12 United States Patent

US011880452B1

10) Patent No.: US 11,880,452 B1

Guha 45) Date of Patent: Jan. 23, 2024
(54) LEARNING BASED PROTECTION OF 2022/0100857 Al* 3/2022 Filarecooenrnn, GO6N 5/01
INFORMATION TECHNOLOGY 2022/0121741 Al1* 4/2022 Araujo GO6F 21/554
INFRASTRUCTURE 2022/0263855 Al* 8/2022 Engelberg GO6N 5/04
2022/0321540 Al1* 10/2022 Loman HO41L 63/20

1
(71) Applicant: B Q T Technologies, Dubai (AE) 2023/0254318 Al 82023 Huccoovvvvvvvinnnn.n, GOoF 2;/266(})/?
: : ‘ 2023/0262074 Al1* 8/2023 Guoooovvenene..l. HO4L 63/1416
(72) Inventor: Dipnarayvan Guha, Victoria (AU) 796/77
| 2023/0267374 Al* 8/2023 Pollert GO6F 16/90332
(73) Assignee: B QT Technologies, Dubair (AE) 706/12

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 0 days.

(21) Appl. No.: 18/207,665

(22) Filed: Jun. 8, 2023
(51) Inmt. CL
GO6F 21/52 (2013.01)
GO6N 20/00 (2019.01)
(52) U.S. CL
CPC GO6F 21/52 (2013.01); GO6N 20/00

(2019.01); GO6F 2221/033 (2013.01)

(58) Field of Classification Search
CPC GO6F 21/52; GO6F 2221/033; GO6N 20/00
USPC e 726/23

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

OTHER PUBLICATTIONS

Securing Critical Infrastructures: Deep-Learning-Based Threat Detec-
tion in IloTKeping Yu, ; IEEE:2021; pp. 76-82.*

* cited by examiner

Primary Examiner — Monjur Rahim
(74) Attorney, Agent, or Firm — Fenwick & West LLP

(57) ABSTRACT

A system manages resources based on a hardware transac-
tional memory unit. The system stores a system proiile map
comprising system profiles of applications. The system
profile of an application stores information describing sys-
tem resource utilization of the application. If a request for
resources for executing a new application 1s received, a
hardware transactional memory unit determines an amount
of memory to be allocated for executing the new application
and allocates memory partitions for executing the new
application. The system profile of the new application 1is
compared with system profiles in the system profile map. If

8,171,545 B1* 52012 Cooleycccoe.... GOOF %g S/gg there are any indicators of compromise representing poten-
11,397,808 B1* 7/2022 Prabhuc........... GOGF 21/566 tial COIMPIo1se of the 1161.17 Efppll?atlml 'the request for
2011/0214157 Al* 9/2011 Korsunsky ... HO4T. 63/1425 resources for the new application 1s denied. The system
796/1 generates and uses true random numbers.
2015/0293846 Al* 10/2015 Goyal HO4L 63/1425
711/122 20 Claims, 19 Drawing Sheets
300
Profile Map
-~ 330 T T RS LRt T T TR RIS RERERNERE.
%
Pradictor
B b ———

N Computing System Base Unit
Runtime- § T "
mamw N L LT TP P PPy

| 3 E

1000 b, Memory Space

340

Hardware {ransactional Memory Unit
110

111

US 11,880,452 B1

sbeimg Aepuonsy

Sheet 1 of 19

Jan. 23, 2024

oLt
HUM AICWBSIN IBUOHIOBSURE | SiBMplEH

01 Hun weisAg bunnduwion

U.S. Patent

US 11,880,452 B1

Sheet 2 of 19

Jan. 23, 2024

U.S. Patent

iojeiediuon FOHITYD

isbeuei
S50JN0SEM

- 0c¢
08 | wun
epds | | suopessd() |
| jeiouAiod |

Ove
I01B20lY

AIOUIDIA

G111 BUM AIOLISIN [BUIIOBSURL | aJempiBH]

Oic |
J0leiBuen) |
JBQUINN |
WopUEY

¢ Old

US 11,880,452 B1

oLt
HUM AJOWIBN jeuOnOBSUR | aiempieH]

.......................................-.......-.......-.......-.......-.... i@lle
Ovt | , AJCLUSLL

ooedg AICWaI aaaaaaaaaaaaaaaaaaaaaaaaaa OOw . ~SLUNUnY
“ jun sseg wasAg Bugndwion .

Sheet 3 of 19

0ig
J0Y0IP9

S80IN0SaY

Sunpnduwion

1“lll.-lll.-lll.-lll.-lll.-Ill.-lll.-lll.-lll.-lll.-lll.-lll.-lll.-lll.-Ill.-lll.-lll.-lll.-lll.-lll.-ll IH

Jan. 23, 2024

;;;

F -

.1-

. o

0ce

depy 8jyo.id

U.S. Patent

U.S. Patent Jan. 23, 2024 Sheet 4 of 19 US 11,880,452 B1

Reacelve a request tor aliocating
resources for g new application

be allocates for the new
application
420

Generating partitions based on the

Determine whether there are

indicators of compromise for the new
application
440

;

Indicators-of
7 compromise .
T detected -7

.
-

Yes

Deny request for resources for new { Approve request for resources for
application new application
455 | § 465

Kill any processes associated
with new application
400

Execute new application
470

FIG. 4

US 11,880,452 B1

L}
R
__.___ua"__." "a"nn L n__.".."n"__.
ERER RN R
e e
a"a"a"a"a"a"a R
i, il
.. "-"-“l-l - -"-"'"l"-"l"-" . P T R R T T T T T T T T I
. ..___nn. “n"n"n"n"n"n“ S
. TR EREER IERERERER
i] e e e, L
-
.
-
.
-
.
-
[]
.
-
.
-
.
-
.
-
.
-
.
-
.
.
" ...__a.__nn.. n.____..
.._-an..nalananalnnanaln._ .
PR REREREEEEEE EN
L
e e e
REEEREEEEREERERERRER
o e
R R R o
L e
e e
N e e
e -
ettt o S e L S
N L R R R G
L L
o Err " AR E R EEE
EEERR FEERERRE
R R R R
e e e
e e e e e R R e
EEEEREEEEEERER] Lll.__u-
e - a
R
¥ n-lalana"alanan __..» _."”l.".__“_."l."..,
F & * F

Sheet 5 of 19

Jan. 23, 2024

| a
K
Ilﬂi
L
E

U.S. Patent

FIG. 5

US 11,880,452 B1

Sheet 6 of 19

Jan. 23, 2024

U.S. Patent

2001
JiUf) 9sed
wiesAg bunndwon

9 Ol

009
JUN uoneINWISd

Q001
Jiuf) ssey

wie)sAg bunnduwion

€001
Jiun asey

wia)sAg bunnduwio)

lllllllllllllllllllllllll

U.S. Patent Jan. 23, 2024

Sheet 7 of 19 US 11,880,452 B1

=
s

CODE SECTION | | CODE SECTION | | CODE SECTIO
CS11 | £S21 5 S Cs31
> < : < B
CODESECTION | L | CODE SECTION | CODE SECTIO
s12 = 1:

>ﬁ*ﬁ***ﬁ*ﬁ***ﬁ*ﬁ***ﬁ*ﬁ**{

| CODE SECTION : | CODE SECTION

, “\l ‘) A s

S A R R g

AN

=

e e

}\‘-""""""""-""

g

S A S A g

513

PERMUTATION UNIT

TV STATUS INSTR

WRITE

RUN-THVIE
MEMORY
PROFILES

-4 TRANSACTIONAL

HARDWARE

MEMORY UNIT

-

USUALINSTR FLAG INSTR

Y Y

WRITE

Py

WRITE

M1

M2

M3

USUALINSTR FLAG INSTR |

Y Y

CACHE

M4

FIG. 7

M5

. SECONDARY
. STORAGE

U.S. Patent

Jan. 23, 2024

4 ™
CODE SECTION
gs11

] CODE SECTION |
€512

> <
CODE SECTION |
€513

PROGRAM PR1

T T T T T T T TN T T T T T T T T T T T T TTTTETTETTTETITT T T

- e mrere e - mrere -

“\
/

CODE SECTION |
€521 i
/

™

CODE SECTION |

)

CODE SECTION \‘

£s23 i
S

i
- —————

Sheet 8 of 19

US 11,880,452 B1

N,

P _
CODE SECTION

531

\
o,

>
CODE SECTION

(532

N

T,

(CGDE SECTION -

(533

PROGRAM PR3

PERMUTATION UNIT

T STATUS INSTR

| L T . e}

RUN-TIME
MEMORY
PROFILES

*h%h-ﬁh-ﬁh-ﬁh-\whﬂth

b
4 .
r r
: :
r]
! L
r b
4 .
r r
! :
I]

HARDWARE
1 TRANSACTIONAL
MEMORY UNIT

CPU

USUALINSTR FLAG INSTR

!

Yy Y

CACHE

- : e R R - ;:3

FIG. 3

M1

M2

FAGFZ

M3

M4

M5

RAM

SECONDARY
STORAGE

U.S. Patent

e ey ey

TN,
CODE SECTION
csit

> <

[CODE SECTION
€512

.

pr——

Jan. 23, 2024

Sheet 9 of 19

N\,
'\\
COQDE 5ECTiON
S22

CODE SECTION

"""""""""""""""" ey
FGDE SECTION
€521 |

> <

(3832

—

- CODE SECTION |

]
]
i,
i
]
]
]
§

(CODE S ECTIDSPD@

531 |
/

Ny J
<

US

11,880,452 B1

| CODE SECTION
€541

HPEPI I S e e e

//*—
i CODE SECTION
342

AN

AN

.
CODE SECTION

- CODE SECTION
| (533

b s e e

CODE SECTION
(513 '

. uir. wir, wir. wir. wir, wir. . wlr

523

. 5 {543
_/ . /

e

.

M,

PROGRAM PR1 PROGRAM PR2

PROGRAM PR4

.........................

PROGRAM PR3

...

rr T T T T T T T T T T AT T A w w rrwrwwrrwrwrwrrrrrwrrrwrd | L

1
1

ﬂ— -—— - 4
,l‘d..-........-..-.....-..-..-..-..-..-.,-.,-

HARDWAREL
TRANSACTIONAL
MEMGORY UNIT

TV STATUSINSTR S SECONDARY
; | STORAGE

T T mm oMl T T T R M STe T T Ml T T T T TR T e = T Te P ' e T e e e o T T P P ;1

_i-\._i-\._-ﬁ-\._i-\._i-\._-ﬁ-\._i-\._-ﬁ-\._-ﬁ-\._i-\._-ﬁ-\._-ﬁ-\._i-\._-ﬁ-\._-L-\._i-\._-ﬁ-\._im_*_ﬂm_im_*_ﬂm_*_*_ﬂm_ﬂm_ﬂm_*\.

USUALINSTR FLAG INSTR if M2
WRITE ‘ :'

WHITE

v v

CPU i3

WRITE

!

| 4

M4

Y ¥ Y

RUN-TIME
MEMORY
PROFILES

Usum MNSTR FLAG INSTR |

CACHE M5

RAM

FIG. 9

U.S. Patent Jan. 23, 2024 Sheet 10 of 19 US 11,880,452 B1

LR R B K E EEEE R EXNEXEKXERJMI

’
roin | A
lil:il:ila :il:il
:-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-; il:il:il:il il:il:
" i A
Fe e ; al:al::l:al al:al:
' A A
-
i a:a:a:a a:a:
"o S |
wEor Jr |
: : :"-'u":':":':":':":':" a a -'-‘: : ':":':"
P I I I I I I et ’.},“ b
i A LRl A
B ettt o o e m e mn o momn R Rl i SEEEERIE e
i e e i e e o -, v a0
I i i i i i i i . r
A A A A A A i e . : ~a, ':.,'l-i A A A A
e i i i i i i e A e T el e T . i i i i i
i i i e i i i A . - A i i
i A A A ', roin i i
i i e i e T i », T A
I i i 2 A o2 . g - i
A A A A o A A " A A
A iy - T S . e e e e T ro i i i
A T A i i X aa A
A A A A A u xR 2 A A A A A aga aa el A
i e e i e ananaaaanananana T i
I A S, e e e . o
i A A A i i i A
A) i e e e e e - T i
i i i i T ananaﬁnnanannna _____ R 1Y A
A A Al A A A i . roin i
i i i T i i e L T
i i i 2 A i i A i
N A A A A e, w e e e e e e Sl A
. i g - - T i il rol i
A A i 'Kt A
A A A a f A xR 2 a2 a A a A a A a R, b o
W.MMW% A A A A A B o o, L o o o IR e
) :a:a:n:a:a:a:a:a: :a: ------) a:a:a:a:a:aﬁ:a:a:a:a:a:a:a:a: T e e e e e e e e e e e e e e e ey :a'a'a
A A A S . i i - P
i i w aaaaaaaaaaaaaa ------
i i i e - i i i i i - x
A T B N A e Ry 0w e e e -
i i i - - i e i i -
:a:a:a:a:il:a:a:a::l: EPEEEURNEIE I:I:l l:I:l:I:I:l%:l:l:l:l:l:l:l:l: e o A A A
i e - A A
i 2 BT T A naanamﬂnannanna %
i i i A i i i | i i
i B A A A A A
A A A A A SR . A A A A i
i i i i i A i i
I R i i i I I R i i i i i
A B i i e e i
e i Ak
i e - - A A A N
I:H: o o 'a:n:n:a:n-n'a-n :
o N R iy]
A A]
e e ey - - A AL A]
A A SRRSO A e

dp A e e g e e e e e e e e e e e e e e

e :5:':"5":ﬁ:E=E=E:E:E:E=E=E

A A AN AN
AA A A A A A A

A A
Al
A A A A A A AN A
Al
-
A
A -
Al
Al
A

S L LL.

