12 United States Patent

Mritunjai

US011886508B2

US 11,886,508 B2
Jan. 30, 2024

(10) Patent No.:
45) Date of Patent:

(54) ADAPTIVE TIERING FOR DATABASE DATA

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(63)

(1)

(52)

(58)

OF A REPLICA GROUP

Applicant: Amazon Technologies, Inc., Seattle,

WA (US)

16/9035; GO6F 16/252; GO6F 16/2246;
HO4L 67/1051; HO4L 67/1095; HO4L
67/01; HO4L 67/1097
See application file for complete search history.

(56) References Cited
Inventor: Akhilesh Mritunjai, Seattle, WA (US)
U.S. PATENT DOCUMENTS
Assignee: Amazon Technologies, Inc., Seattle, |
WA (US) 9,213,716 B2 12/2015 Schreter et al.
9,218,142 B2 12/2015 Hamedam et al.
9,262,458 B2 2/2016 Schret
Notice: Subject‘ to any disclaimer,,. the term of this 11,556,580 B1 1/2023 Jriiﬁn‘;};
patent 1s extended or adjusted under 35 2014/0006411 Al* 1/2014 Boldyrev GOG6F 16/2455
U.S.C. 154(b) by O days. 707/741
(Continued)
Appl. No.: 18/154,771 _ _
Primary Examiner — Tamara T Kyle
Filed: Jan. 13, 2023 Assistant Examiner — Lana Alagic

US 2023/0177086 Al

Related U.S. Application Data
Continuation of application No. 17/037,528, filed on

Prior Publication Data

Jun. 8, 2023

Sep. 29, 2020, now Pat. No. 11,556,589.

Int. CIL.

GO6F 16/901
HO4L 67/104
GO6F 16/9035
GO6F 16/21
GO6F 1627

U.S. CL

CPC ..

(2019.01
(2022.01
(2019.01
(2019.01

(2019.01

Field of Classification Search
CPC GO6F 16/9027; GO6F 16/214; GO6F 16/27;

GO6F 16/2°78; GO6F 16/903; GO6F

read/wrife
requiests 164

A

168

L N e T

responses

GO6F 16/9027 (2019.01);, GO6F 16/214
(2019.01); GO6F 16278 (2019.01); GO6F
16/9035 (2019.01); HO4L 67/1051 (2013.01)

(74) Attorney, Agent, or Firm — Robert C. Kowert;
Kowert, Hood, Munyon, Rankin & Goetzel, P.C.

(57) ABSTRACT

A storage node of a database replica group may distribute
different portions of data 1n local storage and external
storage, where local storage and external storage are orga-
nized using different types of index structures. Responsive to
receiving an access request for a database, a storage node
may determine that an 1tem of the database to be accessed by
the request does not reside within a first portion of the
database stored locally at the storage node. Responsive to
this determination, the storage node may obtain from an
external storage service a second portion of the database, the
second portion including a plurality of items including the
item, and the second portion organized according to a
structure different from the first portion. The storage node
may then store the plurality of obtained items in the first
portion and process the request using the first portion of the

database.
20 Claims, 10 Drawing Sheets
A A
read requestsé Eres,:mnsas read requests Eraspgnses
165a : i 169h 1650 | { 169n
——— S ————————— ———— —— — — — — & ~ -~

storage node 130a

external storage repiica 131

local

1 data
132a

adaptively
selected

tlatabase

sorted file
hot inaex
index E
429, stctines
1344

“““ﬂ

T

I

storage node 130b storage node 1301

=
external storage repiica 1316

y
extermnal storage replica 1311

atlaptively

selected
focal
databass
data
1326

adaplively |
Hot Sﬂ.f"fﬁd file . sefected sa,lrred file
indiex index focal index
117 strucfures database structures
- 136 | ‘ dala 134n
; 13

repfica group 120

database system 110

store read reat read | ead read | read
sorfed files 1 sored files response sorted files response sorted files response
172 174a 1763 174 176b 174n 176n
sorfed file(s)
136

storage system 140

US 11,886,508 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS

2015/0074222 Al1* 3/2015 Liang HO4L 67/288

709/214
2015/0112951 Al* 4/2015 Narayanamurthy .. GO6F 16/172

707/694
2017/0039239 Al* 2/2017 Saadat-Panah HO04L 67/1023
2017/0364273 Al* 12/2017 Schreter GO6F 16/27
2019/0347352 Al* 11/2019 Gochkov HO4L 67/1034
2020/0125272 Al1* 4/2020 Grecooooeeen. GOG6F 3/0634

* cited by examiner

386,508 B2

2

Sheet 1 of 10 US 11

Jan. 30, 2024

U.S. Patent

L Old

B[Wo)sAs abeio)s

oct
(S)o]l popi0s
Y W Y W
ug/| Up/l 49/1 av/l €9/} er/l ¢/}
asuodsal S9|lj PBLOS asuodsay $9Jif PBLI0S osuodsal Sojlj pal0S | Sojlf peuoS
pea. pesJ peay peai 8.10]S

01| WoJSAS aseqejep

_ ueel qcel ecel
wer ejep el EJEP erel ejep
SaINjoN)s aseqejep SaINJONI)S | | eseqejep SaINon)s aseqejep
xopui | 1800 Xopul | jeoo) Xapu 1800)
aJi] PALIOS 08)09]0S o]l PBLIOS paJoa|es aJlj PaLIOS 08]08j8S
_ Ajanidepe Ajandepe Aisandepe

b

i N i —
U9} : i UGQ/ 969/ : i 8G9/ 891 Q1 S158nbay
sesuodsel | s1senbai peal sesuodsal ; : Sjsenbai peal sasuodsas 9)LIM/PLA
\ \

U.S. Patent Jan. 30, 2024 Sheet 2 of 10 US 11,886,508 B2

storage service 240
partition sorted file(s)
242
database service 210
database partitions
234

roufing nodes
item 250
request processing

232

storage nodes 230

|
l
l
|
|
|
|
|
|
l
l
|
l
|
|
request |
|
l
|
|
|
|
|
l
|
|
|
|
|
|
|
l

table creation/ storage node administrator
management management console
222 224 220
control plane 220
provider network 200

. L WS GNMAL MMM MMM AW MEMIS GWROR AR AR WWR GWELS ML AN GUW WS MR MM TR GWA G e emme e amwe s own

network

client(s)
270

FIG. 2

U.S. Patent Jan. 30, 2024

Sheet 3 of 10

read/write A
requests |_responses
340 " 342
replica group 300 300
Jocal storage replica 311 311\
database .
partition h"g’;”gex
_3_1..2_ LSRR
update log
records __— acks %%kg
read A 352 356 date | read | A
requests - response upaate 1og requests l . response
352 r\; 366 records 6 4-/"‘i r'\, 368

local storage replica 321 321 |

A S U MM M UM S G SNSRI O UMM UMMM NN GMNAN M M UM MU U UM NS NN AN M. SN AN . UM N ——

#

34

local

da;at?ﬁaosne hot index database hot index
p o 323 data 333 structures

332

follower node(s) 330

extemal storage replica 331 331 |

|

l
sorted file | |
index |
|

|

|

334

store read | | . read
sorted files sorted files response
372 374 376

FIG.

sterge service 140

3

US 11,886,508 B2

US 11,886,508 B2

Sheet 4 of 10

Jan. 30, 2024

U.S. Patent

v Old
OF [821nues abeio)s
9gt
(S)ally pajios
9/F A4 LY 244 44
asuodsal $8)lf PBLI0S asuodsal $9JIj PoLIoS S9|lf P8LOoS
pea. pea. pea. pea. 810}S
~ « 1! |
— F .4
I] —~ = e e e e e e e | | e e e o — o —
. _ o
| | 9y 457
| SaINONI)S c7% eJep | SaINONS | Cly ejep
| Xopur xspui joy | | eseqejep | | Xopur | Xopui joy | aseqejep
| 3/l PAUOS 1820y | 8Jlf poOS | (B30
| |
|
||| e ewene J| ([|Eeeesuse
. 0CF (S)apou 1amojjo; ocy | OTF epou sspes
" i SPJ0J8)
| Boj ajepdn
898 ~ . P9p 7hh 124
“ sasuodse. “ _f\mmm:c@ $8SU0US8) Sjsenba.
L00% dnoub eajde | - peal opmypesl
IIIIIIII ITIIITIIIIIIIIIIIIIIIIIIIIIII'I,IIII
Y “

U.S. Patent Jan. 30, 2024 Sheet 5 of 10 US 11,886,508 B2

convert extemal
storage replica
group member to
local storage

replica group o————— - —
member local storage replica 53

540

storage node 510

storage node 510

local
database data

|
|
|
522 : database
| partition
| 932
|
— | . _
o - sorted file(s)
T T 547
storage service
240
FIG. B5A
creafe new local
storage node 550 ngjg ;’:{g ZC; storage node 550
T T T T T T T TN from external rree—_— - N
| new storage replica 260 sforage | new storage replica 560)
| | 570 | |
: | | |
| : — : database |
| | | partition |
| | | 20 :
| | l |
| l I |
N e e o e e _.,«
-~ sorted file(s)
T 572

Storage service
240

FIG. 5B

508 B2

2

US 11,886

Sheet 6 of 10

Jan. 30, 2024

U.S. Patent

079

80IMBS 8bR.I0)S

029
apOU Iopes)

9 9l

8r9
()8}l pepos
1s8nba.

