12 United States Patent
Wallach

US011868274B2

(10) Patent No.: US 11.868.,274 B2
45) Date of Patent: *Jan. 9, 2024

(54) KEY MANAGEMENT IN COMPUTER
PROCESSORS

(71) Applicant: Micron Technology, Inc., Boise, 1D
(US)

(72) Inventor: Steven Jeffrey Wallach, Dallas, TX
(US)

(73) Assignee: Lodestar Licensing Group LLC,
Evanston, IL (US)

*3) Notice: Subject to any disclaimer, the term of this
] y
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 42 days.

This patent 1s subject to a terminal dis-
claimer.

(21) Appl. No.: 17/341,988
(22) Filed: Jun. 8, 2021

(65) Prior Publication Data
US 2021/0294754 Al Sep. 23, 2021

Related U.S. Application Data

(63) Continuation of application No. 16/134,387/, filed on
Sep. 18, 2018, now Pat. No. 11,074,198.

(51) Int. CL
GO6F 21/00 (2013.01)
GO6F 12/14 (2006.01)
GO6F 12/1018 (2016.01)
GO6l’ 21/79 (2013.01)
GO6F 21/60 (2013.01)
(Continued)
(52) U.S. CL

CPC ... GO6F 12/1408 (2013.01); GOoF 12/1018
(2013.01); GoO6F 12/1475 (2013.01); GO6F
21/602 (2013.01); GO6F 21/71 (2013.01);

Memory 105

Scrambled Data
109

GO6I' 21/79 (2013.01); HO4L 9/0861
(2013.01); HO4L 9/0894 (2013.01); GO6F
2212/1052 (2013.01)

(358) Field of Classification Search
CPC ... GO6F 12/1408; GO6F 12/14775; GO6F
12/1018; GO6F 21/79; GO6F 21/602;
GO6F 21/71; GO6F 2212/1052; GO6F
21/6218; GO6F 21/85; HO4L 9/0861;

HO4L 9/0894; HO4L 9/0897
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,567,817 B1* 5/2003 VanlLeer GO6F 12/0871
10,311,229 B1* 6/2019 Pohlack GO6F 8/41
10,740,466 Bl 8/2020 Bshara et al.

(Continued)

OTHER PUBLICATIONS

US 2010/0122095 Al, 05/2010, Jones et al. (withdrawn)
(Continued)

Primary Examiner — Mahtuzur Rahman
(74) Attorney, Agent, or Firm — Greenberg Traurig

(57) ABSTRACT

Systems, apparatuses, and methods related to a computer
system having a processor and a main memory storing
scrambled data are described. The processor may have a
secure zone configured to store keys and an unscrambled
zone configured to operate on unscrambled data. The pro-
cessor can convert the scrambled data 1into the unscrambled
data 1n the unscrambled zone using the keys retrieved from
the secure zone 1n response to execution of instructions
configured to operate on the unscrambled data. Another
processor may also be coupled with the memory, but can be
prevented from accessing the unscrambled data in the
unscrambled zone.

20 Claims, 8 Drawing Sheets

r__J___
External Cache : Processor
103 | 102
Processor 101
Register | | Unscrambler Internal
111 113 Cache 107
Execute Unscrambled

Unit 115 Data 117

US 11,868,274 B2

Page 2
(51) Int. CL 2017/0286421 Al* 10/2017 Hayenga GO6F 16/172
masm G Bh N R e
1 1 1 CNcalc
GOOF 21/71 (2013'01) 2020/0089625 Al 3/2020 Wallach
(56) References Cited OTHER PURIICATIONS

11,074,198
2003/0110382

2010/0106954
2010/0287622

2010/0296653
2011/0185193

2011/0231630
2012/0151224

2013/0185536
2014/0047549

2014/0056068
2015/0229471

2015/0234751
2016/0188492

B2
Al*

Al
Al*

Al
Al*

Al*

Al*

Al
Al*

Al*

Al*

Al
Al

U.S. PATENT DOCUM

7/2021
6/2003

4/2010
11/2010

11/2010
7/2011

9/2011

6/2012

7/2013
2/2014

2/2014

8/2015

8/2015
6/2016

Wallach
Leporini

Muchsel et al.

Petkov

Richardson
Grube

Dannowski

Koifman

Mari et al.

Bostley, III

Strasser

Van Der et al.

Bachwani et al.

EINTTS

iiiiiiiiiii

ttttttttttttttt

tttttttttttt

HOAN 21/4623
713/172

... GO6F 21/125

380/59

HO4L 67/1097

713/189
GO6F 12/1036

711/E12.065

.... GO6F 21/602

713/193

...... GOOF 21/60

726/26
G11C 29/026

365/185.03

.... HO4L 9/0891

713/171

Data Protection in Computer Processors, U.S. Appl. No. 16/054,913,
filed Aug. 3, 2018. Steven Wallach, Notice of Allowance Mailed—
Application Received in Oflice of Publications, dated Nov. 27,

2020.

Data Protection in Computer Processors, U.S. Appl. No.: 17/383,123,
filed Jul. 22, 2021, Steven Wallach, Application Undergoing Preexam
Processing, Jul. 22, 2021.