T e T S

eatelutetutebatit: biutets

e

ﬁkikkikkikkikkikkikkikkikkikk@ikkikkikkikkikkikkikkikkikkikkikkii'ikkikkikkikktkkikkitkikkikktkkikkitktkkikktt:ﬁkkitktkkikkttktkkikkttkikkitktk

A S o o8
g e e e T 0 oo oo e el
e T e e e e e e
A A A A e B A A A A
A A A A Ll ;u::l:n::l::u::|::u:a:n:a:nﬁn:u:a:a:n:a:n:a:
A A A A i A A A A A A R A A
e R e
e e e
i . . . :a:a:a:a:n:a:a:n:Ma:a:a:a:a:n:a:a:n
T l';;t., A A A A A A
. A .y '2‘ . :':":':":":':":":%":":":':":":':":"
S A S Sy
' e :) . :a:a:a:a:n:a:a:n:%a:a:a:a:a:n:a:a:n
LT K a:a:a:a:n:a:a:a:a A :a:il:a:a:n:a:a:a:
EUCEETREE . :a:a:a:a:a:a:a:a: a a:a:a:a:a:a:a:a:a
O ey X a:a:a:a:a:a:a:a:aﬁ:a:a:a:a:a:a:a:a:
' SRR . . "a:a:a:a:a:a:a:a: a:a:a:a:a:a:a:a:a
"""" i i N
el by
_____ A
.......... :::::::::::::
........ e
....... e

i i o i

Ll 9Ol

US 11,880,452 B1

. Do | HUfy] {aoeisues |
| sopdg | | suonesedp | | tequiny |
m | jeiwoukiod | | wiopuey

OveE
I01e00)Y
AICUIBIN

SY A
isbeusy
BOINO56M

. DeE || 052
 Jjojeiedwiod | | Je0eyQ |

m

GLT MU AOLLISYy [BUONDES

Sheet 11 of 19

IOIop8d
SIINOSOM
oInduios

GLit

Hupy Buibueyn yun Buies |

AYIOU A pESIY]

Jan. 23, 2024

| Om w_. _..
% mmccmm_wmoﬁa,i@

aoedg Aowsy | - S3[Y0id Alouisiy
WBISAS SwUnNyY

U.S. Patent

U.S. Patent Jan. 23, 2024 Sheet 12 of 19 US 11,880.452 B1

3R RERNEL

FIG. 12A

U.S. Patent Jan. 23, 2024 Sheet 13 of 19 US 11,880,452 B1

'i "‘;i

"
=
it

U.S. Patent Jan. 23, 2024 Sheet 14 of 19 US 11,880.452 B1

452 B1

US 11,880

Sheet 15 of 19

Jan. 23, 2024

U.S. Patent

US 11,880,452 B1

Sheet 16 of 19

Jan. 23, 2024

U.S. Patent

L N U S T U R S ST SO S YU SN S S S S

IIIIIIIIIIII rrEREREYVRE CEREREREREEREEFEREENSEERERNRERNRERERFEEEREEREREEE ERERERFREEREERERERERFEREEFEREREREREREEEREREREE R F

HH

lllllllllllllll LEEE; R A EREREERERNEERENEERENEERENEERENEERENEERENEERENEERENE RN EREEERNEERENEERNEERENEERENE RN EREE RN EREEEREEERENEERERENERRENR
HHH

e S S I R

aaaaaaaaaaaa R IR Rl i N

U.S. Patent

L G -

et

s O

li
.l
.I
.l
.l
.I
.l
.l
.I
.l
.l
.I
.l
| |
:
:
.l
.I
.l
.l
.I
.l
.l
.I
.l
.l
.I
.l
.l
[]
:
.l
.I
.l
.l
.I
.l
| |
:
.l
.l
.I
.l
.l
.I
.l
.l
.I
.l
.l
.I
.l
.l
.I
.l
.l
.I
.l
.l
.I
.l
.l
.I
.l
.l
.I
.l
.l
.I
.l
.l
.I
.l
.l
.I
.l
.l
.I
.l
.l
.I
.l
.l
.I
.l
.l
.I
.l
.l
.I
.l
.l
.I
.l
.l
.I
.l
.l
.I
.l
.l
.I
.l
.l
.I
.l
.l
.I
.l
.l
.I
.l
.l
.I
.l
.l
.I
.l
.l
.I
.l
.l
.I

FEFEFFFFF RN RN

Jan. 23, 2024

e

Sheet 17 of 19

[]

[]

[]
i i i i i i i i i i i‘:;i'_ e R R g g g g g g g g g g g g g g g g e g g O g g g g g g g g g g g g O g g g g g g g g g g e g R g o gy s
.

e

US 11,880,452 B1

k]

N
TR TR
A AN

M_N
AAAAAAA AN A
M_M_N
|
AA A A A
AA A A A

U.S. Patent Jan. 23, 2024 Sheet 18 of 19 US 11,880,452 B1

%%::."E:

.
.
:i:l:%!!l---l---!!!!l!!l!!l!!l!!!!!l!!l!

i lrlr-lr-lr---lr--lr-lr---lr-n--n!-!!-n--!!-n--n--nnnﬁq‘p

|]
']
]
I]
]
]
I]
']
]
I]
']
]
I]
]
]
I]
']
]
I]
]
]
I]
']
]
[I]
i | : ']
* ! . .
[1 . I]
¢ ; . "
[1 x]
* ! . '
i | . ']
¥ ! . .
[1 . I]
¢ ; . "
[1 x]
* ! . '
i | .]
L 3 e i
[L, . I]
i AAA AR A A A A AA A A AAAAA A AN ']
. i I A I]
[AAAAAaaa aaaaaaaaﬁaaa’hlﬂ.ﬂaaaaaﬁn’haa]
An A A AN AN A A AN A A " | A A m Al]
: A_A_A_A : :: A A A A A A ilaillil'l'illil-l'ill' e e . :
¢ . x
[I]
AN AN ANANANANAN AN r]
i AAA AR AAAAAAAAARAAAAAA AN A A A A A A ']
‘ L L ey . a
i AAAA AR AAAAAAAAAAAAAAA AN A A A A A A I]
3 lllllllllllllll A AA A A]
i AAA A A AAA xR AA AA A A A ']
AN AN AN AN AN A A NN AN AN A AN I]
4 AAAAAAAAAAAAAAAAAAANAANA AAAAAAAaA]
. L e i i i e e i e e i AA A a A A]
[A AN AN A AAA AR AAAAAA AN AAAA AR I]
AN AN AN An AN AN AN AN AN AN AN AN AN A]
i aaaaaaa&aaaanaa AAAA AR AN AAAA A AN]
. A A A A A AA A A A AN AA A A AAAA I]
[AAAAAaa AAAAAAAALAAAAAA AAAAAAaaA]
AN AN AN AN AN A AN AN AN A AN]
: .:.:.:.:.:.:.:.%:.:.:-:-:-:-:- :-:-:-:-:-:E-:ﬂ-:-:-:-:-: ST x :
AN AN A m AN AN A AN AN AN AN A AN AN] I]
4 A A A A A AAAAAAAAAAAA A A A A A A]
. oA A A A A A A A A AN A A A A A n ']
[A AN AN A AAA AR A AAAAA A AR A A A A AR . I]
AN AN AN An AN AN AN AN AN AN AN AN AN A]
i A AA A A AA A A A AAAAAA AN A A A A A A A .]
. A A A A A A A A A A AN A A A A A A L) I]
[AAAAAaa i]
Am A m AN A n A A A AN A oA A A AN]]
4 A AA AN A AAA AR AAAAAA AN 1:::::::::: I]
3 i i i i AAA AN AA A s n]
[] AAAAAAAASANAAA AN A A A A A A]
* l“I-l-l-l-illl'-l-ilil-il-l- i o : .
[I]
]]
& ' " .
[x]
4) I]
3 AAaaaaAAAAAAAaan A -]
: i il-l'.:::iI:I:il:l:il:l:il:l:il:l:il:l:il:l:il:::] W I] :
[A ";";";";";";";";";";" a1 " . a
[) i ' = : ']
[v]
']
4 . . .
i]
¥ n []
. .] L .
: h. .
¥ L] []
[}]
. .
i)
= I] A NAN AN ANAN AN AN
:]] ::l::l::l::l::l:a:n:a:a:n:a:a:n:a:a:n:a:
]] NANAN AN ANANAnANAn
) ’ i e
4 - v AAAAAAAAAAANA AN
3] AAdAaaaAAAAAAAaaana
i A A A A AAAa A
] I] W_A_m_ AN AN s AN
4 A A llllll
. n '] A_A_m AA | A_A_m AA
* .] e e
[] L) I] i e :'aﬁa'a'ﬂ'ﬂ'ﬂ'
¥) [i i i ' i
4 . A A A A_A_A_n_n
3]]] A_A_A A A_A A_A_A A
[] . A A A A L i i i
] " I] W_A_m_ AN | W_A_m_ AN
4 . . A A A | A A
: [] =] - A A A A A
[. . : A A A A A AN A A
]]] W_A_m_ AN n_A W_A_m_ AN
..' . X x-..-..-...-...-...-...-...-...-‘-*-*-‘-*-*-‘-*-*-‘-*-*-‘-*-*-‘-*-*-‘-*% -H-lnllﬂll- -l-ﬁnllﬂllnllﬂ
[[Ll AAA A A AA A
] WA AN m_A WA AN
[- [A A A | i i |
3] A_A_A A A_A A_A_A A
[] . [] A A A L i i i
L) I] W_A_m_ AN n_A W_A_m_ AN
4 L [A A A | A A
:] A A A A A
[= L " | A A A A A IEIIIII
] n] N_A_m_ AN _A N_A_m_ AN
r . [] A A A A A A A
.]] . I] A_A_n_A_A A A_A_n_A_A
[. L . [AAA A awaaaaa
[] -] AN AN | AN AN
i . L | A A _A__n A A_A_A_n_n
3] []] A_A_A A AN A_A_A A
[] . [] A A A A A A A
]]] I] A NAN AN ANANAN AN
4 .] [AAAAAAAAAAAAA A
: [] a] AA A A AN AN A AN
[. s | AAA AR A AR AR AR
=] NANAN AN ANANAnANAn
r . [] AN A A A A A A A A A
.] I] AAAAAAAAAA A
[[AAAAAAAAAAAAA A
]] A m A AN AN AN A AN
4 L | AAAAAAAAAAAAA AN
3] AAAaaaAAAAAAAAAnA
[] . - [] AAAAAAAAAAAAANARAA
]] I] ERERERERERERERERERERERRERERERER
[. L . [AAAAAAAAAAAAA A AA A A AAAAA A AN
[: L : : | ::I::I:;l::I::I:;l::l::l:;l::l::l:;l::l::l:;l::l::l: :I:::l:l-;Il -il-l'illil-l'illil-l'-- LA
i . i AAAAAAAAAAAAAAAAAAA A A A A A A
.]] n I] AAAAAAAAAAA A A A A ANA T A A A AAA AN
[. L [AAdAAAA A AAAAAA A AdAa AR A A A A A A AN AAaAAA
] .] An A A AN AN A A A AN AN oA A A AN
4 . L . | AAAAAAAAAAAAA AN a:aa:a%ﬂaaaaaaaaa
3] -] AAaAAaaaaAAAA AN s AA A A
i . i L e b e e e e i i A aaaaaaan
] [] I] AN AN AN AN AN AN AN ANANN AN AN A AN
4 [AAAAAAAAAAAAAAAaaAAAA A AA A
. N] L e b e i e e e i e e A A a A
[| AAA A AR A A A AAA A AR AAAA AN A AR AAAAAAA
.] AN ANAN AN AN AN AN ANANN A AN AN A AN
i) i AAAAAAAAAAAAAAAAAAA A A A A A A aAAAAA
. . I] A A A A A A A A A A AN A A A A AN A A AAAA
[L [HIIHIIHIIHIIHI aaaaaa}ﬁlaaaaaaaaa
]]] Am A m A AN AN A A AN A AN oA A A AN
4 . L | A A A A A A A AN A A A AAAA AN AN A A A A AAAAAA
3]]] AAaAAaaaAAAAAAAsaaAAnNAA s AA A A
i . i AAA A A Aaaaxnaaaa A AAaaan A
]] . I] Illlllllﬁlllllll A A m A AN A AN
4 . L . [A A A A AAAAAAAAA A A A A AA A
.]] L i e i i A A aaanaaaa A A a A
[. L . | A AN A A A A AR A A AR AAAAAAA
] L]] AN AN AN A AN AN AN AN AA N AN AN
i . i A A A A A AA A A aA A A A A A A A a_m_n
.]]] I] A A A A AN A AAA A A AN :I;l:l:l;l:l -
[. L [AAAAAaa AAAAsaaAaAAAaa A AAA A LE LR N A
[] n] AW N AN AN AN AN A NANNN AN m_A WA AN k
4 | A A A A AN AN A AR AAAA A A A A A AAAAAA
3 .] A A A AAAA AN AA A A it
i o i AAA A A A A aa A A AA A A s s A
I] AN AN AN AN AN AN AN NN AN AN AN AN AN AN AN -
4 [A A A A AAAAAAAAA A A A A AAAA A
.]] L i e i i A A aaana A A a A '
[L | AAA AR A A AR A A AR AaAAAAA
- &] AN AN AN AN AN AN AN AN AN AN AN '
i . i A A A A AA A A AAAA A A AA A A A A
.]] " I] laa:aa:aﬂaaaaaaa A_A_n_A_A AN A A AAAA * N
[. L . [AAA A i AAAAaaAAAA
[] i] M WA AN M_A N A M AN AN L]
4 . L | A A A A_A_A_A A A A A AAAAAA
3]]] A_A_A_A_A AA A AA A A -
[] . [] A A A A A A A A A A
]]] I] A_N_A_m_A A A m A AN A AN .
4 . L [A A A A A A AA A
: [] -] A A A A A A A A A A A A A .
[.) . | A A A A A :I:I:l:l:llﬁ;l:l:l;l:l:l;l:l:l;l
]] A_N_A_m_A N_A_m_ AN AN AN AN *
r o ¥ [] A A A A AN A A A A A A A A A
. I] N_A_A_a_A AAAAAAAAAA A »
[[AAA A AAAAAAAAAAAAA A
]] A_m_A_m_A A m A AN AN AN A AN .
4 | A A AAAAAAAAAAAA AN AN
3] A_A_A_A_A AAAAAaaAAAA A .
[] - " [] A A A AA A AA AN - |
! . I] A_N_A_m_A N NN A A m A AN L} W
4 L . [AAAA . T
: [} -] naanaai‘ﬂ'ﬂ'ﬂ'ﬁllnaana -
[. L | AAAARAAAAAAAA AR
] []] NANANANANANANANAN]
r . [] A A A A A A A A A A
.]] i I] ;l:l:l;l:l:l;l:l:l;l:l:l:l:l '
[. L [AAAAAAAa AAA s +
. ' ' : . ' R .
') .]] I] ' i i -
4 . - [aaaaaaaa‘ﬁaaaaaaa
: [] [}] A A A A A A A A .
[| A AN AR AR AN A
] mA N AN AN AN AN .
¥ - ¥ A A A A A A A A A A A .
. I] ;l:l:l;l:l:l;lﬁ.:l:l;l:l:l:l:l L}
[. [AAAAAAAAAANAAAAAAA
L]] M_A N_ A N AN WA M AN AN]
4 L | A A A A A A A AN AN A A AN
3] AAAAaaAAAnNAAAaaanA .
[] = n [A A A A A A A AA A A
]] . L] WA N A AN A_N_A_m_A_m .
:) A N W B IR rEEe T rrrrrri: EFE TR -rrrr':r- FEFEEEFR FE R FFEFEEEFE :n:a:a:n:a:a:n:a :a:n:a:a:n:a: L] w
) -] e mA N AN AN AN AN -
r . |] A A A A A A A A A A
.]] I] A a A AA A A A A A A .
[. [aaaaaaaa‘ﬁlaaaaaaa
[] n] M_A N AN AN WA M AN AN
4 . . | A A A A A A A AN AN A A AN
3]] AN AAaaaA A A A A A *
[] . . [] AAAAAAAARAANANA AN
L) I] WA N A AN AN A N AN L}
4 [AAA A A A_A A A
.]] A a A A A A A A -
[| a:aa:aa:.gaaaaaaa
i] mA N AN AN AN AN .
r [] AN A A A A A AN A A A A
. - I] AN A AAAA A A A A A A .
[. . [AAAAAAaa AAAAaaa
" . o A e . B
4 . | AAA A AN AN A A AA
3]]] AA A A A A A A *
[] . [] A A A A A A A A A A A A
]] I] A NAN AN ANANAN AN .
4 . [AAAAAAAAAAAAA A
: [] -] AA A A AN AN A AN .
[. . | AAA AR A AR AR AR
] '] NANAN AN ANANAnANAn *
r . . [] AN A A A A A A A A A
L -
[: : [i e e *
.. L] .. ll'll'll'll'lll'll'll'll'l |.
P . ' i "
'] *
4 . []
I ¥] *
[| I]
[] [] | *
i . i]
P [] n [] .
[. []
4 " - . | :
Y) w] " *
¥)] I] ¥ »
-) [i .
] u .] - .
i) i]
. I] L}
[. []
L]] -
[' . | I]
i . . i] .
: .- . . : : i‘
") L)] " . *
¥ '} [] [] ¥ »
") n [] "
Y) .] " e
) L) I] L}
4 . []
. -]] -
[| I]
W : : ' . :
. g - x . . .
3 AAdAAAsAAAAAAAAAAaAnA [] W] -
[] A a A A A A A . []]
AN AN AN AN ANA AN]] I] .
4 A A aAAA A A . [»
: A A A A A A A A A A A A A A [] n] -
[i . . |
AANAN AN AN ANANANAnA]] -
r A A A A A A A A A A A . . []
. A_A_ A A A A A A A A] L) I] L}
[e | A A A A . [
A m_ A A nannana]] -
¥ =i ANAA A . ? ¥ -l
3 A_A_ A A AA AN] n
[] A s a s A AN A A A []]
N_A_N_A_m_A A A_N_A_m_A . *
4 i A A A_A_A_A . []
: A A A AN A A A - L]
[A a A A A A A A | I]
A_A_N_ A m_A A A_N_A_m_A] L] -
r =i i i i i i A el R []]
. A_A_ A A A A A_A_nm_a_A [] -
[i | A A A A . AAdaAsaaAAaAAAAAAAAA []
* E _ ettt ;.:%.;.;.;.;.; '.':E . - P T e . x .
A A A am A A A A A . . A aaaaAAAAAxasaAnA i
N_A_N_A_m_A A A_N_A_m_A]] NANA N AN AN AN AN AN -
A A_A_A_A A_A A A_A_A_A] . AAAAAAAAAAAAAaAAnA [
A A A i | A A ']] AAA A aa s .
A A A A E i | A A A A] . AA AR A AAAAA AR |
N_A_N_A_m A AN A mA .] » AANANAN AN AN ANAnANA *
il:il:il:il:il:l' :I::IE:::::::::: -:) ’ il:il:il:ilaillil- ™ -il:ilaillil-il:illil-l'il:il : . -
oA A i | A A v : L) oA :m]
:I:I;l:l:lﬁ;l:l A A_A_A_A] A_A_n A - | | I]
A_A_ A A A A A_A_A_a A '] A_AL_A | -
A A A_A A A [] A_A A A A []]
N_A_N_A_m_A A N_A_N_A_m_A r n AN
AA_AA A | A A_A_A_A] A_A_A []
A A_ A A A A ' . AL *
ilililililmil A A A A] . . A_An | I]
N_A_N_A_m A AN A mA .] - n_AL_N *
=i i i i i A_A A A A A A] . A_A A []]
AA A AR A A AR AR ']] AL -
i i] . A_A A [r
AN AN A AN AN AN AN v]] n_AL_m -
A A A AN] . . A_A_n |
[Aaaaaaaaaaaaaaaaas ' » W A_AL_A A .
L l:;l:l::I:l::I:l:;l:l::l:l::l:l:;l:l::l:l::l r!i.i-.i.i-.i.{i.i-.i.i-.i.i-.i.i-.i.i-.i.i-.i.i-.i.i-.i.i-.i.i-.i.i-.i.i.i.i-.i.i-.i.i-.i..-.l.i-.i.i-.i.i-.i.t.i.t.i.k.i-i'-i-'%l:l l:il:l: .:.ﬁ.--'t-- ' L}
AA A A A » - AL -
i A_An I]
AANAN AN AN ANANANAnA & n_AL_N .
A A aa A s An A] .
- }l:::h:h::allla':::::::::::h:h.h ::l v :::::: : *
A_A_A -I,Iinahlin':l]] A_AL_A *
l:;l:l::I:l::I-llilll::lll-a-l:;l:l::l:l::l) CACTRT T | l:il:l: : -
AA A A A AN AAA A) - AL
a::a:ﬁ:aaaaaaaa . ' A_An I]
A_A_N_ A m_A AN AN AN] - n_AL_N *
A A A A A A A A A . . A
A_A_ A A A A A A A A]] AL L}
A A A A AAAaaaaaA . A_A A
A m_ A A AN A A] n_AL_m -
a::a:ﬁ:aaaaaaaa . A_A_n
A_A_ A A AAAA A] | -
A A A A AAaaaaa A nl A -
N_A_N_A_m_A AN A AN AN ' .
A A_A_A_A AA A .]
A A_ A A A A A L] L]
A A A A AA AR AAAAA I]
A_A_N_ A m_A AN AN AN] -
A A A A A A A A]
A_A_ A A A A A A A A - LE .
A A A A AAAaaaaaA .]
A m_ A A AN A A] MA N ANANANANANAR *
al:al:al:al:a:al H:I:H:l;‘il:l:l:l:l:l '__i') a-a-al:l: ' :a'a'a'a'a'a:a:-:n:h-a:a : -
:H:I:H:l:ll :H: - il:l:l:l:l: LI S NEE N RN BN 1-,'::- B M E I RR . ERE R R DR e . :'
A A e] :
e e e +
AAAAAAATAAAAAAAA AAAaaaaaA AAAAAAAAA
oA m A AN A AN A AN A A AN A n A n A A L]
A A_A_A_A AA A AAA AN AN A A A AA A A A AN I]
aaaaaaaaaaaaaaaa A A_A_A_ A AAAAaaAAAA -
A A A A AAaaaaa A Aa o a A AA A x s]
N_A_N_a_m_a AN A AN AN . AN A A WA N A AN AN -
A A _A_A_ A AA A . AA_ A A A AA A A]
A A_ A A A A A] A A A A A A A a A]
A A A A AA AR AAAAA . AN A A AA AR AR I]
A_A_N_ A m_A AN AN AN] n_A_N_A_N mA N AN ANA A *
A A A A A A A A . A A AA AA A a A A]
e i " lI:Iil;‘Illllﬁlllllllllllllllll'] *
e e e e e b e e » .
AAdAAsaaAAAAAAaaaanaA A AAAA A] A A_A_A_ A AAAAaaAAAnN *
A aaaaaaaaaaaa A A A A an AAaaaaa A . Aa o a A AA A s
| AN AN AN AN AN AN AN AN ANA AN] AN A A W_A A_N_A_m_a -
T e I e ,ﬂlﬂﬂaﬂn"ﬂaﬂn L A LT T R L R R e R Tl R N N T e e e e e e T
AARaAAAAAAAaaa AAA A AR A A AAAARAAa AN A A AA AN A -
A NANANANAN AN | AR A AN AN AN AN AN AN A A mA N AN ANA A
i a::-“ e I LN A il:il:il:il:il:il'il | ;l::l::l:;l::l::l:;l::l::l:;l :
:':':':':':'a'a'a'a'a'a':':':':':':] :':':':':':'%‘:':‘:‘:’:‘:‘:’:‘: .
i i i i i i AA A a A . AA o a A AA A x s]
l;ll:ll:ll;ll:ll;ll:ll:l] AN A A AN AN AN AN
i . A_A_A A AA A A]
AA A A A A A AN A] A A a A aa A A
i . AN A A AA AR AR I]
IHIIIIIHHHIIIIHH] n_A_N_A_N mA N AN ANA A
i i i i i AA A a A . A A AA A a A A
AN A A AN A A] A A A A A A A A A A
A A A A AA A A . AA A AAAAAAAAA
L i oA A AN] A A A moA A A A A
A A a A aly s A n . A_A_n_A_A AAA A AN
AN A A AN A] aaaaaaﬁ.ﬂaaaaaaaaa
i i i i i i AA A a A AA A AA A x s .
A N A m AN A N A m AN NANA N AN AN AN AN AN
i i AAAAaAAAAAAAAAaAaA]
AA A a A A a A i e e e e e e
A a A AN A n A AA AR A AAAAAARARAAA I]
AANAN AN AN ANANANANA AR AR AR AR AR AN AN AN
A A A A a A e A A A AA A A aAAAAA AN]
AN A A A A A A A A . :I:I;l:l:l;l:l:ll:ll i
L I:H:l:l:l:l:l:ﬂ: -l:l:l:l:l:ﬂ:l -, N, N, ., o, - I:I:H-llﬂ:h:l:l: e “-I:l'- - :l-il:l:l :
A AaasaadlnAAaaaaan AAAAAA A AN AAA A
A A A A A A A AA A a A A a A A A A a A]
A N A m AN A A N A m AN AN A N AN A AN A maAnA
aaaaaaalﬁaaaaaaa aaaaaaam:aaaaaaa s
AA A A A A a A AaA A a A AA A A
A a A aa AN A n A AA AR A AAAAAARAAAAA
AA N AN AN NA N AN ANA AANANANARANANANANA
A A A A A A A AA A a A naanaanaanaana
AN A A A AN AN A A A A A A A A AN A A A
AAAAAsaa AA A A aaaaaaalﬁaaaaaaa
L i oA A AN AN A A An o m A
A A A A AN AN A A A A AN A AN A A A A A I]
AN A A A A A A A AAA AN AA A
AAaaan A AA A a A AA A aaaa A A A a A]
A N A m AN A N A m AN lillllillilwllillllil
A A A A A A AA A A AA A A A A A A]
AA A A A A a A A A aaana A a A
A a A aa AN A n A AN A A A A A A I]
AN AN AN NA N AN ANA AN AN AN AN AN AN
i i i i i AA A a A AAAaaAAAAAAnAaAAA]
AAA AR A AAAAAA A A A A A A AN A a A
i i AAAAaaaA AA A A]
- :;|:;|:;|:;|:;|:;1:]:]:;‘:;:;':;1:;.:;':;1:;:]: :;|:;|:;|:;:]:]:;:;E:]:;:]:]:;:;: e +EErE. ‘- - ‘-]
A A A A s AA A n s A A A a A
AN AN AN AN ANA AN AN A N AN A AN A maAnA
[i l:I:H:l:l:l:l:l:@:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ
[] AN AN AN AN AmAnA
- A A A A A A A A A
[] AAA A AR A AN AN A
- AAAAaaaa AAAA A
[} nanannnaﬁnnanana
- AN A AAAA A A A A A
[] AA A A AA A
- AA A n s A A A a A
[] AN A N AN A AN A maAnA
- AAAAAaAA A A A A A
[} aaaaanaaﬂnaanaaa
- AN Anaaaa A A A A A
L AANANAN AN AN ANAnANA
A A A A A A A A
A A A A A A AN A A A
AAdaAsaaAAaAAAAAAAAA
:il:iI:iI:il:iI:il:il:il:illil-l'illil-l-illil-ila
AA A aaaaaan
[] AN AN AN AN
i i e i e i i
R L A A A A A A A LA AL A A
[I]
[]
[
[]
[]
I]
-]
[2 8 N FEFFFEFE FEFFEFEFE FEFFFERS FEFFEFEE N LA N N T FEFEFR W e we

