature informa-

4

tion from the depth information, generating a first synthe-
s1zed 1mage corresponding to the depth feature information
and the conditional information by the image generation
neural network based on the image information, transform-
ing the conditional information and the depth feature infor-
mation based on the depth information, generating a second
synthesized 1image corresponding to the transformed condi-
tional information and the transformed depth feature infor-
mation by the image generation neural network based on the
image information, and training the 1image generation neural
network by comparing the first synthesized image and the
second synthesized image based on a transformation rela-
tionship of the conditional information and the depth infor-
mation.

The traming of the image generation neural network may
include transforming the first synthesized image based on
the transformation relationship, and training the 1mage gen-
eration neural network to minimize a difference between the
transformed first synthesized image and the second synthe-
s1zed 1mage.

The depth feature information may be based on extracting,
a discontinuity portion of the depth information and a
discontinuity portion of the normal information.

Other features and aspects will be apparent from the
tollowing detailed description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example of a generating an 1mage.

FIGS. 2A and 2B illustrate examples of a method of
training a generative adversarial network (GAN).

FIG. 3 illustrates an example of a method of generating an
image.

FIG. 4 illustrates an example of a method of training a
neural network to generate an 1mage.

FIG. 5 1llustrates an example of transforming conditional
information based on depth information.

FIGS. 6, 8, and 10 to 12 illustrate examples of a method
of training a neural network to generate an 1image.

FIGS. 7, 9, and 13 1llustrate examples of a configuration
ol an apparatus for generating an 1image and a configuration
ol a traiming apparatus for training a neural network.

FIG. 14 illustrates an example of an apparatus for gen-
crating an i1mage.

Throughout the drawings and the detailed description,

unless otherwise described or provided, the same drawing
reference numerals will be understood to refer to the same
clements, features, and structures. The drawings may not be
to scale, and the relative size, proportions, and depiction of
clements in the drawings may be exaggerated for clarity,
illustration, and convenience.

DETAILED DESCRIPTION

The following detailed description 1s provided to assist
the reader 1n gaining a comprehensive understanding of the
methods, apparatuses, and/or systems described herein.
However, various changes, modifications, and equivalents
of the methods, apparatuses, and/or systems described
herein will be apparent after an understanding of the dis-
closure of this application. For example, the sequences of
operations described herein are merely examples, and are
not limited to those set forth herein, but may be changed as
will be apparent after an understanding of the disclosure of
this application, with the exception of operations necessarily
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occurring in a certain order. Also, descriptions of features
that are known 1n the art may be omitted for increased clarity
and conciseness.

The features described herein may be embodied in dif-
ferent forms, and are not to be construed as being limited to
the examples described hereimn. Rather, the examples
described herein have been provided merely to illustrate
some ol the many possible ways of implementing the
methods, apparatuses, and/or systems described herein that
will be apparent after an understanding of the disclosure of
this application.

The following structural or functional descriptions of
examples disclosed in the present disclosure are merely
intended for the purpose of describing the examples and the
examples may be implemented in various forms. The
examples are not meant to be limited, but 1t 1s intended that
various modifications, equivalents, and alternatives are also
covered within the scope of the claims.

Although terms of “first” or “second” are used to explain
various components, the components are not limited to the
terms. These terms should be used only to distinguish one
component from another component. For example, a “first”
component may be referred to as a “second” component, or
similarly, and the “second” component may be referred to as
the “first” component within the scope of the right according,
to the concept of the present disclosure.

It will be understood that when a component 1s referred to
as being “connected to” another component, the component
can be directly connected or coupled to the other component
or 1ntervening components may be present.

As used herein, the singular forms are mtended to include
the plural forms as well, unless the context clearly indicates
otherwise. As used herein, the term “and/or” includes any
one and any combination of any two or more ol the
associated listed items. It should be further understood that
the terms “comprises” and/or “comprising,” when used in
this specification, specily the presence of stated features,
integers, steps, operations, elements, components or a com-
bination thereot, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
clements, components, and/or groups thereof.

The use of the term “may” herein with respect to an
example or embodiment (e.g., as to what an example or
embodiment may include or implement) means that at least
one example or embodiment exists where such a feature 1s
included or implemented, while all examples are not limited
thereto.

Hereinafter, examples will be described in detail with
reference to the accompanying drawings, and like reference
numerals 1n the drawings refer to like elements throughout.

FIG. 1 1llustrates an example of a generating an image.
FIG. 1 illustrates 1mage generation neural networks 110 and
150, denoted by generators (G), 110 and 150, and 1mage
discrimination neural networks 130 and 170, denoted by
discriminators (D).

A dashed line box of FIG. 1 indicates a structure of a
generative adversarial network (GAN) 100. A training-based
image-to-image transformation may be performed to train
the 1image generation neural network G 110 that transforms
an 1nput image x 101. The image generation neural network
110 generates a fake image that 1s very similar to training
data (for example, the mput image x 101) to deceive the
image discrimination neural network D 130. The image
generation neural network 110, together with the image
discrimination neural network 130, may be trained using an
adversarial loss for deceiving the image discrimination
neural network 130 that a first synthesized image G(x) 120
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generated by the 1mage generating neural network 110 1s
true. Thus, the 1image generation neural network 110 may
generate a more realistic 1image.

The image discrimination neural network 130 may aim to
discriminate a real image of the traiming data from a fake
image, for example, the first synthesized image G(x) 120,
which 1s generated by the 1mage generation neural network
110. The GAN may increase a discrimination ability of the
image discrimination neural network 130 and may train the
image generation neural network 110 together with the
image discrimination neural network 130 so that the image
generation neural network 110 may effectively deceive the
image discrimination neural network 130. Through the
above training, the 1mage generation neural network 110
may generate a fake image with a striking similarity to the
real 1mage so that its diflicult distinguish between a real
image and a fake image, and the discrimination ability of the
image discrimination neural network 130 may also be
improved. A method of training the image generation neural

network 110 and the image discrimination neural network
130 of the GAN will be further described below with

reference to FIGS. 2A and 2B.

In an example, when a conditional GAN 1s used, the
image discrimination neural networks 130 and 170 may be
trained to determine (x, y) 103 as true and determine (X,
G(x)) as false. For example, based on a structure of the
conditional GAN of FIG. 1, a network may be configured
with various structures of a neural network, a definition of
an adversarial loss, and additionally used losses.

By defining the concept of three-dimensional (3D) geom-
etry consistency, an image may be transformed so that
geometry 1n the image may be preserved. The term “geom-
etry consistency’” used herein may be construed to mean that
geometric information before and after transformation of an
image remain unchanged. The geometric information may
include, for example, structure information such as semantic
information, edge information, and skeleton information,
but 1s not necessarily limited thereto. The edge information
may correspond to two-dimensional (2D) appearance nfor-
mation of an object included in an mput 1mage, and the
skeleton information may correspond to 3D pose informa-
tion of an object included in an iput 1image.

In an example, a loss, for example, a geometry consis-
tency loss, that uses depth information 1n addition to the
concept of the geometry consistency may be used to trans-
form an 1mage so that geometry 1n the 1image 1s preserved.
To this end, data including depth information in addition to
an input 1mage and a result image during the training of a
neural network may be used. However, if 1t 1s not possible
to use the depth information during transformation of a real
image, the depth mformation may be used during training
only, and the real image may be transformed without the
depth information.

For example, as shown 1n FI1G. 1, when depth information
d 105 1s provided for the input image x 101, the input image
x 101 may be expressed 1n a 3D space in consideration of a
view frustum. The input image x 101 unprojected to the 3D
space may be projected back to an arbitrary viewpoint and
may be transformed mto an 1image T(x,d) 107 of a new view.
A traiming apparatus may transform the mput 1image x 101
into the mmage T(x,d) 107 of the new view based on
transformation information T in consideration of 3D. The
above-described transformation may be referred to as “3D
transformation” and may be expressed by T(x,d).