Key Management in Computer Processors, U.S. Appl. No. 16/134,387,
filed Sep. 18, 2018, Steven Wallach, Patented Case, Dec. 24, 2020.

Extended European Search Report, EP19861468.7, dated May 13,
2022.

Encryption, Wikipedia, printed on Sep. 11, 2018.

International Search Report and Written Opinion, PCT/US2019/
050613, dated Dec. 26, 2019.

Meltdown (security vulnerability), Wikipedia, printed on Sep. 11,
2018.

Scrambler, Wikipedia, printed on Jul. 31, 2018.
Side-channel attack, Wikipedia, printed on Sep. 11, 2018.

Spectre (security vulnerability), Wikipedia, printed on Sep. 11,
2018.

* cited by examiner

U.S. Patent Jan. 9, 2024 Sheet 1 of 8 US 11,868,274 B2

Scrambled Data
109

External Cache

103 102

Processor 101

Register | | Unscrambler Internal
111 113 Cache 107

Execute Unscrambled

Unit 115 Data 117

FIG. 1

U.S. Patent Jan. 9, 2024 Sheet 2 of 8 US 11,868,274 B2

Width

Scrambled Data 109

Multiplexer |
143

Key |
153

Unscrambled Data 117

Width

FIG. 2

U.S. Patent Jan. 9, 2024 Sheet 3 of 8 US 11,868,274 B2

Bit 1 Bit |
121 123

Scrambled Data 109

Unscrambler 113

Multiplexer |
143

Unscrambled Data 117

FIG. 3

U.S. Patent Jan. 9, 2024 Sheet 4 of 8 US 11,868,274 B2

101

Scrambled zone 161

Internal
Cache 107

l Scrambler .
112

Execute
Unit 115

Unscrambled zone 163

FIG. 4

U.S. Patent Jan. 9, 2024 Sheet 5 of 8 US 11,868,274 B2

Storage Device 104 Memory 105 External Cache 103

Scrambled
Data 109

Scrambleg Scrambled
Data 109 Data 109

M T P T R R R R e e s e

1
|
|
|
|

Scrambled Data I
Processor 101 109 | Processor |

102
Internal Cache 107 o o |

Scrambled zone 161

Unscrambler | Scrambler |

Register Unscrambled | | Execute
111 Data 117 Unit 115

Memory Address Register 169

Virtual Address 195
Object ID | Object Offset
l 199 | Type 198 | 196

Unscrambled zone 163

FIG. S

Secure zone 16

U.S. Patent Jan. 9, 2024 Sheet 6 of 8 US 11,868,274 B2

Virtual Address 195
ObjectID | Object Offset
199 | Type 198 | 196

Hash Collision Chain 260
181
| ObjectIDA | Entry A
- 261 262

Index
185 __ Object IDB | Entry B
263 264

Number of Entries 211

Entry 250
Entry P 213
Status | Type Key e Address
251 253 255 257

13
Entry Q 215

FIG. 6

U.S. Patent Jan. 9, 2024 Sheet 7 of 8 US 11,868,274 B2

Position
Sequence

Unscramble
Key 223

FIG. 7

Scramble Key
221

Position
Sequence

Scramble Key
230

User Key A coo User Key X
231 233
Scramble Key for oo Scramble Key for
User A 241 User X 243

FIG. 8

U.S. Patent Jan. 9, 2024 Sheet 8 of 8 US 11,868,274 B2

Store scrambled data in a memory of a
computer system
201

Store keys in a secure zone of a first processor
coupled with the memory in the computer
system
203

Convert, by the first processor, the scrambled
data Into unscrambled data in an unscrambled
zone using the keys retrieved from the secure
zone In response to execution of instructions
configured to operate on the unscrambled data
205

Operate, by the first processor in the
unscrambled zone, on the unscrambled data
207

Prevent a second processor coupled with the
memory In the computer system from accessing
the unscrambled data in the unscrambled zone

of the first processor
209

FIG. 9

US 11,868,274 B2

1

KEY MANAGEMENT IN COMPUTER
PROCESSORS

RELATED APPLICATIONS

The present application 1s a continuation application of
U.S. patent application Ser. No. 16/134,387, filed Sep. 18,
2018 and entitled “Key Management in Computer Proces-
sors,” the entire disclosure of which application 1s hereby
incorporated herein by reference.

The present application relates to U.S. patent application
Ser. No. 16/054,913, filed Aug. 3, 2018 and entitled “Data
Protection 1n Computer Processors,” the entire disclosure of
which application i1s hereby incorporated herein by refer-
ence.

FIELD OF THE TECHNOLOGY

At least some embodiments disclosed herein relate gen-
erally to computer architecture and more specifically, but not
limited to, key management for data security in computer
processors and/or for data transmission in computing sys-
tems.