U.S. Patent

Jan. 23, 2024 Sheet 19 of 19

Siore a plurality of policies in a policy
database
1810

L ‘**ﬁﬁﬁl e e die e e e e e e e i e i el e i e e e dfe e i e e e dfe e e e e d die e e e e d die e i e

Select a policy from the policy

database e

1820

. |

(cenerate seed values based on the

nolicy
1830

Determine a measure of
randomneass of the seed values

1840

]
[L1 1 71 7 L1 1 1 L1 1 71 7 L1 7 1 l
-~
ST
-~ .
- .
‘ .,
..-"'f N

Beed values. Yes

US 11,880,452 B1

__..-"'f n
- ',-*’
. -~
", L
. -
N‘H" 1 850 .-'!
. -~
o -
. -
. T -
-, -
. L
. -~
, L

.,
. e

~ .

e

Use policy Tor random number
generation

1895

F1G. 18

US 11,880,452 Bl

1

LEARNING BASED PROTECTION OF
INFORMATION TECHNOLOGY
INFRASTRUCTURE

BACKGROUND
Field of Art

This disclosure relates in general to managing system
resources of an information technology infrastructure and
more specifically to securely managing system resources
using hardware transactional memory.

Description of the Related Art

Orgamizations have been maintaining increasingly com-
plex IT (information technology) infrastructure to support
the various needs of the organization. With increase 1n the
sophistication of IT infrastructure of organizations there has
been increase 1n types of cyber security attacks that seek to
compromise the IT infrastructure ol organizations. For
example, computer viruses have become more sophisticated
and have potential to cause increasing amount of damage to
the I'T infrastructure. Various techniques are used to detect
and mitigate eflects of such cyber security threats. For
example, some anti-virus technology identifies known sig-
natures of viruses and analyzes software to determine
whether the signatures of known viruses occur 1n the soft-
ware. However malicious actors continue to develop new
viruses that do not match any known signatures and are
therefore dithicult to detect. If an organization fails to protect
its IT infrastructure against such cybersecurity threats, the
organization may sufler significant loss of data, damage to
I'T infrastructure such as soiftware programs, and so on.

SUMMARY

A system manages resources based on a hardware trans-
actional memory unit. The system stores a system profile
map storing system profiles of applications executing one or
more computing system units. The system profile of a
particular application stores information describing system
resource utilization of the particular application. A request
for resources for executing a new application 1s received. A
hardware transactional memory unit determines an amount
of memory to be allocated for executing the new application.
The hardware transactional memory unit allocates a set of
memory partitions for use for executing the new application.
A system profile representing execution of the new appli-
cation 1s determined. The system profile of the new appli-
cation 1s compared with system profiles in the system profile
map. Based on the comparison the system determines
whether there are any indicators of compromise representing,
potential compromise of the new application. If there 1s at
least an indicator of compromise for the new application the
request for resources for the new application 1s denied. The
system may further kill all processes created for the new
application.

If no indicators of compromise representing potential
compromise of the new application are detected, the request
for resources for the new application 1s approved and the
new application 1s executed.

According to an embodiment, the system uses learning to
protect an IT infrastructure. The system receives a request
for execution of an application on one or more computing
systems. The system generates a process graph for the
application based on an execution of the application. The

10

15

20

25

30

35

40

45

50

55

60

65

2

system accesses a system profile map storing characteristics
of applications known to be uncompromised. The system
compares characteristics of the process graph of the appli-
cation with characteristics of the process graph of a match-
ing uncompromised application in the system profile map.
The system determines based on the comparison, that there
are diflerences 1n the characteristics of the process graph of
the application with characteristics of the process graph of a
matching uncompromised application. Responsive to iden-
tifying differences in characteristics of the process graph of
the application with characteristics of the process graph of a
matching uncompromised application, the system identifies
the application as a compromised application. A learning
unit stores mformation describing the differences 1n charac-
teristics of the process graph of the application with char-
acteristics of the process graph of a matching uncompro-
mised application. The system using the stored differences in
characteristics for subsequently identifying compromised
applications.

The system according to an embodiment, provides a
service that generates true random numbers. The system
stores a plurality of policies 1n a policy database. A policy
identifies a set of component units from one or more
computer systems. Fach component unit generates data
values used for generating seed values for generating ran-
dom numbers. For example, a computing unit may represent
a CPU and the data values generated by the component may
be CPU usage; a component may be memory of a system
and the data values generated by the component may be
memory utilization. The system selects a policy identifying
a set ol component units from the policy database. The
system generates a set of seed values based on the policy by
performing the following steps. The system receives data
values generated by each of the set of component units. The
system combines the data values received from the set of
component units to generate a seed value. The system uses
the seed value to generate random numbers. The system
determines a randomness quality score of seed values gen-
erated using the policy. The randomness quality score 1s
determined based on one or more statistical properties
associated with the set of seed values. If the system deter-
mines that the randomness quality score of seed values
generated using the policy indicates a quality that 1s below
a threshold value, the system selects a different policy from
the policy database.

According to an embodiment, a policy further specifies
operators for transforming data values generated by the
component units, permutations of the data values, expres-
s1ons for combiming data values to generate seed values and
SO On.

According to an embodiment, the system generates new
policies by moditying existing policies and also removes
policies that are determines to have a low randommness
quality score.

Embodiments of the invention iclude computer-imple-
mented methods representing processes disclosed herein.
Embodiments of the invention include non-transitory coms-
puter readable storage mediums storing instructions that
when executed by one or more computer processors cause
the one or more computer processors to perform steps of the
methods disclosed herein. Embodiments of the invention
include computer systems comprising one or more computer
processors and non-transitory computer readable storage
mediums storing instructions that when executed by the one
Oor more computer processors cause the one or more coms-
puter processors to perform steps of the methods disclosed
herein.

US 11,880,452 Bl

3
BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 1s a block diagram of a computing system base unit
including a hardware transaction memory, according to an
embodiment. 5

FIG. 2 shows the system architecture of a hardware
transactional memory unit according to an embodiment.

FIG. 3 shows the system architecture of a system for
securely managing application processing requests accord-
ing to an embodiment. 10

FI1G. 4 shows the process of allocating resources for a new
application according to an embodiment.