V9
Lonealde
boj ajepdn uibsq

(Y9
apoU JaMoyo

Mmau Ajnuep!

uononysul
uoiead uoniued

019
80U JoMOJjO]

079
dno.ib

paljdal 10] 8pou
mau uoisinoid

0€9
dno.Jb eoydau

0} Balldai ppe
0] JUBA® J28]8p

$9

isbeuelll spou 8belojs

U.S. Patent Jan. 30, 2024 Sheet 7 of 10 US 11,886,508 B2

Receive a request to access an item of a database at a
storage node of the database 700

Determine if item is in a first portion of the database

stored locally at the storage node and organized using a
first type of index structure 710

yes
Item local? 720

no

Evaluate index structure(s) for portion(s) of the

database stored in an extemal storage system to
identify another portion of the database to obtain to
perform the request 730

Obtain the other portion of the database that includes
the item from the external storage system, the other

portion organized using a second type of index structure
740

Store items obtained in the other portion of the

database in the first portion of the database organized
using the first type of index structure 750

an performance of request mee no

latency condition? 760

yes

Perform request(s) to access the item Send notification of delay in access
using the first portion of the database request

stored locally at the storage node 770 780

FIG. 7

U.S. Patent Jan. 30, 2024 Sheet 8 of 10 US 11,886,508 B2

Determine to remove at least some of a portion of a
replica of a database organized according to a first

type of index structure
800

Identify a first item of the portion of the replica also
stored in another portion of the database stored in an
external storage system organized according to a
second type of index structure to be removed 810

Optionally identify additional items of the portion of the
replica also stored in the other portion of the database
storing the first item 820

Remove the item and the optional additional items
from the portion of the replica organized according to
the first type of index structure

830

FIG. 8

U.S. Patent Jan. 30, 2024 Sheet 9 of 10 US 11,886,508 B2

[dentify storage nodes eligible to become leader node

of a replica group
910

Determine metrics for eligible storage nodes indicating
respective proportions of database data stored locally

at each eligivble storage node
920

Elect a leader node from among eligible storage nodes

based at least in part on the determined metrics
930

FIG. 9

U.S. Patent Jan. 30, 2024 Sheet 10 of 10 US 11,886,508 B2

computing system 1000

Drocessor Drocessor Drocessor

1010a 1010b 1010n

I/O interface 1030

memory 1020 network

interface
1040

input/output
device(s)
1090

program data store

instructions
1025 1039

to/from communication
devices, external storage
devices, input/output
devices and/or other
computing devices

FIG. 10

US 11,886,508 B2

1

ADAPTIVE TIERING FOR DATABASE DATA
OF A REPLICA GROUP

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 17/037,528, filed Sep. 29, 2020, which 1s
hereby incorporated by reference herein 1n 1ts entirety.

BACKGROUND

Database systems managing large amounts of data on
behalf of users may distribute and/or replicate that data
across two or more machines, often 1n different locations, for
any ol a number of reasons, including security issues,
disaster prevention and recovery issues, data locality and
availability 1ssues, etc. As the scale of data stored increases,
database systems may implement different techniques for
distributing and replicating data to cope with the increasing
demand upon data storage resources and to provide highly
performant access to dynamically changing access demands.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a logical block diagram illustrating adaptive
tiering for database data of a replica group, according to
some embodiments.

FIG. 2 1s a logical block diagram illustrating a provider
network offering a database service that may implement
adaptive tiering for database data of a replica group, accord-
ing to some embodiments.

FIG. 3 1s a logical block diagram illustrating a replica
group for a database implementing different types of replicas
with different types of index structures for storing database
data, according to some embodiments.

FIG. 4 1s a logical block diagram illustrating a replica
group for a database with a leader node storing portions of
a database in external storage, according to some embodi-
ments.

FIG. 5A 1llustrates an example conversion from one type
ol storage replica to another, according to some embodi-
ments.

FIG. 5B illustrates an example creation of a new local
storage replica from external storage, according to some
embodiments.

FIG. 6 1s a logical block diagram illustrating interactions
to add a replica to a replica group, according to some
embodiments.

FIG. 7 1s a high-level flowchart 1llustrating various meth-
ods and techniques for a storage node of a replica group to
obtain a portion of a database replica from external storage
when adaptive tiering ol database data 1s implemented,
according to some embodiments.

FIG. 8 1s a high-level flowchart 1llustrating various meth-
ods and techniques remove a portion of a database replica
already stored 1n external storage from a storage node of a
replica group, according to some embodiments.

FIG. 9 15 a high-level flowchart 1llustrating various meth-
ods and techniques to elect a leader node of a replica group
that implements adaptive tiering of database data for a
replica group, according to some embodiments.

FIG. 10 1s a block diagram illustrating an example com-
puting system, according to some embodiments.

While embodiments are described herein by way of
example for several embodiments and illustrative drawings,
those skilled 1n the art will recognize that the embodiments
are not limited to the embodiments or drawings described. It
should be understood, that the drawings and detailed
description thereto are not intended to limit embodiments to

10

15

20

25

30

35

40

45

50

55

60

65

2

the particular form disclosed, but on the contrary, the inten-
tion 1s to cover all modifications, equivalents and alterna-

tives falling within the spirit and scope as defined by the
appended claims. The headings used herein are for organi-
zational purposes only and are not meant to be used to limait
the scope of the description or the claims. As used through-
out this application, the word “may” 1s used 1n a permissive
sense (1.e., meaning having the potential to), rather than the
mandatory sense (1.e., meaning must). Similarly, the words
“include”, “including”, and “includes™ mean including, but
not limited to.

It will also be understood that, although the terms first,
second, etc. may be used herein to describe various ele-
ments, these elements should not be limited by these terms.
These terms are only used to distinguish one element from
another. For example, a first contact could be termed a
second contact, and, similarly, a second contact could be
termed a first contact, without departing from the scope of
the present invention. The first contact and the second

contact are both contacts, but they are not the same contact.

DETAILED DESCRIPTION

The techniques described herein may implement adaptive
tiering of database data for a replica group. Replica groups
may be implemented for databases in various embodiments
to provide resilience, durability, and additional request pro-
cessing capacity (e.g., additional read requests) for a data-
base 1n a database system. The benefits provided by replica
groups are not without costs. For instance, high-performance
database systems may rely upon special storage hardware
(e.g., SSDs, non-volatile memory, etc.) to provide quick
access to database data. While some copies of database data
may be used for responding to requests, some copies that are
used to 1ncrease durability and resiliency to failure may be
hosted 1n the same costly storage technology. Thus, tech-
niques that reduce the costs of providing durability and
resiliency without decreasing performance if or when the
copy 1s utilized for accessing the database are thus highly
desirable.

FIG. 1 1s a logical block diagram 1illustrating adaptive
tiering for database data of a replica group, according to
some embodiments. Database system 110 may be one of
various types of databases (e.g., relational, non-relation,
NoSQL, document, etc.), in some embodiments. Database
system 110 may implement replica group 120 which may
include multiple storage nodes, such as storage nodes 130,
in various embodiments. In some scenarios, replica group
120 may be only a single node (e.g., in faillure modes,
degraded modes, or different performance modes (not 1llus-
trated)). In some embodiments, one of the storage nodes,
such as storage node 130aq, may function as a first storage
node implementing an external storage replica 131a. Storage
node 130a may accept both read and write access requests
164 for the database and return responses 168 to those
requests. In various embodiments, storage node 130a may
store local database data 1324 to perform the write accesses
and perform reads of data.

In some embodiments, storage nodes 130 other than the
first storage node 130a may optionally perform read
requests. For example read requests 165 may be received at
a storage node 130 and responses 169 to those requests
returned by the storage nodes 130. Storage nodes 130 may
also create sorted file index structures 134, which may, 1n
some embodiments, include probabilistic structures, such as
bloom filters or skip lists, or other non-probabilistic struc-
tures to determine which sorted files to read when storing

US 11,886,508 B2

3

sorted files 136. Thus storage nodes 130 may access the
sorted file index structures 134 to determine which sorted
files to read to return a response, as discussed below with
regard to FIG. 7. In some embodiments, storage nodes 130
may also implement hot indexes 133 i1dentiiying portions of
database data 132 which may be accessed more frequently
or are more likely to be accessed than other portions of the
database partition.

As also discussed below with regard to FIG. 7, 1n some
embodiments, adaptively selected local database data 132
may be used by database system 110 to adaptively identify
some 1tems to store locally so that they may be cached (e.g.,
in memory or other local storage at storage nodes 130), as
discussed in detaill below with regard to FIG. 8. For
example, per-item access patterns may be tracked, moni-
tored, or otherwise evaluated 1n order to determine whether
items should be maintained locally 1n addition to a remote
storage location, like storage system 140. In this way, local
database data 132 can be used to answer read requests. The
items to maintain locally may be mirrored, copied, or
otherwise replicated across replica groups 1n some embodi-
ments. In some embodiments, local database data 132 may
differ among the individual storage nodes 130 (e.g., 1n
scenarios where individual storage nodes 130 may each
serve read requests resulting in different 1tems being stored
locally as a result of those requests). In some embodiments,
other types of caching strategies, such as cold caches for
point queries, may be implemented 1n addition to or instead
of hot data caches. In various embodiments, local database
data 132 may be organized in using any suitable indexing
structure such as log-structured merge trees or balanced
trees.