BACKGROUND

A typical computer processor receives mstructions and/or
data from a main memory of the computer system for
processing. The mstructions and/or data can be cached for
the processor. In some 1nstances, unauthorized access to the
content 1n the main memory or the processor cache may be
made. For example, multiple processors or processing cores
formed on a same die can share the main memory. One
pProcessor or processing core can access the content for
another processor or processing core through the shared
main memory and/or a processor cache memory through
memory sharing and/or a cache coherence protocol.

For example, speculative execution 1s a computing tech-
nique where a processor executes one or more nstructions
based on the speculation that such instructions need to be
executed under some conditions, before the determination
result 1s available as to whether such instructions should be
executed or not. Speculative execution can lead to security
vulnerabilities where unauthorized access to content can be
made. Examples of security vulnerabilities in computer
processors mclude Meltdown and Spectre that were made

public 1n 2018.

BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments are 1llustrated by way of example and
not limitation 1n the figures of the accompanying drawings
in which like references indicate similar elements.

FIG. 1 shows a processor having an unscrambler accord-
ing to at least some embodiments.

FIG. 2 shows the operations of an unscrambler for recov-
ering a bit from scrambled data.

FIG. 3 illustrates an unscrambler of a processor.

FIG. 4 shows a structure of a processor having diflerent
data security zones according to one embodiment.

FIG. 5 shows a key store 1n a processor for data security
according to one embodiment.

FIG. 6 1llustrates a technique to locate a key based on a
virtual memory address according to one embodiment.

FI1G. 7 illustrates the relations between a scramble key and
a corresponding unscramble key.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 8 illustrates a technique to add user specific data
protections.

FIG. 9 shows a method of key management for data
protection 1n a computer processor.

DETAILED DESCRIPTION

The present disclosure includes the techniques of protect-
ing data 1 a computer processor via data scrambling. For
example, an original data item can be scrambled by rear-
ranging the order of parts of the original data 1tem according
to a random key to generate a scrambled data item such that
the scrambled data 1tem having the reordered parts does not
reveal the original data 1tem as a whole; and the original data
item and the correct order of the parts cannot be derived
from the scrambled data item without the key. In an
unscrambling operation, parts of the scrambled data item are
reordered according to the key to recover the original data
item.

For example, a data item addressable using an address 1n
the computer processor can be stored in a scrambled form
before its use 1n instruction execution. The scrambled data
item can be an 1instruction, an address, or an operand to be
operated upon by an instruction. The data item can be cached
in the scrambled form 1n an internal cache and/or an external
cache; and/or the data item can be stored in the main
memory in the scrambled form. Unscrambling can be per-
formed 1nside the processor to recover the data item just 1n
time for the data 1tem to be used 1n the processor. When the
data 1item 1s scrambled, 1t can be dithcult or impossible to
recover the data item from the scrambled form without the
key. The processor unscrambles the data item using the
secret key(s) to execute upon the data item. Thus, the data
security 1n the processor 1s improved. For example, 1n a
side-channel attack, concurrently running applications may
attempted to gain unauthorized data access. Since only the
application holding the unscramble key can recover the
unscrambled data, the side-channel attack can be defeated.
Preferably, the keys or secrets for the scrambling and thus
corresponding unscrambling operations are random num-
bers; and the scrambling/unscrambling operations do not
involve computational intensive operations such as those
required 1n asymmetric cryptography. Preferably, the keys or
secrets for the scrambling/unscramble operations in the
processor are not mathematical/numerical representations of
entities, such as the public or private key pairs in asymmetric
cryptography.

FIG. 1 shows a processor (101) having an unscrambler
(113) according to at least some embodiments.

In FIG. 1, the processor (101) 1s coupled to a memory
(105) that supplies instructions and data to the processor
(101) for execution. The memory (105) stores scrambled
data (109) that needs to be unscrambled using secret keys.
In general, the memory (105) can be the main memory of the
computer system, or a storage device of the computer
system, or a hybrid memory and storage device. The
memory (105) can include volatile memory and/or non-
volatile memory.

The processor (101) may load the scrambled data (109)
into an external cache (103) and/or an internal cache (107).
Since the content 1n the external cache (103) and/or the
internal cache (107) 1s scrambled using the secret keys, the
content 1s protected against unauthorized access.

The unscrambler (113) 1s coupled between the internal
cache (107) and a register (111) and/or an execution unit

US 11,868,274 B2

3

(115). The unscrambler (113) generates the unscrambled
data (117) just in time for use 1n the register (111) or the
execution unit (115).

For example, the scrambled data (109) can be an 1nstruc-
tion to be executed 1n the processor (101). The 1nstruction
can be stored 1n a scrambled form 1n the internal cache (107),
the external cache (103), and/or the memory (105). Just
before the execution of the instruction, the unscrambler
(113) converts 1t into an unscrambled form. The execution
unit (115) then executes the instruction.

In some 1nstances, the processor (101) also includes a
scrambler that scrambles the result of the execution to
generate a scrambled result that 1s subsequently stored 1n the
internal cache (107), the external cache (103), and/or the
memory (105).