FIG. 5 illustrates a process graph obtained from an
application at run-time according to an embodiment.

FIG. 6 1illustrates a permutation unit interacting with 15
multiple computing systems units, according to an embodi-
ment.

FI1G. 7 illustrates managing application requests using the
permutation unit and the hardware transactional memory
unit for non-compromised trusted applications, according to 20
an embodiment.

FIG. 8 illustrates managing application requests using the
permutation unit and the hardware transactional memory
unit for compromised trusted applications, according to an
embodiment. 25

FIG. 9 1llustrates managing application requests using the
permutation unit and the hardware transactional memory
unit for compromised trusted applications and a new non-
compromised trusted application of the same type, accord-
ing to an embodiment. 30

FIG. 10 shows a network topology of IT infrastructure
that 1s managed by the system according to an embodiment.

FIG. 11 shows a system environment including a crawler
for managing I'T infrastructure, according to an embodiment.

FIG. 12A shows a method for creating a process graph for 35
a trusted application that 1s not compromised, according to
an embodiment.

FIG. 12B 1illustrates creating of a process graph for a
trusted application that 1s compromised, according to an
embodiment. 40

FIG. 13 shows a flowchart 1llustrating a process executed
by a crawler system 1n accordance with an embodiment of
this 1nvention for single system memory architecture
devices.

FIG. 14 1llustrates the crawler workilow 1in accordance 45
with this mvention for single system memory architecture
devices.

FIG. 13 illustrates the crawler workilow in accordance
with this invention for shared memory system architecture
devices using hardware transactional memory unit. 50

FIG. 16 illustrates a system architecture of a random
number generator according to an embodiment.

FI1G. 17 1llustrates a random number generator as a service
extended for multiple devices, according to an embodiment.

FIG. 18 shows a flowchart illustrating the overall process 55
of true random number generation according to an embodi-
ment.

The figures depict various embodiments for purposes of
illustration only. One skilled 1n the art will readily recognize
from the following discussion that alternative embodiments 60
of the structures and methods illustrated herein may be
employed without departing from the principles of the
embodiments described herein.

The figures use like reference numerals to 1dentily like
elements. A letter after a reference numeral, such as “1154.,” 65
indicates that the text refers specifically to the element
having that particular reference numeral. A reference

4

numeral 1n the text without a following letter, such as “115,”
refers to any or all of the elements in the figures bearing that
reference numeral.

DETAILED DESCRIPTION

Organizational IT infrastructure 1s protected against dif-
ferent types of cybersecurity attacks using a suite of different
tools. Such tools can be both hardware and soitware based.
Diflerent applications run on various components of the IT
inirastructure (e.g., a Windows Server 2019 running Share-
Point, a Red Hat Enterprise Linux server running Oracle
Financials ERP, a workstation running Office 365 Desktop
Apps, an 1Pad running Salesforce Lightning etc.). System
resources for these applications are managed by the oper-
ating system (OS) 1n conjunction with the underlying hard-
ware on which these applications run. At steady state, a set
of applications run on the system, the resources needed for
those applications to be run being allocated by the OS and
the associated system hardware (e.g., CPU and memory
unit). Read/write operations are carried out 1n sequence on
the basis of system calls managed by the OS, which 1n turn,
generate relevant bit-level instructions to be executed at the
CPU and memory umit levels in hardware.

System Environment and Architecture

FIG. 1 1s a block diagram of a computing system base unit
including a hardware transaction memory, according to an
embodiment. The computing systems unit 100 includes a
hardware transactional memory unit 110, a CPU (central
processing unit) 120, a cache 130, a RAM (random access
memory) 140, and a secondary storage 150. Other embodi-
ments of the computing systems unit 100 may include more
or fewer components. The computing systems unit 100 may
also be referred to herein as a computing systems base
(CSB) umit, a computing system, or a system. The comput-
ing systems unit 100 may include other components not
shown 1n FIG. 1, for example, other types of data stores, and
SO On.

A system profile map i1s generated for each running
application by collecting information about the system calls
made by the application and bit-level instructions in terms of
system resource statistics (e.g., memory addresses, CPU
resources used etc.), processes, threads, and tasks. The
system profile map stores information describing the state of
the system that runs the applications. The system profile map
1s used to determine a set of system resource dependencies
that are associated with trusted applications. The system
determines whether an application can be trusted at the time
ol processing request by the OS based on computation of
digital signatures. Once this digital signature 1s verified to be
correct, resources are allocated by the OS to facilitate the
application to run. This digital signature may be applied for
cach application running in the system profile map. At
steady state, these digital signatures are collected and
included 1n the system profile map.

The system profile map 1s used to establish the basis of
system security for the group of trusted applications running,
by classilying system resource statistics; information on
processes, threads, and tasks; and digital signatures against
cach application-invoked program. For each application that
1s 1dentified as trusted, the steady state system resource
dependencies are associated and continually observed. Sys-
tem resource dependencies may overlap across applications.
For example, more than one application thread can have the
same scheduling priority. The steady state system resource
dependencies for running application programs can be
extended similarly by collecting the same information for

US 11,880,452 Bl

S

different types of memory architectures and system resource
management models such as virtual machines, containers,
shared-memory systems, hybrid memory systems eftc.

At steady state, the system profile map indicates how
system resources are managed with respect to the running
applications. As more and more applications request to be
executed, resources keep getting allocated up to a limit of
hardware processing support available. The operating sys-
tem may deploy various techniques, hardware or hybrid
OS-hardware level to optimize system resource allocation.
Concurrency in program code execution, derived from one
or more of the applications, may be limited to providing
system resources for new application requests on a best

cllort basis.

It 1s challenging to check how secure an application 1s at
the time 1ts request for processing arrives. This can poten-
tially cause security breaches, especially for applications/
programs that are associated with trusted applications. For
example, a secure PDF file may include an embedded code
smppet which executes only at the time the PDF file 1s open,
and then disappears aiter the PDF file 1s closed. The digital
signature of the PDF 1dentification by the OS remains valid
as the signature does not include the content check within
the PDF file, and thus, the OS does not detect any anomaly.
As another example, a referenced code snippet may occur in
a secure PDF file that 1s recerved via email. Once this PDF
file 1s clicked open, the code snippet creates a new process
to run a differential program at the time the OS 1s allocating
system resources for the opened PDF file to display on the
screen. This 1n turn creates further processes and aflects the
other system resource dependencies of existing running
applications, eflectively taking over the system and invoking
admin-level control.

The system according to an embodiment, performs checks
prior to allocating system resources to a requesting appli-
cation to determine presence of threat actors. The system
detects unauthorized intrusion associated with trusted appli-
cations that have been cleared by the OS and underlying
hardware to run. The system performs checks prior to
allocating system resources to a requesting application. The
system 1s security-aware at the OS and hardware levels
while allocating system resources to applications at run-
time.

The computing systems unit 100 includes a hardware
transactional memory unit 110 that may be implemented as
a component of the on-chip hardware blocks or implemented
as a hardware-software solution using the OS (operating
system) kernel space. The OS APIs invoke the kernel space.
The hardware transactional memory unit can also be 1mple-
mented wholly within the CPU or the cache, with its
constituent components either implemented as on-chip
memory blocks or cache memory umits. The hardware
transactional memory unit 110 may be implemented as a
component separate from the computing systems unit 100.

Typically, transactional memory 1s implemented 1n devel-
oper code sections that need to be 1solated from one another,
which 1s 1dentified as areas in the lines of code by the
developer directly. The run-time system for this code deter-
mines an optimal concurrency techmique. Transactional
memory can be used to remove the need for global locks and
can also remove the need for lock analysis that 1s required
to 1mplement fine-grained locks—which 1s typically
required when threads run similar code but may not access
the same memory location. The transaction can be set
around critical code sections 1 an application program,
which either allows the full section of the critical code to

10

15

20

25

30

35

40

45

50

55

60

65

6

complete or retains the full context of the start of the
transaction to enable the transaction to re-execute.

Hardware transactional memory (HTM) may be imple-
mented by supporting hardware extensions to memory
accesses and code executions around the areas specified by
the developer. HI'M 1s typically implemented on a best effort
basis. Depending on the underlying hardware architecture,
HTM 1s implemented on the system cache memory. The
system according to various embodiments implements HI'M
that include policy-based implementations derived from
application programs at run-time, as well as policy-based
implementations dertved from system profile map changes
at run-time.

FIG. 2 shows the system architecture of a hardware
transactional memory unit according to an embodiment. The
hardware transactional memory unit 110 comprises sub-
units that include a RNG (random number generator) 210, a
polynomial operations unit 220, a splitter 230, a memory
allocator 240, a checker 250, a comparator 260 and a
resource manager 270.

FIG. 3 shows the system architecture of a system for
securcly managing application processing requests accord-
ing to an embodiment. The system 300 includes a computing
resources predictor 310, a run-time memory 320, memory
profiles of processes 330, memory space 340, one or more
computing systems umts 100, and hardware transactional
memory unit 110. The system 300 runs multiple applications
on different types of target hardware and software systems.

The random number generator 210 has a dual interface
with a computing resources predictor shown 1n FIG. 3. The
hardware transactional memory umt 110 may be part of or
interface with the computing systems unit 100. The memory
space 340 1s typically implemented through one or more
combinations of memory umts i CPU, cache, RAM, and
secondary storage. The hardware transactional memory unit
110 also interfaces with the run-time memory 320 and the
memory space 340. The profile map 330 stores run-time
memory profiles of global logical processors and memory.
The profile map 330 1s implemented with the system profiles
for each running application in the form of a kernel space
code script that runs on the OS. The profile map 330
interfaces with the computing resources predictor 310, the
computing systems unit 100, and the memory space 340.

At steady state, assume that the system profile map 1s SP1
for a set of applications running {Ai}. Then SP1={{System
resource statistics SRTi}, {Processes Pi}, {Threads Ti},
{Tasks Ki), {Digital Signatures Si}}. Accordingly, the sys-
tem profile map includes data structure that store system
resource statistics, information describing processes,
threads, tasks, and digital signatures of the applications. The
kernel space code script implements a function F1 on the
system profile map SP1, which references A1’s associated
data structures SRT1, P1, Ti, K1, S1. The function F1 may be
executed continuously 1n the kernel space of the OS and can
be interfaced with different hardware blocks or user space
code or application-level code or OS Application Program-
ming Interfaces (APIs) for resource management.

FIG. 4 shows the process of allocating resources for a new
application according to an embodiment. At time (t=0), the
system receives 410 a request for resources for executing a
new application A'. The system determines 420 an amount
of memory to be allocated for the new application. Accord-
ing to an embodiment, the computing resources predictor
310 communicates this request to the random number gen-
erator 210 of the hardware transactional memory unit. The
random number generator 210 outputs one or more types of
random data that 1s derived from multiple entropy-generat-

US 11,880,452 Bl

7

ing sources within the system (e.g., CPU and hardware
interconnect voltages at any given point 1n time, output of a
particular on-chip register, number of system calls at any
given point 1n time etc.). The output of this random number
generator 210 serves two purposes: a) It provides an 1nitial
indicative estimate of the amount of resources required by
the new application to run; b) 1t creates a map of addresses
within system memory from where the estimated amount of
resources may be allocated for the new application to run.
The computing resources predictor 310 recerves the mitial
indicative estimate from the random number generator 210
and based on the information it references from the system
proflle map SP1, i1t estimates whether this initial indicative
estimate 1s correct to satisiy the requirements of application
A'. If not, the computing resources predictor 310 commu-
nicates to the random number generator 210 to provide
another random number till the estimated amount 1s deemed
to be reasonably correct. In some embodiments, the com-
puting resources predictor 310 directly predicts the amount
of resources needed for the new application, for example,
based on historical data for similar applications.
According to an embodiment, when a new application
request comes 1n, the system (e.g., implemented using the
OS) first determines the requesting application type (for
example, depending on the file extension of the executable
file of the application). The system then determines whether
this file type has a corresponding application executable
program available 1n the system, and if 1t has, the system
identifies that application executable program (as an
example, 1I the requesting application type has a .pdf file
extension, the system will determine 1f Adobe Reader is
installed on the system which opens this file type). Once this
initial determination has been done by the system, as shown
in FIG. 3, the resulting information 1s passed on to the
computing resources predictor. The OS now determines
arbitrarily how much dynamic memory size this requesting
application might need and passes this information to the
random number generator. The random number generator,
based on its knowledge of the system at run-time (from its
connections with the profile map through the HTMU),
determines how this estimated dynamic memory size may be
provided to the computing resources predictor. The system
generates random numbers to determine arbitrary partitions
of dynamic memory size requested and determines where 1n
the memory space these may be assigned. The number of
partitions can be arbitrary, depending on how the HITMU
manages the overall run-time memory allocations of already
executing applications and new requesting applications. At
this stage, the estimated dynamic memory size for the
requesting application 1s fixed, and the request starts being,
processed. At any point 1n time, 1f there’s any deviation in
the way how the process graph 1s mapped at run-time, the
system determines that the requesting application 1s com-
promised. As soon as this determination happens, the system
invokes 1solating the requested application and killing the
corresponding process, informing the computing resources
predictor through the random number generator hat the
requesting application 1s compromised. There may not be
any actual physical dynamic memory allocated to the
requesting application, as a result of which, this compro-
mised application 1s demed the physical resources to run
automatically at the time when i1t makes the request to the
system. The deviation of the process graph can happen at
any stage—at the process level, at the task level, at the
thread level or at the hardware level-—or a combination of
one or more levels. The system 1s based on how the HITMU
1s designed and implemented and 1s guaranteed to i1dentily

10

15

20

25

30

35

40

45

50

55

60

65

8

this deviation correctly and generate corresponding hard-
ware-level flags (and/or hardware-OS level messages) that
identily the compromise 1n the requested application at
run-time. So, until the complete process graph has been
traversed, and no deviation noted, the system does not
allocate physical resources to the application for it to run.
Also, there can be multiple 1terations between the computing,
systems predictor and the random number generator at the
time when dynamic memory size 1s being considered for
allocation. If the random number generator determines that
there are not enough partitions to support the dynamic
memory size allocation in the memory space, 1t can respond
with a tlag to the computing systems predictor. In this case,
depending on how the HIMU i1s managing applications,
there could be a wait in the requesting application, or the
computing systems predictor may initiate another dynamic
memory size estimation. This can be implemented specifi-
cally to the OS and the underlying hardware.

The system generates 430 memory partitions based on the
initial estimate determined. The computing resources pre-
dictor 310 sends a flag to the random number generator 210,
and another flag to the run-time memory 320, writing these
2 tlags 1n sequence nto the OS-hardware message interface,
indicating that a new application 1s about to be processed.
Writing these 2 flags 1n sequence invokes a read operation
by the CPU and the run-time memory 320, whereby refer-
ences ol SP1 (the system memory map) are accessed. The
read operation output 1s communicated to the random num-
ber generator 210, which 1t uses to create the map of
addresses within system memory from where the estimated
amount of resources may be allocated to the new application
A' to run. The random number generator 210 communicates
this to the splitter 230, which splits the number of blocks
associated with the address maps into multiple partitions, for
example, an arbitrary number of partitions. Each partition 1s
allocated to a memory address in the memory allocator 240,
following which the integrity of the partitioned data 1is
checked 1n the checker 250. Typically, when an application
request 1s received by the system, the OS determines the
application type, the related trusted program in the system
associated with the application type and whether there is
enough dynamic memory for it to run on the system. The
system analyzes run-time behavior of trusted applications
and also the sequences followed till such trusted applications
are actually assigned physical resources by the system to
run. Up until this resource assignment happens, the request-
ing application may not receive the resources to run. But if
this resource assignment happens, then for that requesting
application, the corresponding system profile map 1s gener-
ated and added to the profile map database. This database
entry 1s also timestamped. FIG. 12B highlights how from an
application, processes, tasks, threads and hardware 1nstruc-
tions are sequenced from a top-down approach.