The training apparatus may generate a second synthesized
image G (T(x,d)) 160 through image transformation, by
applying the image T(x,d) 107 of the new view to the image
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generation neural network 150. A transformation relation-
ship between the first synthesized image G(x) 120 obtained
by 1mage transformation using the image generation neural
network 110 and the second synthesized image G (T(x,d))
160 obtained by image transformation using the image
generation neural network 150 may be established. Such a
transformation relationship between transformed i1mages
may be used as a constraint to preserve the geometry during
image transformation by an image generation neural net-
work. In an example, the transformation relationship
between the first synthesized image G(x) 120 and the second
synthesized 1image G (T(x,d)) 160 1s predetermined.

Computing devices that are referred to as performing the
training operation, may also perform inference, or may
perform inference or training alone. Likewise, reference to
computing devices that perform the inference operation may
also perform training, or inference or training alone.

In an example, the image generation neural network 110
may be trained based on an adversarial loss basically used in
the GAN together with a geometry consistency loss that
mimmizes a difference between transformed 1mages. Thus,
the 1mage generation neural network 110 may generate a
result image that maintains a corresponding geometric struc-
ture even though a view varies depending on geometric
conditions that may be inferred from the input image x 101.

By applying the above-described concept of the geometry
consistency to training, a single mput 1image with a large
number of straight lines and clear perspective may be
consistently changed even during view transiformation.

FIGS. 2A and 2B illustrate examples of a method of
training a GAN. FIG. 2A 1illustrates a process of training an
image discrimination neural network D 210 based on a real
image, and FIG. 2B illustrates a process of traiming an image
generation neural network G 230 and an 1mage discrimina-
tion neural network D 250 based on a synthesized image
(G(x) obtained by 1mage transformation.

In FIG. 2A, the image discrimination neural network 210
may discriminate between a real image and a fake image.
For example, the image discrimination neural network D
210 may be trained to output “1” for the real 1image and to
output “0” for the fake image.

In an example, a training apparatus may train the image
discrimination neural network 210 to estimate a target image
y included in training data or image information of the target
image v as a real image.

In FIG. 2B, the image discrimination neural network D
250 may discriminate between a real image and a synthe-
sized 1mage. For example, the image discrimination neural
network 250 may be trained to output “1” for the real image
and to output “0” for the synthesized image.

The 1image generation neural network 230 may generate
the synthesized image G(X) by receiving an iput 1image X.
The 1mage generation neural network G 230 may be trained
to deceive the image discrimination neural network D 250
with the generated synthesized image G(x) and to output
“17.

The traiming apparatus may train the image discrimination
neural network 250 to estimate a first synthesized 1image as
a fake image by an adversarial loss. Also, the traimning
apparatus may train the image discrimination neural network
250 to estimate a second synthesized image as a fake 1mage.

Examples of operations of the image generation neural
network G 230 and the image discrimination neural network
D 250 will be described 1n more detail with reference to
Equation 1 shown below.
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LGHN (Ga Da X-,- Y) — [Equatiﬂﬂ 1]

Ey-p e 108D +Exep, 0| log(l — D(G(x))]

An operation will be described below from the perspec-
tive of the image discrimination neural network D 250.

In Equation 1, y~p_, . (v) corresponds to a probability
density function and indicates sampling of distribution of
real data. For example, y~p . . (v) may indicate that a value
ol vy 1s extracted one by one from “1000” target images (for
example, pedestrian images) 1f the “1000” target 1mages are
included 1n training data.

The image discrimination neural network D 250 may need
to output a value close to “1” for the real image, and thus the
image discrimination neural network D 2350 may be
expressed mathematically to maximize a value of [log D(v)].
The image discrimination neural network D 250 may output
a value between “0” and “1”.

In x~p_,_ . (X), X may be a random value. Also, X may be
input to the image generation neural network G 230. For
example, the image generation neural network G 230 may
perform sampling of a multi-dimensional vector based on a
Gaussian distribution (normal distribution). If a random
multi-dimensional vector X 1s received, the image generation
neural network G 230 may generate a synthesized image of
a second domain from a synthesized image of a first domain.
The image generation neural network G 230 may generate
an 1mage with a transformed domain, and thus the image
generation neural network G 230 may be referred to as a
“generator” or a “transformer”. I G(x) 1s received, the

image discrimination neural network D 2350 may need to
output a value close to “0”, which may be mathematically
expressed as [log(1-D(G(x))].

An operation will be described below from the perspec-
tive of the image generation neural network G 230.

Since a value ot I, . ,|log D(y)] mn Equation 1 needs
to be minimized and the image generation neural network G
230 1s not used to train the image discrimination neural
network D 2350, y~p , . (v) in Equation 1 may correspond to
a portion in which the image generation neural network G
230 1s not involved.

Thus, the image generation neural network G 230 may be

trained so that £, [log(1-D(G(x))] in Equation 1 may
be minimized. Unlike the image discrimination neural net-
work D 250, the image generation neural network G 230
may be trained to allow D(G(x)) to be “17.

The image discrimination neural network D 250 may be
trained to output “1” for an input image of the second
domain and to output “0”” for a synthesized image of which
a domain 1s transtormed from the first domain to the second
domain. For traimming of the image discrimination neural
network D 250, various physical quantities, for example, a
cross-entropy or a least square error value, may be used.

Hereinafter, an 1image generation neural network and/or
an 1mage discrimination neural network may be construed as
performing training using an adversarial loss together with
a geometric consistency loss that will be described below.

FIG. 3 illustrates an example of a method of generating an
image. The operations 1n FIG. 3 may be performed in the
sequence and manner as shown, although the order of some
operations may be changed or some of the operations
omitted without departing from the spirit and scope of the
illustrative examples described. Many of the operations
shown in FIG. 3 may be performed in parallel or concur-
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rently. One or more blocks of FIG. 3, and combinations of
the blocks, can be implemented by special purpose hard-
ware-based computer, such as a processor, that perform the
specified functions, or combinations of special purpose
hardware and computer mstructions. In an example, a com-
puting apparatus (hereinafter referred to as a *“‘generation

apparatus”) that generates an 1image may generate a synthe-
s1ized 1mage that maintains geometric information included
in 1mage information through operations 310 through 330.
In addition to the description of FIG. 3 below, the descrip-
tions of FIGS. 1-2 are also applicable to FIG. 3, and are
incorporated herein by reference. Thus, the above descrip-
tion may not be repeated here.

In operation 310, the generation apparatus may receive
input data that includes conditional information and 1image
information. The conditional information may correspond to
structure information included in an mmput image and may
include, for example, semantic information, edge informa-
tion or skeleton imformation.

In operation 320, the generation apparatus may generate
a synthesized image by applying the mput data recerved 1n
operation 310 to an 1mage generation neural network that
maintains geometric information included in the image
information and that transforms the remaining image infor-
mation based on the conditional information. In an example,
the 1mage generation neural network may be trained by a
loss generated based on a comparison result between a first
synthesized 1mage that corresponds to the conditional infor-
mation and that i1s transformed based on a transformation
relationship of the conditional information and a second
synthesized 1image that corresponds to the conditional infor-
mation and that 1s transformed based on depth information
corresponding to the conditional information. Examples of
training of the i1mage generation neural network will be
turther described below with reference to FIGS. 4 to 12.