In another example, the scrambled data (109) 1s an
operand to be operated upon by an instruction 1n the pro-
cessor (101). The 1tem can be stored in the internal cache
(107), the external cache (103), and/or the memory (105) 1n
the scrambled form. Just before the 1tem 1s loaded into the
register (111) or the execution unit (115) for operations, the
unscrambler (113) converts 1t into an unscrambled form. The
execution unit (115) then uses the item 1n the execution of
the 1nstruction. For example, the execution unit (115) can be
an arithmetic-logic umit; and the item can be an operand to
be operated upon during the execution of an instruction in
the arithmetic-logic unit, or the instruction itself.

Since the data 1tem 1s 1n a scrambled form 1n the memory
(105), the external cache (103), and the internal cache (107),
another processor (102) having access to the memory (105),
the external cache (103), and the internal cache (107) cannot
recover the unscrambled data item without the keys or
secrets for unscrambling.

Preferably, the scramble/unscramble operations are con-
figured such that the performance impact in the processor
(101) 1s reduced/minimized.

For example, scrambling/unscrambling can be performed
by reordering the bits 1n a data item. The data item has a
predetermined width that corresponds to the number of bits
in the data item and/or the width of the register (111) of the
processor (101). The operation of reordering the bits within
the data item can be performed efliciently using multiplexers
illustrated in FIGS. 2 and 3.

FIG. 2 shows the operations of an unscrambler (113) for
recovering a bit (113) of unscrambled data (117) from
scrambled data (109).

In FIG. 2, the bit 1 (133) at a particular position in the
unscrambled data (117) 1s recovered by applying a corre-
sponding key j (153) to a multiplexer (143). The multiplexer

(143) receives then bits (121, . . ., 123, .. ., 125) of the
scrambled data (109) as inputs. The key 1 (133) specifies
which one (e.g., 123) of the mput bits (121, ..., 125) 1s to

be selected by the multiplexer (143) as the output bit (133)
at the given position j 1n the unscrambled data (117). The
order of the bits (121, ..., 123, ..., 125) 1n the scrambled
data (109) has been changed from the order of the bits 1n the
unscrambled data (109). The key 7 (153) 1s used to select the
correct bit (e.g., 123) from the scrambled data (109) as a bit
at a particular position 1 1n the unscrambled data (117).
Without the secret’key 1 (153), the randomly scrambled
ordering of the bits (121, . . ., 123, . . ., 125) 1n the
scrambled data (109) masks the true value of the
unscrambled data (117). Therefore, a direct interpretation of
the scrambled data (109) 1s useless. The scrambled data
(109) appears as a random number.

The operation of the multiplexer (143) can be 1mple-
mented efliciently in the processor (101) using a logic circuit

10

15

20

25

30

35

40

45

50

55

60

65

4

with minmimum delay in the execution pipeline. No numeri-
cal or complex encryption algorithm operations (e.g., mul-
tiplication or division of integer numbers or floating-point
numbers) are required to unscramble the data. Thus, an
unscrambler (113) based on the operation of FIG. 2 has
minimum impact on the operating performance of the pro-
cessor (101).

FIG. 3 illustrates an unscrambler of a processor.

In FIG. 3, the scrambled data (109) and the unscrambled
data (117) have the same number (n) of bits. A same number
(n) of multiplexers (141, . . ., 143, . . ., 145) are used to
operate on input bits (121, . . ., 123, . . ., 125) of the

scrambled data (109) to output the respective output bits
(131,...,133, ..., 135) of the unscrambled data (117). The

multiplexers (141, ..., 143, . . ., 145) change the order of
the bats (121, ...,123,...,125) of the scramble data (109)
to the order of the bits (131, . . ., 133, ..., 135) of the

unscrambled data (117).

Preferably, the multiplexers (141, . ..,143,...,145) are
operated concurrently to minimize the delay caused by
unscrambling. Alternatively, a reduced number of multiplex-
ers can be used to reduce logic circuits used to implement
the unscramble; and the reduced set of multiplexers can be

used 1n iterations of operations to generate diflerent subsets
of output bits (131, . . ., 133, . . ., 135), such that the

complete set of output bits (131, ...,133,...,135) can be

computed through the 1terations.
As 1llustrated in FIG. 3, the scrambled data (109) and the

unscrambled data (117) have the same number (n) of bits and

the same values for corresponding bits. For example, bit 1
(123) in the scrambled data (109) corresponds to bit 1 (133)

in the unscrambled data (117). Thus, the scrambled data

(109) and the unscrambled data (117) differ from each other
in their bit sequences; and the unscrambled data (117) can be
considered as scrambled version of the scrambled data

(109). Therefore, the set of multiplexers (141, . . . |,
143, . . ., 145) of the unscrambler (113) can be used with a
complementary set of keys to select the bits (131, . . .,
133, ..., 135) of the unscrambled data (171) to generate the
bits (121, ...,123 ..., 125) of the scrambled data (109).