In some embodiments, storage system 140 may be a
file-based, object-based, or other type of storage system that
may be used to store sorted files 136 for external storage
replica group members as discussed below with regard to
FIGS. 3 and 4. Storage system 140 may implement striping,
sharding, or other data distribution techmiques so that dif-
ferent portions of a file 136 are stored across multiple
locations (e.g., at separate nodes) allowing for parallel reads
to perform various operations such as read request handling,
and new replica creation, as discussed below with regard to
FIGS. 3-6.

This specification begins with a general description of a
provider network that may implement a database service that
may employ different types of index structures for storing
database data 1n a replica group. Then various examples of
a database service are discussed, including different com-
ponents/modules, or arrangements of components/module,
that may be employed as part of implementing the database
service, 1n some embodiments. A number of different meth-
ods and techniques to implement different types of index
structures for storing database data 1n a replica group are
then discussed, some of which are illustrated 1n accompa-
nying flowcharts. Finally, a description of an example com-
puting system upon which the various components, mod-
ules, systems, devices, and/or nodes may be implemented 1s
provided. Various examples are provided throughout the
specification.

FIG. 2 1s a logical block diagram illustrating a provider
network oflering a database service that may implement
adaptive tiering for database data of a replica group, accord-
ing to some embodiments. Provider network 200 may be a
private or closed system, 1n some embodiments, or may be
set up by an entity such as a company or a public sector
organization to provide one or more services (such as
various types of cloud-based storage) accessible via the

5

10

15

20

25

30

35

40

45

50

55

60

65

4

Internet and/or other networks to clients 270, in another
embodiment. In some embodiments, provider network 200
may be implemented 1n a single location or may include
numerous data centers hosting various resource pools, such
as collections of physical and/or virtualized computer serv-
ers, storage devices, networking equipment and the like
(e.g., computing system 1000 described below with regard
to FIG. 10), needed to implement and distribute the inira-
structure and storage services oflered by the provider net-
work 200. In some embodiments, provider network 200 may
implement various computing resources or services, such as
database service 210 (e.g., a non-relational (NoSQL) data-
base, relational database service or other database service
that may utilize collections of items (e.g., tables that include
items)), and other services (not 1llustrated), such as data tlow
processing service, and/or other large scale data processing
techniques), data storage services (e.g., an object storage
service, block-based storage service, or data storage service
that may store diflerent types of data for centralized access),
virtual compute services, and/or any other type of network-
based services (which may include various other types of
storage, processing, analysis, communication, event han-
dling, visualization, and security services).

In various embodiments, the components 1illustrated 1n
FIG. 2 may be implemented directly within computer hard-
ware, as 1nstructions directly or indirectly executable by
computer hardware (e.g., a microprocessor or computer
system), or using a combination of these techniques. For
example, the components of FIG. 2 may be implemented by
a system that includes a number of computing nodes (or
simply, nodes), 1n some embodiments, each of which may be
similar to the computer system embodiment illustrated 1n
FIG. 10 and described below. In some embodiments, the
functionality of a given system or service component (e.g.,
a component of key value database service 210) may be
implemented by a particular node or may be distributed
across several nodes. In some embodiments, a given node
may implement the functionality of more than one service
system component (e.g., more than one data store compo-
nent).

Database service 210 may be implemented various types
of distributed database services, in some embodiments, for
storing and accessing data in tables hosted in key-value
database. Such services may be enterprise-class database
systems that are highly scalable and extensible. In some
embodiments, access requests (e.g., requests to get/obtain
items, put/insert items, delete items, update or modity 1tems,
scan multiple 1tems) may be directed to a table 1n database
service 210 that 1s distributed across multiple physical
resources, and the database system may be scaled up or
down on an as needed basis. In some embodiments, clients/
subscribers may submit requests in a number of ways, €.g.,
interactively via graphical user interface (e.g., a console) or
a programmatic interface to the database system. In some
embodiments, database service 210 may provide a REST1ul
programmatic interface in order to submit access requests
(e.g., to get, 1sert, delete, or scan data).

In some embodiments, clients 270 may encompass any
type of client configurable to submit network-based requests
to provider network 200 via network 260, including requests
for database service 210 (e.g., to access 1tem(s) 1n a table 1n
database service 210). For example, 1n some embodiments a
given client 270 may include a suitable version of a web
browser, or may include a plug-in module or other type of
code module that executes as an extension to or within an
execution environment provided by a web browser. Alter-
natively 1in a different embodiment, a client 270 may encom-

US 11,886,508 B2

S

pass an application such as a database client/application (or
user 1nterface thereot), a media application, an oflice appli-
cation or any other application that may make use of a
database 1n database service 210 to store and/or access the
data to implement various applications. In some embodi-
ments, such an application may include suflicient protocol
support (e.g., for a suitable version of Hypertext Transfer
Protocol (HTTP)) for generating and processing network-
based services requests without necessarily implementing,
tull browser support for all types of network-based data.
That 1s, client 270 may be an application that interacts
directly with provider network 200, 1n some embodiments.
In some embodiments, client 270 may generate network-
based services requests according to a Representational
State Transtfer (REST)-style network-based services archi-
tecture, a document- or message-based network-based ser-
vices architecture, or another suitable network-based ser-
vices architecture. Note that 1n some embodiments, clients
of database service 210 may be implemented within pro-
vider network 200 (e.g., applications hosted on a virtual
compute service).

In some embodiments, clients of database service 210
may be implemented on resources within provider network
200 (not 1llustrated). For example, a client application may
be hosted on a virtual machine or other computing resources
implemented as part of another provider network service
that may send access requests to database service 210 via an
internal network (not illustrated).

In some embodiments, a client 270 may provide access to
provider network 200 to other applications 1n a manner that
1s transparent to those applications. For example, client 270
may integrate with a database on database service 210. In
such an embodiment, applications may not need to be
modified to make use of a service model that utilizes
database service 210. Instead, the details of interfacing to the
database service 210 may be coordinated by client 270.

Client(s) 270 may convey network-based services
requests to and recerve responses from provider network 200
via network 260, in some embodiments. In some embodi-
ments, network 260 may encompass any suitable combina-
tion of networking hardware and protocols necessary to
establish network-based-based communications between
clients 270 and provider network 200. For example, network
260 may encompass the various telecommunications net-
works and service providers that collectively implement the
Internet. In some embodiments, network 260 may also
include private networks such as local area networks
(LANSs) or wide area networks (WANs) as well as public or
private wireless networks. For example, both a given client
270 and provider network 200 may be respectively provi-
sioned within enterprises having their own internal net-
works. In such an embodiment, network 260 may include
the hardware (e.g., modems, routers, switches, load balanc-
ers, proxy servers, etc.) and solftware (e.g., protocol stacks,
accounting soiftware, firewall/security software, etc.) neces-
sary to establish a networking link between given client(s)
270 and the Internet as well as between the Internet and
provider network 200. It 1s noted that 1n some embodiments,
client(s) 270 may communicate with provider network 200
using a private network rather than the public Internet.

Database service 210 may implement request routing
nodes 250, 1n some embodiments. Request routing nodes
250 may receive and parse access requests, 1n various
embodiments 1n order to determine various features of the
request, to parse, authenticate, throttle and/or dispatch
access requests, among other things, 1n some embodiments.

10

15

20

25

30

35

40

45

50

55

60

65

6

In some embodiments, database service 210 may imple-
ment control plane 220 to implement one or more admin-
istrative components, such as automated admin instances
which may provide a variety of visibility and/or control
functions). In various embodiments, control plane 220 may
direct the performance of different types ol control plane
operations among the nodes, systems, or devices implement-
ing database service 210, in some embodiments. Control
plane 220 may provide visibility and control to system
administrators via administrator console 226, 1n some
embodiment. Admin console 226 may allow system admin-
istrators to interact directly with database service 210 (and/
or the underlying system). In some embodiments, the admin
console 226 may be the primary point of visibility and
control for database service 210 (e.g., for configuration or
reconfiguration by system administrators). For example, the
admin console may be implemented as a relatively thin
client that provides display and control functionally to
system administrators and/or other privileged users, and
through which system status indicators, metadata, and/or
operating parameters may be observed and/or updated. Con-
trol plane 220 may provide an interface or access to infor-
mation stored about one or more detected control plane
events, such as data backup or other management operations
for a table, at database service 210, in some embodiments.

Storage node management 224 may provide resource
allocation, 1n some embodiments, for storing additional data
in table submitted to database key-value service 210. For
instance, control plane 220 may communicate with process-
ing nodes to initiate the performance of various control
plane operations, such as moves of multi-table partitions,
splits ol multi-table partitions, update tables, delete tables,
create indexes, etc In some embodiments, control plane
220 may 1nclude a node recovery feature or component that
handles failure events for storage nodes 230, and request
routing nodes 250 (e.g., adding new nodes, removing failing
or underperforming nodes, deactivating or decommissioning
underutilized nodes, etc).