The comparator 260 implements a set of programs to
identify different indicators of compromise (IoC). The sys-
tem may implements techniques that are targeted at identi-
tying deviations in the run-time process graph traversals
such as new process creation, administrative privilege
alteration and memory write requests. These programs are
applied onto the partitioned data outputted from the checker
250. Based on the system memory map SP1 corresponding
to the already running trusted applications {Ai}, if there are
any deviations 1 the system resource dependencies
observed in the comparator 260, the requests for resources
for the new application 1s denied 445. A flag 1s generated to
the resource manager 270. Typically, an uncompromised
application will have a specific type of process graph, as

US 11,880,452 Bl

9

well as a system resource dependency map in terms of
processes, tasks and threads. The run-time behavior of this
uncompromised application will have a definitive sequence
ol process graph traversal, e.g., 1t 1s known what processes
are created 1n what sequence, what system calls are gener-
ated 1n what sequence and what dynamic memory write
instructions are mvolved in what sequence. If the application
1s compromised, there will be a variation 1n one or more
clements of this sequence of process graph traversal. For
example, there could be a new process creation request that
comes up at run-time, or there’s an extra memory write
instruction that 1s imvolved. This constitutes a deviation and
results 1n the identification of the compromise. For the IoCs
implemented based on the MITRE AT T@CK Framework,
the variation elements can be programmed depending on the
type of threat behavior, and kernel scripts implemented with
these programs to detect the variations. A flag 1s also written
in the thread scheduler of the OS and the CPU of the
computing systems unit 100. This indicates that there 1s a
compromise 1n the requesting new application A'. The
resource manager 270 will write a flag 1n the OS-hardware
message interface to this effect, which 1s written 1n the
memory space 340. The memory space 340 generates a flag
to the kernel space code running the system memory map
SP1, and a flag to the CPU, with an indicator to kill 460 the
process associated with the requested application A'. The
CPU kills the process, preventing any system resources to be
granted to the requesting new application A', thereby deny-
ing it to run, and 1solating the request and its associated data
structures from existing data structures associated with the
application set Ai. This prevents a compromised application
to run by denying it the resources that 1t needs to run. At the
same time, 1t°s also ensured that the compromised applica-
tion cannot aflect any of the existing trusted applications’
data structures at the system level and cannot take control of
the system and/or influence 1ts functioning that 1s diflerent
from what has been the case as described in the steady state
system profile SP1.

The system 1s able to 1dentily possible compromises for
both new applications as well as existing applications that
are already running and requesting resources, as typically
happens 1n virtual machines, or shared memory architecture
systems. The HIMU guarantees that run-time behavior of
applications in terms of resource requests 1s always handled
through process graph traversal, thereby ensuring that any
deviations from the uncompromised version of the corre-
sponding application 1s picked up at the resource request
time. Also, 1n cases where an application may clone 1tself, or
change 1ts form into another application type, the HTMU
guarantees any deviation i1dentification at run-time. Existing
applications, which were not compromised at the time of 1ts
initial request, are allowed to run as usual. However if
there’s a compromise introduced through them at some point
in time (e.g., a streaming application from a remote source
which 1s trusted, and contains some compromise 1 embed-
ded content), the application is 1solated and handled by the
HTMU 1n accordance with embodiments of this invention.

If there 1s no detected deviation ol system resource
dependencies observed in the comparator 260, the request
for resources for the new application 1s approved 465 and the
new application executed 470. A new flag 1s written 1n the
thread scheduler of the OS and the CPU of the computing,
systems unit 100, and a new flag 1s read from the comparator
260 that indicates zero deviation. The output 1s then com-
municated to the resource manager 270, which then writes
the corresponding resource fulfilment information to the
memory space 340, which communicates the same with the

10

15

20

25

30

35

40

45

50

55

60

65

10

CPU of the computing systems unit 100. Once the resource
fulfilment 1nformation 1s written to the memory space 340,
the output flag 1s communicated to the system memory map
of the kernel space code. The system memory map 1is
accordingly updated, with the new application A' being
added to the list of existing running applications {Ai}.
Through the hardware transactional memory unit 110 thus,
concurrency 1s achieved both for new application runs, as
well as for compromised application requests—making sure
that a compromised application cannot run 1n the first place
by denying it the system resources necessary to run. The
random number generator 210 and the splitter 230 always
ensure that the number of partitioned blocks with respect to
the amount of system resources required for a new applica-
tion 1s available, provided the application otherwise 1s not
compromised. However, 1f there 1s a compromise, the
requesting application would not be able to obtain resources
for running.

The hardware transactional memory umit 110 and 1its
associated techniques as described here overcome the chal-
lenges of best et

ort basis while achieving concurrency and
optimization of resources at run-time. Developers are free to
write application code without specifically worrying about
code area 1solation and doing lock analysis, in which case
the system 300 guarantees the availability of resources for
concurrent, highly parallelized and secure partitioned runs at
all imes. The system 300 also takes into consideration
policy-based implementations derived from application pro-
grams at run-time though the comparator 260 and policy-
based implementations derived from system profile map
changes at run-time though the resource manager 270.

Policy-based implementations are based on optimizing
dynamic memory space for run-time resources for concur-
rent program execution. Information of the system profile
maps are continuously read to program hardware support
extensions 1n real-time so that the OS-hardware level mes-
sages can be mputted into the policy-based implementation
framework. The hardware support extensions span over
cache, CPU, RAM and the overall instruction set architec-
ture that varies over time based on the system state and the
type and number of applications running on the system at
any time.

FIG. 5 illustrates a process graph obtained from an
application at run-time according to an embodiment. An
application at run-time can be broken down into several
processes, which can again further be broken down into
several threads and tasks down to the most granular level.
For 1illustrative purposes, an application Ak can be broken
down into a set of subprograms {Pij}, which in FIG. 6 is
shown as a process graph. The set of subprograms {Pij} can
be arranged 1n the form of a multilevel graph G, with each
node of G being a subprogram Prj.

An application 1s processed through the random number
generator and splitter as follows. The process can be 1imple-
mented wholly 1n hardware, or i software—either through
the OS kernel space code, or through an OS API layer with
a user space code—or through a combination of OS kernel
and hardware.

The multilevel graph G illustrated 1n FIG. 6 1s processed
by the random number generator 210, where each node 1s
subject to a random operation. Each node Pij 1s transformed
into a randomized node Rij. The {Rij} comprises another
multilevel graph G'. This graph G' 1s processed through the
polynomial operations unit 220, where each randomized
node Rij 1s subject to a polynomial arithmetic operation
derived at random. For example, node R11 may be subject
to a multiplication and shift operation by the polynomial

US 11,880,452 Bl

11

ax2+bx+c, with the degree 2 polynomial being selected at
random, as well as the coeflicients a, b and ¢ being selected
at random. Each randomized node Rij, after the polynomaial
arithmetic operation, 1s transformed to a node Tij. The
polynomial operations unit 220 can be implemented in
hardware, with the degree and coeflicient of the polynomaials
chosen for operation derived from the random number
generator 210. They could also be derived independently
from a user-defined program. The random number generator
210 and the polynomial operations unit 220 may be imple-
mented together 1n the same functional block. The assort-
ment of {Tij} is represented as a multilevel graph G". This
is split into multiple sub-graphs {Gij} in the splitter 230,
which are then allocated to memory addresses for write
operations to fulfil the request for processing the application
Ak 1n the memory allocator 240. The integrity of the nodes
of the multiple sub-graphs are checked in the checker 250.
From an implementation perspective, this 1s performed by
ensuring that the application metadata 1s preserved among
the nodes of the sub-graphs, which can be constructed back
correctly, and the associated data structures, functions and
application code can be classified together. Preserving this
application metadata 1s performed with the system memory
map. Accordingly, every node of the split sub-graphs con-
tains references to the application system-level dependency,
and the application data. This helps 1n managing computa-
tion overheads by reducing system calls upon reading data
references and writing flags and 1nstruction sequences using,
the hardware transactional memory unit 110. The sub-graph
optimization and map to the original multilevel graph G of
the application Ak 1s maintained at all times using the
application metadata and 1ts references through process-
level communications.

The comparator 260 may be immplemented as a script
running to detect the indicators of compromise. This imple-
mentation may be performed at the kermnel space level.
According to an embodiment, these scripts take the outputs
of the nodes of the sub-graphs G" as functional inputs,
compare these values with the system profiles of non-
compromised applications and output a status as to whether
the requested application Ak 1s compromised or not. The
output status can be handled by the hardware transactional
memory umt 110 and the other system components as
described in FIGS. 1-2. According to an embodiment, the
system stores a template system profile for each type of
application as 1t behaves when the application 1s non-
compromised. Given a new application that may or may not
be compromised, the system determines the system profile
of the new application and compares characteristics of the
system profile with the template system profile of a non-
compromised application of the same type as stored 1n the
system profile map.

The computing systems unit 100 can be combined with
other computing systems units 100 to span an entire orga-
nizational I'T (information technology) infrastructure cover-
ing all the constituent I'T assets. An example of a system
environment using multiple computing systems units 100 1s
shown 1n FIG. 6.

FIG. 6 illustrates a permutation unit interacting with
multiple computing systems units, according to an embodi-
ment. The permutation umt 600 interacts with multiple
computing systems base units 100a, 1005, 100¢, and so on.
The permutation unit maintains a data structure comprising
the 1identifier of each computing systems umt 100 together
with a reference to the system profile map for the computing,
systems unit 100. At any given point in time, the permutation
unit 600 thus has mformation on each computing systems

10

15

20

25

30

35

40

45

50

55

60

65

12

base unmit’s running applications, their system resource
dependencies, and the running applications’ metadata. The
permutation umt 600 thus logically subdivides all the com-
ponents of an organizational I'T mfrastructure into a number
of computing systems base units. The computing systems
base units can change depending on the system’s resource
use and the number and type of applications running on the
system.

According to an embodiment, application programs 610a,
61056, 610c, 610d, 610e, 610f requesting execution on any
component of the IT infrastructure are processed by the
permutation unit 600 which takes in the application pro-
grams 610 to determine one or more computing systems
units 100 that those application programs will be assigned to
for execution. The permutation unit 600 determines this
assignment logic based on the information stored in the
permutation unit 600 describing each computing systems
unit’s state at that given point 1n time.

According to an embodiment, the permutation unit 600
implements one or more policies based on the information
on the system profile map (e.g., available memory space 1n
a computing systems unit 100, types of applications running
in a computing systems unit 100, etc.) and the application
metadata. The permutation unit 600 may be implemented as
a component of the on-chip hardware blocks or implemented
as a hardware-software solution using the OS kernel space,
the OS APIs calling the kermnel space and the on-chip
hardware blocks comprising the CPU, Cache, RAM, and
Secondary Storage. FIG. 6 1llustrates how the permutation
unmit 600 manages application programs under the condition
that the trusted application 1s not compromised.

Application Ak comprises a set of programs {PRi}, each
of which comprises distinct code sections {CSij}. In FIG. 7,
for 1llustrative purposes, both 1 and j are taken as 3. Accord-
ingly, there are 3 programs corresponding to the requesting

application (PR1, PR2 and PR3), and there are 3 code
sections 1n each program (CS11, CS12, CS13; CS21, CS22,
CS23; CS31, CS32, CS33). However, the techniques dis-
closed can be implemented with any number of programs
and code sections.

FIG. 7 illustrates managing application requests using the
permutation unit and the hardware transactional memory
unmt for non-compromised trusted applications, according to
an embodiment. As 1llustrated in FIG. 7, the permutation
unit 600 and the hardware transactional memory unit 110
functions 1n conjunction to manage trusted applications that
are non-compromised. For example, an application Ak
requests resources to run to the permutation unit 600, which
assigns 1t to a particular CSB Block (CSB1) for fulfilling the
request. Application Ak comprises a set of programs {PRi},
each of which comprises distinct code sections {CSij}. In
FIG. 5, for illustrative purposes, both 1 and j are taken as
3—which means, there are 3 programs corresponding to the
requesting application (PR1, PR2 and PR3), and there are 3
code sections 1n each program (CS11, CS12, CS13; CS21,
CS22, CS23; CS31, CS32, CS33). For illustrative purposes,
as shown 1n FIG. 5, we deal with code sections CS12, CS21
and CS33 that are determined by the permutation unit 600 to
be assigned to CSB1. CSB1 comprises the hardware trans-
actional memory unit 110, the CPU, the Cache, the RAM,
and the Secondary Storage. Based on CSB1’s steady state,
at the time the permutation unit 600 receives CS12, CS21
and CS33, the RAM has 5 distinct sections 1n its address
space M1, M2, M3, M4 and M5, with M1 being mapped to
a part of the Secondary Storage address space and conduct-
ing a swap lor availability to service the application’s run

request. CS12, CS21 and CS33 are processed by the hard-

US 11,880,452 Bl

13

ware transactional memory unit 110 in accordance with this
invention, with each section written into M1, M3 and MS5, as
shown 1n FIG. 5. The corresponding flags F1, F2 and F3 are
generated and communicated to the hardware transactional
memory unmit 110 for writes to M1, M3 and MS. The
hardware transactional memory unit 110 generates new tlags
corresponding to F1, F2 and F3, which are sent to the CPU
as sequential instructions, triggering the scheduling of the
corresponding threads and preparing them ready to be
executed. The flags corresponding to F1, F2 and F3, sent to
the CPU as sequential instructions, may also be sent to the
cache memory based on the condition that the requesting
application Ak has already been running on this CSB and has
been determined as trusted by the OS. Upon receiving
acknowledgements from the cache, and the CPU for the
flags, and upon receiving instruction statuses that the writes
to M1, M3 and MS have been completed, the hardware
transactional memory unit 110 generates a TM Status
instruction to the permutation unit 600, which then generates
and communicates a write operation to the Run-Time
Memory, allocating system resources lfor the requested
application Ak to complete its run. The hardware transac-
tional memory unit 110, 1n accordance with this ivention,
updates the system profile map (as demonstrated in FIG. 1),
which 1n turn, communicates the updated system profile map
to the permutation unit 600 (as demonstrated 1n FIG. 4).

FIG. 8 1llustrates managing application requests using the
permutation unit and the hardware transactional memory
unit for compromised trusted applications, according to an
embodiment. As illustrated 1n FIG. 9, the permutation unit
600 and the hardware transactional memory umt 110 func-
tion in conjunction to manage trusted applications that are
compromised. In this example, 1t 1s deemed that there 15 a
compromise in CS12. The hardware transactional memory
unit 110, 1n accordance with this mvention, processes the
request, but there 1s no system resource allocation done for
CS12. There are allocations for CS21 and CS33, but the
overall application does not run as CS12 1s i1dentified as a
compromise and handled by the hardware transactional
memory unit 110 in accordance with this invention, as
demonstrated m FIGS. 1 and 2. For applications that have
independent subroutines, which can run as parallel without
aflecting the compromised section, those can be run under
specific conditions 1f permitted by the user who receives the
alerts from the hardware transactional memory unit 110
upon detection of the compromise. The flags and the sequen-
tial instructions as described for FIG. 5 are then allowed to
run 1n a controlled and 1solated mode, with an extra instruc-
tion being written into the CPU and noting the memory
addresses used 1n the run. This also ensures that the com-
promised application 1s unable to aflect other code sections
of application programs that are currently running, as a
result of which, by 1solating the compromised application
and denvying 1t the required resources to run, the impact of
the compromise can be eliminated at inception. FIG. 7
demonstrates how a non-compromised version of an appli-
cation 1s handled by the permutation unit 600 once the
1solation and handling of a compromised version of the same
application 1s done.

