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00

Receiving input data for inputting into a neural network, wherein the
neural network is configured to perform a task
802

Reading a first set of weights and a first set of input data from a
memory of the neural network processing circuit, wherein the first set
of weight values are associated with a first layer of the neural
network, and wherein the first set of input data is input for the first
layer of the neural network
3804

Determining a selection of data to input into an array of processing
engines of the neural network processing circuit, wherein the
selection of data is selected from among the first set of input data
and data selected for input into the array of processing engines
806

Computing an intermediate result using the selection of data and the
first set of weight values, wherein the intermediate result represents
an output of the first layer of the neural network
808

Computing a result using additional weight values and the
iIntermediate result, wherein the additional weight values are
associated with additional layers of the neural network, wherein the
iIntermediate result is an input to second layer of neural network, and
wherein the result corresponds to an outcome of performing the task
810

FIG. 8
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DATA SELECTION CIRCUIT

BACKGROUND

Neural network processors are purpose-built integrated
circuit devices for executing neural networks. Execution of
a neural network can include many simple computations that
can be performed in parallel. A neural network processor
thus can include an array of small processing engines that
can perform a simple computation, such as a multiply and
add computation. The operation of a neural network pro-
cessor can further be optimized around moving data into and
out of the array of processing engines, so that the neural
network can be executed quickly. General purpose proces-
sors, 1n conftrast, may be optimized to perform a diverse
range ol operations, so that these processor can handle a
wide variety of tasks.

BRIEF DESCRIPTION OF TH.

(L]

DRAWINGS

Various embodiments 1n accordance with the present
disclosure will be described with reference to the drawings,
in which:

FIG. 1 includes a block diagram that illustrates an
example of a neural network processing engine ol a neural
network processor;

FI1G. 2 includes a block diagram 1llustrating an example of
an 1put selector circuit;

FI1G. 3 1llustrates graphically an example of a two-dimen-
sional convolution, an operation that can occur 1n a layer of
a convolutional neural network;

FIG. 4 includes a chart that illustrates an example of a
selection of data for mputting into the rows of a processing
engine array;

FIG. 5 includes a chart that illustrates another example of
data selection for inputting into the rows of a processing
engine array;

FIG. 6 includes a block diagram that illustrates an
example of a neural network processor;

FIG. 7 includes a block diagram that illustrates an
example of a host system 1n which a neural network pro-
cessor can be used;

FIG. 8 illustrates an example of a process for executing a
neural network; and

DETAILED DESCRIPTION

Neural networks take inspiration from the mechanics of
the operation of the human brain. In a neural network,
neurons are represented by nodes and synapses are repre-
sented by weighted connections between the nodes. The
welghts can reflect different responses to input. A neural
network can be arranged 1n layers, where mput data to be
analyzed 1s provided to an mput layer, and the outputs of
cach layer provide the inputs to the next layer. The last layer
can output a result. The weight values can be determined
through training, during which mput data with a known
result 1s provided to the neural network.

The computations of a neural networks can be performed
using a Central Processing Unit (CPU). CPUs, however,
tend to be optimized for sequential rather than parallel
computations, and thus can sufler from poor response times.
Graphics Processing Units (GPUs) are optimized for parallel
computations, but not necessarily for the result from one
computation unit to be provided directly to another compu-
tation unit. Often, the result must first be written to a
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2

memory. GPUs, though having better response times than
CPUs, may nevertheless lag 1n response times.

Special-purpose neural network processors include com-
putational arrays optimized for parallel, chained computa-
tions, and can perform better than both CPUs and GPUs on
the same 1nput data, 1n certain situations.

In various examples, the architecture of a neural network
includes an mput layer, an output layer, and a number of
intermediate layers, often referred to as hidden layers. Each
layer executes a computation on the outputs of the previous
layer, with the last layer (the output layer) providing a final
result. With more layers, a neural network can, theoretically,
perform more complex tasks, such as language translations
and distinguishing the contents of one 1mage from another.
A neural network with more than three hidden layers 1s
sometimes referred to as a deep neural network. Deep neural
networks can have many hidden layers, such as, for
example, between five and more than a thousand layers.

In various examples, utilization of the computational
array of a neural network processor approximates the overall
performance of the processor. For example, when the com-
putational array 1s at 75% utilization, then the neural net-
work processor may be be operating at approximately 75%
of the processor’s possible maximum capability. Maintain-
ing high utilization of the computational array can thus
maximize the speed at which the computations for a neural
network are performed, how quickly the task for which the
neural network 1s trained can be completed, and the how
quickly answers can be produced from the neural network.

In some examples, a neural network may be operated such
that a filter can be applied to mput feature maps using
different rows of the neural network processor’s computa-
tional array. For example, when the mputs to a layer of a
neural network includes more than one mput feature map,
cach mput feature map can be mput into a ditferent row, and
the processing engines in the row can apply a particular filter
to each of the mput feature maps. Additionally, output
feature maps can computed on the columns of the compu-
tational array. This arrangement may be particularly eflicient
when the horizontal operation of the computational array 1s
a multiplication and the vertical operation 1s an accumula-
tion. This arrangement can also be memory eflicient,
because the values for an input feature map can be written
to sequential locations in a memory that 1s used to feed data
into the computational array.

In some convolutional neural networks, however, the first
layer includes only three input feature maps, one each for the
red channel, the green channel, and the blue channel (which
may be present, for example, 1n a color 1mage) of the input
data set. Convolutional neural networks are used for tasks
such as 1image recognition, speech recognition, and machine
translation, among other tasks, and are sometimes favored
over other neural network architectures due to being able to
produce more accurate outputs. For these neural networks,
the first layer of the network may only occupy the first three
rows of the computational array, one for each mput feature
map, leaving the remaining rows 1dle until the next layer. As
an example, for a computational array that has 128 rows and
64 columns, using just three rows of the computational array
to compute an output for the first layer of a neural network
can result 1n 2.3% utilization for the first layer’s computa-
tions.

Though the first layer of a neural network may occur only
once during the execution of the neural network, over the
course of multiple executions of the neural network the low
utilization by the first layer can have an impact. As an
example of the impact, Table 1 below illustrates the utili-
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zation of a 128 row, 64 column computational array when
the array executes various example neural networks. Illus-
trated 1n this example 1s the utilization of 8-bit unsigned
integer computational units 1n the computational array and
16-bit floating point computational units over many inputs
for each neural network.

TABLE 1

Neural Network UINTS® utilization FP16 utilization

Resnet-34
Resnet-350
Resnet-152

Inception_v3

44%
40%
66%
23%

45%
40%
66%
24%

One solution for increasing the utilization of the compu-
tational array when computing the first layer 1s to use the idle
rows to apply different filter elements to the mput feature
maps. A filter applied to an mput feature map can include an
array of filter elements. As an example, 1nstead of sequen-
tially applying each filter element in the filter to an input
feature map, multiple feature elements can be applied 1n
parallel. In this example, 1t may thus be possible to occupy
s1x rows ol the computational array to apply two filter
clements, nine rows to apply three filter elements, and so on.
As an example, for a computational array that has 128 rows
and 64 columns, replicating three input feature maps 24
times can result 1n a utilization of 57% for the first layer.
Table 2 below 1llustrates examples of the utilization that 1s
theoretically possible when the mput feature maps of the
first layer are duplicated across multiple rows and different
filter elements are applied to the duplicates:

TABLE 2

Neural Network UINT® utilization FP16 utilization

Resnet-34
Resnet-30
Resnet-152

Inception_v3

89%
84%
91%
71%

92%
86%
92%
76%

To enable multiple filter elements to be applied to the
multiple copies of the input feature maps of the first layer,
the neural network processing engine can have multiple
copies of the input feature maps arranged for mputting into
the rows of the computational array. The neural network
processor can include a memory, which can also be referred
to as a buller, that holds data for mputting into the compu-
tational array. In some examples, soltware that 1s operating,
the neural network processor can load multiple copies of the
input feature maps into the memory, with the copies
arranged 1n the memory for mputting into different rows of
the computational array. In these examples, the neural
network processor would not need any additional circuitry
tor multiple copies of the input feature maps to be input mnto
the computational array, and only needs to be appropnately
programmed 1n order to improve overall utilization of the
computational array.

In various examples, however, other practicalities may
interfere with the optimization that can be accomplished
through software programming. For example, memory
bandwidth 1n the neural network processor may have a limat,
where the limit 1s dictated by factors such as the amount of
space available on the chip for an interconnect between the
neural network processor’s processing engines and external
memory where the data for a neural network is stored; the
speed at which data can be transferred over the interconnect;
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and/or availability of the interconnect, which may be occu-
pied with moving data between other components of the
neural network processor.

Memory bandwidth delay can reduce the utilization that 1s
gained by replicating the input feature maps. For example,
in an example neural network processor, the available
memory bandwidth can be 32 gigabytes (GB) per second
(GB/s), and an mput color 1mage can be about 300 kilobytes
(KB) 1n size. In this example, copying the mput image 24
times can take about 0.23 milliseconds (ms). Executing the
neural networks listed in Table 1 and Table 2 above may take
about 26 microseconds (us), meaning that the utilization
gain from copying the input image 1s reduced. Table 3 below
illustrates practical examples of computational array utili-
zation, where the time needed to copy the input 1image 24
times 1s included:

TABLE 3

Neural Network UINTR utilization EFP16 utilization

Resnet-34
Resnet-50
Resnet-152

Inception_v3

64%0
60%
80%
41%

66%
61%
81%
43%

In various implementations, provided are systems and
methods for operating an integrated circuit for a neural
network processor, where the integrated circuit includes an
input selector circuit that can be configured to select the data

that will be mput into neural network processor’s compu-
tational array. In various examples, the input selector circuit,
which 1s also referred to herein as a selector circuit, can
determine, for a row of the computational array, whether the
row 1put will be the output from a bufler memory or data
that the mput selector circuit has selected for a different row.
In the former case, the row can receive, for example, an
input feature map from a set of input data. In the latter case,
the row can receive an input feature map that was selected
for mputting 1into a different row, such that the input feature
map 1s mput into more than one row at a time. In various
examples, the selector circuit can also include a delay
circuit, so that the duplicated input feature map can be 1nput
into the computational array later than the original input
feature map. In these and other examples, different filter
clements can be applied to the original input feature map and
to the duplicated 1input feature map, so that utilization of the
computational array 1s increased and the computation of the
output feature maps can be performed 1n fewer clock cycles.
In various examples, an input selector circuit in a neural
network processor can improve the performance of the
neural network processor when computing a result for the
first layer of a neural network. For example, in input feature
map that 1s an input for the first layer of the neural network
can be mput into the computational array three or more
times, with a different filter element being applied to each
copy. In some examples, the second and subsequent layers
of the neural network may have many input feature maps as
inputs. In these examples, the mput selector circuit can be
configured so that duplication of the mputs to the compu-
tational array 1s disabled, and the computational array
receives as iputs the outputs from the builer memory.
Various examples will be described herein. For purposes
of explanation, specific configurations and details are set
forth in order to provide a thorough understanding of the
examples. However, 1t will also be apparent to one skilled 1n
the art that the examples may be practiced without the
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specific details. Furthermore, well-known features may be
omitted or simplified in order not to obscure the examples
being described.