Various durability, resiliency, control, or other operations
may be directed by control plane 220. For example, storage
node management 224 may detect split, copy, or move
events for multi-table partitions at storage nodes 1n order to
ensure that the storage nodes maintain satisify a minimum
performance level for performing access requests. For
instance, i various embodiments, there may be situations 1n
which a partition (or a replica thereof) may need to be
copied, e.g., from one storage node to another. For example,
if there are three replicas of a particular partition, each
hosted on a different physical or logical machine, and one of
the machines fails, the replica hosted on that machine may
need to be replaced by a new copy of the partition on another
machine. In another example, 11 a particular machine that
hosts multiple partitions of one or more tables experiences
heavy traflic, one of the heavily accessed partitions may be
moved (using a copy operation) to a machine that 1s expe-
riencing less traflic 1n an attempt to more evenly distribute
the system workload and improve performance. In some
embodiments, storage node management 224 may perform
partition moves using a physical copying mechanism (e.g.,
a physical file system mechanism, such as a file copy
mechanism) that copies an entire partition from one machine
to another, rather than copying a snapshot of the partition
data row by. While the partition 1s being copied, write
operations targeting the partition may be logged. During the
copy operation, any logged write operations may be applied
to the partition by a catch-up process at periodic intervals
(e.g., at a series of checkpoints). Once the entire partition has

US 11,886,508 B2

7

been copied to the destination machine, any remaining
logged write operations (1.e. any write operations performed
since the last checkpoint) may be performed on the desti-
nation partition by a final catch-up process. Therefore, the
data in the destination partition may be consistent following
the completion of the partition move, 1n some embodiments.
In this way, storage node management 224 can move par-
titions amongst storage nodes 230 while the partitions being
moved are still “live” and able to accept access requests.

In some embodiments, the partition moving process
described above may be employed in partition splitting
operations by storage node management 224 1n response to
the detection of a partition split event. For example, a
partition may be split because 1t 1s large, e.g., when it
becomes too big to fit on one machine or storage device
and/or 1n order to keep the partition size small enough to
quickly rebuld the partitions hosted on a single machine
(using a large number of parallel processes) 1n the event of
a machine failure. A partition may also be split when 1t
becomes too “hot” (1.e. when 1t experiences a much greater
than average amount of traflic as compared to other parti-
tions). For example, if the workload changes suddenly
and/or dramatically for a given partition, the system may be
configured to react quickly to the change. In some embodi-
ments, the partition splitting process described herein may
be transparent to applications and clients/users, which may
allow the data storage service to be scaled automatically (1.e.
without requiring client/user intervention or initiation).

In some embodiments, each database partition 234 may
be 1dentified by a partition ID, which may be a unique
number (e.g., a GUID) assigned at the time the partition 1s
created. A partition 234 may also have a version number that
1s 1ncremented each time the partition goes through a
reconfiguration (e.g., in response to adding or removing
replicas, but not necessarily 1 response to a master
tallover). When a partition 1s split, two new partitions may
be created, each of which may have a respective new
partition ID, and the original partition ID may no longer be
used, 1n some embodiments. In some embodiments, a par-
tition may be split by the system using a split tool or process
in response to changing conditions.

Split or move events may be detected by storage node
management 224 in various ways. For example, partition
size and heat, where heat may be tracked by internally
measured metrics (such as TOPS), externally measured
metrics (such as latency), and/or other factors may be
evaluated with respect to various performance thresholds.

System anomalies may also trigger split or move events
(e.g., network partitions that disrupt communications
between replicas of a partition 1n a replica group, 1n some
embodiments. Storage node management 224 may detect
storage node failures, or provide other anomaly control, 1n
some embodiments. If the partition replica hosted on the
storage node on which a fault or failure was detected was the
master for its replica group, a new master may be elected for
the replica group (e.g., from amongst remaining storage
nodes 1n the replica group). Storage node management 224
may 1nitiate creation of a replacement partition replica while
the source partition replica 1s live (1.e. while one or more of
the replicas of the partition continue to accept and service
requests directed to the partition), in some embodiments. In
vartous embodiments, the partition replica on the faulty
storage node may be used as the source partition replica, or
another replica for same partition (on a working machine)
may be used as the source partition replica, e.g., depending,
type and/or severity of the detected fault.

10

15

20

25

30

35

40

45

50

55

60

65

8

Control plane 220 may implement table creation and
management 222 to manage the creation (or deletion) of
database tables hosted in database service 210, in some
embodiments. For example, a request to create a table may
be submitted via administrator console 226 which may
initiate performance of a workilow to generate appropriate
system metadata (e.g., a table 1dentifier that 1s unique with
respect to all other tables in database service 210, table
performance or configuration parameters, etc.). Because
tables may be stored in multi-table partitions, resource
allocation for a table to be created may be avoided as
multi-partition tables may be updated to handle additional
data according to storage node management 224, or other
partition management features, 1n some embodiments.

In some embodiments, database service 210 may also
implement a plurality of storage nodes 230, each of which
may manage one or more partitions of a database table on
behalf of clients/users or on behalf of database service 210
which may be stored in database storage 234 (on storage
devices attached to storage nodes 230 or in network storage
accessible to storage nodes 230).

Storage nodes 230 may implement 1tem request process-
ing 232, 1n some embodiments. Item request processing 232
may perform various operations (e.g., read/get, write/up-
date/modity/change, insert/add, or delete/remove) to access
individual items stored 1n tables 1in database service 210, in
some embodiments. In some embodiments, item request
processing 232 may support operations performed as part of
a transaction, including techniques such as locking items 1n
a transaction and/or ordering requests to operate on an 1tem
as part of transaction along with other requests according to
timestamps (e.g., timestamp ordering) so that storage nodes
230 can accept or reject the transaction-related requests. In
some embodiments, 1item request processing 232 may main-
tain database partitions 234 according to a database model
(e.g., a non-relational, NoSQL, or other key-value database
model). Item request processing may include processing for
sub-tables, as discussed below with regard to FIG. 4.

In some embodiments, database service 210 may provide
functionality for creating, accessing, and/or managing tables
or secondary indexes at nodes within a multi-tenant envi-
ronment. For example, database partitions 234 may store
table 1item(s) from multiple tables, indexes 238, or other data
stored on behaltf of different clients, applications, users,
accounts or non-related entities, 1n some embodiments. Thus
database partitions 234 may be multi-tenant, in some
embodiments when storing items from different database
tables. In some embodiments, an mndex may include table
items 236 (e.g., 1n a B+ tree).

In addition to dividing or otherwise distributing data (e.g.,
database tables) across storage nodes 230 in separate parti-
tions, storage nodes 230 may also be used in multiple
different arrangements for providing resiliency and/or dura-
bility of data as part of larger collections or groups of
resources. A replica group, for example, may be composed
of a number of storage nodes maintaiming a replica of
particular portion of data (e.g., a partition) for the database
service 210, as discussed below with regard to FIG. 3.
Moreover, different replica groups may utilize overlapping
nodes, where a storage node 230 may be a member of
multiple replica groups, maintaining replicas for each of
those groups whose other storage node 230 members difler
from the other replica groups.

Different models, schemas or formats for storing data for
database tables 1n database service 210 may be 1mple-
mented, 1 some embodiments. For example, in some
embodiments, non-relational, NoSQL, semi-structured, or

US 11,886,508 B2

9

other key-value data formats may be implemented. In at
least some embodiments, the data model may include tables
contaiming 1tems that have one or more attributes. In such
embodiments, each table maintained on behalf of a client/
user may include one or more items, and each item may
include a collection of one or more attributes. The attributes

of an 1tem may be a collection of one or more name-value
pairs, 1n any order, 1n some embodiments. In some embodi-
ments, each attribute 1n an 1item may have a name, a type,
and a value. In some embodiments, the items may be
managed by assigning each item a primary key value (which
may include one or more attribute values), and this primary
key value may also be used to uniquely 1dentity the item. In
some embodiments, a large number of attributes may be
defined across the 1tems 1n a table, but each 1item may contain
a sparse set of these attributes (with the particular attributes
specified for one 1tem being unrelated to the attributes of
another 1tem 1n the same table), and all of the attributes may
be optional except for the primary key attribute(s). In other
words, the tables maintained by the database service 210
(and the underlying storage service) may have no pre-
defined schema other than their reliance on the primary key.

Metadata or other system data for tables may also be
stored as part of database partitions using similar partition-
ing schemes and using similar indexes, 1n some embodi-
ments.

Database service 210 may provide an application pro-
gramming interface (API) for requesting various operations
targeting tables, indexes, items, and/or attributes maintained
on behalfl of storage service clients. In some embodiments,
the service (and/or the underlying system) may provide both
control plane APIs and data plane APIs. The control plane
APIs provided by database service 210 (and/or the under-
lying system) may be used to manipulate table-level entities,
such as tables and indexes and/or to re-configure various
tables These APIs may be called relatively inirequently
(when compared to data plane APIs). In some embodiments,
the control plane APIs provided by the service may be used
to create tables or secondary indexes for tables at separate
storage nodes, import tables, export tables, delete tables or
secondary 1ndexes, explore tables or secondary indexes
(c.g., to generate various performance reports or skew
reports), modily table configurations or operating parameter
for tables or secondary indexes, and/or describe tables or
secondary indexes. In some embodiments, control plane
APIs that perform updates to table-level entries may mvoke
asynchronous worktlows to perform a requested operation.
Methods that request “description” information (e.g., via a
describeTables API) may simply return the current known
state of the tables or secondary indexes maintained by the
service on behall of a client/user. The data plane APIs
provided by database service 210 (and/or the underlying
system) may be used to perform item-level operations, such
as requests for individual items or for multiple 1tems in one
or more tables table, such as queries, batch operations,
and/or scans.