Depending on examples, in operation 310, the generation
apparatus may also recerve depth information corresponding
to the conditional information. In this example, 1n operation
320, the generation apparatus may extract feature informa-
tion from the depth information and may generate a synthe-
sized 1mage by applying the feature information and the
input data to the image generation neural network.

In operation 330, the generation apparatus may output the
synthesized 1mage. For example, the generation apparatus
may output the synthesized image using a display included
in the generation apparatus, or may output the synthesized
image to an external device, however, examples are not
limited thereto.

FIG. 4 1llustrates an example of a method of training a
neural network to generate an 1mage. The operations in FIG.
4 may be performed 1n the sequence and manner as shown,
although the order of some operations may be changed or
some of the operations omitted without departing from the
spirit and scope of the illustrative examples described. Many
of the operations shown i FIG. 4 may be performed 1n
parallel or concurrently. One or more blocks of FIG. 4, and
combinations of the blocks, can be implemented by special
purpose hardware-based computer, such as a processor, that
perform the specified functions, or combinations of special
purpose hardware and computer instructions. In an example,
a computing apparatus 1s a training apparatus that trains an
image generation neural network through a process of
operations 410 through 460. In addition to the description of
FIG. 4 below, the descriptions of FIGS. 1-3 are also appli-
cable to FIG. 4, and are incorporated herein by reference.
Thus, the above description may not be repeated here.
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In operation 410, the training apparatus may include
training data that includes conditional information x and
image information y. The conditional information may
include, for example, structure information of at least one of
semantic mnformation, edge information, and skeleton infor-
mation.

In operation 420, the traiming apparatus may receive depth
information d corresponding to the conditional information.
The depth information may include one or more mforma-
tion, such as, for example, a depth 1image, a depth map, and
a depth value.

In operation 430, the traiming apparatus may generate a
first synthesized 1image G(x) corresponding to the condi-
tional information using an 1mage generation neural network
based on the image information.

In operation 440, the training apparatus may transform the
conditional information based on the depth information. The
transformed conditional information may correspond to, for
example, the above-described T(x,d). An example 1n which
the training apparatus transforms the conditional informa-
tion will be further described below with reference to FIG.
5.

In operation 450, the traiming apparatus may generate a
second synthesized image G(T(x,d)) corresponding to the
transformed conditional information using the 1mage gen-
eration neural network based on the image information.

In operation 460, the training apparatus may train the
image generation neural network by comparing the first
synthesized image and the second synthesized 1image based
on a transformation relationship of the conditional informa-
tion.

In an example, 1n operation 460, the training apparatus
may transform the first synthesized image based on the
transiformation relationship of the conditional information.
The traiming apparatus may generate a first loss for training
the 1image generation neural network, based on a difference
of a comparison between the transtormed first synthesized
image and the second synthesized image. A process 1n which
the training apparatus trains the image generation neural
network by the first loss will be further described below with
reference to FIG. 6. Also, a training apparatus for training a
neural network through the process of FIG. 6 and a structure
ol a generation apparatus for generating an 1image using an
image generation neural network trained through the process
of FIG. 6 will be further described below with reference to
FIG. 7.

In an example, an operation of traiming the 1image gen-
eration neural network may be construed to include gener-
ating a loss for training a neural network.

In another example, 1n operation 460, the training appa-
ratus may inversely transform the second synthesized image
based on the transformation relationship of the conditional
information. The training apparatus may generate a second
loss for training the image generation neural network, based
on a difference, 1.e., a second difference according to a
comparison result between the inversely transformed second
synthesized image and the first synthesized image. A process
in which the training apparatus trains the 1mage generation
neural network by the second loss will be further described
below with reference to FIG. 8. Also, a training apparatus for
training a neural network through the process of FIG. 8 and
a structure of a generation apparatus for generating an image
using the 1image generation neural network trained through
the process of FIG. 8 will be further described below with
reference to FIG. 9.

In another example, 1n operation 460, the training appa-
ratus may extract geometric features from each of the
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conditional information, the first synthesized image, the
transformed conditional information, and the second syn-
thesized 1mage, and may generate losses for training the
image generation neural network, based on a difference
between the extracted geometric features. A process in
which the training apparatus trains the 1mage generation
neural network by the losses based on the difference between
the geometric features will be further described below with
retference to FIGS. 10 and 11.

Depending on examples, the training apparatus may train
the 1mage generation neural network using an additional
input channel that 1s based on the depth information, to
generate a synthesized image. An example 1n which the
training apparatus generates a synthesized 1mage using an
additional mput channel will be further described below
with reference to FIGS. 12 and 13.

FIG. 5 illustrates an example of transforming conditional
information based on depth information. FIG. 5 illustrates a
process 1 which input conditional information x 101 1s
transformed to conditional mmformation T(x, d) 107 with a
transformed view by a transformation relationship T that 1s
based on depth information d 105.

A traiming apparatus may perform unprojection 510 of
training data including the conditional information x 101 to
a 3D space by the transformation relationship T that 1s based
on the depth information d 105 and may perform 3D
transformation 530 of the conditional information x 101.

The traiming apparatus may perform projection 5350 of the
unprojected training data, that 1s, the conditional information
x 101 of which the 3D transformation 530 1s performed to
an arbitrary viewpoint. The training apparatus may generate
the conditional information T(x, d) 107 through the projec-
tion 550. However, 1t may be diflicult to apply the above-
described 3D transformation relationship T to all portions of
an 1mage. In an example, 11 an original image of an arbitrary
view 1s transformed 1nto an 1image of another view based on
a transformation relationship, such as rotation or movement,
a portion of the original 1mage that 1s occluded by another
portion and that 1s not viewed may appear. Since such a
portion that 1s occluded by another portion and that 1s not
viewed remains as a hole 1n a new view, a hole portion may
need to be naturally filled.

However, most of the conditional information x 101, for
example, semantic segmentation, an edge, or a skeleton,
used as an mput mm a large number of 1mage-to-image
transformation may correspond to a form in which structural
information of an input image 1s abstracted. Thus, 1n an
example, depth-based hole filling to fill a corresponding hole
portion based on the conditional information x 101 and the
depth information d 105 may also be additionally per-
formed. For example, when the input conditional informa-
tion x 101 1s semantic information such as semantic seg-
mentation, the traimng apparatus may verily semantic
information of a hole boundary portion and may fill a hole
portion with pixels by semantic information with a greatest
depth among the semantic information, to transform an
1mage.

In another example, since it 1s relatively dithcult to fill a
hole 1n a natural 1mage, an 1mage may be transformed by
removing a hole portion with a mask during calculation of
the above-described geometry consistency loss.

FIG. 6 1illustrates an example of a method of training a
neural network to generate an image. FIG. 6 illustrates
images 160 and 630 with geometry consistency.

In an example, an mput 1mage includes conditional infor-
mation X 101, and depth information d 105 corresponding to
the conditional information 1s provided. In this example, the
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input 1mage including the conditional mmformation x 101
may be transformed to a first synthesized image G(x) 120
through an 1mage generation neural network 110. Also, the
input 1mage including the conditional mmformation x 101
may be transformed to an image T(x,d) 107 of a new view
as described above with reference to FIG. 1.

A second synthesized image G(1(x,d)) 160 may be gen-
crated when the image T(x,d) 107 1s transformed by passing
through an 1mage generation neural network 150. A first
synthesized image T(G(x),d) 630 1s obtained by transform-
ing the first synthesized image G(x) 120 generated through
the 1mage generation neural network 110 based on a trans-
formation relationship of the conditional information by
depth information d 610. The second synthesized image
G(T(x,d)) 160 may be 1dentical to the first synthesized image
T(G(x),d) 630.