FIG. 1 includes a block diagram that illustrates an
example of a neural network processing engine 102 of a
neural network processor. In various implementations, the
neural network processing engine 102, for a set of input data,
can execute a neural network to perform a task the neural
network was trained for. Executing a neural network on a set
of input data can be referred to as inference or performing
inference. In various implementations, the example neural
network processing engine 102 i1s an integrated circuit
component of a neural network processor. The neural net-
work processor can have other integrated circuit compo-
nents, 1including additional neural network processing
engines.

In various implementations, the neural network process-
ing engine 102 can include a memory subsystem 104 and a
processing engine array 110. In various examples, the neural
network processing engine 102 can include a mnput selector
circuit 130 placed between the memory subsystem 104 and
the processing engine array 110. The mput selector circuit
130 can determine the data that 1s input 1nto the processing
engine array 110, as discussed further below. When 1n
operation (e.g., when computing a result for a set of mput
data 150), the processing engine array 110 can read weight
106 and state 108 values from the memory subsystem 104.
The processing engine array 110 can output computation
results to a results bufler 112. In some cases, the example
neural network processing engine 102 can perform an acti-
vation function (using an activation 116 block) and/or pool-
ing (using a pooling 118 block) on the results from the
processing engine array 110, before the results are written to
the memory subsystem 104.

Weights 106, 1n this example, are the weight values for a
neural network. In various examples, the weights 106 are
post-training weights, meaning that values for the weights
106 were previously determined. State 108, 1n this example,
can 1clude mput data 150 when a computation begins, as
well as intermediate values that reflect an in-progress com-
putation. State 108, for example, can include partial sums
determined by the processing engine array 110. State 108
can also include instructions for the processing engine array
110, where the instructions may be associated with a par-
ticular layer. The instructions can, for example, instruct the
processing engine array 110, and possibly also the activation
116 and/or pooling 118 blocks, to execute a certain compu-
tation. The weights 106 and the state 108 can be read from
the memory subsystem 104 for operating on by the process-
ing engine array 110. In some examples, the memory
subsystem can also include a separate memory or bufler for
instructions.

In various implementations, the memory subsystem 104
can include multiple memory banks 114. In these imple-
mentations, each memory bank 114 can be independently
accessible, meaning that the read of one memory bank 1s not
dependent on the read of another memory bank. Similarly,
writing to one memory bank does not affect or limit writing
to a different memory bank. In some cases, each memory
bank can be read and written at the same time. Various
techniques can be used to have independently accessible
memory banks 114. For example, each memory bank can
have at least one read channel and may have at least one
separate write channel that can be used at the same time. In
these examples, the memory subsystem 104 can permit
simultaneous access to the read or write channels of multiple
memory banks. As another example, the memory subsystem
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104 can include arbitration logic such that arbitration
between, for example, the outputs of multiple memory banks
114 can result 1n more than one memory bank’s output being
used. In these and other examples, though globally managed
by the memory subsystem 104, each memory bank can be
operated independently of any other.

Having the memory banks 114 be independently acces-
sible can 1increase the efliciency of the neural network
processing engine 102. For example, weights 106 and state
108 can be simultaneously read and provided to each row of
the processing engine array 110, so that the entire processing
engine array 110 can be 1n use in one clock cycle. As another
example, weights 106 and state 108 can be read at the same
time that intermediate results are written to the memory
subsystem 104. In contrast, a single memory, while still able
to provide weights 106 and state 108 to the processing
engine array 110 faster than ofl-chip memory, may be able
to service only one read or write at a time. With a single
memory, multiple clock cycles can be required, for example,
to read weights for each row of the processing engine array
110 belfore the processing engine array 110 can be started.

In various implementations, the memory subsystem 104
can be configured to simultaneously service multiple clients,
including the processing engine array 110, the activation 116
block, the pooling 118 block, and any externa clients that
access the memory subsystem 104 over a chip interconnect
120. In some implementations, being able to service mul-
tiple clients can mean that the memory subsystem 104 has at
least as many memory banks as there are clients. In some
cases, each row of the processing engine array 110 can count
as a separate client. In these cases, weights 106 and state 108
can be stored separately, and thus require pairs of reads, or
can be concatenated and stored together, thus requiring one
read. In some cases, each column of the processing engine
array 110 can output an intermediate value, such that each
column can count as a separate write client. In some cases,
output ifrom the processing engine array 110 can be written
into the memory banks 114 that can then subsequently
provide input data for the processing engine array 110. The
memory banks 114 can be implemented, for example, using
static random access memory (SRAM).

In various implementations, the memory subsystem 104
can 1nclude control logic. The control logic can, {for
example, keep track of the address spaces of each of the
memory banks 114, identily memory banks 114 to read from
or write to, and/or move data between memory banks 114,
il needed. In some implementations, the memory subsystem
104 can include multiplexors for selecting which memory
bank to output to a particular client and/or to receive input
from a particular client. In these implementations, the con-
trol logic can generate select signals for the multiplexors,
which can enable some or all of the memory banks 114 to
service each client. In some implementations, memory
banks 114 can be hardwired to particular clients. For
example, a set of memory banks 114 can be hardwired to
provide weights 106 and state 108 to the rows of the
processing engine array 110. In these examples, the control
logic can move data between memory banks 114, for
example, to move mtermediate results from the memory
banks 114 to which the intermediate results are written, to
the memory banks 114 from which the intermediate results
will be read for the next round of computation.

The processing engine array 110 1s the computation
matrix of the neural network processing engine 102. The
processing engine array 110 can, for example, execute
parallel integration, convolution, correlation, and/or matrix
multiplication, among other things. The processing engine
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array 110 1ncludes multiple processing engines 111,
arranged 1n rows and columns, such that results output by
one processing engine 111 can be mput directly into another
processing engine 111. Processing engines 111 that are not
on the outside edges of the processing engine array 110 thus
can receive data to operate on from other processing engines
111, rather than from the memory subsystem 104.

In various examples, the processing engine array 110 uses
systolic execution, 1n which data arrives at each processing
engine 111 from different directions at regular intervals. In
some examples, input data can flow into the processing
engine array 110 from the left and weight values can be
loaded at the top. In some examples weights and input data
can flow from the leit and partial sums can flow from top to
bottom. In these and other examples, a multiply-and-accu-
mulate operation moves through the processing engine array
110 as a diagonal wave front, with data moving to the right
and down across the array. Control signals can be input at the
left at the same time as weights 106, and can flow across and
down along with the computation.

In various implementations, the number of columns in the
processing engine array 110 determines the computational
capacity of the processing engine array 110, and the number
of rows determines the required memory bandwidth for
achieving maximum utilization of the processing engine
array 110. The processing engine array 110 can have, for
example, 64 columns and 128 rows, or some other number
of columns and rows.

An example of a processing engine 111 1s illustrated 1n
FIG. 1 1in an mset diagram. As illustrated by this example, a
processing engine 111 can include a multiplier-accumulator
circuit. Inputs from the left can include, for example, input
data 1 and a weight value w, where the mput data 1s a value
taken from either a set of mput data or a set of intermediate
results, and the weight value 1s from a set of weight values
that connect one layer of the neural network to the next. A
set of mput data can be, for example, an 1mage being
submitted for identification or object recognition, an audio
clip being provided for speech recognition, a string of text
for natural language processing or machine translation, or
the current state of a game requiring analysis to determine a
next move, among other things. In some examples, the input
data and the weight value are output to the right, for input
to the next processing engine 111.

In the illustrated example, an mput from above can
include a partial sum, p_in, provided either from another
processing engine 111 or from a previous round of compu-
tation by the processing engine array 110. When starting a
computation for a new set of mput data, the top row of the
processing engine array 110 can receive a fixed value for
p_1n, such as zero. As illustrated by this example, 1 and w are
multiplied together and the result 1s summed with p_1in to
produce a new partial sum, pout, which can be input into
another processing engine 111. Various other implementa-
tions of the processing engine 111 are possible.

Outputs from the last row 1n the processing engine array
110 can be temporarily stored 1n the results builer 112. The
results can be intermediate results, which can be written to
the memory banks 114 to be provided to the processing
engine array 110 for additional computation. Alternatively,
the results can be final results, which, once written to the
memory banks 114 can be read from the memory subsystem
104 over the chip iterconnect 120, to be output by the
system.

In some implementations, the neural network processing
engine 102 includes an activation 116 block. In these imple-
mentations, the activation 116 block can combine the results
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from the processing engine array 110 into one or more
output activations. For example, for a convolutional neural
network, convolutions from multiple channels can be
summed to produce an output activation for a single channel.
In other examples, accumulating results from one or more
columns 1n the processing engine array 110 may be needed
to produce an output activation for a single node in the
neural network. In some examples, activation 116 block can
be bypassed.

In some implementations, the neural network processing
engine 102 can include a pooling 118 block. Pooling is the
combining of outputs of a cluster of nodes from a layer of
a neural network. The combined output can be provided to
the next layer. Combining can include for example, com-
puting a maximum value, a mimmimum value, an average
value, a median value, or some other value determined {from
the outputs of the cluster of nodes. In various examples, the
pooling 118 can be selectively activated, as needed for any
particular neural network.