The APIs provided by the service described herein may
support request and response parameters encoded 1n one or
more ndustry-standard or proprietary data exchange for-
mats, in different embodiments. For example, 1n various
embodiments, requests and responses may adhere to a
human-readable (e.g., text-based) data interchange standard,
(e.g., JavaScript Object Notation, or JSON), or may be
represented using a binary encoding (which, in some cases,
may be more compact than a text-based representation). In
various embodiments, the system may supply default values

10

15

20

25

30

35

40

45

50

55

60

65

10

(e.g., system-wide, user-specific, or account-specific default
values) for one or more of the mnput parameters of the APIs
described herein.

Database service 210 may include support for some or all
of the following operations on data maintained 1n a table (or
index) by the service on behalf of a storage service client:
perform a transaction (inclusive of one or more operations
on one or more items in one or more tables), put (or store)
an 1tem, get (or retrieve) one or more items having a
specified primary key, delete an 1tem, update the attributes 1n
a single 1tem, query for items using an index, and scan (e.g.,
list items) over the whole table, optionally filtering the 1tems
returned, or conditional varniations on the operations
described above that are atomically performed (e.g., condi-
tional put, conditional get, conditional delete, conditional
update, etc.). For example, the database service 210 (and/or
underlying system) described herein may provide various
data plane APIs for performing 1tem-level operations, such
as a Transactltems API, Putltem API, a Getltem (or Get-
Items) API, a Deleteltem API, and/or an Updateltem API, as
well as one or more index-based seek/traversal operations
across multiple 1tems 1n a table, such as a Query API and/or
a Scan API.

Storage service 240 may be file, object-based, or other
type of storage service that may be used to store partition
sorted files 242 for external storage replica group members
as discussed below with regard to FIGS. 3 and 4. Storage
service 240 may implement striping, sharding, or other data
distribution techniques so that different portions of a file 242
are stored across multiple locations (e.g., at separate nodes)
allowing for parallel reads to perform various operations
such as read request handling and new replica creation, as
discussed below with regard to FIGS. 3-6.

FIG. 3 1s a logical block diagram illustrating a replica
group lfor a database implementing different types of replicas
with different types of index structures for storing database
data, 1n various embodiments. In some scenarios, replica
group 300 may be only a single node (e.g., 1n failure modes,
degraded modes, or different performance modes (not 1llus-
trated). Leader node 310 may accept both read and write
requests 340 for the database and return responses 342 to
those requests. In various embodiments, leader node 310
may store a database partition 312 to perform write requests
and perform reads, as a local storage replica 311. The leader
node may create an update log 314 to record updates made
by write requests 340. In some embodiments, leader node
310 may also implement a hot index 313 identifying por-
tions of database partition 312 which may be accessed more
frequently or are more likely to be accessed than other
portions of the database partition. In some embodiments, hot
index 313 (and hot indexes 323 and 333 discussed below)
may store the frequently accessed portions of a database
(e.g., frequently accessed 1tems) as separate copies of the
portions in the hot index 313 structure (e.g., duplicates of the
items may be stored as leal nodes 1n a b-tree or other index
structure while the 1tems may also be stored in correspond-
ing database partitions or as a sorted file in the storage
service).

Leader node 310 may send information including update
log records to follower nodes, such as follower node(s) 320
as 1indicated at 352 and follower node(s) 330, as indicated at
354. Different types of storage replicas may be implemented
at different follower nodes. For example follower node(s)
320 may be a local storage replica 321, which may apply the
updates to database partition 322. When updates are applied,
follower node 356 may send an acknowledgement of the
updates as shown 1 356 and 358. In some embodiments,

US 11,886,508 B2

11

leader node 310 may send additional information to follower
node(s) 320 and 330 indicating the portions of the database
partition identified as hot 1 the hot index 313. Using this
additional information, follower nodes 320 and 330 may
also 1implement respective hot indexes 323 and 333 identi-
tying respective portions ol database data 322 and 332
which may be accessed more frequently or are more likely
to be accessed than other portions of the database partition.

Follower node(s) 330 may implement an external storage
replica 331. As discussed above with regard to FIG. 1,
external storage replicas may use a diflerent type of index
than local storage replicas (e.g. log-structured merge tree
instead of a b-tree index). A first node of the follower node(s)
330, such as storage node 130a of FIG. 1, may receive
update log records 354 and store database data in local
database data 332. The first follower node may then, at a
later time, store database data 372 as sorted files 136 in
storage system 140, when a size of update log records or a
s1ze of local database data 1s exceeded. Once stored 1n sorted
files 136 1n storage system 140, these records and files may
be immutable in some embodiments. Once stored, 1n some
embodiments follower nodes 330 may request immutable
sorted files 136 from the storage service 140, as shown 1n
374, and receive read responses 376. In some embodiments,
portions of database data may be retained 1n local database
data 332 according to information maintained in hot index
333 identitying portions of database data 332 which may be
accessed more frequently or are more likely to be accessed
than other portions of the database partition.

In some embodiments, follower nodes may optionally
perform read requests. For example read requests 362 and
364 may be received at follower node(s) 320 and 330 and
read responses returned 366 and 368. Follower node(s) 330
may also create sorted file index structures 334, which may,
in some embodiments, include probabilistic structures, such
as bloom filters or skip lists, or other non-probabilistic
structures to determine which sorted files to read when
storing sorted files 136. Thus follower node(s) 330 may
access the sorted file mndex structures 334 to determine
which sorted files to read to return a response, as discussed
below with regard to FIG. 7. As also discussed below with
regard to FIG. 7, in some embodiments, local database data
332 may also store hot (e.g., frequently accessed) items so
that they may be cached in memory to answer read requests.
In some embodiments, other types ol caching strategies,
such as cold caches for point queries, may be implemented
in addition to or 1instead of hot data caches. Follower node(s)
320 may also receive read requests and may return a
response using database partition 322.

In some embodiments, leader node 310 may truncate or
remove old log records from update log 314 when acknowl-
edged (e.g., 356 and 338) by follower nodes. In some
embodiments, a first follower node 330, such as storage
node 130q of FIG. 1, may not acknowledge 358 until the log
records are stored as sorted files 372.

FIG. 4 1s a logical block diagram illustrating a replica
group for a database comprising a leader node storing
portions of a database 1n external storage, 1n various embodi-
ments. In some scenarios, replica group 400 may be only a
single node (e.g., i failure modes, degraded modes, or
different performance modes (not illustrated). Leader node
410 may accept both read and write requests 440 for the
database and return responses 442 to those requests. In
various embodiments, leader node 410 may store a local
database data 412 to perform write requests and perform
reads, as an external storage replica 411. The leader node
410 may create an update log 414 to record updates made by

10

15

20

25

30

35

40

45

50

55

60

65

12

write requests 440, as described above 1n FIG. 3. The leader
node 410 may then store database data 472 as sorted files
136 1n storage system 140, when a size of update log records
or a size of local database data 1s exceeded. Once stored 1n
sorted files 136 1n storage system 140, these records and files
may be immutable 1n some embodiments. Once stored, in
some embodiments leader node 410 and follower nodes 430
may request immutable sorted files 136 from the storage
service 140, as shown 1n 474, and receive read responses
476.

In some embodiments, leader node 410 may also 1mple-
ment a hot mdex 413 identifying portions of database
partition 412 which may be accessed more frequently or are
more likely to be accessed than other portions of the
database partition (or storing respective copies ol the por-
tions of the database as part of the host index 413 structure,
similar to the discussion above with regard to FIG. 3).
Leader node 410 may send information including update log
records to follower nodes 430 as indicated at 450. In some
embodiments, leader node 410 may send additional infor-
mation to follower nodes 430 indicating the portions of the
database partition identified as hot in the hot index 413.
Using this additional information, follower nodes 430 may
also 1mplement respective hot indexes 423 identifying
respective portions of database data 432 which may be
accessed more frequently or are more likely to be accessed
than other portions of the database partition.

In some embodiments, follower nodes may optionally
perform read requests. For example read requests 464 may
be received at follower node(s) 430. Follower node(s) 430
may also create sorted file index structures 434, which may,
in some embodiments, include probabilistic structures, such
as bloom filters or skip lists, or other non-probabilistic
structures to determine which sorted files to read when
storing sorted files 136. Thus follower node(s) 430 may
access the sorted file imndex structures 434 to determine
which sorted files to read to return a response, as discussed
below with regard to FIG. 7. As also discussed below with
regard to FIG. 7, 1n some embodiments, local database data
432 may also store hot (e.g., frequently accessed) items so
that they may be cached in memory to answer read requests.
In some embodiments, other types of caching strategies,
such as cold caches for point queries, may be implemented
in addition to or instead of hot data caches. Follower node(s)
420 may also receive read requests and may return a
response using database partition 422.

FIG. 5A illustrates an example conversion from one type
of storage replica to another, according to some embodi-
ments. Storage node 510 may be an external storage replica
520 for a replica group of a database. Local database data
522 may be stored (e.g., hot data cache and an ordered tree
for storing update log records) and sorted file index struc-
tures 524 (e.g., a bloom filter, skip list, log structured merge
tree, etc.). The storage node 510 may be i1dentified for
conversion 540 to a local storage replica in the replica group.
For example, sorted file(s) 342 may be obtained from
storage service 240 and used to create database partition 532
at storage node 510 to use for performing updates and read
requests as a local storage replica 3530.