For example, since unscrambling key 1 (153) identifies select
input bit 1 (123) from position 1 of the scrambled data (109)
as output bit 1 (133) at position 7 of the unscrambled data
(117), a complementary scrambling key 1 1dentifies position
11n the unscrambled data (117) for selection as the bit1 (123)
at position 1 1n the scrambled data (109). Thus, the scram-
bling keys can be computed from the unscrambling keys
(151, .. .,153, ..., 155). By applying the complementary
set of scrambling keys 1n the unscrambler (113) to operate on
the unscrambled data (117), the unscrambler (113) can
function as a scrambler to generate the scrambled data (109).
Similarly, the unscrambling keys (151, ..., 153, ..., 155)
can be computed from the scrambling keys. Therelore, a
scrambler can be implemented 1n a way as the unscrambler
(113) implemented 1n FIG. 3; and the unscrambler (113) can
be reconfigured as a scrambler (113) by loading a set of
scrambling keys to replace the unscrambling keys (151,
153, . .., 155).

As 1illustrated 1n the FIG. 3, the scramble/unscrambling
operations do not change the data size (n) before and after
the operations. The storage capacity requirement for the
scrambled data (109) 1s the same as the storage capacity
requirement for the unscrambled data (117). No extra
memory/storage capacity 1s required to for the scrambled

data (109).

US 11,868,274 B2

S

FIGS. 2 and 3 illustrate a preferred unscrambler (113). In
general, other unscramblers can also be used 1n the processor
(101).

For example, a scrambler/unscrambler can be performed
by selectively mverting a bit according to the value of a
corresponding bit 1n a key. 11 the corresponding bit 1n a key
has a predetermined value (e.g., 1), the bit of the input data
1s mverted to generate the corresponding bit of the output
data; otherwise, the bit of the output data 1s the same as the
bit of the mnput data.

For example, the bit inversion operation can be combined
with bit re-positioming as in FIGS. 2 and 3 for scrambling/
unscrambling.

FIG. 4 shows a structure of a processor (101) having
different data security zones (161, 163) according to one
embodiment.

The processor (101) can have a scrambled zone (161) and
an unscrambled zone (163). The scrambled zone (161)
includes the internal cache (107). The unscrambled zone
(163) includes the execution umt (115). Thus, the execution
unit (115) does not operate on any scrambled data (e.g.,
109). The register (111) can be 1n the scrambled zone (161)
or the unscrambled zone (163). An unscrambler (113) and a
scrambler (112) interface or connect the scrambled zone
(161) and the unscrambled zone (163). Content in the
scrambled zone (161) 1s 1n a scrambled form; and content 1n
the unscrambled zone (163) 1s 1n an unscrambled form. The
processor (101) unscrambles content 1n the scrambled zone
(161) to perform computation 1n the unscrambled zone (163)
and scrambles the computation results before the computa-
tion results leave the unscrambled zone (163) and enter the
scrambled zone (161). For example, 1n response to a load
instruction, the unscrambler (113) converts scrambled data
(109) into the unscrambled data (117) (e.g., for an arithme-
tic-logic unit of the processor (101)); and the unscrambler
(113) does not use the arithmetic-logic unit for unscrambling
operations. In response to a store instruction, the scrambler
(112) converts a data item to be stored from an unscrambled
form 1nto a scrambled form. The scrambled result can be
initially cached 1n the scrambled zone (161) and then stored
in the external cache (103), the main memory (105), and/or
a peripheral storage device in the scrambled form. Option-
ally, the unscrambler (113) and the scrambler (112) can share
a portion of logic circuits (e.g., multipliers (141, . . . ,
143, . . . , 145)). For example, the unscrambler (113)
configured to load data from the scrambled zone (161) to the
unscrambled zone (163) in response to load instructions can
be reconfigured as a scrambler (112) by changing the keys
(151, ..., 153, ..., 155) for scrambling output data going
from the unscrambled zone (163) to the scrambled zone
(161) 1n response to store nstructions.

FIG. 1 1llustrates the storing of data in a scrambled form
in the main memory (105) and the cache memories (103 and
107) of a processor (101). Data can also be 1n the scrambled
form 1n a storage device (e.g., a disk or a flash drive coupled
to a peripheral bus of a computer system). Thus, when the
data 1s loaded from the storage device mto the main memory
(105) and/or the cache memories (103 and 107), 1t 1s already
in the scrambled form.

The use of the unscrambler (113) 1n the processor (101)
limits the availability of clear, unscrambled content to only
in a portion of the processor (101) and thus improves data
security in the computer system.

FIG. 5 shows a key store (167) in a processor (101) for
data security according to one embodiment.

In FIG. 5, the processor (101) has an unscrambled zone
(163) for performing computation on data (117) 1n an

10

15

20

25

30

35

40

45

50

55

60

65

6

unscrambled form. Other processors (e.g., 102) can be
provided with access to certain resources of the processor
(101), such as the storage device (104), the memory (105),
the external cache (103), and/or the internal cache (107).
However, these processors (e.g., 102) are prevented from
accessing the unscrambled zone (163) of the processor
(101). For example, the processors (101 and 102) can be
different processing cores formed on a same silicon die
and/or packaged 1n a same integrated circuit chip. In other
examples, the processors (101 and 102) can be packaged 1n
different integrated circuit chips and connected via a com-
munication connection, such as a bus, an interconnect, a
network, etc.