Input data 150 can arrive over the chip interconnect 120.
The chip interconnect 120 can connect the neural network
processing engine 102 to other components of a neural
network processor, such as a Direct Memory Access (DMA)
engine that can obtain mput data 150 from an Input/Output
(I/0) device, a storage drive, or a network interface. The
input data 150 can be, for example one-dimensional data,
such as a character string or numerical sequence, or two-
dimensional data, such as an array of pixel values for an
image or frequency and amplitude values over time for an
audio signal. In some examples, the mput data 150 can be
three-dimensional, as may be the case with, for example, the
situational information used by a self-driving car. In some
implementations, the memory subsystem 104 can include a
separate buller for the mput data 150. In some implemen-
tations, the input data 150 can be stored 1n the memory banks
114 along with the weights 106.

In various implementations, the weights 106 stored in the
memory subsystem 104 can have been determined by train-
ing the neural network to perform one or more tasks. The
input data 150 can include an 1nstruction indicating the task
to perform (e.g., 1mage processing, speech recognition,
machine translation, etc.). In various implementations, the
neural network processing engine 102 1s configured for
conducting inference (e.g., performing a task), rather than
for training of the neural network. In some implementations,
the neural network processing engine 102 can be used for
training, possibly with assistance from software to update
the stored weights 106.

In various implementations, the memory subsystem 104
can include enough memory to store both intermediate
results and all of the weight values for a neural network. The
memory subsystem 104 should have, at a minimum, enough
memory in the memory subsystem 104 to store intermediate
results, but in many cases the memory subsystem 104 can
include many more memory banks 114 than are needed to
store just intermediate results. This additional space can be
used to store some or all of the weight values for a neural
network before the neural network processing engine 102 1s
instructed to perform inference. For example, a neural
network may have 1.5 million weights, which, when each 1s
represented by 32 bits, can require about 6 MB of memory.
Intermediate results can require, for example, 10 MB of
storage space, at most. On-chip memory of 20 MB 1s a
reasonable size, and, in the preceding example, can readily
accommodate the weight values, intermediate results, and
any other data that the neural network processing engine 102
can need during operation.
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In some examples, some or all of the weights for a neural
network can be loaded mto the memory subsystem 104
before the neural network processing engine 102 begins
operating on a set of input data 150. In some cases, weights
can continue to be loaded during the computation of a result
for the set of input data 150. In these examples, the weights
and other data for a neural network (such as instructions for
the processing engine array 110) can be stored 1n an external
memory (e.g., a memory outside of the neural network
processing engine 102) 1n a compressed format. Compress-
ing the data for the neural network can reduce the amount of
memory space needed to store the neural network. Addi-
tionally, less time may be needed to read the data for the
neural network into the neural network processing engine
102.

In various examples, the mput selector circuit 130 can be
used to determine the data that 1s input 1nto the processing
engine array 110 1 any given clock cycle. In some
examples, the mput selector circuit 130 can control the data
that 1s mput into each row of the processing engine array
110. In some examples, the mput selector circuit 130 can
control the data that 1s mnput into a subset of the rows. In
various examples, for a given row, the input selector circuit
130 can select between data that 1s output from the memory
subsystem 104 and data that the input selector circuit 130
has selected for mputting into a different row. For example,
tor row[0], the mput selector circuit 130 can determine to
input data from the memory subsystem 104, and for row[3],
the input selector circuit 130 can determine to input the data
that the input selector circuit 130 determined to mput nto
row[0]; that 1s, the same data from the memory subsystem
104. In this example, the same data from the memory
subsystem 104 can be provided to more than one row of the
processing engine array 110. The mput selector circuit 130
can further be configured without any data duplication
occurring, so that each row of the processing engine array
110 receives data from the memory subsystem 104.

In various examples, the ability of the mput selector
circuit 130 to duplicate the data being nput mto the pro-
cessing engine array 110 can be used to improve the utili-
zation of the processing engine array 110. For example, one
way 1n which the neural network processing engine 102 can
perform the computations for a layer of a neural network 1s
for each 1nput feature map to be mput into a different row,
with a filter being applied to the input feature map using the
processing engines in the row. The mput data 150, however,
may have only one, three, or six mput feature maps, or
another number of mput feature maps that 1s far less than the
number of rows 1n the processing engine array 110. Thus, in
the preceding example, when performing computations for
the first layer of the neural network, only one, three, or six
(or another number) of rows may be in use, with the
remaining rows being idle. Subsequent layers may have
more input feature maps, due the application of filters
causing multiple output feature maps to be generated for
cach mput feature map, such that a larger number of rows of
the processing engine array 110 will be used for these layers.
But the low utilization of the processing engine array 110 for
the first layer can cause a cumulative reduction 1n the overall
utilization of the processing engine array 110 over the course
of many inferences.

One technique that can be used to increase utilization of
the processing engine array 110 during computation of the
first layer of a neural network 1s for the same mput feature
map to be input into multiple rows, with a different filter
clement being applied in each row. Having software load
multiple copies of an mput feature map nto the memory
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subsystem 104 can be overly time consuming, however, due
to limited bandwidth being available over the chip intercon-
nect 120. The ability of the mput selector circuit 130 to
replicated data from the memory subsystem 104 thus pro-
vides a way to feed the same mnput feature map into more
than one row of the processing engine array 110, without
having to have more than one copy of the input feature map
in the memory subsystem 104.

FIG. 2 includes a block diagram 1llustrating an example of
an mput selector circuit 230. In various examples, the mput
selector circuit 230 can include a first multiplexor 232 that
can be configured to select the mput data for a row of the
processing engine array 210, and a second multiplexor 236
that can select a degree of delay for inputting the data into
a row of the processing engine array 210. A row select 242
input 1nto the input selector circuit 230 can determine the
data, x'[k] 244, that 1s ultimately selected for the row. For the
sake of clanty, the multiplexors for only one row, row[k]
211, where k denotes a row number, 1s shown. It 1s under-
stood that a similar circuit as 1s illustrated 1n FIG. 2 can be
used to select the input data for other rows of the processing
engine array 210. In some cases, other rows of the process-
ing engine array 210 can have a similar input selector circuit.

In various examples, a neural network processing engine
can be configured such that one memory bank from the
neural network processing engine’s memory subsystem pro-
vides input data for one row of the processing engine array
210. This arrangement can enable the data from one 1nput
feature map to be loaded 1nto one memory bank, from which
the data for the input feature map can then be mput into the
same row.

In the example of FIG. 2, the data output by the memory
bank for row[k] 211 1s denoted as x[k] 206. For the memory
bank output x[k] 206 to be mput mto row[k] 211, the row
select 242 can configure the first multiplexor 232 to select
x[k] 206 as the output of the first multiplexor 232.

In various examples, the first multiplexor 232 can also
select from among other data 240 selected for inputting to
the processing engine array 210. The connections for other
data 240 are drawn from the outputs of other multiplexors,
possibly 1n other selectors circuits; for clarity, these connec-
tions are not shown explicitly 1n FIG. 2. For example, the
other data 240 can include the data selected for inputting into
row[k-1] (e.g., the row preceding row[k]| 211), which 1s
denoted x'[k-1] 1n the example of FIG. 2. As another
example, the other data 240 can include data selected for
inputting mto rowl[k-2] (e.g., two rows preceding row|[k]
211). As another example, the other data 240 can include
data selected for inputting into row|[n], where n can be a row
index that 1s less than or greater than k. In various examples,
n can be as large as the number of rows 1n the processing
engine array 210 and can be as small as 1 or —-1. In some
examples, n 1s equal to k-8, so that the data selected for
input into a row that 1s eight rows above row[k] 211 can be
selected for mputting into row[k] 211. In this example, n=8
can enable an mnput feature map to be input mto two rows
that are seven rows apart, which may occur when 1nput data
includes up to six mnput feature maps.

In some examples, 1t may be desirable to delay the data
selected by the first multiplexor 232 by a number of clock
cycles. Because the processing engine array 210 1s a systolic
array, the timing of entry of data into the processing engine
array 210 can aflect the result that the processing engine
array 210 computes. Thus, 1n various implementations, the
input selector circuit 230 can include one or more delay
circuits 234a-234n, such as tlip-tlops, which can delay the
output of the first multiplexor 232 by one to n clock cycles.
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The delay circuits 234a-234n can be connected 1n a chain,
such that, for example, a first delay circuit 234q can delay
the data by one clock cycle, a second delay circuit 2345 can
delay the data by two clock cycles, and so on. the input
selector circuit 230 can include a second multiplexor 236
that can be configured to select the desired delay. The output
of the second multiplexor 236, denoted x'[k] 244 can be
output by the mput selector circuit 230 as the input to row[K]
211.

In various examples, x'[k] 244 can also be the mput for
other rows. This 1s i1llustrated 1n the example of FIG. 2 by a
downward pointing arrow from the output of the second
multiplexor 236. As an example, xX'[k] 244 can be an input
into a multiplexor that selects the input for row[k+1] and/or
a multiplexor that selects the input for row[k+2]. In these
and other examples, x'[k]|244 can be input into more than
one row of the processing engine array 210. In some
examples, X'[k] 244 can be selected for mput 1into a row up
to eight rows below row[k] 211.

In various examples, the delay selected by the second
multiplexor 236 depends on the data selected by the first
multiplexor 232. For example, as 1llustrated 1n the examples
of FIGS. 4, and 5, when, as 1n the example of FIG. 2, the row
select 242 selects x'[k—1], the second multiplexor 236 can be
configured to delay this data by one clock cycle. As a further
example, when the row select 242 selects x'[k-2], the second
multiplexor 236 can be configured to delay this data by two
clock cycles. In these and other examples, the row select 242
can provide the configuration for both the first multiplexor
232 and the second multiplexor 236.

In various examples, the row select 242 value can be part
of an 1nstruction that makes up the data for a neural network.
The row select 242 can, for example, be stored with the
weights of the neural network, and be loaded into the
memory subsystem of a neural network processing engine
along with the weights. In various examples, the row select
242 can be determined by software that 1s operating the
neural network processing engine. In these examples, the
soltware may be responsible for loading the data for a neural
network into the memory subsystem, including determining,
which data goes into which bank of the memory subsystem.
In these examples, the software can determine whether and
to which processing engine array 210 rows data i1s to be
input.