The element that the second synthesized image G(T(x,d))
160 and the first synthesized image T(G(x),d) 630 may be
identical to each other is referred to as “geometry consis-
tency” or “geometry preserving constraints.” A loss, here-
inafter, referred to as a “first loss™, for training an image
generation neural network may be generated based on a
difference between the second synthesized image G(T(x,d))
160 and the first synthesized image T(G(x),d) 630.

In an example, the training apparatus 600 may generate
the first loss to minimize a first difference Difi(1(G(x),d),
G(T(x,d)) according to a comparison result between the
second synthesized image G(1(x,d)) 160 and the first syn-
thesized image T(G(x),d) 630 so that the geometry consis-
tency 1s maintained. The first loss may correspond to a
geometry consistency loss. In an example, the training
apparatus 600 may use the first loss 1n addition to the
above-described adversarial loss to train the 1mage genera-
tion neural network 110.

The 1mage generation neural network 110 trained using
the first loss may be used as an i1mage generation neural
network 1n an actual inference process. The 1mage genera-
tion neural network 110 may generate a result image that
maintains a corresponding geometric structure even though
a view varies depending on geometric conditions that may
be inferred from conditional information X 1n an inference
process. The image generation neural networks 110 and 150
may have the same structure. Also, image discrimination
neural networks 130 and 170 may have the same structure.
In addition, the depth information 105 and 610 may also be
the same.

In an example, the training apparatus 600 may train neural
networks so that a sum of the above-described adversarial
loss and geometry consistency loss 1s minimized.

In an example, geometry consistency may be maintained
in an 1mage obtained through 3D transformation based on
depth information during training for image transformation.
Thus, even when a single input image 1s transformed, it 1s
possible to maintain a 3D geometric structure 1n the trans-
formed 1mage.

FIG. 7 illustrates an example of a configuration of a
generation apparatus and a configuration of a training appa-
ratus for traiming a neural network as respective computing
apparatus, or collectively as a single computing apparatus.
The training apparatus of FIG. 7 may receive {Input x,
Target y, Depth d} as input data. The training apparatus may
train an 1mage generation neural network Generator 713 that
transforms an 1input 1mage mnto an image of a target domain,
based on the input data. In the following description, X may
correspond to conditional information included 1n an mput
image. For convenience of description, in the following
description, X may denote the input image, but may be
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construed to indicate the conditional information included 1n
the input 1mage. Also, y may correspond to a target image
corresponding to a real object, or i1mage information
included 1n the target 1mage. Since the target 1mage corre-
sponds to an output 1image that 1s to be output actually, the
target image may be referred to as an “output image”. d may
correspond to depth information corresponding to the con-
ditional mnformation in the mput 1mage.

When an input image x 711 is received, the traiming
apparatus may generate a result image 715, heremafter,
referred to as a “first synthesized image™ 715, by transform-
ing 1mage information of the mput image 711 using the
image generation neural network 713.

The training apparatus may perform 3D transformation
730 of the mput image 711 based on depth mmformation 720.
The training apparatus may generate a result image 740,
hereinafter, referred to as a “second synthesized image” 740,
corresponding to an 1mage obtained through 3D transior-
mation by a second 1mage generation neural network 735.

The training apparatus may perform 3D transformation
725 of the first synthesized image 7135 based on a transior-
mation relationship of conditional information. The training,
apparatus may generate a geometry consistency loss 743
based on a first difference between the first synthesized
image of which the 3D transformation 725 1s performed and
the second synthesized image 740.

Also, the training apparatus may calculate a target loss
750 that 1s based on a difference between the first synthe-
s1ized 1mage 715 and an output 1image v 755, and/or a target
loss 760 between the second synthesized image 740 and the
output image v 755. The term “target loss” used herein may
be construed to include all the above-described adversarial
loss, a feature matching loss and a perceptual loss.

The training apparatus may update 770 the image gen-
eration neural network 713 based on one or more of the
losses. For example, the training apparatus may train the
image generation neural network 713 by updating the image
generation neural network 713 by a weighted sum that
allows a sum of the geometry consistency loss 745, the target
loss 750 and/or the target loss 760 to be minimized.

The 1image generation neural network 713 tramed through
the above-described process may be used in a generation
apparatus 710 that performs an inference process of a real
image transformation. When the image generation neural
network 713 1s used in the generation apparatus 710 that
performs the real image transformation, the 1mage genera-
tion neural network 713 may generate the first synthesized
image 715 by maintaining geometric mformation included
in the 1mage information of the mput image 711 and trans-
forming the remaimng image information based on the
conditional information.

FIG. 8 illustrates another example of a method of training
a neural network to generate an image. FIG. 8 illustrates a
first synthesized image G(x) 120 with geometry consistency,
and a second synthesized image T '(G(T(x,d)),d) 830
obtained by inversely transforming a second synthesized
image G (1(x,d)) 160 back to the original view.

In an example, a training apparatus 800 may generate the
second synthesized image T~ (G(T(x,d)),d) 830 by inversely
transforming the second synthesized image G (T(x,d)) 160
to the original view based on a transformation relationship
of conditional information that 1s based on depth informa-
tion d 810. The depth information d 810 may be the same as
depth mformation 103.

The traiming apparatus 800 may generate a second loss for
training an image generation neural network 110, based on

a second difference Diff(G(x), T~ (G(T(x,d)),d)) between
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the second synthesized image T~'(G(T(x,d)),d) 830 and the
first synthesized 1image G(x) 120. The second loss may
correspond to a geometry consistency loss.

The training apparatus 800 may minimize the second
difference (Diff(G(x), T-'(G(T(x,d)),d))), to generate the
second loss so that geometry consistency between the sec-
ond synthesized image T~ (G(T(x,d)),d) 830 and the first
synthesized image G(x) 120 1s maintained.

In an example, the 1image generation neural network 110
may be trained using a first loss and/or a second loss in
addition to the above-described adversarial loss. Thus, 1t 1s
possible to generate a stable result 1mage in terms of
maintenance of a geometric structure. Also, using the first
loss and/or the second loss during training of the image
generation neural network 110 may be effective, particularly
in 1mage transformation for an environment in which 1t 1s
relatively easy to estimate a geometric structure due to a
large number of straight lines, for example, an indoor space
or a city.

FIG. 9 1llustrates another example of a configuration of a
generation apparatus and a configuration of a training appa-
ratus for training a neural network. The training apparatus of
FIG. 9 may receive {Input x, Target y, Depth d} as input data
in the same manner as the training apparatus of FIG. 7. The
training apparatus may train an image generation neural
network Generator 913 that transforms an iput image 911
into an 1mage of a target domain based on 1nput data.

When the mnput image 911 1s received, the training appa-
ratus may generate a result image 915, heremnafter, referred
to as a “first synthesized 1image” 915, by transforming image
information using the 1image generation neural network 913.

The traiming apparatus may perform 3D transformation
930 of the mnput 1mage 911 based on depth information 920.
The traiming apparatus may generate a result image 940,
hereinafter, referred to as a “second synthesized image” 940,
corresponding to an 1mage obtained through 3D transior-
mation by a second 1image generation neural network 935.

The training apparatus may perform 3D 1nverse transior-
mation 945 of the second synthesized image 940 based on a
transformation relationship of the conditional information.
The training apparatus may generate a geometry consistency
loss 950 based on a difference between the second synthe-
s1ized 1mage of which the 3D inverse transformation 945 1s
performed and the first synthesized image 915.

Also, the training apparatus may calculate a target loss
960 that 1s based on a difference between the first synthe-
s1ized 1mage 9135 and an output image 970, and/or a target
loss 963 that 1s based on a difference between the second
synthesized image 940 and the output image 970.