A malicious program, for example, may run in a processor
(102) and attempt to gain unauthorized access to content to
be processed by the processor (101) (e.g., using security
vulnerabilities such as Meltdown and Spectre). To protect
against such unauthorized access, data (109) can be stored 1n
a scrambled form 1n locations outside the unscrambled zone
(163). For example, the data (109) 1s stored in a scrambled
form 1n the storage device (104), 1n the main memory (105)
of a computer, and 1n the external cache (103) that 1s shared
between the processors (101 and 102). Further, the data
(109) can be stored 1n a scrambled form 1n the scrambled
zone (161) of the processor (101), such as the internal cache
(107) of the processor (101), when the processor (102) can
access the internal cache (107) via a cache coherence
protocol.

In FIG. 5, the unscrambler (113) of the processor (101)
converts the scrambled data (109) into the unscrambled data
(117) when the processor (101) runs the instructions that are
authorized to process the scrambled data (109). The pres-
ence ol the unscrambled data (117) 1s confined within the
unscrambled zone (163). Since another processor (102) 1s
prevented from accessing the unscrambled zone (163) of the
processor (101), a malicious program runmng in the pro-
cessor (102) can be prevented from gaining unauthorized
access to the unscrambled data (117) (e.g., through security
vulnerabilities such as Meltdown and Spectre).

In FIG. 5, the processor (101) has a secure zone (165) that
includes a key store (167). The key store (167) has the keys
for the unscrambler (113) and the scrambler (112) for
various data objects. Without access to the respective keys
ol the objects, the processors (101 and 102) cannot recover
the unscrambled data (117) from the scrambled data (109).

In FIG. 5, the access to the key store (167) 1s based at least
in part on the wvirtual address (1935) used to load the
scrambled data (109) for operations to be performed within
the unscrambled zone (163).

For example, the virtual address (195) can include fields
such as object ID (199), object type (198), and/or oflset
(196).

For example, the virtual memory address (1935) can have
a predetermined width (a predetermined bits) and stored 1n
the memory address register (169) of the processor (101).
The virtual address (1935) can 1include a portion representing
an object ID (199) and a portion representing an oflset (196)
within the object represented by the object ID (199).

For example, an object located at the address (195) can be
a set of mstructions or a routine; and the object 1D (199) of
the virtual address (195) can be used to identily certain
proprieties of the instruction and/or the routine, such as
access rights.

For example, an object located at the virtual address (195)
can be a data file, data set, or data 1tem; and the object ID
(199) of the virtual address (195) can be used to identily

access rights of the data.

US 11,868,274 B2

7

In some 1nstances, an object name server 1s configured to
store attributes of an object i1dentified via the object 1D
(199). The processors (101 and 102) can query the object
name server to obtain the attributes for access control.

In some 1nstances, a static object ID of a predetermined
value (e.g., 0) can be used to represent a kernel object of an
operating system (104). Thus, the static object ID specified
in the memory address can be used to identify certain access
restrictions without having to communicate with an object
name server. Some details and examples of static object 1Ds
in memory addresses for computer processors to load
istructions for execution can be found i U.S. patent
application Ser. No. 16/028,840, filed Jul. 6, 2018 and
entitled “Static Identifications 1 Object-based Memory
Access,” the entire disclosure of which application 1s hereby
incorporated herein by reference.

In some instances, the virtual memory address (195)
and/or the object ID (e.g., 199) of the memory address can
include a portion representing an object type (198). For
example, an object type (198) of a value from O to 3 can be
used to 1dentily a kernel object of an operating system. For
example, an object type (198) of a value of 4 to 5 can be used
to specily that the offset 1s an address of different widths
(e.g., a 64-bit address or 32-bit address included within the
memory address that has 128 bits). For example, an object
type (198) of a value of 6 to 7 can be used to specity that a
predetermined portion of the object ID 1s to be mterpreted as
an 1dentifier of a local object or an object in Partitioned
Global Address Space (PGAS). For example, an object type
(198) of a value of 32 can be used to specily that the
remaining portion of the object ID 1s to be interpreted as an
identifier of an object defined 1n a server (e.g., 197).

The object type (198) and/or the object ID (199) can be
optionally used to determine access privileges.

In FIG. 5, the object ID (199) can be used to access the
key store (167) to retrieve a key for the object represented
by the object ID (199). Thus, when the unscrambled zone
(163) 1s authorized to load, via the virtual address (193), the
scrambled data (109) into the unscrambled zone (163) for
processing, the key for the unscrambler (113) can be
retrieved or obtained from the key store (167) to generate the
unscrambled data (117) from the scrambled data (109).

When the unscrambled data (117) leaves the unscrambled
zone (163) (e.g., to be stored at the virtual address (195) as
a computation result and/or as part of the object represented
by the object 1D (199)), the scrambler (112) converts the
unscrambled data (117) into the scrambled data (109). By
reducing the locations and durations of the presence of the
unscrambled data (117), data security of the computer sys-
tem 1s 1mproved.