Additionally, 1n various examples the row select 242 can
vary for different layers of a neural network. For example,
for the first layer of the neural network, the row select 242
can configure the first multiplexor 232 to select from among
the other data 240, while for subsequent layers, the row
select 242 can select the memory output, x[k] 206.

As noted previously, the arrangement ol multiplexors,
delay circuits, and signals can be similar for other rows of
the processing engine array 210. In some examples, the
input selector circuit 230 can have a different circuit for
some rows that 1s illustrated 1n FIG. 2. For example, for
row[0], the 1nput selector circuit 230 may only be operable
to select a memory output as the mput for row[0]. In this
example, the mput selector circuit 230 may have only a
delay circuit between the memory output and the input to the
processing engine array 110. As another example, for row
[1], the mput selector circuit 230 may have only the memory
output and the data selected for row[0] as possible choices
for the mput for row[1]. In this example, the circuit for
row[ 1] can have multiplexors with fewer mputs, as well as
tewer delay circuits. In some examples, some rows may
have fewer choices as possible mnputs than do other rows; for
example some rows may be able to receive data provided to
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one of two previous rows, while other rows may be able to
receive data provided to one of eight previous rows. In some
examples, the mput selector circuit 230 may be operable to
select the input of other rows for a subset of all the rows of
the processing engine array 210. For example, the mput
selector circuit 230 may be able to select the input data for
the first half of the rows of the processing engine array 210
and not the second half, for every other row, for every third
row, or for another subset of rows that 1s less than all the
rows. Being able to select the input data for each row,
however, can provide the greatest degree of flexibility over
the data that 1s into the processing engine array 210.

Table 4 below 1llustrates an example of the utilization of
the processing engine array 210 that can be achieved for
several different neural networks when the data duplication
capability of the input selector circuit 230 1s used. A

processing engine array 210 having 128 rows and 64 col-
umns was used to produce the results 1llustrated in Table 4.

TABLE 4

Neural Network UINTS® utilization EFP16 utilization

Resnet-34 80% (0) 82% (0)
85% (3) 87.5% (3)
Resnet-50 75% (0) 77% (0)
80% (3) 82% (3)
Resnet-152 88% (0) 88% (0)
90% (3) 90.5% (3)
Inception_v3 58% (0) 62% (0)
65% (3) 70% (3)

In the example of Table 4, the numbers 1n the parenthesis
indicates the amount of soitware replication that was used to
produce the percentage of utilization. For example, (0)
indicates that only hardware replication, using, for example,
the mput selector circuit 230 of FIG. 2, was used, and (3)
indicates that soiftware replication was used 1n addition to
hardware replication. In this latter example, software placed
three copies of the data into various memory banks, and the
input selector circuit 230 was then use to replicate the data
into multiple rows of the processing engine array 210.

FIG. 3 illustrates graphically an example of a two-dimen-
sional convolution, an operation that can occur 1n a layer of
a convolutional neural network. This example i1s being
provided to illustrate the manner 1 which data can be fed
into a computational array of a neural network processor,
including duplication of the data to more than one row of the
array.

Convolutional neural networks are often used for tasks
such as i1mage recognition, speech recognition, machine
translation, and other tasks. In the example of FIG. 3, an
input feature map 306 includes some or all of the input data
for an inference (e.g., the performance of the task). For
example, the mput feature map 306 can include the values
of pixels from an 1mage, with each index in the mput feature
map 306 storing an intensity of the color. As another
example, the mput feature map 306 can include letters and
other symbols from a character string. In this example, the
input feature map 306 1s a two-dimensional representation of
the mput data. In other examples, the mput data can be
three-dimensional. For example, for a color input image, the
input data can include three input feature maps, one each for
the green, blue, and red channels of the input image. In the
illustrated example, the mput feature map 306 has a height
H and a width W. With three-dimensional input data, a depth
C can represent a count of the number of input feature maps.
In some examples, the mput data can be four-dimensional,
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such as when the input data includes virtual reality images.
Virtual reality 1images can include, for example, six input
feature maps, three for the red, green, and blue channels,
multiplied by two for each eve.

A step 1n the operation of the neural network can involve
application of a filter to the mput feature map 306. In the
example of FIG. 3, filter elements are arranged in a filter
plane 304, a two-dimensional matrix of values having a
height R and a width S. The values 1n the filter plane 304 can
be selected to filter for particular features, such as lines,
edges, curves, corners, blobs, ridges, and so on. The filter
plane 304 can also be referred to as a kernel or a feature
detector.

The convolution operation involves computing a value for
cach possible position of the filter plane 304 over the 1input
feature map 306. This computation i1ncludes multiplying
cach element 1n the filter plane 304 by a corresponding value
in the mput feature map 306 and summing the result. For
example, at a first position 316 of the input feature map 306,
multiplying each value in the filter plane 304 by each
corresponding value 1n the first position 316 results 1n a
matrix {(1, 0, 1), (0, 1, 0), (0, 0, 1)}. In this example, the sum
of the values 1n the matrix results in the value 4, which 1s
placed 1 a corresponding first position 318 1n an output
teature map 308. A region of values from the mput feature
map 306 can be referred to as mput activations. The result
of the multiplication and summation can be referred to as an
output activation. Additional indices in the output feature
map 308 can be computed by sliding the filter plane 304 to
a different position 1 the mput feature map 306. For
example, by sliding the filter plane 304 to the right by one
position, and then right again by one position, the values 3
and 4, respectively, can be computed for the remainder of the
top row of the output feature map 308. The second row of
the output feature map 308 can be computed by returning the
filter plane 304 to the first position 316, sliding the filter
plane 304 down by one position, and again to the right.

The output feature map 308 represents a higher-level
abstraction of the mput feature map 306. The output feature
map 308 can, for example, represent edges or textures found
in the mput feature map 306. In this example, the output
feature map 308 has a height E and a width F, which 1s the
same as the height R and width S of the filter plane 304. In
other examples, E and F can be less than R and S, such as
when the filter plane 304 1s moved, between calculatlons
two positions instead of one. The number of positions the
filter plane 304 1s moved for each calculation 1s referred to
as the stride.

In various examples, additional filters can be applied to
the same input feature map 306 to produce additional output
feature maps. For example, in one layer of the neural
network, the neural network may be configured to conduct
both edge detection, line detection, and texture detection, for
which three different filters will be applied. In this example,
the one layer can produce up to three output feature maps
from the one 1nput feature map 306.

With three-dimensional input data, 1n one layer of the
neural network one filter may be applied to each of the input
feature maps 1n the mput data. Thus, for example, for three
input feature maps, application of one filter can result 1n
three output feature maps, and application of multiple filters
can result in multiplication of the number of output feature
maps produced.

In some example neural networks, the output feature
maps produced by the computations for layer can become
the input feature maps for the next layer. In some examples
the output feature maps may first be condensed, using, for
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example, pooling operations, to reduce the number of output
feature maps, and the reduced number of output feature
maps can be used as the input feature maps of the next layer.

FIG. 4 includes a chart 400 that 1llustrates an example of

a selection of data for inputting into the rows of a processing
engine array. For the sake of clarity, only the data for rows
[0] through [8] are shown, and 1t 1s assumed the data for
other rows can be selected 1n a similar manner, or 1n a
different manner, and from similar sources or different
sources. To illustrate the example of FIG. 4, the input feature
map 306 of FIG. 3 will be used as an example of the mput
data for a layer of a neural network.
In the example chart 400 of FIG. 4, the first column
indicates a row number 411, k, and the remaining columns
indicate an 1mndex 1n an iput feature map, as an indicator of
the data that 1s to be supplied. In this example, the indices
of the input feature maps are numbered from left to right and
top to bottom, in raster scan order (e.g., the upper left corner
1s index O, the upper right corner 1s index 4, lower left corner
1s 1ndex 20, and the lower right corner 1s index 24). Also 1n
this example, time 1s indicated as progressing from right to
lett, such that the earliest data to enter the processing engine
array 1s 1n the right-hand columns and the latest data to enter
the processing engine array 1s in the left-hand columns. In
some examples, each column can indicate the data mput into
the processing engine array 1n a different clock cycle. In the
example of FIG. 4, numbers indicated 1n parenthesis indicate
a filter index, also numbered 1n raster scan order, as an
indicator of the filter element that 1s applied by the compu-
tations ol a row.

The example chart 400 illustrates data being obtained for
three mput feature maps. The different mput feature maps
are indicated i FIG. 4 using different cross hatchings.
Row[0] receives data for a first input feature map, and
applies filter element (0) to thus data. Row[1] receives data
for the second input feature map, and also applies filter
clement (0) to this data. Row[2] receives data for the third
input feature map, and also applies filter element (0) to this
data. In this example, rows [0], [1], and [2] rece1ve data {first,
and thus can receive data directly from the local builler
memory.

Further 1n this example, row[3] can also receive data for
the first input feature map, and can apply filter element (1)
to the data. In this row, istead of obtammg the data for the
first 1put feature map from the bufler memory, an 111put
selector circuit can be configured to route the data that 1s
being provided to row|[0] also to row[3]. As illustrated in the
example of FIG. 3, filter element (1) 1s not applied to index
0 of the mput feature maps, thus the mput selector circuit
need only activate the data duplication when the data for
index 1 of the input feature map i1s read from the buller
memory. Additionally, for correct accumulation of the data
into an output feature map, the data for row[3] 1s delayed by
two clock cycles from when the data enters row[O0].

Row[4] can similarly receive data for the second input
feature map, starting at index 1, and delayed from when the
data enters row[1]. The input selector circuit can similarly
obtain the data for row[4] by routing the data being input
into row|[1] to row[4]. Row[5] can similarly receive data for
the third mput feature map, starting at index 1, and delayed
from when the data enters row|[2]. The input selector circuit
can obtain the data for row[3] from the data being input into
row|2].