For example, the training apparatus may train the image
generation neural network 913 by updating the 1mage gen-
eration neural network 913 by a weighted sum that allows a
sum of the geometry consistency loss 950, the target 1oss 960
and/or the target loss 9635 to be minimized.

The 1image generation neural network 913 trained through
the above-described process may be used in a generation
apparatus 910 that transforms a real 1mage.

FIG. 10 1illustrates another example of a method of
training a neural network to generate an 1mage. A training
apparatus 1000 may further include a first extractor E, and
a second extractor E, that may extract a geometric feature
from each of an input 1mage or conditional information x
101 and a first synthesized image G(x) 120 that 1s an output
image, 1n addition to a structure of the training apparatus 600
of FIG. 6. In a similar manner that geometry consistency 1s
maintained between 1images, geometry consistency may also
be maintained between features extracted from 1mages.
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FIG. 10 1llustrates a process of generating an additional
loss to maintain a geometry correspondence between geo-
metric features, for example, E,(x) and E,(G(X)), extracted
from the images described above with reference to FIG. 6.
In this example, the geometry correspondence may be
determined based on shapes of the first extractor E, and the
second extractor E,. The extractors E, and E, may be, for
example, a trained network, or a filtered network. The {first
extractor £, may be an extractor to extract a line, and the
second extractor E, may be an extractor to extract a line or
a vanishing point. In other words, the first extractor E, and
the second extractor E, may be extractors to extract features
of different domains, or extractors to extract features of the
same domain.

In an example, geometry consistency may be strength-
ened using predefined features. In an example, the geometry
correspondence may be applied between a first geometric
feature E,(x) 1010 and a second geometric feature E,(G(x))
1030, or between a third geometric feature E,(T(x,d)) 1050
and a fourth geometric feature E,.(G(T(x,d))) 1070. In
another example, the geometry correspondence may be used
to additionally define a new geometry consistency loss
between a transtormed second geometric feature T(E,(G
(x)),d) 1130 (shown 1n FIG. 11) and the fourth geometric
teature E,(G(T(x,d))) 1070, which will be described below
with reference to FIG. 11.

The training apparatus 1000 may extract the first geomet-
ric teature E,(x) 1010 from the conditional information x
101. Also, the training apparatus 1000 may extract the
second geometric feature E,(G(x)) 1030 from the first
synthesized 1image G(x) 120. The training apparatus 1000
may generate a third loss for training an 1mage generation
neural network, based on a diflerence between the first
geometric feature E,(x) 1010 and the second geometric
teature E,(G(x)) 1030. The third loss may correspond to a
geometry correspondence loss that allows a geometry cor-
respondence between the first geometric feature E,; (x) 1010
and the second geometric feature E.(G(x)) 1030 to be
maintained.

Also, the training apparatus 1000 may extract the third
geometric feature E,(T(x,d)) 1050 from transformed condi-
tional mformation T(x,d) 107. In addition, the traiming
apparatus 1000 may extract the fourth geometric feature
E,(G(T(x,d))) 1070 from a second synthesized image G
(T(x,d)) 160. The training apparatus 1000 may generate a
fourth loss for training an 1image generation neural network,
based on a difference between the third geometric feature
E,(T(x,d)) 1050 and the fourth geometric feature E.(G(T(x,
d))) 1070. The fourth loss may correspond to a geometry
correspondence loss so that a geometry correspondence
between the third geometric feature E,(T(x,d)) 1050 and the
fourth geometric feature E,(G(T(x,d))) 1070 may be main-
tained.

FIG. 11 1illustrates another example of a method of train-
ing a neural network to generate an 1mage.

FIG. 11 1llustrates a process of generating a new geometry
consistency loss that 1s additionally defined by a geometry
correspondence between geometric features, for example,
E,(x) and E,(G(x)), extracted from images transformed
based on a structure of the training apparatus 1000 described
above with reference to FIG. 10.

A traiming apparatus 1100 may transform a second geo-
metric feature E,(G(x)) 1030 extracted from a first synthe-
s1ized 1image G(x) 120 to the transformed second geometric
teature T(E,(G(x)),d) 1130 based on depth information
1120. The training apparatus 1100 may generate a geometry
consistency loss, that 1s, a fifth loss for traiming an image
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generation neural network, based on a difference between
the transformed second geometric feature T(E,(G(x)),d)
1130 and the fourth geometric feature E.(G(T(x,d))) 1070
extracted from the second synthesized image G (T(x,d)) 160.
The fifth loss may correspond to a geometry consistency loss
that allows geometry consistency between the transformed
second geometric feature T(E,(G(x)),d) 1130 and the fourth
geometric feature E,(G(T(x,d))) 1070 to be maintained. In
an example, the training apparatus 1100 may train an image
generation neural network 110 by the fifth loss.

Also, the training apparatus 1100 may transform a {first
geometric feature E,(x) 1010 to a feature T(E,(x)),d) 1110
based on depth mmformation 1115. Also, geometry consis-
tency between a third geometric feature E, (T(x,d)) 1050 and
the feature T(E,(x),d) 1110 may be allowed to be main-
tained.

The examples of FIGS. 10 and 11 may also be applicable
to an example in which a geometry consistency loss 1s
defined using T™' instead of using T. In another example, it
1s possible to define geometry consistency losses for an
image generation neural network G, a first extractor E,, and
a second extractor E, by diflerent combinations thereof
using T or T,

FIG. 12 illustrates another example of a method of
training a neural network to generate an 1image. In FIG. 12,
additional information based on depth information may be
used as an input.

In an example, normal information may be obtained based
on depth information 1205, and depth feature information
E(d) obtained by extracting a discontinuity portion of the
depth information 1205 and a discontinuity portion of the
normal information, together with conditional information
X, may be applied as an mput (x, E(d)) 1201 to an image
generation neural network 1210. In an example, the depth
feature information E(d) may correspond to a compressive
representation ol geometric information that 1s conspicuous
in an input image. For example, when the depth feature
information E(d) together with the input image including the
conditional information x are used as an mput of the image
generation neural network 1210, an 1mage reflecting corre-
sponding geometric information may be generated or trans-
formed. However, 1n this example, the depth information
1205 may be used 1n an inference process of transforming a
real 1image, 1n addition to a training process. The depth
feature information E(d) may be defined by various methods
in addition to the above-described method.

A traming apparatus 1200 may extract the depth feature
information E(d) from the depth information 12035. The
training apparatus 1200 may apply the conditional informa-
tion X and the depth feature information E(d) to the image
generation neural network 1210 and may generate a {first
synthesized image G(x, E(d)) 1220 corresponding to the
conditional information x and the depth feature information
E(d) using the image generation neural network 1210.

The training apparatus 1200 may transform the condi-
tional information x and the depth feature information E(d)
to transformed conditional information T((x, E(d)), d) 1207
based on the depth information 1205. The traiming apparatus
1200 may generate a second synthesized image G(T((x,
E(d)), d)) 1260 corresponding to the transformed conditional
information T((x, E(d)), d) 1207 obtained through transior-
mation by an 1mage generation neural network 1250 based
on 1mage information.

The training apparatus 1200 may transform the first
synthesized image G(x, E(d)) 1220 into a transformed image
T(G(x, E(d)), d) 1230 based on a transformation relationship
T of the conditional information based on depth information
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1225. The depth information 1225 may be the same as the
depth information 1205. The training apparatus 1200 may
train an 1mage generation neural network by comparing the
transformed 1mage T(G(x, E(d)), d) 1230 and the second
synthesized image G(T((x, E(d)), d)) 1260. The training
apparatus 1200 may generate a geometry consistency loss
that allows a difference according to a comparison result

between the transformed image T(G(x, E(d)), d) 1230 and
the second synthesized image G(T((x, E(d)), d)) 1260 to be
mimmized. The training apparatus 1200 may train the image
generation neural network 1210 by a corresponding loss.