In general, the unscrambled data (117) can be an 1nstruc-
tion, an operand, and/or a result of the execution umt (115)
executing an instruction. The unscrambled zone (163) can
include a register to store a virtual address for loading
scrambled operands into the unscrambled zone (163), a
register to store a virtual address for exporting scrambled
results from the unscrambled zone (163), and/or a register
(e.g., program counter) to store a virtual address for loading
scrambled 1nstructions into the unscrambled zone (163). For
example, the unscrambled zone (163) can include a program
counter, programmer visible register files, and/or a memory
address register. Programs running outside of the
unscrambled zone (163) of a processor (101) (e.g., in
another processor (102), such as a separate processing core),
are generally prevented from accessing the unscrambled
zone (163) of the processor (101), although such external
programs may access the caches (e.g., 103 and/or 107) and

10

15

20

25

30

35

40

45

50

55

60

65

8

the main memory (e.g., 105) where the content 1s 1n a
scrambled form. The execution units (e.g., 115) can perform
operations (e.g., arithmetic operations) on operands stored 1n
registers and generate results in registers. Such registers for
operands and results can be configured 1n the unscrambled
zone (163) such that the execution units (e.g., 115) operate
and generate data in the unscrambled form; and therefore,
scrambling outside of the unscrambled zone (163) does not
impact the operations and/or efliciency of the execution
units (e.g., 115). The program counter can increase the
address stored 1n 1t by one to execute the next instruction, or
be assigned a branch address to execute the instruction at the
given branch address. The program counter can also be
configured 1n the unscrambled zone (163) such that its
operations are based on unscrambled addresses. Thus, the
content of the program counter and/or addresses for 1denti-
ftying operands 1n the main memory (e.g., 105) can be
unscrambled addresses in the unscrambled zone (163).
FIG. 6 illustrates a technique to locate a key (255) based

on a virtual memory address (195) according to one embodi-
ment.

The virtual address (195) 1n FIG. 6 can include an object
ID (199), an object type (198), and/or an offset (196). For
example, the virtual address (1935) can have a width of 128
bits; a number of bits (e.g., 59 or 58) of the virtual address
(195) can be used to store the object ID (199), another
number of bits (e.g., 5 or 6) of the virtual address (195) can
be used to store the object type (198), and the remaining bits
(e.g., 64) of the virtual address can be used to store the offset
(196) relative to the object that has the type (198) and the 1D
(199). For example, the virtual address (195) can be an
address stored in the memory (105), as configured, pro-
grammed, and/or seen by a programmer or user of a routine.

In FIG. 6, a hash (181) 1s applied on the object ID (199)
to generate an index (185). The index (1835) has a less
number of bits than the object ID (199) and thus reduces the
size of the key store (167) for looking up an entry (e.g.,
213, . . ., 215) from the key store (167).

However, hash collision can occur when multiple items
are hashed into a same index. Chaining 1s one of the
techniques to resolve hash collisions. The index resulting
from a collision can be used to retrieve a list/chain of
key-value pairs. Each 1tem that 1s hashed into the index can
be configured as the key 1n a corresponding key-value pair
in the list; and the look up result for the item can be
configured as the value 1n the corresponding key-value patr.
To retrieve the look up result of one of the items that are
hashed into the same index, the list/chain of key-value pairs
identified via the index can be searched to find a key-value
pair where the key matches with the 1item. The value of the

matching key-value pair provides the look up result.
When there 1s no hash collision for the index (185), the

entry (e.g., 213, . . ., or 215) at the index (1835) 1n the key
store (167) can be retrieved as the resulting entry (250).

When there 1s hash collision for the index (185), the entry
(e.g., 213, . . ., or 215) at the index (185) in the key store
(167) 1dentifies a collision chain (260). The collision chain
(260) has a list/chain showing the entries (e.g., 262,
264, . . .) for the object IDs (e.g., 261, 263) that are hashed
(181) into the same index (185). The collision chain (260)
can be searched to locate the entry (e.g., 262, or 264) that 1s
specified for an object ID (e.g., 261 or 263) that matches
with the object ID (199) belfore the hash (181). The located
entry (e.g., 262, or 264) 1s illustrated as the resulting entry
(250).

In general, the hash (181) can be applied to a combination
of the object ID (199), optionally the object type (198),

US 11,868,274 B2

9

and/or a portion of the offset (196). Further, scrambling can
be specific for different virtual machines, different pro-
cesses, and/or different users. Thus, the hash (181) can be
applied to a combination of a portion of the virtual address
(195), an identifier of the current virtual machine for which
the processor (101) 1s executing nstructions, a processor 1D

of the current process of a runming 1nstance of a program, an
identifier of a user account and/or a user for which the
processor (101) 1s currently executing instructions, etc.

Alternatively, securities for 1solating different virtual
machines, diflerent processes, and/or different users can be
implemented through scrambling using keys for different
virtual machines, keys for different processes, and/or keys
for different users. The different layers of scrambling pro-
tection for virtual machines, running instances/processes,
and/or users/user accounts can be combined through scram-
bling keys, as further illustrated below in connection with
FIG. 8. When the keys for diflerent combination of objects,
virtual machines, running instances/processes, and/or users/
user accounts are dertved from combining the separate keys
for the objects, keys for the virtual machines, keys for the
instances/processes, and/or keys for the users/user accounts,
the size of the key store (167) can be reduced.