FI1G. 9 illustrates managing application requests using the
permutation unit and the hardware transactional memory
unit for compromised trusted applications and a new non-
compromised trusted application of the same type, accord-
ing to an embodiment. As illustrated in FIG. 9, the permu-
tation unmit 600 and the hardware transactional memory unit
110 function 1n conjunction to manage trusted applications
that are compromised, and handle a new trusted application

10

15

20

25

30

35

40

45

50

55

60

65

14

of the same type. In accordance with an embodiment, CS12
1s determined to be compromised and 1solated. The same
application type now requests for processing, with CS42
(being similar to CS12) being assigned by the permutation
unit 600 to the hardware transactional memory unit 110 for
turther processing. Upon determination that this application
1s not compromised, M2 1s allocated for CS42’s request. M3
and M5 are unchanged as previously, processing requests for
CS21 and CS33 without any interrupts. A new tlag F4 1s
generated and written to the hardware transactional memory
unmit 110 upon allocation to M2 as shown in FIG. 9. The
system now works similar to that described for FIG. 7. The
system 1s able to 1solate compromised applications at run-
time, but that 1solation does not aflect future resource
allocation requests for applications of the same type, pro-
vided the hardware transactional memory unit 110 deter-
mines that they are not compromised while processing them
at run-time. The method also guarantees that system
resources will be allocated to application runs for concur-
rency 1n an optimal manner by adopting policy-based imple-
mentations derived from application programs at run-time
and system profile map changes at run-time.

Protecting Data and 1t Infrastructure

An IT infrastructure may have one or more backdoors that
represent a security loophole that may be exploited by a
malicious actor to gain access to systems and data of an
organization. A backdoor 1s typically not apparent and
cannot be detected easily. A system according to an embodi-
ment, continuously scans the IT infrastructure to i1dentify
presence of backdoors, so that they can be remedied before
the impact of a threat actor becomes significant. The system
performs such scans efliciently 1 terms of security, scal-
ability, and performance. The system 1dentifies backdoors 1n
IT infrastructure and isolates them efhiciently and fast
involving minimal computational overheads and supporting
large, networked topologies.

I'T infrastructure 1s generally built around networked
topologies comprising system resources such as processors
and on-chip computing units, operating systems (OS),
middleware, application software and other types of com-
puting and storage elements. These resources can be 1nstan-
tiated by a user request through the invocation of different
computing models (e.g., virtualization, containerization etc.)
to provide for performance of different services, applica-
tions, processes, or tasks.

FIG. 10 shows a network topology of IT infrastructure
that 1s managed by the system according to an embodiment.
As shown 1n FIG. 10, the I'T infrastructure includes multiple
components of the networked topology. Each component
includes an I'T Asset, software set and data set. An example
of an IT asset 1s a Windows Server 2019. An example of a
software set 1s SharePoint and Oracle Financials. An
example of a data set 1s electronic data associated with
SharePoint and Oracle Financials. The IT mfrastructure may
be represented as a set of triplets comprising (IT Asset,
Software Set and Data Set). Accordingly, an IT 1nfrastruc-
ture may comprise any number of assets, software builds and
packages executing on those assets, and data used by those
software builds and packages.

The system continuously scans across these IT infrastruc-
ture components (as shown in FIG. 10) using a crawler and
determines where backdoors are present. A backdoor could
be present 1n one or more triplets (IT Asset, Software Set and
Data Set).

FIG. 11 shows a system environment including a crawler
for managing I'T infrastructure, according to an embodiment.
The crawler system 1100 comprises the computing resources

US 11,880,452 Bl

15

predictor 310, a hardware transactional memory unit 110
(with sub-units as shown in FIG. 2), a thread prority
changing unit 1120, and a learning unit 1110. The crawler
system 1nterfaces with the memory space 340, run-time
system memory profiles of applications 1130, and the com-
puting systems unit 110 comprising the CPU, RAM, cache,
and secondary storage.

The run-time system memory profile of applications 1130
1s 1mplemented as a back-end database containing systems-
level resource dependency information of applications run-
ning on the system (e.g., process information, memory
addresses, memory sizes, task information, CPU usage etc.).
Any types of system-level resource dependency information
may be collected. The system performs the collection con-
tinuously over time. This allows the system to analyze at any
point 1n time, the resource load of the system, together with
the resource dependencies that enable applications to run
and perform. This run-time system memory profile of appli-
cations 1130 provide an iput to the computing resources
predictor 310. The run-time system memory profile of
applications 1130 takes the output of the memory space 340.

The hardware transactional memory unit 110 (HTMU)
may be implemented as a hybrid combination of operating,
system (OS) kernel space scripts and messaging instructions
from OS to on-chip computing unit through the OS-hard-
ware interface. The random number generator 210 has an
output interface to the computing resources predictor 310
and an input interface from learning unit 1110.

At any given point i time, when an application A,
processing request arrives, depending on the system
resource load and resource dependencies of the applications
running on the system, the computing resources predictor
310 estimates the amount of system resources required by
the requested application to run. It sends a message to the
random number generator with this estimated value E, and
the type of application requesting processing T,, which
generates a set of random numbers R, and invokes the
polynomial operations unit 220.

The polynomial operations unit 220 creates a process
graph P, of the requested application A, and performs a
random polynomial operation on each node of the process
graph, thereby creating a transtormed process graph TP,.
This transformed process graph TP, 1s then input to the
memory allocator 240, which assigns 1dentifiers D, to each
node in system memory (which itself 1s a process graph
derived from TP,), and outputs 1t to the splitter 230. The
splitter 230 partitions the process graph D, to a random
number of sub-graphs SD,. Each sub-graph is mput to the
checker 250, where data integrity checks are performed for
cach node, before mputting to the comparator 260.

In the comparator 260, the sub-graphs are compared with
sub-graphs C, for the application type A, that 1s known to be
trusted by the OS and the system by making calls to the
database holding the run-time system memory profile of
applications 1130. Upon comparison, 1f there are no varia-
tions observed in the sub-graph comparisons, an instruction
1s sent to the resource manager 270, which then performs a
write operation on the memory space 340, which i turns
updates the run-time system memory profile of applications
1130 through a flag operational instruction. The comparator
260 sends a flag operational instruction to the thread priority
changing unit 1120, which further sends this operational
instruction to the learning unit 1110.

In the event the comparison of the sub-graphs SD, and C,
yield variations, indicating an element of compromise 1n the
requesting application A,, there 1s no further resource allo-
cated by the system to the requesting application A,. This

10

15

20

25

30

35

40

45

50

55

60

65

16

indicator of compromise 1s sent as a separate operational
instruction to the thread priority changing unit 1120, and on
to the learning unit 1110. In the learning unit 1110, the type
of compromise 1s stored using a write 1nstruction. Upon
completion of the write instruction, a flag 1s sent to the
random number generator 210, which 1n turn, sends a
message to the computing resources predictor 310, and the
requesting application A, 1s denied the required computing
resources to run. This eflectively 1solates the compromised
application and prevent a cybersecurity breach from hap-
pening.

The learning unit 1110 continuously writes the type of
compromises within 1ts system component and maintains a
local database for this, which in turn, helps 1n better 1den-
tification of a compromised application type in the com-
parator 260. The learning unit 1110 stores characteristics of
the compromised application that allow the system to per-
form early detection of a cybersecurity breach if the same
backdoor technique 1s used again by a malicious actor. For
example, 11 the system determines a particular characteristic
of the process graph that acted as an indicator of compro-
mise for detecting that the application was compromised, the
learning unit 1110 stores an association between the appli-
cation and the indicator of compromise as metadata describ-
ing a potential security breach. The system may compare the
metadata describing the potential security breach with exist-
ing metadata stored by the learning unit to make sure that the
new metadata 1s not a duplicate of an existing metadata. For
example, the indicator of compromise may indicate that a
process created by the application requested access for a
resource that 1s not typical for the application based on the
system memory profile of the application. As another
example, the indicator of compromise may indicate that the
number of threads created by a process exceeded a threshold
value 1f the system memory profile of the application
indicates that the number of threads crated by the process of
the application 1s expected to be below a threshold value. As
another example, the indicator of compromise may indicate
that the process graph structure of the application 1s diflerent
from the structure of the typical process graph created by
applications of that type as indicated by the system memory
profile of the application. The system memory profile of the
application may store structural information of the process
graph, for example, 1f the process graph 1s a process tree, the
structural information may include a typical height of the
process tree, a fanout of diflerent levels of the process tree,
information describing the set of instructions (e.g., a func-
tion, a method, a command, or an API) being executed by a
particular process or thread 1n the process graph, and so on.

According to an embodiment, the information i1dentified
by the learning unit describing potential security breaches
for various applications 1s presented to an expert user, for
example, a system admimstrator or a developer. The expert
user may determine whether the system generated a false
alarm or detected an actual security breach. The user feed-
back 1s used to refine the data stored 1n a learning unit 1110.

According to an embodiment, the knowledge describing
various potential backdoors collected by various learning
units 1s combined to generate a repository of the knowledge.
The combined knowledge 1s redistributed to various learning
units. As a result, the knowledge available at each learming
unmit 1110 increases over time based on the potential back-
doors detected by the learming unit 1110 as well as by
potential backdoors detected by other learning units 1110.

According to an embodiment, the knowledge learnt by the
learning unit 1110 or by multiple learning units i1s repre-
sented as a machine learning model. The potential backdoors

US 11,880,452 Bl

17

of compromised applications detected by various learning
units as well as then system profiles of applications that are
not compromised are used as negative and positive samples
respectively and used as training data for training a machine
learning model. The machine learning model may be a
logistic regression-based model but 1s not limited to a
specific architecture. For example, the machine learning
model may be a neural network such as a multilayered
perceptron. The machine learning model receives as input an
encoding of mnformation describing an application including
the process graph, memory allocation information, runtime
statistics, and so on. These attributes of an application are
provided as features mput to the machine learning model as
a Teature vector. The feature vector may include encoding of
the process structure, for example, a linearized representa-
tion of the process graph obtained by performing a deter-
mimstic traversal of the process graph starting from a root
node of the process graph, for example, the first process
created by the application. The machine learning model 1s
trained to predict a score indicating a likelithood that the
application 1s compromised. For example, the result of
comparison of the predicted score for an application with a
threshold indicates whether the application 1s compromised
or not. For example, 11 the predicted score for an application
exceeds the threshold value, the system may determine that
the application 1s compromised and deny any request for
resources by the application and 1ssue instructions to kaill
processed of the application. Similarly, 11 the predicted score
for an application 1s below the threshold value, the system
may determine that the application 1s not compromised and
approve any request for resources by the application and let
the application execute.

Continuous 1nstructions handling and management of
applications through the HIMU, the thread priority chang-
ing unit 1120 and the learming unit 1110 provide a robust
system for securely managing IT infrastructure in accor-
dance with this invention. For applications that are running
on the system that have been previously identified as trusted
and non-compromised, a compromised application of a
similar type 1s efliciently detected so that it does not atfect
the runs of existing applications.

The thread priornity changing unit 1120 holds a local
database of all the thread identifiers associated with appli-
cations that are running on the system. If there 1s a com-
promise detected at the comparator level for this case, the
thread priority changing unmit 1120 assigns a diflerent priority
identifier for threads of the same application type that is
compromised before 1ssuing the process kill command. The
threads of running applications are not aflected. This also
prevents obfuscation of existing threads with compromised
application threads at run-time. The resource manager of the
HTMU does not 1ssue a write instruction to the memory
space 340 in this case. The random number generator 210
coordinates with the learning unit 1110 for generating future
sets of random numbers while processing new application
requests that come in through the computing resources
predictor 310.

FIG. 12A shows a method for creating a process graph for
a trusted application that 1s not compromised, according to
an embodiment.

As shown 1n FIG. 12A an application 1s A 1s first broken
down into processes (P,), then threads (Tim) and finally
tasks (K,) that are assigned to system memory, following
the description of the crawler system and 1ts component
functions 1n FIG. 11.

FIG. 12B 1illustrates creating of a process graph for a
trusted application that 1s compromised, according to an

10

15

20

25

30

35

40

45

50

55

60

65

18

embodiment. Process P4 1s identified as a compromise 1n
accordance with this invention.

In FIG. 12A and FIG. 12B, the process graphs can be
taken as being indicative of a trusted application being
non-compromised and then compromised. As described for
FIG. 11, the comparator in the HTMU computes the varia-
tion 1n these two process sub-graphs after partition. The
comparator detects a difference in process P4, or at any of
the sub-graph levels, as shown 1n FIG. 13, and functions in
the way as described for FIG. 11. The compromised trusted
application thus does not get the requested resources to run,
as a result of which, 1t cannot run to invoke its intended
damage.

FIG. 13 shows a tlowchart illustrating a process executed
by a crawler system 1n accordance with an embodiment of
this invention for single system memory architecture
devices. The steps are described as being performed by a
system, for example, the crawler system 1100. The system
receives 1310 a request from a new trusted application. The
system determines 1320 the amount of resources required
for processing the request. Again, this follows how the
HTMU architecture works as in FIG. 3. The crawler 1n FIG.
11 incorporates the HITMU and the amount of resources
determined 1s 1n conjunction with the computing systems
predictor and the random number generator. The system
analyzes 1330 requesting trusted application by conducting
run-time profiling of the application to determine various
system dependencies for the application. System dependen-
cies represent the system resources needed by a requesting
application at run-time. Accordingly, system dependencies
of a requesting application are the associated processes,
tasks, threats and hardware instructions that go with fulfill-
ing 1ts request for resource allocation to run. System depen-
dencies also 1nclude the sequence of process creation, sys-
tem calls, sequence of generated tasks, sequence of threads
scheduled to run on the CPU and the hardware 1nstructions
to allocate dynamic memory for completing the run. The
system dependency of a requesting application comprises a
process graph traversed in sequence, top-to-bottom each
node and branch-wise. Accordingly, the system determined
a system profile map for the new trusted application. The
system compares 1340 the system profile map of the new
trusted application against known system profile maps of
trusted applications of the same type that are known to have
been not compromised. Known applications of the same
type may represent applications executed using the same
executable file or set of files. The system compares the
system dependencies represented by the system profile maps
of the new application against known applications. The
system 1dentifies 1350 any diflerences in the system profile
map and the corresponding system dependencies between
the new trusted application and known uncompromised
applications of the same type. If the system identifies
differences between the new trusted application and known
uncompromised applications based on comparison of their
system profile maps, the system classifies 1360 the vulner-
ability type. The vulnerability type 1s classified based on the
run-time behavior of the threat actor, its exploitation nature,
the areas of the target system that 1t atlects, the key devia-
tions 1n process graph that 1t generates. The system further
isolates 1370 the processes and threads of the new trusted
application. The system kills 1380 the processes and threads
of the new trusted application expect for processes and
threads that are shared with other uncompromised applica-
tions. The system reports 1390 imnformation describing the
causes ol the compromise of the new trusted application, for
example, by describing the differences between the system

US 11,880,452 Bl

19

profile map of the new trusted application and system profile
map of corresponding uncompromised trusted applications.

FI1G. 14 illustrates the crawler workilow in accordance
with this mvention for single system memory architecture
devices. The steps are described as being performed by a
system, for example, the crawler system 1100. This class of
devices can be present 1n one or more networked topology
nodes as shown in FIG. 10. The system reads 1410 the
system profile map for each runnming application in the
system. The system receives 1415 a new trusted application
for execution. The system determines 1420 the amount of
computing resources required for execution of the new
trusted application. The system determines 1425 1s there are
suilicient memory and processor blocks available to process
the received request. The system splits the total memory
required for running the new trusted application into a
plurality of sub-blocks at different memory addresses. The
sub-blocks may be randomly determined using the random
number generator. The system analyzes 1430 the new trusted
application with respect to system dependencies by conduct-
ing memory profiling and generating a system memory
profile for the new trusted application. The system stories
this information locally so that other system units are unable
to access this information. The system compares 1435 the
system dependencies stored 1n the system memory profile of
the new trusted application with system dependencies stored
in a system profile map of a known uncompromised appli-
cation of the same type. If the system 1dentifies 1440 a
mismatch the system writes a flag to a bufler indicating the
new trusted application 1s compromised. The system 1den-
tifies 1445 the diflerences 1n system dependencies stored in
the system memory profile of the new trusted application
with system dependencies stored 1n a system profile map of
a known uncompromised application of the same type. If the
system 1dentifies common threads or processes of the new
trusted application that are also used by uncompromised
applications, the system ensures that these threads/processes
are not impacted. The system sends 1435 a signal to other
logical processing units of the system indicating that the new
trusted application 1s compromised and provides iforma-
tion describing the compromise. The system sets 1460 an
associated flag with the bufler indicating that this informa-
tion has been sent and resets the flag 1t the other logical units
confirm that they received the information. The system
classifies 1465 the vulnerability types. The system isolates
the processes and threads of the new trusted application that
are not shared with other uncompromised applications. The
system kills the 1dentified processes and threads. The system
may generate a report on the trusted application being
compromised and the portion of the trusted application that
1s being compromised.