The example of FIG. 12 may also be applicable to an
example 1n which geometry consistency 1s defined using an
inverse transformation relationship T~' instead of using the
transformation relationship T, and also be applicable to an
example 1n which a loss 1s calculated based on a geometry
correspondence using additional extractors as shown 1n
FIGS. 10 and 11.

FIG. 13 illustrates an example of a configuration of a
generation apparatus and a configuration of a training appa-
ratus for training a neural network. The training apparatus of
FIG. 13 may be a computing apparatus and may receive
{Input x, Target y, Depth d} as input data. The training
apparatus may train an image generation neural network
Generator 1317 that transforms the mput data and depth
teature information E(d) that compressively represents geo-
metric mformation conspicuous in an input image into an
image ol a target domain.

The training apparatus may extract the depth feature
information E(d) from depth information 1313 using a
feature extractor 1315. The feature extractor 1315 may
obtain normal information from an mput image 1311 based
on the depth information 1313, and may extract a disconti-
nuity portion of the depth information 1313 and a discon-
tinuity portion of the normal information, to obtain the depth
feature information E(d).

The training apparatus may apply the mnput image and the
depth feature information E(d) extracted by the feature
extractor 1315 to the image generation neural network 1317,
and may generate a result image 1319, hereinatter, referred
to as a “first synthesized image” 1319 corresponding to
conditional information and depth feature information. The
training apparatus may perform 3D transformation 1340 of
the first synthesized image 1319.

The training apparatus may perform 3D transformation
1320 of the depth feature information E(d) extracted by the
feature extractor 1315. Also, the training apparatus may
perform 3D transformation 1325 of the input image 1311
based on the depth information 1313.

The training apparatus may apply the input image 1311 of
which the 3D transformation 1325 1s performed and the
depth feature information E(d) of which the 3D transforma-
tion 1320 1s performed to a second 1image generation neural
network 1330, and may generate a result image 1335,
heremnafter, referred to as a “second synthesized image”
1335.

The training apparatus may generate a geometry consis-
tency loss 1345 based on a difference between the first
synthesized image of which the 3D transformation 1340 1s
performed and the second synthesized image 1335.

In an example, the training apparatus may calculate a
target loss 13355 that 1s based on a difference between the first
synthesized 1image 1319 and image information y of an
output 1mage 13350, and/or a target loss 1360 between the
second synthesized image 1335 and the output image 1350.

The training apparatus may train the image generation
neural network 1317 by updating the image generation
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neural network 1317 by a weighted sum that allows a sum
of the geometry consistency loss 1345, the target loss 1355
and/or the target loss 1360 to be minimized.

The i1mage generation neural network 1317 trained
through the above-described process may be used 1n a
generation apparatus 1310 that transforms a real image. For
example, input data in a form of {Input x, Depth d} may be
applied to the image generation neural network 1317. When
the 1mage generation neural network 1317 1s used 1n the
generation apparatus 1310 that performs an inference pro-
cess of transforming an 1mage, the image generation neural
network 1317 may generate the first synthesized image 1319
by maintaining the conditional information and geometric
information included 1n depth feature information and trans-
forming 1mage information based on the conditional infor-
mation and the depth feature information.

FIG. 14 illustrates an example of a generation apparatus
1400. Referring to FIG. 14, the generation apparatus 1400
may include a communication interface 1410, a processor
1430, an output device 1450, and a memory 1470. The
communication interface 1410, the processor 1430, the
output device 1450, and the memory 1470 may be connected
to each other via a communication bus 1405.

The communication interface 1410 may receive input data
that imncludes conditional information and image informa-
tion. The conditional information may include, for example,
structure 1nformation of any one or any combination of
semantic information, edge information, and skeleton infor-
mation. Also, the communication interface 1410 may
receive depth information corresponding to the conditional
information.

In an example, the processor 1430 may generate a syn-
thesized image by applying the input data to an image
generation neural network that maintains geometric infor-
mation included in the image information and that trans-
forms the remaining 1mage mformation based on the con-
ditional imnformation.

For example, when the depth information corresponding,
to the conditional mmformation 1s received via the commu-
nication interface 1410, the processor 1430 may generate a
synthesized 1image by applying the mput data and feature
information extracted from the depth information to the
image generation neural network.

However, an operation of the processor 1430 1s not
limited to the above-described operations, and the processor
1430 may perform at least one of the operations described
above with reference to FIGS. 1 through 13 together with the
above-described operation.

The processor 1430 may be a hardware-implemented
image generating apparatus having a circuit that is physi-
cally structured to execute desired operations. For example,
the desired operations may include code or instructions
included in a program. The hardware-implemented genera-
tion apparatus may include, for example, a microprocessor,
a central processing umt (CPU), single processor, indepen-
dent processors, parallel processors, single-instruction
single-data (SISD) multiprocessing, single-instruction mul-
tiple-data (SIMD) multiprocessing, multiple-instruction
single-data (MISD) multiprocessing, multiple-instruction
multiple-data (MIMD) multiprocessing, a controller and an
arithmetic logic umt (ALU), a DSP, a microcomputer, a
processor core, a multi-core processor, and a multiprocessor,
an application-specific integrated circuit (ASIC), a field
programmable gate array (FPGA), a programmable logic
umt (PLU), a central processing umt (CPU), a graphics
processing unit (GPU), a neural processing unit (NPU), or
any other device capable of responding to and executing
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instructions 1n a defined manner. Further description of the
processor 1430 1s given below.

The processor 1430 may execute a program and may
control the generation apparatus 1400. Code of the program
executed by the processor 1430 may be stored in the
memory 1470.

The output device 1450 may output the synthesized image
generated by the processor 1430. The output device 1450
may 1nclude, for example, a display device, however,
examples are not limited thereto. For example, the output
device 1450 may include an output interface and may output
the synthesized image generated by the processor 1430 via
the output 1nterface to an outside of the generation apparatus
1400.

The memory 1470 may store the mput data received by
the communication interface 1410. Also, the memory 1470
may store the geometric information included 1n the image
information analyzed by the processor 1430 and/or the
synthesized 1image generated by the processor 1430.

The memory 1470 may be implemented as a volatile
memory device or a non-volatile memory device. The vola-
tile memory device may be implemented as dynamic ran-
dom-access memory (DRAM), static random-access

memory (SRAM), thyristor RAM (T-RAM), zero capacitor
RAM (Z-RAM), or twin transistor RAM (TTRAM).

The non-volatile memory may be implemented as elec-
trically erasable programmable read-only memory (EE-
PROM), a flash memory, magnetic ram (MRAM), spin-
transter torque (STT)-MRAM, conductive bridging RAM
(CBRAM), ferroclectric RAM (FeRAM), phase change
RAM (PRAM), resistive RAM (RRAM), nanotube RRAM,
polymer RAM (PoRAM), nano {floating gate memory
(NFGM), a holographic memory, molecular electronic
memory device, or insulator resistance change memory.
Further description of the memory 1470 1s given below.

The embodiments described above disclose an i1mage
generation neural network that may be trained based on an
adversarial loss, together with a geometry consistency loss
that minimizes a difference between transformed 1images, so
as to generate a result image that maintains a corresponding
geometric structure even though a view varies depending on
geometric conditions that may be inferred from an input
image. In addition, by applying the above-described concept
of the geometry consistency to training of the 1mage gen-
eration neural network, the image generation neural network
may be trained so that a single mput image with many
straight lines and clear perspective may be allowed to be
transformed consistently even 1f a view changes.