Row[6] can also recerve data from the first input feature
map. In row[6], a third filter element (2) can be applied,
starting at index 2 of the mput feature map. For row[6], the
input selector circuit can obtain the data from the data that
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1s selected for row|[0] or from the data that 1s selected for
row[3]. When the input selector circuit 1s able to look back
at least s1x rows from row[6], then the mput selector circuit
can use the data selected for row|[0] or for row[3]. When the
iput selector circuit 230 1s able to look back at most three
rows, then the mput selector circuit 230 can use the data
selected for row[3]. Row[7] can similarly be supplied with
data from the second input feature map, obtained from the
data selected for row [1] or the data selected for row[4], and
row[ 8] can be supplied with data from the third input feature
map, obtained from data selected for row[2] or row[3].

The example illustrated 1n the chart 400 can be used, for
example, when performing the computations for the first
layer of a neural network. As discussed above, the 1nputs to
the first layer may include three or more mput feature maps,
and applying filters to these input feature maps may occupy
only three rows of the processing engine array. By dupli-
cating the three mput feature maps across multiple rows of
the processing engine array, more of the processing engine
array can be put to use when computing results for the first
layer. Subsequent layers may have more input feature maps.
For these layers, the imput selector circuit can disable
duplication of the data across multiple rows, and can select
instead the output from the buller memory. In some
examples, for various layers of the neural network, the input
selector circuit can select the output of the bufler memory
for some rows and selected duplicated data for other rows.

FIG. 5 includes a chart 500 that illustrates another
example of data selection for mputting into the rows of a
processing engine array. In this example, for the sake of
clarnity, only data for rows [0] through [11] are shown, and
it 1s understood that the processing engine array can have
many more rows (e.g., 128 or 256 or another number of
rows). To 1llustrate the example of FIG. 3, the mput feature
map 306 of FIG. 3 will be used as an example of the input
data for a layer of a neural network.

In the example chart 500 of FIG. 5, the first column
indicates a row number 511, k, and the remaining columns
indicate an index in an 1nput feature map, as an indicator of
the data that 1s to be supplied. The elements of the input
feature map are number from left to right and top to bottom.
Time, 1n this example, 1s indicated as progressing from right
to left, such that the first data to enter the processing engine
array 1s on the right and the later data to enter the array 1s on
the left. Numbers indicated in parenthesis indicate a filter
index.

The example chart 500 1llustrates data being obtained for
three mput feature maps. The different input feature maps
are indicated i FIG. 5 using different cross hatchings. In this
example, row[0] and row|[3] both receive data for the first
input feature map, with row[0] recerving the even-numbered
indices and row[3] recerving the odd-numbered indices. A
first filter element (0) 1s applied to the even-numbered
indices, and second filter element (1) 1s applied to the
odd-numbered indices. Application of the first filter element
(0) to the even 1ndices and the second filter element (1) to the
odd indices reflects the operation illustrated in FIG. 3,
where, 1n the first position 316, the first filter element 1s
multiplied to the first index of the input feature map 306, and
the second filter element 1s multiplied to the second index of
the mput feature map 306. In the example of FIG. 5,
distributing operations for the first filter element (0) and the
second filter element (1) can enable the processing engine
array to perform the operations faster than when all of the
data for one 1mput feature map is input mto one row.

To accomplish the division of an input feature map so that
the even indices and the odd indices can be provided to
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different rows, 1n some examples, the software that 1is
operating the neural network processor can write the data for
the mput feature map to two different banks 1n the local
bufler memory. A mput selector circuit can then select the
output of the two banks as the mput to row|[0] and row[3].
Entry of the data for row[3] several clock cycles behind the
data for row[0] may occur through the mechamism that reads
data from the bufler memory.

The data for a second and third mput feature map can
similarly be split between two rows each. In the example of
FIG. 3, the even indices of the second 1nput feature map are
input to row|[1] and the odd indices are input into row[4].
The even 1ndices of the third input feature map are mput into
row[2] and the odd indices are input mto row[5]. The first
filter element (0) 1s applied to 1n row[1] and row[2], and the
second filter element 1s applied 1n row[4], and row[5]. As
with row[0] and row[3], the data for rows one through 5 can
also be obtained from the local buller memory, with sofit-
ware loading the data into memory banks in the split
arrangement. Data entering these rows can also be staggered
in time by the mstructions that read the bufler memory.

In this example, the three input feature maps can occupy
s1X rows ol the processing engine array. To have the three
input feature maps occupy more rows, which can then be
used to apply more filter elements, the input selector circuit
can duplicate the data into other rows. For example, the even
indices for the first input feature map can also be 1nput nto
row[ 6], and the odd indices can be input 1nto row|[9]. In this
example, a third filter element (2) can be applied 1n row[6]
and a fourth filter element (3) can be applied in row|[9]. To
cnable the data for the first input feature map to be input into
row[6] and row[9], the 1mput selector circuit can select for
these rows the data being mmput into row[0] and row|[3],
respectively. For row[6], because the third filter element 1s
first applied to 1index 2, the input selector circuit can activate
the routing of data from the data provided to row[0] when
index 2 1s available. Additionally, the mput selector circuit
can stagger entry of the data behind the data that i1s being
input mnto lower numbered rows, using delay circuits.

The data for the second and third input feature maps can
similarly be duplicated to additional rows. In the chart 500,
the even-numbered indices from the second feature maps are
also mput mto row [7] and the odd-numbered indices are
also mput into row[10]. For the third imnput feature map, the
even-numbered indices are also mput mto row|[8] and the
odd-numbered indices are also mput into row|[11]. Row[7]
and row|[8] further apply the third filter element (2) and
row[10] and row[11] both apply the fourth filter element (3).

In various examples, duplication of the data to additional
rows ol the processing engine array can continue for any
number of rows, though doing so may not be needed. For
example, the filter plane 304 of FIG. 3 includes only nine
clements, thus to apply all nine filter elements, the data for
the three mput feature maps need only be replicated three
more times. As another example, particularly for input
feature maps that are larger than the output feature map 308
illustrated 1n FIG. 3, software can divide the mput feature
map 1nto smaller parts, and separately load the smaller parts
into the bufler memory. For example, one half of the mput
feature map can be loaded 1into banks for two rows, while the
other half can be loaded into banks for a different two rows.
In other examples, the input feature map can further be
divided into smaller parts, with each of the smaller parts
being loaded into different memory banks.

In various implementations, the neural network process-
ing engine discussed above can be part of a neural network
processor. FIG. 6 includes a block diagram that 1llustrates an
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example of a neural network processor 600 that has multiple
neural network processing engines 602q-602x. Each of the
neural network processing engines 602a-6027 can include a
memory subsystem and processing engine array, and can
execute the computation required for a neural network to
perform a task for which the neural network was pro-
grammed. In the illustrated example, the neural network
processor 600 includes n neural network processing engines
602a-602n.

The example neural network processor 600 further
includes DRAM controllers 642a-642% for communicating
with processor memory, implemented 1n this example using,
DRAM 630. In the 1illustrated example, the neural network
processor 600 includes k DRAM controllers 642a-642%,
cach of which may be able to communicate with an inde-
pendent set of banks of DRAM. In other examples, other
types of RAM technology can be used for the processor
memory. The DRAM controllers 642a-642%4 can also be
referred to as memory controllers.

In various examples, data for one or more neural networks
can be stored imn the DRAM 630. The neural networks can
include different neural networks optimized for different
tasks. For example, one neural network can be optimized for
speech recognition, another for machine translation, and
another for 1mage recognition. In these and other examples,
the neural network processor 600 can move or copy the data
tor the appropnate neural network from the DRAM 630 to
a neural network processor, and can then instruct the neural
network processor to execute the neural network. In some
examples, the neural network processor 600 can be config-
ured to preload neural networks on the neural network
processors. That 1s, some or all of the weights for diflerent
neural networks can be loaded onto different neural network
processing engines 6024g-602n belfore any input data 1s
received, so that the neural network processing engines
602a-6027 are ready to execute a respective neural network
as soon as the neural network processor 600 receives mput
data.

The example neural network processor 600 includes 1/O
controllers 644a-644p for communicating with I/O devices
632 1n the system. The neural network processor 600 can
communicate with I/O devices over, for example, a proces-
sor bus. In some examples, the processor bus can be imple-
mented using Peripheral Component Interconnect (PCI)
and/or a variation of the PCI bus protocol. The processor bus
can connect the neural network processor 600 to I/0O devices
632 such as, for example, input and output devices, memory
controllers, storage devices, and/or network interface cards,
among other things. In some examples, the I/O controllers
644-644p can enable the neural network processor 600 to act
as an I/0O device for a host processor. In the illustrated
example, the neural network processor 600 includes p I/O
controllers 644a-644p, each of which may include a separate
root complex and may communicate with a separate set of
I/0 devices 632. In other examples, other standardized bus
protocols, such as Ultra Path Interconnect (UPI) can be used
for the host bus. In other examples, a proprietary bus
protocol can be used.

The example neural network processor 600 further
includes DMA engines 646a-646d that can move data
between the neural network processing engines 602a-6021,
DRAM controllers 642a-642%, and 1/O controllers 644a-
644p. In the illustrated example, the neural network proces-
sor 600 includes d DMA engines 646a-646d4. In some
implementations, the DMA engines 646a-6464d can be
assigned to specific tasks, such as moving data from the
DRAM controllers 642a-to the neural network processing
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engines 602aq-602., or moving data between the I/O con-
trollers 644a-644p and the neural network processing
engines 602a-602x. In some 1mplementations, at least one
DMA engine 646a-646d can be dedicated to each neural
network processing engine 602q-6027. In some implemen-
tations, the DMA engines 646a-646d can be treated as a pool
instead of being dedicated to a function or component, such
that whenever data needs to be moved, an available DMA
engine 646a-6464d 1s engaged.

In the example neural network processor 600, the various
components can communicate over a chip interconnect 620.
The chip interconnect 620 primarily includes wiring for
routing data between the components of the neural network
processor 600. In some cases, the chip interconnect 620 can
include a minimal amount of logic, such as multiplexors to
control the direction of data, flip-tlops for handling clock
domain crossings, and timing logic.

In some examples, each of the neural network processing
engines 602aq-6027 can simultaneously be executing a dii-
ferent neural network. In some examples, two or more of the
neural network processing engines 6024-6027z can be
execute the same neural network for different inputs. In
some examples, two or more of the neural network process-
ing engines 602a-6027 can be executing parts of the same
neural network (e.g., parts of the same layer or diflerent
layers). In some examples, two or more of the neural
network processing engines 602a-602n can sequentially
execute layers of a neural network, such that inputs can be
pipelined through the neural network processing engines.