FIG. 5B illustrates an example creation of a new local
storage replica from external storage, according to some
embodiments. Similar to the discussion above with regard to
FIG. 4, a new storage node 550 may be 1dentified for new
storage replica 560. A new local storage replica group
member may be created from external storage, as indicated
at 570. As 1llustrated, sorted file(s) 572 may be obtained

from storage service 240 and used to create database parti-

US 11,886,508 B2

13

tion 562 at storage node 550 to use for performing updates
and read requests as a local storage replica 560.

FIG. 6 1s a logical block diagram illustrating interactions
to add a replica to a replica group, according to some
embodiments. As indicated at 630, storage node manager
624 may detect an event to add a replica to a replica group,
in some embodiments. Storage node manager 624 may send
or otherwise provision 640 a new node for the replica group
to be a new follower node 610. Storage node manager 624
may send a request 642 to leader node 620 for the replica
group to i1dentily follower node 610 as part of the replica
group, 1n some embodiments. In some embodiments, fol-
lower node 610 may register or communicate membership
directly with leader node 620 (not illustrated). As indicated
at 644, leader node 640 may begin update log replica to
tollower node 610.

As indicated at 624, storage node manager 624 may send
a partition creation instruction 646 to follower node 610,
which may identity the objects (e.g., files) to obtain to create
the database partition at follower node 610, 1n some embodi-
ments. As indicated at 648, follower node 610 may then
perform requests to obtain sorted files from storage service
640 1n order to create the database partition at follower node
610, in some embodiments. New replicas may be created 1n
different types of formats. For example, although a follower
node may store a local storage replica, the file type or other
data format of the local storage replica for follower node 610
may different than the local storage replica formats at other
tollower nodes (e.g., data formatted for a diflerent type of
storage engine), 1n some embodiments. In this way, addi-
tional replicas may be created in a replica group to serve
requests for different types of requests (or supported more
clliciently) by data stored in the different format.

The examples of a database that implements different
types of index structures for storing database data in a
replica group as discussed i FIGS. 2-6 above have been
given in regard to a database service (e.g., a relational
database, non-relational, or other type of database service).
However, various other types of database systems that can
advantageously implement a replica group may implement
different types of imndex structures for storing database data
in a replica group, 1n other embodiments.

FI1G. 7 1s a high-level flowchart 1llustrating various meth-
ods and techniques for a storage node of a replica group to
obtain a portion of a database replica from external storage,
according to some embodiments. These techniques, as well
as the techmques discussed with regard to FIGS. 8-9, may be
implemented using components or systems as described
above with regard to FIGS. 2-6, as well as other types of
databases or storage services, and thus the following dis-
cussion 1s not intended to be limiting as to the other types of
systems that may implement the described techniques.

As 1indicated at 700, a request to perform an access to an
item 1n a database may be received at a storage node (e.g.,
storage node 130 of FIG. 1) of a replica group, 1n some
embodiments. For 1nstance, as discussed above with regard
to FIGS. 1-6, a replica group may be a replica group that
maintains a partition of a larger database (which may include
other partitions).

As indicated at 710, responsive to receiving the request,
the storage node may first determine 1f the item to be
accessed resides within a first portion of the database, such
as the local database data 132 of FIG. 1. This first portion of
the database may be organized using any suitable indexing,
structure such as log-structured merge trees or balanced

10

15

20

25

30

35

40

45

50

55

60

65

14

trees. If the item 1s found to be included 1n the first portion
of the database, as shown 1n 720, the process may proceed
to step 770.

If, however, the 1tem 1s not included in the first portion of
the database, as shown 1n 720, the process may proceed to
step 730 where index structures for other portions of the
database may be evaluated to identily another portion of the
database which includes the item. Examples of such index
structures are the sorted file index structures 134 of FIG. 1.

Once a portion including the 1tem 1s identified, the process
proceeds to step 740 where the storage node may obtain the
identified portion of the database, the portion including a
plurality of items of the database including the item to be
accessed. This portion of the database may be, for example,
a sorted file 136 of FIG. 1 and may be obtained from an
external storage service such as storage system 140 of FIG.
1. This obtained portion of the database may be organized
using any mdexing structure suitable for storing the portion
of the database at the external storage service and may be
included, for example, as part of the sorted file 136 of FIG.
1. in various embodiments.

Once the identified portion of the database has been
obtained, as indicated in 750 the storage node may store the
plurality of obtained items of the database in the local
database data orgamized using the indexing structure of the
local database data.

In some embodiments, the additional steps 710-750 may
result 1 the access of the item being unable to meet an
access latency condition or guarantee of the database. In the
event the access latency condition may be met, the process
advances to step 770. Otherwise, as indicated mn 780, a
notification of delay 1n accessing the 1item may be sent, in
some embodiments. This notification may result, in various
embodiments, 1n one or more requests to retry the access of
the 1item of the database. In such embodiments, future retries
of the access may result in the latency condition being
satisfied.

As indicated 1n 700, once the item to be access 1s stored
in the first portion of the database, the request to access the
item may be performed using the first portion of the database
stored locally at the storage node, 1n various embodiments.

FIG. 8 1s a high-level flowchart 1llustrating various meth-
ods and techniques remove a portion of database data
already stored 1n external storage from a storage node of a
replica group, according to some embodiments. As indicated
in 800, the technique begins by determining to remove at
least some items from a portion of a database stored locally
at a storage node, such as 1n local database data 132 of FIG.
1. This determination may be made for any number of
reasons. For example, a determination could be made
responsive to the portion of the database stored locally
exceeding a predetermined size. In another example, a
determination could be made based on temporal consider-
ations or based on client input. Any number of reasons may
be envisioned and the above examples are not intended to be
limiting.

As shown in 810, responsive to the determination a
storage node may i1dentity an item included in both the
portion of the database stored locally at the storage node,
such as 1n local database data 132 of FIG. 1, and 1n an
immutable portion of the database stored at an external
storage service, such as 1n a sorted file 136 1n storage service
140 of FIG. 1. This determination may be made for any
number of reasons 1n various embodiments. For example,
the plurality of items may be identified based on a least
recent access time. In another example, the plurality of 1items
may be i1dentified based on client mput. Any number of

US 11,886,508 B2

15

reasons may be envisioned and the above examples are not
intended to be limiting. The plurality of identified 1tems may
turther include all items included within the immutable
portion of the database stored at an external storage service
in some embodiments.

Once an 1tem has been 1dentified, as indicated in 820, 1n
some embodiments additional items stored in the same
immutable portion of the database storing the 1dentified item
may also be identified for removal. The additional 1tems may
include a portion or all of the 1tems stored 1n the immutable
portion of the database, 1n various embodiments.

Once all 1tems has been 1dentified, as indicated 1n 830, the
identified 1items may then be removed from the portion of the
database stored locally at the storage node. As items may be
immutable, 1n some embodiments, once stored at the exter-
nal storage service, an update of the portion of the database
stored at an external storage service may be avoided prior to
removal of the 1tems from the portion of the database stored

locally at the storage node.

FIG. 9 1s a high-level flowchart 1llustrating various meth-
ods and techmiques to elect a leader node of a replica group,
according to some embodiments. A replica group may elect
a leader node for a number of reasons 1n various embodi-
ments. For example, storage node management 224 may
detect storage node failures, or provide other anomaly
control, 1n some embodiments. If the partition replica hosted
on the storage node on which a fault or failure was detected
was the master for 1ts replica group, a new leader may be
clected for the replica group (e.g., from amongst remaining
storage nodes 1n the replica group). Storage node manage-
ment 224 may initiate creation of a replacement partition
replica while the source partition replica 1s live (1.e. while
one or more of the replicas of the partition continue to accept
and service requests directed to the partition), 1 some
embodiments. In various embodiments, the partition replica
on the faulty storage node may be used as the source
partition replica, or another replica for same partition (on a
working machine) may be used as the source partition
replica, e.g., depending type and/or severity of the detected
fault. Any number of reasons may be envisioned and the
above examples are not intended to be limiting.

The technique begins by identifying storage nodes eli-
gible to become leader node of the replica group, as shown
in 910. In some embodiments, eligible storage nodes may
include all remaining storage nodes in the replica group
while 1n other embodiments some remaining storage nodes
in the replica group may be excluded for a number of
reasons. Such reasons may include geographic locations, as
an example. Any number of reasons may be envisioned and
the above examples are not intended to be limiting.

Once eligible storage nodes have been determined, a
metric for each eligible storage node may be determined, as
shown 1n 920, 1n various embodiments. The metrics provide
indications of the fraction of the total database replica for the
storage node that 1s contained within the portion of the
database stored locally at the respective storage node. For
example, one eligible storage node may include the entire
database within the portion of the database stored locally
may, therefore, have a determined metric of one hundred
percent, or an equvalent metric thereof, while another
cligible storage node may include only a small portion of
entire database within the portion of the database stored
locally may, therefore, have a determined metric of, for
example, ten percent. Such examples are merely illustrative
and any suitable metric indicating the relative proportion of
database data stored locally at the storage node may be used.

10

15

20

25

30

35

40

45

50

55

60

65

16

Once metrics for each eligible storage node have been
determined, a leader node may be elected from among the
cligible storage nodes based at least 1n part on the deter-
mined metrics, as shown 1n 930. Such election may occur 1n
a number of ways 1n various embodiments. For example, 1n
some embodiments, election may be performed by a central
storage node authority, such as within storage node man-
agement 224 of control plane 220 as shown 1n FIG. 2, using
the collective metrics of all eligible storage nodes. In other
embodiments, an election may occur 1n a distributed fashion,
for example, from among all eligible or remaining storage
nodes of a replica group, where a determined metric for an
cligible storage node may bias 1ts consideration as leader
node. Any number of election techniques may be envisioned
and the above examples are not intended to be limiting.