The traiming apparatus 600, generator, 713, generator 733,
generator, 913, generator 933, generator 1317, generator
1330, generation apparatus 710, generation apparatus 910,
generation apparatus 1310, and other apparatuses, units,
modules, devices, and other components described herein
are 1mplemented by hardware components. Examples of
hardware components that may be used to perform the
operations described 1n this application where appropriate
include controllers, sensors, generators, drivers, memories,
comparators, arithmetic logic units, adders, subtractors,
multipliers, dividers, integrators, and any other electronic
components configured to perform the operations described
in this application. In other examples, one or more of the
hardware components that perform the operations described
in this application are implemented by computing hardware,
for example, by one or more processors or computers. A
processor or computer may be implemented by one or more
processing elements, such as an array of logic gates, a
controller and an arithmetic logic unit, a digital signal
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processor, a microcomputer, a programmable logic control-
ler, a field-programmable gate array, a programmable logic
array, a microprocessor, or any other device or combination
of devices that 1s configured to respond to and execute
instructions in a defined manner to achieve a desired result.
In one example, a processor or computer includes, or is
connected to, one or more memories storing instructions or
soltware that are executed by the processor or computer.
Hardware components implemented by a processor or com-
puter may execute instructions or software, such as an
operating system (OS) and one or more soltware applica-
tions that run on the OS, to perform the operations described
in this application. The hardware components may also
access, manipulate, process, create, and store data 1n
response to execution of the instructions or software. For
simplicity, the singular term “processor” or “computer’” may
be used 1n the description of the examples described 1n this
application, but in other examples multiple processors or
computers may be used, or a processor or computer may
include multiple processing elements, or multiple types of
processing elements, or both. For example, a single hard-
ware component or two or more hardware components may
be mmplemented by a single processor, or two or more
processors, or a processor and a controller. One or more
hardware components may be implemented by one or more
processors, or a processor and a controller, and one or more
other hardware components may be implemented by one or
more other processors, or another processor and another
controller. One or more processors, or a processor and a
controller, may implement a single hardware component, or
two or more hardware components. A hardware component
may have any one or more of different processing configu-
rations, examples ol which include a single processor,
independent processors, parallel processors, single-instruc-
tion single-data (SISD) multiprocessing, single-instruction
multiple-data (SIMD) multiprocessing, multiple-instruction
single-data (MISD) multiprocessing, multiple-instruction
multiple-data (MIMD) multiprocessing, a controller and an
arithmetic logic unit (ALU), a DSP, a microcomputer, an
application-specific itegrated circuit (ASIC), a field pro-
grammable gate array (FPGA), a programmable logic unit
(PLU), a central processing unit (CPU), a graphics process-
ing unit (GPU), a neural processing unit (NPU), or any other
device capable of responding to and executing instructions
in a defined manner.

The methods that perform the operations described 1n this
application are performed by computing hardware, for
example, by one or more processors or computers, 1mple-
mented as described above executing instructions or soft-
ware to perform the operations described 1n this application
that are performed by the methods. For example, a single
operation or two or more operations may be performed by a
single processor, or two or more processors, or a processor
and a controller. One or more operations may be performed
by one or more processors, or a processor and a controller,
and one or more other operations may be performed by one
or more other processors, or another processor and another
controller. One or more processors, or a processor and a
controller, may perform a single operation, or two or more
operations.

Instructions or software to control computing hardware,
for example, a processor or computer to 1implement the
hardware components and perform the methods as described
above are written as computer programs, code segments,
instructions or any combination thereof, for individually or
collectively instructing or configuring the processor or com-
puter to operate as a machine or special-purpose computer to
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perform the operations performed by the hardware compo-
nents and the methods as described above. In one example,
the instructions or software include machine code that 1s
directly executed by the processor or computer, such as
machine code produced by a compiler. In an example, the
instructions or soitware includes at least one of an applet, a
dynamic link library (DLL), middleware, firmware, a device
driver, an application program storing the method of gen-
erating an 1image and the method of training a neural network
or generating an image. In another example, the mstructions
or software include higher-level code that 1s executed by the
processor or computer using an interpreter. The nstructions
or software may be written using any programming lan-
guage based on the block diagrams and the flow charts
illustrated in the drawings and the corresponding descrip-
tions 1n the specification, which disclose algorithms for
performing the operations that are performed by the hard-
ware components and the methods as described above.
The instructions or soiftware to control a processor or
computer to implement the hardware components and per-
form the methods as described above, and any associated
data, data files, and data structures, are recorded, stored, or
fixed 1n or on one or more non-transitory computer-readable
storage media. Examples of a non-transitory computer-
readable storage medium include read-only memory
(ROM), random-access programmable read only memory
(PROM), electrically erasable programmable read-only
memory (EEPROM), random-access memory (RAM), mag-
netic RAM (MRAM), spin-transfer torque (STT)-MRAM,
static random-access memory (SRAM), thyristor RAM
(T-RAM), zero capacitor RAM (Z-RAM), twin transistor
RAM (TTRAM), conductive bridging RAM(CBRAM), fer-
roelectric RAM (FeRAM), phase change RAM (PRAM),
resistive RAM(RRAM), nanotube RRAM, polymer RAM
(PoRAM), nano tloating gate Memory(NFGM), holographic
memory, molecular electronic memory device), insulator
resistance change memory, dynamic random access memory
(DRAM), static random access memory (SRAM), flash
memory, non-volatile memory, CD-ROMs, CD-Rs, CD+Rs,
CD-RWs, CD+RWs, DVD-ROMs, DVD-Rs, DVD+Rs,
DVD-RWs, DVD+RWs, DVD-RAMs, BD-ROMs, BD-Rs,
BD-R LTHs, BD-REs, blue-ray or optical disk storage, hard
disk drive (HDD), solid state drive (SSD), flash memory, a
card type memory such as multimedia card micro or a card
(for example, secure digital (SD) or extreme digital (XD)),
magnetic tapes, floppy disks, magneto-optical data storage
devices, optical data storage devices, hard disks, solid-state
disks, and any other device that 1s configured to store the
istructions or soitware and any associated data, data files,
and data structures 1n a non-transitory manner and providing
the mnstructions or soitware and any associated data, data
files, and data structures to a processor or computer so that
the processor or computer can execute the mstructions. In an
example, the instructions or software and any associated
data, data files, and data structures are distributed over
network-coupled computer systems so that the instructions
and software and any associated data, data files, and data
structures are stored, accessed, and executed 1n a distributed
fashion by the one or more processors or computers.
While this disclosure includes specific examples, 1t waill
be apparent after an understanding of the disclosure that
various changes 1n form and details may be made 1n these
examples without departing from the spirit and scope of the
claims and their equivalents. The examples described herein
are to be considered 1n a descriptive sense only, and not for
purposes of limitation. Descriptions of features or aspects in
cach example are to be considered as being applicable to
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similar features or aspects in other examples. Suitable
results may be achieved i1f the described techmiques are
performed 1n a different order, and/or 1 components 1n a
described system, architecture, device, or circuit are com-
bined 1n a different manner, and/or replaced or supplemented
by other components or their equivalents. Therefore, the
scope ol the disclosure i1s defined not by the detailed
description, but by the claims and their equivalents, and all
variations within the scope of the claims and their equiva-
lents are to be construed as being included 1n the disclosure.