FIG. 7 includes a block diagram that illustrates an
example of a host system 770 in which a neural network
processor 760 can be used. The example host system 770
includes the neural network processor 760, a host processor
772, DRAM 730 or processor memory, I/O devices 732, and
support systems 774. In various implementations, the host
system 770 can include other hardware that 1s not illustrated
here.

The host processor 772 1s a general purpose integrated
circuit that 1s capable of executing program instructions. In
some examples, the host processor 772 can include multiple
processing cores. A multi-core processor may include mul-
tiple processing units within the same processor In some
examples, the host system 770 can include more than one
host processor 772. In some examples, the host processor
772 and the neural network processor 760 can be one chip,
such as, one or more integrated circuits within the same
package.

In various examples, the host processor 772 can commu-
nicate with other components in the host system 770 over
one or more communication channels. For the example, the
host system 770 can include a host processor bus, which the
host processor 770 can use to communicate with the DRAM
730, for example. As another example, the host system 77
can 1include an 1/O bus, such as a PCI-based bus, over which
the host processor 770 can communicate with the neural
network process 760 and/or the /O devices 732, for
example. In various examples, the host system 770 can,
alternatively or additionally, include other communication
channels or busses, such as serial busses, power manage-
ment busses, storage device busses, and so on.

In some examples, soltware programs executing on the
host processor 772 can receive or generate mput for pro-
cessing by the neural network processor 760. In some
examples, the programs can select an appropriate neural
network to execute for a given mput. For example, a
program may be for language translation, and can select one
or more neural networks capable of speech recognition
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and/or machine translation. In these and other examples, the
programs can configure the neural network processor 760
with the neural network to execute, and/or can select a
neural network processing engine on the neural network
processor 760 that has previously been configured to execute
the desired neural network. In some examples, once the
neural network processor 760 has started inference on input
data, the host processor 772 can manage the movement of
data (such as weights, instructions, intermediate results,
results of conditional layers, and/or final results) 1nto or out
of the neural network processor 760.

In some examples, a software program that 1s using the
neural network processor 760 to conduct inference can read
the result from a conditional layer from the neural network
processor 760 and/or from a storage location, such as in
DRAM 730. In these examples, the program can determine
what action the neural network should take next. For
example, the program can determine to terminate the infer-
ence. As another example, the program can determine to
change the direction of the inference, which can be trans-
lated by lower level code and/or the neural network proces-
sor to a next layer to execute. In these and other examples,
the execution flow of the neural network can be coordinate
by software.

The DRAM 730 1s memory that 1s used by the host
processor 772 for storage ol program code that the host
processor 772 1s 1 the process of executing, as well as
values that are being operated on. In some examples, the
data for a neural network (e.g., weight values, instructions,
and other data) can be all or partially stored in the DRAM
730. DRAM 1s a common term for processor memory, and
though DRAM 1s volatile memory, processor memory can
be volatile and/or non-volatile. Though not illustrated here,
the host system 770 can include other volatile and non-
volatile memories for other purposes. For example, the host
system 770 can include a Read-Only Memory (ROM) that
stores boot code for booting the host system 770 at power
on, and/or Basic Input/Output System (BIOS) code.

Though not illustrated here, the DRAM 730 can store
instructions for various programs, which can be loaded nto
and be executed by the host processor 772. For example, the
DRAM 730 can be storing instructions for an operating
system, one or more data stores, one or more application
programs, one or more drivers, and/or services for imple-
menting the features disclosed herein.

The operating system can manage and orchestrate the
overall operation of the host system 770, such as scheduling
tasks, executing applications, and/or controller peripheral
devices, among other operations. In some examples, a host
system 770 may host one or more virtual machines. In these
examples, each virtual machine may be configured to
execute 1ts own operating system. Examples of operating
systems 1nclude Unix, Linux, Windows, Mac OS, 108,
Android, and the like. The operating system may, alterna-
tively or additionally, be a proprietary operating system.

The data stores can include permanent or transitory data
used and/or operated on by the operating system, application
programs, or drivers. Examples of such data include web
pages, video data, audio data, images, user data, and so on.
The information 1n the data stores may, in some examples,
be provided over the network(s) to user devices. In some
cases, the data stores may additionally or alternatively
include stored application programs and/or drivers. Alterna-
tively or additionally, the data stores may store standard
and/or proprietary software libraries, and/or standard and/or
proprietary application user interface (API) libraries. Infor-
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mation stored in the data stores may be machine-readable
object code, source code, mterpreted code, or intermediate
code.

The dnivers can include programs that provide commu-
nication between components 1n the host system 770. For
example, some drivers can provide communication between
the operating system and peripheral devices or 1I/O devices
732. Alternatively or additionally, some drivers may provide
communication between application programs and the oper-
ating system, and/or application programs and peripheral
devices accessible to the host system 770. In many cases, the
drivers can include drivers that provide well-understood
functionality (e.g., printer drivers, display drivers, hard disk
drivers, Solid State Device drivers, etc.). In other cases, the
drivers may provide proprietary or specialized functionality.

The I/O devices 732 can include hardware for connecting,
to user mput and output devices, such as keyboards, mice,
pens, tablets, voice mput devices, touch mput devices,
displays or monitors, speakers, and printers, among other
devices The I/O devices 732 can also include storage drives
and/or network interfaces for connecting to a network 780.
For example, the host system 770 can use a network
interface to communicate with storage devices, user termi-
nals, other computing devices or servers, and/or other net-
works, among various examples.

In various examples, one or more of the I/O devices 732
can be storage devices. In these examples, the storage device
include non-volatile memory and can store program instruc-
tions and/or data. Examples of storage devices include
magnetic storage, optical disks, solid state disks, flash
memory, and/or tape storage, among others. The storage
device can be housed in the same chassis as the host system
770 or may be 1n an external enclosure. A storage device can
be fixed (e.g., attached by screws) or removable (e.g., having
a physical release mechanism and possibly a hot-plug
mechanism).

Storage devices, the DRAM 730, and any other memory
component 1n the host system 770 are examples of com-
puter-readable storage media. Computer-readable storage
media are physical mediums that are capable of storing data
in a format that can be read by a device such as the host
processor 772. Computer-readable storage media can be
non-transitory. Non-transitory computer-readable media can
retain the data stored thereon when no power 1s applied to
the media. Examples of non-transitory computer-readable
media include ROM devices, magnetic disks, magnetic tape,
optical disks, flash devices, and solid state drives, among
others. as used herein, computer-readable storage media
does not include computer-readable communication media.

In various examples, the data stored on computer-read-
able storage media can include program instructions, data
structures, program modules, libraries, other software pro-
gram components, and/or other data that can be transmaitted
within a data signal, such as a carrier wave or other
transmission. The computer-readable storage media can,
additionally or alternatively, include documents, 1mages,
video, audio, and other data that can be operated on or
mampulated through the use of a software program.

In various examples, one or more of the I/O devices 732
can be PCl-based devices. In these examples, a PCl-based
I/0O device includes a PCI interface for communicating with
the host system 770. The term “PCI” or “PCl-based” may be
used to describe any protocol in the PCI family of bus
protocols, including the onginal PCI standard, PCI-X,
Accelerated Graphics Port (AGP), and PCI-Express (PCle)
or any other improvement or derived protocols that are
based on the PCI protocols discussed herein. The PCI-based
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protocols are standard bus protocols for connecting devices,
such as a local peripheral device, to a host device. A standard
bus protocol 1s a data transfer protocol for which a specifi-
cation has been defined and adopted by various manufac-
turers. Manufacturers ensure that compliant devices are
compatible with computing systems implementing the bus
protocol, and vice versa. As used herein, PCI-based devices
also 1nclude devices that communicate using Non-Volatile
Memory Express (NVMe). NVMe 1s a device interface
specification for accessing non-volatile storage media
attached to a computing system using PCle.

A PClI-based device can include one or more functions. A
“function” describes the hardware and/or software of an
operation that may be provided by the PCl-based device.
Examples of functions include mass storage controllers,
network controllers, display controllers, memory control-
lers, serial bus controllers, wireless controllers, and encryp-
tion and decryption controllers, among others. In some
cases, a PCl-based device may include more than one
function. For example, a PCl-based device may provide a
mass storage controller and a network adapter. As another
example, a PCl-based device may provide two storage
controllers, to control two different storage resources. In
some 1mplementations, a PCl-based device may have up to
eight functions.

In some examples, the PCl-based device can include
single-root I/O wvirtualization (SR-IOV). SR-IOV 1s an
extended capability that may be included in a PCl-based
device. SR-IOV allows a physical resource (e.g., a single
network interface controller) to appear as multiple virtual
resources (e.g., sixty-four network interface controllers).
Thus, a PCI-based device providing a certain functionality
(e.g., a network interface controller) may appear to a device
making use of the PClI-based device to be multiple devices
providing the same functionality. The functions of an SR-
IOV-capable storage adapter device may be classified as
physical functions (PFs) or virtual functions (VFs). Physical
functions are fully featured functions of the device that can
be discovered, managed, and manipulated. Physical func-
tions have configuration resources that can be used to
configure or control the storage adapter device. Physical
functions include the same configuration address space and
memory address space that a non-virtualized device would
have. A physical function may have a number of virtual
functions associated with 1t. Virtual functions are similar to
physical functions, but are light-weight functions that may
generally lack configuration resources, and are generally
controlled by the configuration of their underlying physical
functions. Each of the physical functions and/or virtual
functions may be assigned to a respective thread of execu-
tion (such as for example, a virtual machine) running on a
host device.

In various implementations, the support systems 774 can
include hardware for coordinating the operations of the
neural network processor 760. For example, the support
systems 774 can include a microprocessor that coordinates
the activities of the neural network processor 760, including
moving data around on the neural network processor 760. In
this example, the microprocessor can be an integrated circuit
that can execute microcode. Microcode 1s program code that
can enable an integrated circuit to have some flexibility 1n
the operations that the integrated circuit can execute, but
because the program code uses a limited mstruction set, the
microprocessor may have much more limited capabilities
than the host processor 772. In some examples, the program
executed by the microprocessor 1s stored on the hardware of
microprocessor, or on a non-volatile memory chip in the host

10

15

20

25

30

35

40

45

50

55

60

65

22

system 770. In some examples, the microprocessor and the
neural network processor 760 can be on chip, such as one
integrated circuit on the same die and 1n the same package.