In some embodiments, a newly elected leader node may
transition from 1mplementing an external storage replica to
a local storage replica, such as shown in FIGS. 3 and 5A.
Such a transition may be performed by obtaining, from the
external storage service, a plurality of portions of the data-
base, such as sorted file(s) 542 from storage service 240 as
shown 1n FIG. 5A, each comprising respective pluralities of
items and each organized as a file and storing the respective
pluralities of items of the plurality of portions of the data-
base 1n the portion of the database organized according to
the tree structure, such as the local storage replica 530 as
shown 1n FIG. 5A.

The methods described herein may in various embodi-
ments be implemented by any combination of hardware and
soltware. For example, in some embodiments, the methods
may be implemented by a computer system (e.g., a computer
system as 1n FIG. 10) that includes one or more processors
executing program instructions stored on a computer-read-
able storage medium coupled to the processors. The program
instructions may implement the functionality described
herein (e.g., the functionality of various servers and other
components that 1mplement the distributed systems
described herein). The various methods as illustrated 1n the
figures and described herein represent example embodi-
ments of methods. The order of any method may be
changed, and various 1tems may be added, reordered, com-
bined, omitted, modified, etc.

Embodiments to implement different types of index struc-
tures for storing database data 1n a replica group as described
herein may be executed on one or more computer systems,
which may interact with various other devices. One such
computer system 1s illustrated by FIG. 10. In different
embodiments, computer system 1000 may be any of various
types of devices, mcluding, but not limited to, a personal
computer system, desktop computer, laptop, notebook, or
netbook computer, mainirame computer system, handheld
computer, workstation, network computer, a camera, a set
top box, a mobile device, a consumer device, video game
console, handheld video game device, application server,
storage device, a peripheral device such as a switch, modem,
router, or 1n general any type of computing or compute node,
computing device or electronic device.

In the illustrated embodiment, computer system 1000
includes one or more processors 1010 coupled to a system
memory 1020 via an input/output (I/O) interface 1030.
Computer system 1000 further includes a network interface
1040 coupled to I/O tertace 1030, and one or more
iput/output devices 1050, such as cursor control device,
keyboard, and display(s). Display(s) may include standard
computer monitor(s) and/or other display systems, technolo-
gies or devices, 1n some embodiments. In some embodi-
ments, 1t 15 contemplated that embodiments may be 1mple-

"y

US 11,886,508 B2

17

mented using a single instance of computer system 1000,
while 1n other embodiments multiple such systems, or
multiple nodes making up computer system 1000, may host
different portions or i1nstances of embodiments. For
example, 1n some embodiments some 1tems may be 1mple-
mented via one or more nodes of computer system 1000 that
are distinct from those nodes implementing other items.

In various embodiments, computer system 1000 may be a
uniprocessor system including one processor 1010, or a
multiprocessor system including several processors 1010
(e.g., two, four, eight, or another suitable number). Proces-
sors 1010 may be any suitable processor capable of execut-
ing instructions, i some embodiments. For example, 1n
various embodiments, processors 1010 may be general-
purpose or embedded processors implementing any of a
variety ol instruction set architectures (ISAs), such as the
x86, PowerPC, SPARC, or MIPS ISAs, or any other suitable
ISA. In multiprocessor systems, each of processors 1010
may commonly, but not necessarily, implement the same
ISA.

In some embodiments, at least one processor 1010 may be
a graphics processing unit. A graphics processing umit or
GPU may be considered a dedicated graphics-rendering
device for a personal computer, workstation, game console
or other computing or electronic device, 1n some embodi-
ments. Modern GPUs may be very eflicient at manipulating,
and displaying computer graphics, and their highly parallel
structure may make them more eflective than typical CPUs
for a range of complex graphical algorithms. For example,
a graphics processor may implement a number of graphics
primitive operations 1n a way that makes executing them
much faster than drawing directly to the screen with a host
central processing unit (CPU). In various embodiments,
graphics rendering may, at least 1n part, be implemented by
program 1instructions for execution on one of, or parallel
execution on two or more of, such GPUs. The GPU(s) may
implement one or more application programmer interfaces
(APIs) that permit programmers to invoke the functionality
of the GPU(s), 1n some embodiments.

System memory 1020 may store program instructions
1025 and/or data accessible by processor 1010 to implement
different types of imndex structures for storing database data
in a replica group, 1n some embodiments. In various embodi-
ments, system memory 1020 may be implemented using any
suitable memory technology, such as static random access
memory (SRAM), synchronous dynamic RAM (SDRAM),
nonvolatile/Flash-type memory, or any other type of
memory. In the illustrated embodiment, program instruc-
tions and data implementing desired functions, such as those
described above are shown stored within system memory
1020 as program 1nstructions 1025 and data storage 1035,
respectively. In other embodiments, program instructions
and/or data may be received, sent or stored upon different
types of computer-accessible media or on similar media
separate from system memory 1020 or computer system
1000. A computer-accessible medium may include non-
transitory storage media or memory media such as magnetic
or optical media, e.g., disk or CD/DVD-ROM coupled to
computer system 1000 via I/O interface 1030. Program
istructions and data stored via a computer-accessible
medium may be transmitted by transmission media or sig-
nals such as electrical, electromagnetic, or digital signals,
which may be conveyed via a communication medium such
as a network and/or a wireless link, such as may be imple-
mented via network interface 1040, in some embodiments.

In some embodiments, I/O mterface 1030 may be coor-
dinate I/0 traflic between processor 1010, system memory

10

15

20

25

30

35

40

45

50

55

60

65

18

1020, and any peripheral devices in the device, including
network interface 1040 or other peripheral interfaces, such
as 1nput/output devices 1050. In some embodiments, I/O
interface 1030 may perform any necessary protocol, timing
or other data transformations to convert data signals from
one component (e.g., system memory 1020) into a format
suitable for use by another component (e.g., processor
1010). In some embodiments, I/O interface 1030 may
include support for devices attached through various types
of peripheral buses, such as a varniant of the Peripheral
Component Interconnect (PCI) bus standard or the Universal
Serial Bus (USB) standard, for example. In some embodi-
ments, the function of I/O mterface 1030 may be split mnto
two or more separate components, such as a north bridge and
a south bridge, for example. In addition, 1n some embodi-
ments some or all of the functionality of I/O interface 1030,
such as an interface to system memory 1020, may be
incorporated directly into processor 1010.

Network interface 1040 may allow data to be exchanged
between computer system 1000 and other devices attached
to a network, such as other computer systems, or between
nodes of computer system 1000, 1n some embodiments. In
various embodiments, network itertace 1040 may support
communication via wired or wireless general data networks,
such as any suitable type of Ethernet network, for example;
via telecommunications/telephony networks such as analog
voice networks or digital fiber communications networks;
via storage area networks such as Fibre Channel SANs, or
via any other suitable type of network and/or protocol.

Input/output devices 1050 may, 1n some embodiments,
include one or more display terminals, keyboards, keypads,
touchpads, scanning devices, voice or optical recognition
devices, or any other devices suitable for entering or retriev-
ing data by one or more computer system 1000, in some
embodiments. Multiple input/output devices 1050 may be
present 1 computer system 1000 or may be distributed on
various nodes of computer system 1000, in some embodi-
ments. In some embodiments, similar input/output devices
may be separate from computer system 1000 and may
interact with one or more nodes of computer system 1000
through a wired or wireless connection, such as over net-
work interface 1040.

As shown 1n FIG. 10, memory 1020 may include program
instructions 1025 that implement the various embodiments
of the systems as described herein, and data store 1035,
comprising various data accessible by program instructions
1025, in some embodiments. In some embodiments, pro-
gram 1nstructions 1025 may include software items of
embodiments as described herein and as illustrated 1n the
Figures. Data storage 1035 may include data that may be
used 1n embodiments. In other embodiments, other or dif-
ferent software 1tems and data may be included.

Those skilled in the art will appreciate that computer
system 1000 1s merely illustrative and 1s not intended to limat
the scope of the embodiments as described herein. In par-
ticular, the computer system and devices may include any
combination of hardware or software that can perform the
indicated functions, including a computer, personal com-
puter system, desktop computer, laptop, notebook, or net-
book computer, mainirame computer system, handheld
computer, workstation, network computer, a camera, a set
top box, a mobile device, network device, internet appliance,
PDA, wireless phones, pagers, a consumer device, video
game console, handheld video game device, application
server, storage device, a peripheral device such as a switch,
modem, router, or 1 general any type of computing or
clectronic device. Computer system 1000 may also be

US 11,886,508 B2

19

connected to other devices that are not illustrated, or instead
may operate as a stand-alone system. In addition, the func-
tionality provided by the illustrated components may in
some embodiments be combined in fewer components or
distributed 1n additional components. Similarly, in some
embodiments, the functionality of some of the illustrated
components may not be provided and/or other additional
functionality may be available.