FIG. 15 illustrates the crawler worktlow 1n accordance
with this invention for shared memory system architecture
devices using hardware transactional memory unit. The
steps are described as being performed by a system, for
example, the crawler system 1100. This class of devices can
be present in one or more networked topology nodes as
shown 1n FIG. 10.

Datasets associated with different IT assets, as shown 1n
FIG. 10, may be referenced through virtual machine system
configuration using the HIMU as described 1n the crawler
system shown i FIG. 11. IT assets can be standalone
servers; servers connected with one or more workstations:
laptops; client machines; cloud computing infrastructure;
smartphones; 1Pads; etc. On each IT asset, one or more
software builds and packages can be 1nstalled, or executed,
or supported. The crawler parses through kernel level data

5

10

15

20

25

30

35

40

45

50

55

60

65

20

and underlying hardware configurations to determine back-
doors and points of vulnerability through the HIMU, the
thread prionity changing unit 1120 and the learning umit
1110, as shown in FIG. 11 and described as part of the
crawler system. Backdoors can typically be thus: a software
installed on an IT asset has an execution exception for a
specific type of input data; a configuration on an I'T asset port
enables remote access to 1t and leads to possible system
administrator compromise; a file system event compromise
in the OS kernel that allows exploitation of trusted applica-
tion run-time execution etc. Olften security patches are
applied to a part of an organization’s IT infrastructure
without understanding 1f that introduces a backdoor/exposes
any other part of the IT Infrastructure to future attacks. The
crawler addresses this problem. Post scan completion, the
crawler outputs an identifier with a metadata map that
comprises the details of the 1dentified backdoor (e.g., there
1s a bug associated with Software Set 3 installed on Asset Set
3, there 15 a trapdoor associated with Software Set 7 that runs
on Asset Set 7, there 1s a suspicious data block 1n Data Set
5 residing on Asset Set 5). This information 1s analyzed
turther, while understanding the value of the data and IT
asset to the organization corresponding to each identified
vulnerability. As business continuity 1s a key objective to
maintain 1 organizations, these identified vulnerabilities,
their associated data and IT asset control i1s indexed and
collected 1n the logical pairing of identifier and metadata
map against the crawler scan runs. Several crawlers can be
run on the organization’s IT infrastructure to better identify
backdoors etliciently. All these crawlers can also commu-
nicate with one another 1n real-time upon configuration. The
crawler thus demonstrates to the organization the points of
vulnerability 1n 1ts IT infrastructure and ensures that the
associated data and I'T assets are protected against incidents.
The crawler thus helps to create a reference to the associated
data and IT assets which can potentially be moved to
different storage locations 1n a random manner. This ran-
domness 1s driven for each i1dentifier and metadata map pair
from the underlying OS kernel and system hardware con-
ditions. If an mcident compromises the IT infrastructure,
in-part or i-whole, retrieving and recovering the affected
data and I'T asset configurations would be quick and efli-
cient. In certain embodiments, the crawler can also enable
actual data to be referenced and protected 1n a cost-eflective
manner, particularly proving eflicient for high volumes of
data stored across multiple storage units in an organization
(including on-premises, cloud, and encrypted backup solu-
tions).

Random Number Generation as a Service

The system according to various embodiments uses ran-
dom number generator for performing various operations
such as determiming an expected size of memory for an
application and for splitting the memory into multiple sub-
blocks of memory. Typical random number generators often
generate random numbers 1n a predictable manner. As a
result the algorithms followed by such systems become
predictable, making 1t easier to malicious actors to find
backdoors in the system.

The random number generator 210 implements a true
random number generator that i1s distinct from a pseudo-
random number generators. A system may be able to predict
the numbers generated by a pseudo-random number genera-
tor but 1s not able to predict random numbers generated by
a true random number generated. The random number
generated by the random number generator 210 do not
include any 1dentifiable patterns. The random number gen-
erator 210 may be used as a service, acting as Random

US 11,880,452 Bl

21

Number Generator-as-a-Service (RNGaaS). The random
number generator 210 can be used for various applications
such as encryption/decryption keys, PKI security, secure
messaging and communications etc. The random number
generator 210 integrates various entropy sources in the
process of random number generation. An entropy source
provides random numbers that are used to generate a seed
that 1s further used by the random number generator 210 for
generating random numbers. The random number generator
210 generates true random numbers and 1s cryptographically
secure, fast, undegradable, and easy to adapt and deploy 1n
real-world solutions. The random number generator 210
generates random numbers that cannot be predicted 1n
contrast to pseudo-random numbers generated by conven-
tional system. A malicious actor may be able to monitor
random numbers generated by a pseudo-random number
generator over a period of time, for example, hours, days, or
even years and determine certain pattern in the random
numbers being generated. The malicious actor may be able
to exploit the predictability of the random numbers as a
security vulnerability. In contrast, the random number gen-
erator 210 according to various embodiments generates true
random numbers that provide higher degree of security and
1s therefore a technical improvement over conventional
random number generators in the field of security and
cryptography and helps prevent cyberattacks on systems.

FIG. 16 illustrates a system architecture of a random
number generator according to an embodiment. The system
uses multiple components of various computing systems
units as entropy sources that can be used for obtaiming
random numbers that act as seeds for further creating
random numbers. An example of an entropy source 1s a CPU
of a computing system unit from which CPU % utilization
1s extracted as random values for use as seeds. Another
example ol an entropy source 1s memory of a computing
system unit from which RAM usage 1s extracted as random
values for use as seeds. Another example of an entropy
source 1s virtual memory of a computing system unit from
which wvirtual memory statistics 1s extracted as random
values for use as seeds. Another example of an entropy
source 1s a register such that the system extracts a value
stored 1n the register at any point in time and uses that as a
seed. The system may generate a seed from a set of keys
pressed by a user on a keyboard of a device.

The system memory profile 320 may be implemented as
a script that resides 1n the kernel space of the device’s
operating system. This script contains information of the
device’s system state in real-time, as in, the measures of
parameters such as CPU % utilization, virtual memory
statistics, RAM usage and so on. Any device internal param-
eter’s continuous measurement at any given point 1 time
can be sourced in this script. This block interfaces with a
policy database 1610, which 1s a database that 1s 1mple-
mented 1n the user space of the device’s operating system.
The policy database 1610 1s implemented as a database of
records of various policies that drive the system’s optimal
resource allocation based on 1ts system state and the set of
applications running on 1t. For example, if at a given point
in time, the system state shows that the L1 cache 1s full, and
a swap 1s necessary with a memory block in secondary
storage, a resource allocation policy i1s enforced that pre-
vents mvoking any cache read/write access at that point in
time. The policies also typically look at regions in system
memory (both static and dynamic) to assign areas of
resource allocation for seed generation, 1f a request would
arrive Irom the policy-based selection unit 1620. A policy

5

10

15

20

25

30

35

40

45

50

55

60

65

22

may determine a set of entropy sources that are used for
generating seeds for use 1n generating random numbers.

The resource allocation of policies aflects the entropy
source selection. For example, 1t the L1 cache 1s full,
generally 1ts components will not be sourced for entropy
generation 1n that timestamp 1iteration. Though this causes a
bit of bias—however the policy ensures that there’s enough
granularity and number of choices for entropy generation
source selection. In a virtual machine or container configu-
ration, 1f one physical or logical system’s L1 cache i1s full,
it can access any other machine’s L1 cache 11 necessary. To
generate true random numbers, the system selects multiple
entropy generators, leverages on their generated partial
seeds, and performs mathematical operations on them to
make sure that the finally generated random number 1s
unpredictable, cryptographically strong, cannot be re-engi-
neered quickly, or determined from side-channel attacks
(typically by observing the process of the random number
generation from outside or inside).

The policy-based selection unit 1620 may be imple-
mented as a software module within the user and kernel
space of the device’s operating system. The policy-based
selection unit 1620 requests inputs from the policy database
1610 once it recerves a request from the learning unit 1110,
which 1s a module implemented 1n the device’s system
hardware. The learning unit 1110 1s implemented as a group
ol register blocks that are automatically read and written
once an output from the partial seed 1660 1s received
successiully, the write flag being mvoked on success of a
write of the partial seed to the RAM. The learning unit 1110
maintains the trueness of the random number generated at all
times and prevents degradation of the quality of random
numbers generated using multiple devices on a continuous
basis.

Initially, the policy database 1610 outputs a specific
policy to the policy-based selection unit 1620, which then
invokes the component units 1630. The component units
1630 are units that are logically separate from one another
and form the basis of multiple sources of entropy generation.
For example, a set of component units 1630 would be a
random number generation library block, a software module
comprising data iputted by a user on the device (e.g.,
keystroke data), a software module comprising data col-
lected from the device’s underlying interconnects, a sofit-
ware module comprising data collected from the device’s
ambient surroundings (e.g., temperature) et. al. The compo-
nent units 1630 also include an assorted set of polynomial
operators of different degrees and coetlicients. These may be
configured uniquely or generated on the fly.

Initially, upon receiving a policy from the policy database
1610, the policy-based selection unit 1620 invokes the
component units 1630, which results in different polynomaial
operators being assigned at random to different data blocks
drawn 1n from one or more of the blocks comprising the
component units 1630. The data block represents values
generated by an entropy source that 1s used for seed gen-
cration. These data blocks are then passed on to the assem-
bler 1640, which 1s a hybrid unit implemented 1n hardware
and user space of the device’s operating system, that further
permutes and combines the outputs of the polynomial opera-
tions undertaken in the component units 1630. The permu-
tation and combination in the assembler 1640 invokes direct
read and write operations to the RAM, and once this
permutation and combination 1s completed, the outputs are
written to the RAM. The flags of these output writes, along
with the relevant identifier addresses where the writes are
done 1in the RAM, are then passed onto the partial seed block

US 11,880,452 Bl

23

1660. One output of this partial seed block 1660 1s fed into
the learning unit 1110, which stores the information 1nto its
registers and uses that for future comparison with the
information coming out of the partial seed block 1660,
checking for variations in statistical independence, crypto-
graphically strong status and the like before mnvoking the
policy-based selection umt 1620. The system according to
vartous embodiments checks whether the values generated
by different entropy sources are independent of each other
and uncorrelated with each other. If the system determines
that two entropy sources are correlated with each other, the
system stops using one of the sources and selects a different
entropy source. The system also checks if a particular
entropy source generates values that are unpredictable.
Accordingly, the system monitors correlation between sets
of values generated by the entropy source and different
points 1 time. If the system determines that an entropy
source generates values that are predictable since the values
generated at different points in time are correlated, the
system avoids using that entropy source. The system tests
random number independence and unpredictability at the
time of entropy source selection and seed generation.

A section of the learning unit registers 1s programmed
with different statistical tests of true randomness, as well as
tests derived out of a set of standard guidelines on statistical
tests for random and pseudorandom number generators. The
learning unit 1110 thus maintains the trueness of the random
number generated for all runs.

An output of the partial seed block 1660 goes to the type
converter 1680 block, which 1s a software module block
comprising character type transformation instructions. The
encoder 1670 1s a software module block comprising coding
algorithms 1mplemented 1n the user space of the device’s
operating system. The encoder 1670 takes mputs from the
RAM, accessing the data by reference of the output writes
of the assembler 1640. In the encoder 1670, coding takes
place of the computation outcome generated from the partial
seed 1660, and metadata in the form of the assembler 1640
output writes are attached to the codes, which then are
passed to the type converter 1680, where character trans-
formation completion takes place belore the random number
1s generated in the randomness generator 1690 block. The
type conversion prevents re-engineering as well as deducing
the random numbers by observation/inference. Encoding the
seeds through type conversion helps increase the degree of
randomness.

The output of the randomness generator 1690 block thus
comprises a coded and transtormed version of the permuted
and combined outcomes of the device’s multiple internal
and external entropy sources that are referenced through
addresses written for these operations in the RAM at run-
time. Once this 1s done, the system memory profile block 1s
updated, which then updates the policy database 1610, and
in conjunction with the learning unit 1110, maintains true-
ness of random numbers generated at all times.

FI1G. 17 illustrates a random number generator as a service
extended for multiple devices, according to an embodiment.

As illustrated 1n FIG. 17, randomness generation can take
place across multiple devices. This configuration is typically
for shared-memory systems, separate devices that are either
connected 1n a peer-to-peer manner, devices that may be part
of virtual memory systems, containers or hybrid memory
systems. The randommness generator 1690 blocks of the
devices directly reference one another 1n generating the final
random number to be used for the requested computation
outcome. There 1s also logical referencing between the
individual device learning umts 1110 and the policy data-

10

15

20

25

30

35

40

45

50

55

60

65

24

bases 1610, ensuring that the final random number generated
across the devices 1s always true. The devices, when col-
laboratively computing the final random number, also ret-
erence each other’s learning units 1110 as embodied, and
maintain the policy profile for each device referenced so that
inherently, each device’s choices of the component units
1630 1n terms of entropy sources and the related polynomaial
operators assist 1n choosing the optimal cryptographically
strong and statistical independent outputs of the partial seed
blocks 1660.

This forms the basis of realizing the RNGaaS, which can
be realized 1n various embodiments of this invention. The
RNGaas 1s typically realized as the output of the random-
ness generator 1690 unit of each device, or the outputs of
several of those devices, either 1n a peer-to-peer network
configuration, or in a shared-memory configuration, or 1n a
virtual machine, container or a hybrid memory system
configuration.

The RNGaaS can be used to source different applications
such as encryption/decryption keys, PKI security, secure
messaging and communications systems etc.

FIG. 18 shows a flowchart illustrating the overall process
of true random number generation according to an embodi-
ment. The steps of the process are described as being
implemented by a system and may be executed by the
various modules shown 1 FIG. 16.

The system stores 1810 a set of policies for true random
number generation. A policy specifies a set of component
units that act as sources of random data values. The policy
may specily functions or expressions used to process the
data values generated by the component units. The functions
Or expressions may comprise operators applied to the data
values, for example, polynomial operators. The policy may
specily a permutation or combination applied to the data
values obtained from the component units. The policy may
specily a function or expression applied for combiming the
data values obtained from the component units to generate
seed values. The system uses the seed values to generate
random numbers.

The system selects 1820 a policy from the policy data-
base. The system may select the policy randomly. The
system generates 1830 seed values based on the policy. The
component units generate different values at diflerent point
in time. For example, the CPU unitization of a CPU changes
over time or the memory utilization of a RAM changes over
time. Accordingly, the system regenerates the seed values by
extracting new values from the components at different
points 1n time, for example, periodically.

The system momitors the quality of seed values generated
based on a policy. According to an embodiment, the system
determines a measure of randomness of the seed values. The
system may determine a measure of randomness by taking
different sets of values and determining whether they are
correlated. The system may determine a randomness quality
score as the measure of randomness. For example, the
system may take two sets of values obtained from a com-
ponent unit at different points in time and determine a
measure of correlation between them. The system may
system may take a set of values from one component unit
and another set of values from another component unit and
determine whether the two sets are correlated. 11 the system
identifies statistical correlation between two sets of values
the system assigns low value of a measure of randomness of
seed values generated based on that policy. The measure of
randomness of a policy i1s continuously monitored and
determined. For example, over time the system may deter-
mine a correlation between sets of values used for genera-

US 11,880,452 Bl

25

tion of seeds and decrease the randomness quality score for
the policy. According to an embodiment, the randomness
quality score 1s determined as an aggregate value based on
scores mndicating correlation between different sets of values
associated with the policy as described herein. The system
may determine measure of correlation and use an average
measure of correlation as the randomness quality score. The
system may use the measure of correlation indicating the
worst correlation as a randomness quality score. A measure
of correlation 1s worse than another measure of correlation
if’ 1t indicates high correlation between two sets of values.
Accordingly, the randomness quality score 1s inversely cor-
related with the measure of correlation between sets of
values associated with seed generation based on a policy.