In some examples, the support systems 774 can be respon-
sible for taking instructions from the host processor 772
when programs executing on the host processor 772 request
the execution of a neural network. For example, the host
processor 772 can provide the support systems 774 with a set
of input data and a task that 1s to be performed on the set of
input data. In this example, the support systems 774 can
identily a neural network that can perform the task, and can
program the neural network processor 760 to execute the
neural network on the set of input data. In some examples,
the support systems 774 only needs to select an appropriate
neural network processing engine of the neural network
processor. In some examples, the support systems 774 may
need to load the data for the neural network onto the neural
network processor 760 before the neural network processor
760 can start executing the neural network. In these and
other examples, the support systems 774 can further receive
the output of executing the neural network, and provide the
output back to the host processor 772.

In some examples, the operations of the support systems
774 can be handled by the host processor 772. In these
examples, the support systems 774 may not be needed and
can be omitted from the host system 770.

In various examples, the host system 700 can include a
combination of host systems, processor nodes, storage sub-
systems, and I/O chassis that represent user devices, service
provider computers or third party computers.

User devices can include computing devices to access an
application (e.g., a web browser or mobile device applica-
tion). In some examples, the application may be hosted,
managed, and/or provided by a computing resources service
or service provider. The application may enable a user to
interact with the service provider computer to, for example,
access web content (e.g., web pages, music, video, etc.). The
user device may be a computing device such as, for example
a mobile phone, a smart phone, a personal digital assistant
(PDA), a laptop computer, a netbook computer, a desktop
computer, a thin-client device, a tablet computer, an elec-
tronic book (e-book) reader, a gaming console, etc. In some
examples, the user device may be in communication with the
service provider computer over one or more networks.
Additionally, the user device may be part of the distributed
system managed by, controlled by, or otherwise part of the
service provider computer (e.g., a console device itegrated
with the service provider computers).

The host system 700 can also represent one or more
service provider computers. A service provider computer
may provide a native application that 1s configured to run on
user devices, which users may interact with. The service
provider computer may, in some examples, provide com-
puting resources such as, but not limited to, client entities,
low latency data storage, durable data storage, data access,
management, virtualization, cloud-based software solutions,
clectronic content performance management, and so on. The
service provider computer may also be operable to provide
web hosting, databasing, computer application development
and/or implementation platforms, combinations of the fore-
going or the like. In some examples, the service provider
computer may be provided as one or more virtual machines
implemented in a hosted computing environment. The
hosted computing environment can include one or more
rapidly provisioned and released computing resources.
These computing resources can include computing, net-
working and/or storage devices. A hosted computing envi-
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ronment may also be referred to as a cloud computing
environment. The service provider computer may include
one or more servers, perhaps arranged i1n a cluster, as a
server farm, or as individual servers not associated with one
another, and may host application and/or cloud-based soft-
ware services. These servers may be configured as part of an
integrated, distributed computing environment. In some
examples, the service provider computer may, additionally
or alternatively, include computing devices such as for
example a mobile phone, a smart phone, a personal digital
assistant (PDA), a laptop computer, a desktop computer, a
netbook computer, a server computer, a thin-client device, a
tablet computer, a gaming console, etc. In some 1nstances,
the service provider computer may communicate with one or
more third party computers.

FIG. 8 illustrates an example of a process 800 for execut-
ing a neural network. The example process 800 can be
implemented by the systems described above, such as for
example by an integrated circuit implementing a neural
network processor or a neural network processing engine.
For example, the process 800 can be implemented by an
integrated circuit that includes an array of processing
engines, where each processing engine includes a multiplier-
accumulator circuit. The integrated circuit can further
include a memory operable to store weight values and
instructions for a neural network, where the weight values
were previously determined using traiming data, wherein the
instructions configure a computation executed by the array
ol processing engines. The integrated circuit can further
include a selector circuit operable to select data to input into
the array of processing engines. The data can selected from
output from the memory and other data selected by the
selector circuit for input into the array of processing engines.

At step 802, the process 800 1includes receiving input data
for mputting into a neural network, wherein the neural
network 1s configured to perform a task. The mput data can
be, for example, an 1mage and the task can be i1mage
recognition. As another example, the mput data can be an
audio signal and the task can be speech recognition. As
another example, the input data can be a character string and
the task can be machine translation.

At step 804, the process 800 includes reading a first set of
weights and a first set of input data from the memory of the
neural network processing circuit, wherein the first set of
weight values are associated with a first layer of the neural
network, and wherein the first set of input data 1s mput for
the first layer of the neural network. In various examples, the
first set of weights can be associated with a filter that 1s to
be applied to the first set of input data. For example, the first
set of weight scan include the filter elements 1n a filter plane.

In some examples, the first set of input data includes a set
of input feature maps, wherein a number of the set of input
feature maps 1s less than a number of rows 1n the array of
processing engines. In some examples, the process 800
includes inputting each mput feature map from the set of
input feature maps into a different row 1in the array of
processing engines. In these examples, a filter can be applied
to each input map using the computations pertormed by the
row of processing engines. In some examples, columns of
the array of processing engines compute a set of output
feature maps. For example, the columns can accumulate
multiplications performed at each processing engine. In
these and other examples, the set of output feature maps an
used as mput feature maps for a subsequent layer of the
neural network.

In some examples, the process 800 1includes inputting an
input feature map from the set of input feature maps nto a
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first row and a second row 1n the array of processing engines.
In these examples, a first filter element can be applied using
the first row and a second filter element can applied using the
second row. In some examples, iput of the input feature
map 1nto the second row can be delayed relative to mput of
the mput feature map into the first row, such that the data 1s
input mto the second row later (e.g., one or more clock
cycles) then when the data 1s input 1nto the first row.

At step 806, the process 800 includes determining a
selection of data to input 1into the array of processing engines
ol the neural network processing circuit, wherein the selec-
tion of data 1s selected from among the first set of mnput data
and data selected for input into the array of processing
engines. For example, for a first row of the array of pro-
cessing engines, the selector circuit can determine to data
output by the memory (e.g., the first set of input data). This
data can further be selected for input into a second row of the
array ol processing engines. In this way, the same data can
be provided to different rows of the array of processing
engines.

In some examples, the selector circuit 1s operable to select
data for inputting into a plurality of rows of the array of
processing engines. For example, the selector circuit may be
able to select the data to mput into each row of the array of
processing engines, or into a subset of all the rows. For
example, the selector circuit can be operable to select a first
set of data for inputting into a first set of rows of the array
ol processing engines, and to select a second set of data for
inputting 1nto a second set of rows of the array of processing
engines. In this example, the second set of data 1s selected
from data that excludes the first set of data. That 1s, the
second set of data can be selected from among data output
by the memory and the second set of data, and not any of the
first set of data. The first set of data can similarly be selected
from among data output from the memory and the first set
of data, and not any of the second set of data. In this
example, duplication of data among the first set of rows 1s
possible and duplication of data 1s possible among the
second set of rows, but there 1s no duplication of data
between the first set of rows and the second set of rows. In
this example, complexity in the selector circuit, such as
fan-in counts, fan-out counts, and/or trace lengths, can be
reduced, so that the selector circuit 1s better able to meet
timing and layout requirements, for example.

In some examples, the memory of the neural network
processor mncludes a plurality of banks. In these examples, a
set of banks can be configured to provide input data for a
corresponding set of rows of the array of processing engines.
For example, a bank can be designated as providing the
input for each row of the array of processing engines. In
these examples, the selector circuit can be operable to select
output from a bank from the set of banks for inputting into
a corresponding row from the set of rows. In some examples,
the selector circuit can, alternatively or additionally, be
operable to select output from a bank from the set of banks
for inputting into a first row from the set of rows and another
row ol the array of processing engines, so that the data from
one bank 1s input 1nto more than one row. In some examples,
the selector circuit includes a multiplexor for selecting from
among the output from the memory and other inputs selected
by the selector circuat.

At step 808, the process 800 includes computing an
intermediate result using the selection of data and the first set
of weight values, wherein the intermediate result represents
an output of the first layer of the neural network. In some
examples, when computing an intermediate result for a first
layer of the neural network, the selector circuit can be
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configured to select a combination of input data read from
the memory and other data selected by the selector circuit for
inputting into the array of processing engines. For example,
the selector circuit can select data read from the memory for
a first row, and select the data selected for the first row for
a second row.

In some examples, the selector circuit can include a delay
circuit and a multiplexor for selecting a delay, where the
delay delays mput of data into the array of processing
engines. In some examples, the delay corresponds to data
selected for mput 1nto the array of processing engines.

At step 810, the process 800 includes computing a result
using additional weight values and the intermediate result,
wherein the additional weight values are associated with
additional layers of the neural network, wherein the inter-
mediate result 1s an mput to second layer of neural network,
and wherein the result corresponds to an outcome of per-
forming the task. In various examples, the neural network
can 1nclude a plurality of layers. In these examples, per-
forming the task can include successively computing inter-
mediate results for each layer of the plurality of layers, and
wherein the result 1s an output of a last layer from the
plurality of layers. In some examples, for some layers, the
process 800 can include configuring the selector circuit to
disable the selector circuit from selecting other data selected
by the selector circuit for mputting into the array of pro-
cessing engines. For example, when, for a layer of the neural
network, data from the memory 1s to be used as mput to the
layer, the selector circuit can be configured to select the
output from the memory as input for the array of processing
engines, and not select other data that the selector circuit has
selected for inputting 1nto the array of processing engines. In
this example, the array of processing engines will not
receive duplicates of any data.

In some examples, the process 800 can, alternatively or
additionally, include, upon recerving imput data, using
weight values and instructions for a neural network to
perform a task using the neural network. In these examples,
process 800 can include reading a first set of weight values
from the memory, wherein the first set of weight values 1s
associated with a first layer of the neural network. The
process 800 can further include reading a first set of input
data from the memory, wherein the first set of input data 1s
input for the first layer of the neural network.