Those skilled 1n the art will also appreciate that, while
various items are 1llustrated as being stored 1n memory or on
storage while being used, these 1tems or portions of them
may be transferred between memory and other storage
devices for purposes of memory management and data
integrity. Alternatively, in other embodiments some or all of
the software components may execute 1n memory on another
device and communicate with the illustrated computer sys-
tem via inter-computer communication. Some or all of the
system components or data structures may also be stored
(e.g., as structions or structured data) on a computer-
accessible medium or a portable article to be read by an
appropriate drive, various examples of which are described
above. In some embodiments, instructions stored on a com-
puter-readable medium separate from computer system 1000
may be transmitted to computer system 1000 via transmis-
sion media or signals such as electrical, electromagnetic, or
digital signals, conveyed via a communication medium such
as a network and/or a wireless link. This computer readable
storage medium may be non-transitory. Various embodi-
ments may further include receiving, sending or storing
instructions and/or data implemented 1n accordance with the
foregoing description upon a computer-accessible medium.
Accordingly, the present invention may be practiced with
other computer system configurations.

Various embodiments may further include recerving,
sending or storing instructions and/or data implemented 1n
accordance with the foregoing description upon a computer-
accessible medium. Generally speaking, a computer-acces-
sible medium may include storage media or memory media

such as magnetic or optical media, e.g., disk or DVD/CD-
ROM, non-volatile media such as RAM (e.g. SDRAM,

DDR, RDRAM, SRAM, etc.), ROM, etc., as well as trans-
mission media or signals such as electrical, electromagnetic,
or digital signals, conveyed via a communication medium
such as network and/or a wireless link.

The various methods as illustrated i1n the Figures and
described herein represent example embodiments of meth-
ods. The methods may be implemented in software, hard-
ware, or a combination thereof. The order of method may be
changed, and various 1tems may be added, reordered, com-
bined, omitted, modified, etc.

Various modifications and changes may be made as would
be obvious to a person skilled in the art having the benefit
of this disclosure. It 1s intended that the invention embrace
all such modifications and changes and, accordingly, the
above description to be regarded 1n an 1llustrative rather than
a restrictive sense.

What 1s claimed 1s:

1. A method, comprising:

maintaiming a plurality of nodes of a replica group for a
database, the database comprising a plurality of por-
tions stored at an external storage service, wherein
individual portions of the plurality of portions stored at
the external storage service are organized according to
a first type of index structure, and wherein individual
nodes of the plurality of nodes respectively comprise a
local portion of the database organized according to a

10

15

20

25

30

35

40

45

50

55

60

65

20

second type of index structure different from the first
type of index structure; and

clecting a leader node of the plurality of nodes of the
replica group based at least in part on metrics deter-
mined for the individual nodes of the plurality of nodes,
wherein the respective metrics individually comprise
indications ol respective fractions ol the database
stored 1n the respective local portions of the respective
nodes.

2. The method of claim 1, wherein the second type of
index structure 1s a tree structure, and wherein the individual
portions of the plurality of portions are stored as files at the
external storage service.

3. The method of claim 1, further comprising:

receiving, at a node of the plurality of nodes, a request to

access an 1tem of a database, and responsive to receiv-

ing the request:

determining that the item of the database does not
reside within the local portion of the database main-
tained at the node;

obtaining, from the external storage service, another
portion of the database comprising a plurality of
items including the item; and

storing the plurality of items of the other portion of the
database 1n the local portion of the database main-
tained at the node, wherein the storing changes the
fraction of the database stored 1n the local portion of
the database at the node; and

processing the request to access the item of the database

according to the portion of the database.

4. The method of claim 3, further comprising:

sending, responsive to determining that the item of the

database does not reside within the local portion of the
database maintained at the node, an indication that the
access cannot be performed within a latency constraint;
and

recerving at the node a request to retry the access of the

item of the database:

wherein the processing the request to access the item 1s

performed responsive to recerving the request to retry
the access of the item of the database.

5. The method of claim 3, further comprising;:

identifying, prior to obtaining the other portion of the

database, the other portion of the database as compris-
ing the 1tem according to a probabilistic data structure.

6. The method of claim 1, further comprising;:

responsive to determining, at a node of the plurality of

nodes, to remove at least some of the local portion of

the database stored at the node:

identifying a plurality of items stored in both another
portion of the plurality of portions stored at the
external storage service and the local portion stored
at the node; and

removing the identified plurality of items from the local
portion stored at the node.

7. The method of claim 6, wherein the determining 1s
based at least on part on one or more of:

a data structure identifying a plurality of hot items to

retain at the node;

a last accessed time of at least some of the portion of the

database; or

input from a client of the database received via a pro-

grammatic interface.

8. The method of claim 1, wherein the database is
provided by a non-relational database service offered by a
provider network, wherein the external storage service 1s a

US 11,886,508 B2

21

storage service oflered by the provider network, and wherein
the other portion of the database i1s stored as a file in the
storage service.

9. One or more non-transitory, computer-readable storage
media, storing program instructions that when executed on
Or across one or more computing devices cause the one or
more computing devices to implement a replica group for a
database that respectiully implements:

maintaiming, by a plurality of nodes of the database,

comprising;

a plurality of portions stored at an external storage
service individually organized according to a first
type of index structure; and

a local portion organized according to a second type of
index structure diflerent from the first type of index
structure; and

clecting a leader node of the plurality of nodes of the

replica group based at least in part on metrics deter-
mined for the individual nodes of the plurality of nodes,
wherein the respective metrics individually comprise
indications ol respective fractions ol the database
stored 1n the respective local portions of the respective
nodes.

10. The one or more non-transitory, computer-readable
storage media of claim 9, wherein the second type of index
structure 1s a tree structure, and wherein the individual
portions of the plurality of portions are stored as files at the
external storage service.

11. The one or more non-transitory, computer-readable
storage media of claim 9, wherein a node of the plurality of
nodes further implements:

receiving a request to access an item of a database, and

responsive to receiving the request:

determining that the item of the database does not
reside within the local portion of the database main-
tained at the node;

obtaining, from the external storage service, another
portion of the database comprising a plurality of
items including the item; and

storing the plurality of items of the other portion of the
database 1n the local portion of the database main-
tained at the node, wherein the storing changes the
fraction of the database stored 1n the local portion of
the database at the node; and

processing the request to access the item of the database

according to the portion of the database.

12. The one or more non-transitory, computer-readable
storage media of claim 11, wherein the node further imple-
ments:

sending, responsive to determiming that the item of the

database does not reside within the local portion of the

database maintained at the node, an indication that the
access cannot be performed within a latency constraint;
and

receiving at the node a request to retry the access of the

item of the database:

wherein the processing the request to access the item 1s

performed responsive to recerving the request to retry

the access of the item of the database.

13. The one or more non-transitory, computer-readable

storage media of claim 9, wherein a node of the plurality of

nodes further implements:
responsive to determinming to remove at least some of the
local portion of the database stored at the node:

5

10

15

20

25

30

35

40

45

50

55

60

65

22

identifying a plurality of items stored in both another
portion of the plurality of portions stored at the
external storage service and the local portion stored
at the node; and

removing the identified plurality of items from the local
portion stored at the node.

14. The one or more non-transitory, computer-readable
storage media of claim 13, wherein the determining 1s based
at least on part on one or more of:

a data structure identifying a plurality of hot items to

retain at the node;

a last accessed time of at least some of the portion of the
database: or

input from a client of the database received via a pro-
grammatic intertace.

15. A system, comprising:

a plurality of nodes, individually comprising at least one
processor and a memory, implementing a replica group
for a database, the plurality of nodes configured to
maintain a database comprising:

a plurality of portions stored at an external storage
service mndividually organized according to a first
type of index structure; and

a local portion organized according to a second type of
index structure different from the first type of mndex
structure; and

a control plane, comprising at least one processor and a
memory, for the replica group, configured to elect a
leader node of the plurality of nodes of the replica
group based at least in part on metrics determined for
the individual nodes of the plurality of nodes, wherein
the respective metrics individually comprise indica-
tions of respective fractions of the database stored in
the respective local portions of the respective nodes.

16. The system of claim 135, wherein the second type of
index structure 1s a tree structure, and wherein the individual
portions of the plurality of portions are stored as files at the
external storage service.

17. The system of claim 15, a node of the plurality of
nodes further configured to:

receive a request to access an item of a database, and
responsive to receiving the request:
determine that the 1tem of the database does not reside

within the local portion of the database maintained at
the node;

obtain, from the external storage service, another por-
tion of the database comprising a plurality of items
including the 1tem; and

store the plurality of items of the other portion of the
database 1n the local portion of the database main-
tained at the node, wherein the storing changes the
fraction of the database stored 1n the local portion of
the database at the node; and

process the request to access the item of the database
according to the portion of the database.

18. The system of claim 17, the storage node of the replica
group lurther configured to identify, prior to obtaining the
other portion of the database, the other portion of the
database as comprising the 1tem according to a probabilistic
data structure.

19. The system of claim 15, a node of the plurality of
nodes further configured to:

responsive to determining, at a node of the plurality of
nodes, to remove at least some of the local portion of
the database stored at the node:

US 11,886,508 B2

23

identify a plurality of items stored in both another
portion ol the plurality of portions stored at the
external storage service and the local portion stored
at the node; and

remove the 1dentified plurality of items from the local
portion stored at the node.

20. The system of claim 15, wherein the database 1s
provided by a non-relational database service offered by a
provider network, wherein the external storage service 1s a
storage service oflered by the provider network, and wherein
the other portion of the database is stored as a file in the
storage service.

10

24

	Front Page
	Drawings
	Specification
	Claims