If the randomness quality score for a policy indicates
1850 a low quality of randomness thereby indicating a high
predictability of the random values generated based on the
policy, the system determines that the random values gen-
erated based on the policy are not true random values. The
system stores the randomness quality score of different
policies 1n the policy database to determine which policy to
use 1n future. If the system determines that a policy being
used has low randommness quality score, the system selects
1820 a different policy from the policy database and repeats
the steps 1830 and 1840. During this process the system
continues generating random numbers based on the policy
selected. A policy that 1s determines to have high random-
ness quality score 1s used more often for generating random
numbers although the system randomly changes the policy
used for random number generation to be able to continu-
ously evolve and generate new policies.

The system keeps adding new policies for the policy
database and evaluating them. A policy determined to have
low randommess quality score has low chance of being
selected for use. Accordingly, policies are ranked based on
randomness quality score for use for generating random
numbers. New policies that are generated have a higher
chance of selection so they can be evaluated. According to
an embodiment, policies are evaluated in a test or staging
environment and promoted to a production environment 1f
they are determined to have high randomness quality score.

According to an embodiment, the system uses an evolu-
tion based techmique for generating new policies. For
example, the system maintains an evolving population of
policies. A genetic algorithm may be used for maintaining
the evolving population of policies. For example, new
policies may be generated by making changes to existing
policies (referred to as mutation operation) or by combining,
attributes of different policies (referred to as a crossover
operation). For example, the system may modily one or
more attributes of a policy such as by replacing a component
unit with another component umt, adding a component unit,
removing a component unit, and so on. The system may
modily one or more attributes of a policy by changing an
operator used for modifying the data values generated by a
component unit. The system may modily one or more
attributes of a policy by changing the permutation performed
of the data values generated by different component units.
The system may modily one or more attributes of a policy
by changing the expression or function used to combine
different data values obtained from component units to
determine a seed value. The system may obtain new policy
by exchanging attributes two diflerent polices. For example,
a component unit C1 used by policy P1 may be switched
(exchanged with) with a component unit C2 used by a policy
P2. Alternatively, 1f the same component unit 1s used by two
policies, the system may switch the operators used by the

10

15

20

25

30

35

40

45

50

55

60

65

26

two policies for processing the data values generated by the
component units. Similarly, the system may exchange the
expression used for combining data values generated by
component units used by two policies. The system continu-
ously evaluates the polices generated by using the policy and
determining the randomness quality score of each policy. If
the randomness quality score of a policy {falls below a
threshold value, the policy 1s eliminated from the popula-
tion. As a result, the overall randomness quality score of the
polices if the population improves and the quality of the
overall population evolves and improves over time.
Additional Considerations

The particular naming of the components, capitalization
of terms, the attributes, data structures, or any other pro-
gramming or structural aspect 1s not mandatory or signifi-
cant, and the mechamisms that implement the embodiments
described may have different names, formats, or protocols.
Further, the systems may be implemented via a combination
of hardware and software, as described, or entirely 1n
hardware elements. Also, the particular division of function-
ality between the various system components described
herein 1s merely exemplary, and not mandatory; functions
performed by a single system component may instead be
performed by multiple components, and functions per-
formed by multiple components may instead performed by
a single component.

Some portions ol above description present features in
terms ol algorithms and symbolic representations of opera-
tions on information. These algorithmic descriptions and
representations are the means used by those skilled in the
data processing arts to most effectively convey the substance
of their work to others skilled in the art. These operations,
while described functionally or logically, are understood to
be implemented by computer programs. Furthermore, 1t has
also proven convemient at times, to refer to these arrange-
ments of operations as modules or by functional names,
without loss of generality.

Unless specifically stated otherwise as apparent from the
above discussion, i1t 1s appreciated that throughout the
description, discussions utilizing terms such as “processing”
or “computing” or “calculating” or “determining” or “dis-
playing” or the like, refer to the action and processes of a
computer system, or similar electronic computing device,
that manipulates and transforms data represented as physical
(electronic) quantities within the computer system memories
or registers or other such information storage, transmission
or display devices.

Certain embodiments described herein include process
steps and 1nstructions described 1n the form of an algorithm.
It should be noted that the process steps and instructions of
the embodiments could be embodied in software, firmware
or hardware, and when embodied in software, could be
downloaded to reside on and be operated from different
platforms used by real time network operating systems.

The embodiments described also relate to apparatuses for
performing the operations herein. An apparatus may be
specially constructed for the required purposes, or i1t may
comprise a general-purpose computer selectively activated
or reconfigured by a computer program stored on a computer
readable medium that can be accessed by the computer. Such
a computer program may be stored i a non-transitory
computer readable storage medium, such as, but 1s not
limited to, any type of disk including floppy disks, optical
disks, CD-ROMs, magnetic-optical disks, read-only memo-
ries (ROMs), random access memories (RAMs), EPROMs,
EEPROMSs, magnetic or optical cards, application specific
integrated circuits (ASICs), or any type of media suitable for

US 11,880,452 Bl

27

storing electronic instructions, and each coupled to a com-
puter system bus. Furthermore, the computers referred to in
the specification may include a single processor or may be
architectures employing multiple processor designs for
increased computing capability.

The algornthms and operations presented herein are not
inherently related to any particular computer or other appa-
ratus. Various general-purpose systems may also be used
with programs in accordance with the teachings herein, or it
may prove convenient to construct more specialized appa-
ratus to perform the required method steps. The required
structure for a variety of these systems will be apparent to
those of skill in the, along with equivalent variations. In
addition, the present embodiments are not described with
reference to any particular programming language. It 1s
appreciated that a variety of programming languages may be
used to implement the teachings of the embodiments as
described herein.

The embodiments are well suited for a wide vanety of
computer network systems over numerous topologies.
Within thas field, the configuration and management of large
networks comprise storage devices and computers that are
communicatively coupled to dissimilar computers and stor-
age devices over a network, such as the Internet.

Finally, 1t should be noted that the language used 1n the
specification has been principally selected for readability
and 1nstructional purposes, and may not have been selected
to delineate or circumscribe the inventive subject matter.
Accordingly, the disclosure of the embodiments 1s intended
to be illustrative, but not limiting,.

What 1s claimed 1s:

1. A computer-implemented method for protection of
information technology infrastructure, the method compris-
ng:

receiving a request for execution of an application on one

Oor more computing systems;

generating a process graph for the application based on an

execution of the application;

accessing a system profile map storing characteristics of

applications known to be uncompromised;

comparing characteristics of the process graph of the

application with characteristics of the process graph of
a matching uncompromised application in the system
profile map;

determining based on the comparison, that there are

differences 1n the characteristics of the process graph of
the application with characteristics of the process graph
of a matching uncompromised application;

responsive to identifying differences in characteristics of

the process graph of the application with characteristics
of the process graph of a matching uncompromised
application, identifying the application as a compro-
mised application;

storing, by a learming unit, information describing the

differences 1n characteristics of the process graph of the
application with characteristics of the process graph of
a matching uncompromised application; and

using the stored differences in characteristics for subse-

quently i1dentifying compromised applications.

2. The computer-implemented method of claim 1, further
comprising;

training a machine learning model configured to receive

features describing a system profile of an mnput appli-
cation and predict a score indicating a likelthood of the
input application being compromised.

3. The computer-implemented method of claim 2, further
comprising;

10

15

20

25

30

35

40

45

50

55

60

65

28

providing a system profile of a new application as input to

the machine learning model;

executing the machine learning model to predict an output

score for the new application; and

determining based on a comparison of the output score

with a threshold value whether the new application 1s
compromised.
4. The computer-implemented method of claim 1, further
comprising;
killing one or more processes created for the application.
5. The computer-implemented method of claim 1,
wherein the characteristics of the process graph of the
application comprise 1information describing threads
executed by a process executed by the application.
6. The computer-implemented method of claim 1, further
comprising:
determining, by a hardware transactional memory unit, an
amount ol memory to be allocated for executing the
application, comprising, repeating until an accurate
estimate 1s determined:
generating, by a random number generator, an estimate
of the amount of memory to be allocated for execut-
ing the application; and
determining, by a computer resources predictor,
whether the estimate satisfies requirements of the
application.
7. The computer-implemented method of claim 1,
wherein the application 1s a first new application, the process
graph of the application 1s a first process graph, the method
further comprising;:
recerving a request for execution of a second application;
generating a second process graph for the second appli-
cation based on an execution of the second application;

comparing characteristics of the process graph of the
second application with characteristics of the process
graph of a second matching uncompromised applica-
tion 1n the system profile map;

determining based on the comparison, that there are no

differences 1n the characteristics of the process graph of
the application with characteristics of the process graph
of the second matching uncompromised application;
and

responsive to identilying no differences in characteristics

of the process graph of the second application with
characteristics of the process graph of the second
matching uncompromised application, identifying the
second application as an uncompromised application.

8. A non-transitory computer readable storage medium
storing 1nstructions that when executed by one or more
computer processors cause the one or more computer pro-
cessors to perform steps comprising:

recerving a request for execution of an application on one

or more computing systems;

generating a process graph for the application based on an

execution of the application;

accessing a system profile map storing characteristics of

applications known to be uncompromised;

comparing characteristics of the process graph of the

application with characteristics of the process graph of
a matching uncompromised application 1n the system
profile map;

determining based on the comparison, that there are

differences 1n the characteristics of the process graph of
the application with characteristics of the process graph
of a matching uncompromised application;

responsive to identifying differences in characteristics of

the process graph of the application with characteristics

US 11,880,452 Bl

29

of the process graph of a matching uncompromised
application, i1dentifying the application as a compro-
mised application;

storing, by a learming unit, information describing the

differences 1n characteristics of the process graph of the
application with characteristics of the process graph of
a matching uncompromised application; and

using the stored diflerences in characteristics for subse-

quently i1dentitying compromised applications.

9. The non-transitory computer readable storage medium
of claim 8, wherein the instructions further cause the one or
more computer processors to perform steps comprising:

training a machine learning model configured to receive

features describing a system profile of an put appli-
cation and predict a score indicating a likelithood of the
input application being compromised.

10. The non-transitory computer readable storage medium
of claim 9, wherein the instructions further cause the one or
more computer processors to perform steps comprising:

providing a system profile of a new application as input to

the machine learning model;

executing the machine learning model to predict an output

score for the new application; and

determining based on a comparison of the output score

with a threshold value whether the new application 1s
compromised.

11. The non-transitory computer readable storage medium
of claim 8, wherein the instructions further cause the one or
more computer processors to perform steps comprising:

killing one or more processes created for the application.

12. The non-transitory computer readable storage medium
of claim 8, wherein the characteristics of the process graph
of the application comprise information describing threads
executed by a process executed by the application.

13. The non-transitory computer readable storage medium
of claim 8, wherein the instructions further cause the one or
more computer processors to perform steps comprising:

determining, by a hardware transactional memory unit, an

amount of memory to be allocated for executing the

application, comprising, repeating until an accurate

estimate 1s determined:

generating, by a random number generator, an estimate
of the amount of memory to be allocated for execut-
ing the application; and

determining, by a computer resources predictor,
whether the estimate satisfies requirements of the
application.

14. The non-transitory computer readable storage medium
of claim 8, wherein the application 1s a first new application,
the process graph of the application 1s a first process graph,
wherein the instructions further cause the one or more
computer processors to perform steps comprising:

receiving a request for execution of a second application;

generating a second process graph for the second appli-
cation based on an execution of the second application;

comparing characteristics of the process graph of the
second application with characteristics of the process
graph ol a second matching uncompromised applica-
tion in the system profile map;

determining based on the comparison, that there are no

differences 1n the characteristics of the process graph of
the application with characteristics of the process graph
of the second matching uncompromised application;
and

responsive to 1dentitying no diflerences in characteristics

of the process graph of the second application with
characteristics of the process graph of the second

5

10

15

20

25

30

35

40

45

50

55

60

65

30

matching uncompromised application, identifying the
second application as an uncompromised application.

15. A computer system comprising:

one or more computer processors; and

a non-transitory computer readable storage medium stor-

ing instructions that when executed by the one or more

computer processors cause the one or more computer

processors to perform steps comprising:

receiving a request for execution of an application on
one or more computing systems;

generating a process graph for the application based on
an execution of the application;

accessing a system profile map storing characteristics
of applications known to be uncompromaised;

comparing characteristics of the process graph of the
application with characteristics of the process graph
of a matching uncompromised application 1n the
system proiile map;

determining based on the comparison, that there are
differences 1n the characteristics of the process graph
of the application with characteristics of the process
graph of a matching uncompromised application;

responsive to 1dentifying differences in characteristics
of the process graph of the application with charac-
teristics of the process graph of a matching uncom-
promised application, identifying the application as a
compromised application;

storing, by a learming unit, information describing the
differences in characteristics of the process graph of
the application with characteristics of the process
graph of a matching uncompromised application;
and

using the stored differences 1n characteristics for sub-
sequently 1identifying compromised applications.

16. The computer system of claim 15, wherein the instruc-
tions further cause the one or more computer processors to
perform steps comprising:

training a machine learning model configured to receive

features describing a system profile of an 1nput appli-
cation and predict a score indicating a likelihood of the
input application being compromised.

17. The computer system of claim 16, wherein the 1nstruc-
tions further cause the one or more computer processors to
perform steps comprising:

providing a system profile of a new application as input to

the machine learning model;

executing the machine learning model to predict an output

score for the new application; and

determining based on a comparison of the output score

with a threshold value whether the new application 1s
compromised.

18. The computer system of claim 15, wherein the char-
acteristics of the process graph of the application comprise
information describing threads executed by a process
executed by the application.

19. The computer system of claim 15, wherein the 1nstruc-
tions further cause the one or more computer processors to
perform steps comprising:

determining, by a hardware transactional memory unit, an

amount ol memory to be allocated for executing the

application, comprising, repeating until an accurate

estimate 1s determined:

generating, by a random number generator, an estimate
of the amount of memory to be allocated for execut-
ing the application; and

US 11,880,452 Bl
31

determining, by a computer resources predictor,

whether the estimate satisfies requirements of the
application.

20. The computer system of claim 15, wherein the appli-
cation 1s a first new application, the process graph of the 5
application 1s a {irst process graph, wherein the istructions

further

cause the one or more computer processors to

perform steps comprising:

receiving a request for execution of a second application;

generating a second process graph for the second appli- 10
cation based on an execution of the second application;

comparing characteristics of the process graph of the
second application with characteristics of the process
graph ol a second matching uncompromised applica-
tion 1n the system profile map; 15

determining based on the comparison, that there are no

dij

Terences 1n the characteristics of the process graph of

the application with characteristics of the process graph

of the second matching uncompromised application;

and 20
responsive to 1dentitying no diflerences in characteristics

of the process graph of the second application with

characteristics of the process graph of the second

matching uncompromised application, identifying the

second application as an uncompromised application. 25

¥ ¥ # ¥ ¥

32

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 11,880,452 B1 Page 1 of 1
APPLICATIONNO. : 18/207665

DATED : January 23, 2024
INVENTOR(S) : Dipnarayan Guha

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page

Item (73), in Column 1, in “Assignee”, Line 1, delete “B QT and insert -- B Q T --, theretor.

Item (56), in Column 2, under “Other Publications”, Line 2, delete “llotKeping Yu, ;” and insert
-- llot, Keping Yu; --, therefor.

Signed and Sealed this
Eighth Day of October, 2024

Katherme Kelly Vidal
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