In some examples, the process 800 can further include
configuring, using an instruction, the selector circuit to
output a selection of data for iputting into the array of
processing engines, wherein the selection of data 1s selected
from among the first set of mput data and other data selected
for mput into the array of processing engines. In some
examples, the selection of data includes a duplicate of the
other data selected for mput mnto the array of processing
engines. In some examples, the other data selected for input
into the array of processing engines and the duplicate of the
other data are mput for diflerent rows of the array of
processing engines. In some examples, the duplicate of the
other data includes less than all of the other data. For
example, the duplicated data can exclude the first element of
the other data, the first two elements of the other data, the
first four elements, or some other number of elements.

In some examples, the process 800 can further include
computing an mtermediate result using the selection of data
and the first set of weights values, wherein the intermediate
result 1s computed using the array of processing engines, and
wherein the mtermediate result represents an output of the
first layer of the neural network. The process 800 can further
include reading additional weight values for additional lay-
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ers of the neural network. The process 800 can further
include reading the intermediate result and additional inter-
mediate results. The process 800 can further include com-
puting a result using the additional weight values, the
intermediate result, and the additional intermediate results,
wherein the result 1s computed using the array of processing
engines, and wherein the result corresponds to an outcome
of performing the task. In some examples, the process 800
can further include configuring the selector circuit to output
data from the memory when computing results for the
additional layers of the neural network.

The modules described herein may be software modules,
hardware modules or a suitable combination thereof. If the
modules are software modules, the modules can be embod-
ied on a non-transitory computer readable medium and
processed by a processor in any of the computer systems
described herein. It should be noted that the described
processes and architectures can be performed either in
real-time or 1 an asynchronous mode prior to any user
interaction. The functions described herein can be provided
by one or more modules that exist as separate modules
and/or module functions described herein can be spread over
multiple modules.

The specification and drawings are, accordingly, to be
regarded 1n an illustrative rather than a restrictive sense. It
will, however, be evident that various modifications and
changes may be made thereunto without departing from the
broader spirit and scope of the disclosure as set forth in the
claims.

Other variations are within the spirit of the present
disclosure. Thus, while the disclosed techniques are suscep-
tible to various modifications and alternative constructions,
certain illustrated examples thereof are shown 1n the draw-
ings and have been described above in detail. It should be
understood, however, that there 1s no intention to limit the
disclosure to the specific form or forms disclosed, but on the
contrary, the mtention 1s to cover all modifications, alterna-
tive constructions, and equivalents falling within the spirit
and scope of the disclosure, as defined in the appended
claims.

The use of the terms “a” and “an” and “the” and similar
referents 1n the context of describing the disclosed examples
(especially 1n the context of the following claims) are to be
construed to cover both the singular and the plural, unless
otherwise indicated herein or clearly contradicted by con-
text. The terms “comprising,” “having,” “including,” and
“containing’” are to be construed as open-ended terms (i.e.,
meaning “including, but not limited to,”) unless otherwise
noted. The term “connected” 1s to be construed as partly or
wholly contained within, attached to, or joined together,
even 11 there 1s something intervening. Recitation of ranges
of values herein are merely intended to serve as a shorthand
method of referring individually to each separate value
falling within the range, unless otherwise indicated herein
and each separate value 1s incorporated 1nto the specification
as 1f 1t were 1ndividually recited herein. All methods
described herein can be performed in any suitable order
unless otherwise indicated herein or otherwise clearly con-
tradicted by context. The use of any and all examples, or
exemplary language (e.g., “such as™) provided herein, 1s
intended merely to better 1lluminate example of the disclo-
sure¢ and does not pose a limitation on the scope of the
disclosure unless otherwise claimed. No language in the
specification should be construed as indicating any non-
claimed element as essential to the practice of the disclosure.

Disjunctive language such as the phrase “at least one of X,
Y, or Z,” unless specifically stated otherwise, 1s intended to
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be understood within the context as used in general to
present that an 1tem, term, etc., may be either X, Y, or Z, or
any combination thereof (e.g., X, Y, and/or 7). Thus, such
disjunctive language 1s not generally intended to, and should
not, imply that certain examples require at least one of X, at
least one of Y, or at least one of Z to each be present.

Various examples of this disclosure are described herein,
including the best mode known to the inventors for carrying
out the disclosure. Variations of those examples may become
apparent to those of ordinary skill 1n the art upon reading the
foregoing description. The inventors expect skilled artisans
to employ such variations as appropriate and the mventors
intend for the disclosure to be practiced otherwise than as
specifically described herein. Accordingly, this disclosure
includes all modifications and equivalents of the subject
matter recited 1n the claims appended hereto as permitted by
applicable law. Moreover, any combination of the above-
described elements in all possible variations thereof 1is
encompassed by the disclosure unless otherwise indicated
herein or otherwise clearly contradicted by context.

What 1s claimed 1s:
1. An itegrated circuit, comprising:
an array ol processing engines comprising a first row, a
second row, a third row, and a fourth row:;
a memory operable to store weight values for a neural
network and input data, wherein the weight values
include a first weight value and a second weight value,
and wheremn the imput data includes a set of input
features maps 1mcluding a first input feature map and a
second 1nput feature map;
a selector circuit operable to:
select the mput data from the memory to input into the
array ol processing engines, wherein selecting the
input data includes selecting the first iput feature
map for inputting into the first row at a first time,
selecting the second input feature map for inputting
into the second row at a second time after the first
time, selecting the first input feature map for mnput-
ting into the third row at a third time after the second
time, and selecting the second nput feature map for
inputting into the fourth row at a fourth time after the
third time, such that the selector circuit 1s operable to
alternate between seclecting the first mput feature
map and the second feature map for mputting into
different rows of the array of processing engines; and
wherein the mtegrated circuit 1s operable to:

read the weight values from the memory; and

provide the weight values to the array of processing
engines, wherein

providing the weight values includes Providing the first
weight value to the first row and the second row and
providing the second weight value to the third row and
the fourth row.

2. The integrated circuit of claim 1, wherein, upon receiv-
ing the input data, the integrated circuit 1s operable to use the
weight values to perform a task defined for the neural
network, and wherein performing the task includes:

computing a result using the array of processing engines
and using the selected input data and the weight values,
wherein the result correspond to an outcome of per-
forming the task.

3. The integrated circuit of claim 2, wherein performing
the task further includes:

configuring, when computing an intermediate result for a
first layer of the neural network, the selector circuit to
select a combination of the mput data read from the
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memory and other data selected by the selector circuit
for inputting 1nto the array of processing engines.

4. The mtegrated circuit of claim 2, wherein performing
the task further includes:

configuring the selector circuit to disable the selector

circuit from selecting other data selected by the selector
circuit for iputting nto the array of processing
engines.

5. The integrated circuit of claim 1, wherein the selector
circuit 1s operable to:

select a first set of data for inputting into a first set ol rows

of the array of processing engines, the first set of rows
including the first row and the third row; and
select a second set of data for inputting 1nto a second set
of rows of the array of processing engines, the second
set of rows including the second row and the fourth
row, wherein the second set of data 1s selected from
data that excludes the first set of data.
6. The integrated circuit of claim 1, wherein the memory
includes a set of banks, and wherein the set of banks are
configured to provide the mput data for a corresponding set
of rows of the array of processing engines.
7. The integrated circuit of claim 6, wherein the selector
circuit 1s operable to select an output from a bank from the
set of banks for inputting into a corresponding row from the
set of rows.
8. The integrated circuit of claim 1, wherein the selector
circuit mcludes a multiplexor, the multiplexor having an
input coupled to the output from the memory and having
other mputs coupled to outputs of other multiplexors.
9. The integrated circuit of claim 1, wherein the selector
circuit includes a delay circuit and a multiplexor for select-
ing a delay, wherein the delay delays input of the input data
into the array of processing engines.
10. The mtegrated circuit of claim 1, wherein the second
row 1s immediately after the first row.
11. The integrated circuit of claim 1, wherein the first row
and the second row are separated by one or more rows.
12. A computer-implemented method, comprising;
receiving, at a neural network processing circuit, input
data for mputting into a neural network, wherein the
neural network 1s configured to perform a task;

reading a first set ol weight values and the input data from
a memory of the neural network processing circuit,
wherein the first set of weight values are associated
with a first layer of the neural network and include a
first weight value and a second weight value, wherein
the mput data includes a set of put feature maps
including a first mput feature map and a second 1nput
feature map;

providing the first set of weight values to an array of

processing engines, the array ol processing engines
comprising a first row, a second row, a third row, and
a fourth row, wherein providing the first set of weight
values includes providing the first weight value to the
first row and the second row and providing the second
weight value to the third row and the fourth row;
determining a selection of the mput data to input into the
array ol processing engines ol the neural network
processing circuit, wherein determining the selection of
the 1nput data includes selecting the first input feature
map for inputting into the first row at a first time,
selecting the second input feature map for inputting
into the second row at a second time after the first time,
selecting the first input feature map for mputting nto
the third row at a third time after the second time, and




US 11,868,875 Bl
29

selecting the second iput feature map for inputting
into the fourth row at a fourth time after the third time;
computing an intermediate result using the selection of
the 1nput data and the selection of the first set of weight
values, wherein the intermediate result represents an 5
output of the first layer of the neural network; and
computing a result using additional weight values and the
intermediate result, wherein the additional weight val-
ues are associated with additional layers of the neural
network, wherein the intermediate result 1s an mput to 10
second layer of neural network, and wherein the result
corresponds to an outcome of performing the task.

13. The computer-implemented method of claim 12,
wherein the neural network includes a plurality of layers,
wherein performing the task includes successively comput- 15
ing intermediate results for each layer of the plurality of
layers, and wherein the result 1s an output of a last layer from
the plurality of layers.

14. The computer-implemented method of claim 12,
wherein a number of the set of input feature maps 1s less than 20
a number of rows 1n the array of processing engines.

15. The computer-implemented method of claim 12,
wherein columns of the array of processing engines compute
a set ol output feature maps, and wherein the set of output
feature maps are used as input feature maps for a subsequent 25
layer of the neural network.

16. The computer-implemented method of claim 12,
wherein the second row 1s immediately after the first row.

17. The computer-implemented method of claim 12,
wherein the first row and the second row are separated by 30
One or Mmore rows.
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