What 1s claimed 1s:

1. A processor-implemented method, the method com-
prising;:

receiving 1mput data comprising conditional information

and 1mage information, wherein the 1image information
includes geometric information;

recerving depth information corresponding to the condi-

tional information;

extracting feature information from the depth informa-

tion;

generating a synthesized image based on the conditional

information by applying the input data and the feature

information to an image generation neural network, the

image generation neural network 1s configured to:

maintain the geometric information of the 1image infor-
mation; and

transform, based on the conditional information, first
remaining image information of the image informa-
tion to second remaining 1mage information; and

outputting the synthesized image.

2. The method of claim 1, wherein the image generation
neural network 1s traimned by a first loss generated based on
a comparison between a first synthesized 1mage that corre-
sponds to the conditional mmformation and is transformed
based on a transformation relationship between the condi-
tional information and a second synthesized image, the
second synthesized image corresponds to the conditional
information and 1s transformed based on depth information
corresponding to the conditional information.

3. The method of claim 1, wherein the conditional infor-
mation comprises structure information of any one or any
combination of semantic information, edge mnformation, and
skeleton 1nformation.

4. The method of claim 1, further comprising:

recerving depth information corresponding to the condi-

tional information;
generating a first synthesized image corresponding to the
conditional information by the image generation neural
network based on the 1mage information;

transforming the conditional information based on the
depth 1information;

generating a second synthesized 1mage corresponding to

the transformed conditional information by the image
generation neural network based on the image infor-
mation; and

training the 1mage generation neural network by compar-

ing the first synthesized image and the second synthe-
s1ized 1mage based on a transformation relationship of
the conditional information.

5. A non-transitory computer-readable storage medium
storing 1nstructions that, when executed by a processor,
cause the processor to execute a method of generating an
image, the method comprising:

recerving input data comprising conditional information

and 1mage iformation, wherein the 1mage information
includes geometric information;
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receiving depth information corresponding to the condi-

tional information;

extracting feature mformation from the depth informa-

tion;

generating a synthesized image based on the conditional

information by applying the mput data and the feature

information to an 1image generation neural network, the

image generation neural network 1s configured to:

maintain the geometric information of the image nfor-
mation; and

transform, based on the conditional information, first
remaining 1mage information of the image informa-
tion to second remaining 1image information; and

outputting the synthesized image.

6. A computing apparatus, the apparatus comprising:

a communication circuit configured to:

receive mput data including conditional information
and 1mage information, wherein the image informa-
tion includes geometric information; and

receive depth information corresponding to the condi-
tional information;

a processor configured to:

extract feature information from the depth information;
and

generate a synthesized image based on the conditional
information by applying the input data and the
feature information to an i1mage generation neural
network, wherein the 1image generation neural net-
work 1s configured to:

maintain the geometric information of the image nfor-
mation; and

transform, based on the conditional information, first
remaining 1mage information of the image iforma-
tion to second remaining 1mage information; and

an output circuit configured to output the synthesized

image.

7. A processor-implemented method, the method com-
prising:

receiving training data comprising conditional informa-

tion and 1mage information;

receiving depth information corresponding to the condi-

tional information;
generating a first synthesized image corresponding to the
conditional information by an 1image generation neural
network based on the image information;

transforming the conditional information based on the
depth information;

generating a second synthesized 1image corresponding to

the transformed conditional information by the image
generation neural network based on the 1mage infor-
mation; and

training the 1image generation neural network by compar-

ing the first synthesized image and the second synthe-
sized 1mage based on a transformation relationship of
the conditional information.

8. The method of claim 7, wherein the training of the
image generation neural network comprises:

transforming the first synthesized image based on the

transformation relationship of the conditional informa-
tion; and

generating a first loss based on a first diflerence between

the transformed first synthesized image and the second
synthesized image.

9. The method of claim 7, wherein the generating of the
first loss comprises generating the first loss to maintain a
geometry consistency between the transformed first synthe-
s1ized 1image and the second synthesized image.
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10. The method of claim 7, wherein the training of the
image generation neural network comprises:

inversely transforming the second synthesized image

based on the transformation relationship of the condi-
tional information; and

generating a second loss based on a second difference

between the mnversely transformed second synthesized
image and the first synthesized image.

11. The method of claim 10, wherein the generating of the
second loss comprises generating the second loss to main-
tain a geometry consistency between the inversely trans-
formed second synthesized image and the first synthesized
image.

12. The method of claim 7, wherein the transforming of
the conditional information comprises:

unprojecting the training data to a three-dimensional (3D)

space by a transformation relationship based on the
depth information; and

transforming the conditional imformation by projecting

the unprojected training data to a viewpoint.

13. The method of claam 7, wherein the conditional
information comprises structure imformation of any one or
any combination of semantic information, edge information,
and skeleton information.

14. The method of claim 7, further comprising;:

extracting a first geometric feature from the conditional

information; and

extracting a second geometric feature from the first syn-

thesized 1mage,

wherein the training of the 1image generation neural net-

work further comprises generating a third loss for
training the 1image generation neural network, based on
a difference between the first geometric feature and the
second geometric feature.

15. The method of claim 7, further comprising:

extracting a third geometric feature from the transtormed

conditional information; and

extracting a fourth geometric feature from the second

synthesized 1mage,

wherein the traiming of the 1image generation neural net-

work further comprises generating a fourth loss for
training the 1mage generation neural network, based on
a difference between the third geometric feature and the
fourth geometric feature.

16. The method of claim 15, further comprising:

transforming a second geometric feature extracted from

the first synthesized 1mage based on the depth infor-
mation,

wherein the training of the 1image generation neural net-

work comprises generating a fifth loss for training the
image generation neural network, based on a difference
between the transtormed second geometric feature and
a fourth geometric feature extracted from the second
synthesized 1mage.

17. The method of claim 7, further comprising;:

extracting depth feature information from the depth infor-

mation,

wherein the generating of the first synthesized image

further comprises generating the {first synthesized
image corresponding to the depth feature information
and the conditional information by the 1image genera-
tion neural network based on the 1mage imnformation.

18. The method of claim 17, wherein the transforming of
the conditional information comprises transforming the con-
ditional information and the depth feature information based
on the depth information.




US 11,887,269 B2

25

19. The method of claim 18, wherein the generating of the
second synthesized image further comprises generating the
second synthesized image corresponding to the transformed
conditional information and the transformed depth feature
information by the image generation neural network based
on the 1mage information.
20. The method of claim 7, further comprising any one or
any combination of:
training an 1mage discrimination neural network to esti-
mate the first synthesized image as a fake 1image;

training the image discrimination neural network to esti-
mate the second synthesized image as the fake image;
and

training the 1image discrimination neural network to esti-

mate the 1image information as a real 1image.

21. The method of claim 7, further comprising:

generating a synthesized image by applying the input data

to the trained 1mage generation neural network; and

outputting the synthesized image.
22. A processor-implemented method, the method com-
prising;:

receiving training data comprising image information,
conditional information, and depth information corre-
sponding to the conditional information;

extracting depth feature information from the depth infor-
mation;
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generating a first synthesized image corresponding to the
depth feature information and the conditional informa-
tion by the image generation neural network based on
the 1mage imnformation;
transforming the conditional information and the depth
feature information based on the depth information;

generating a second synthesized image corresponding to
the transformed conditional information and the trans-
formed depth feature information by the 1image genera-
tion neural network based on the image information;
and

training the 1image generation neural network by compar-

ing the first synthesized image and the second synthe-
s1ized 1mage based on a transformation relationship of
the conditional information and the depth information.

23. The method of claim 22, wherein the training of the
image generation neural network comprises:

transforming the first synthesized image based on the

transformation relationship; and

training the 1image generation neural network to minimize

a difference between the transformed first synthesized
image and the second synthesized image.

24. The method of claim 22, wherein the depth feature
information 1s based on extracting a discontinuity portion of
the depth information and a discontinuity portion of the
normal information.
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