A typical entry (250) looked up from the key store (167)
using the index (1835) can have multiple fields (251, 253,
255, . . ., 257) for subsequent security operations. The
values of the fields can be adjusted as needed in a way
independent from the virtual address (195) itself. Thus, the
values of the fields are not hard coded within the virtual
address (195).

For example, a status field (251) can have a value 1ndi-
cating whether the object represented by the object ID (199)
1s currently 1n a scrambled form outside of the unscramble
zone (163), such as being scrambled 1n the storage device
(104), in the main memory (105), 1n the external cache
(103), and/or 1n the scrambled zone (161) of the processor
(101).

For example, a type field (253) can have a value indicat-
ing a type of scrambling applied to the object represented by
the object ID (199). For example, the scrambhng can be 1n
the form of redistribution/relocating data content 1n different
data fields (e.g., bits, bytes, words) 1n a data i1tem of a
predetermined width (e.g., as measured via a count of bits),
as 1llustrated 1n FIGS. 2 and 3. In other instances, scrambling
or encrypting can be performed using other cryptographic
algorithms which can involve symmetric-key cryptography
and/or public-key cryptography.

For example, a key field (255) can store a value repre-
senting a key used to secure the object represented by the
object ID (199) according to the type (253).

For example, an optional address field (257) can provide
the address (257) from which attributes or properties of the
object represented by the object ID (199) can be retrieved.
For example, the address (257) can be used to retrieve
parameters related to the implementation of the type (253) of
data protection, such as data field size, scrambled data fields.
For example, the address (257) can be used to retrieve from
the memory (105) a set of attributes and/or access control
parameters ol the object represented by the object ID (199).
For example, the address (257) can be used to query an
object name server for attributes and/or access control
parameters ol the object represented by the object ID (199).
For example, the address (257) can be used to load a page
table/page directory for the translation of the wvirtual

addresses (e.g., 195) of the object represented by the object
ID (199).

10

15

20

25

30

35

40

45

50

55

60

65

10

In some instances, an address translation table separate
from the key store (167) i1s used to provide an entry
speciiying the physical address of a page table/page direc-
tory that 1s used to translate the virtual address (195) to a
physical address. At least a portion of the virtual address
(195) can be hashed to index into the address translation
table 1n a way similar to the i1dentification of a key entry
(250).

In general, the hashing (181) and indexing (185) 1nto the
key store (167) for retrieving a key (250) can be diflerent
from the hashing and indexing into the address translation
table for loading a page table/page directory to convert the
virtual address (195) into a physical address. For example,
the object ID (199) can be combined a virtual machine
identifier and a user i1dentifier for hashing into an index for
an address translation table; and the object ID (199), the
virtual machine 1dentifier and the user identifier can be used
to retrieve separate keys for the object, for the wvirtual
machine, and for the user, where the separate keys are
combined via a computation (e.g., key scrambling) to gen-
crate the key for the combination of the object being used 1n
the virtual machine by the user.

FIG. 7 1illustrates the relations between a scramble key

(221) and a corresponding unscramble key (223).

In FIG. 7, a data item 1s divided into N fields (1,
2, , N). The scramble key (221) has corresponding N
ﬁelds 1dent1 'ving the destination fields for redistributing the
content of the N source fields.

For example, FIG. 7 illustrates a scramble key (221) that
specifies N-1 as the destination field for the content in the
source field 1. Thus, the content 1n source field 1 1s shuftled
into the destination field N-1 during the scrambling opera-
tion. Similarly, the scramble key (221) 1llustrated in FIG. 7

specifies 1 as the destination field for the content in the
source field 2, N as the destination field for the content 1n the
source field 3; . . ., and N-2 as the destination field for the
content in the source field N.

Thus, when the source fields 1, 2, 3, . . ., N contain the
identifiers of the respective fields and the scramble key (221)
1s applied to scramble the data item having the position
sequence of the fields, the scrambled data 1tem contains the
identifiers of the source fields 2, . . ., N, 1, 3. Thus, this
particular scrambled data, generated by applying the
scramble key (221) on the position sequence 1, 2,3, ..., N,
provides the unscramble key (223).

Similarly, when scrambling 1s performed according to the
unscramble key (223) to scramble the position sequence 1,
2,3, ..., N, the scrambling result provides the scramble key
(221).

Thus, the scramble key (221) can be computed from the
unscramble key (223); and the unscramble key (223) can be
computed from the scramble key (221).

The scramble key (e.g., 221) can be generated using a
random number generator. For example, a random number
generator can be configured to generate numbers randomly
between 1 and N. The random number generator can be used
to generate a first random number as the destination field
identifier (e.g., N-1) for the source field 1. Subsequently, the
random number generator can be used to generate a second
random number as a candidate for the destination field
identifier for the source field 2. If the candidate 1s the same
as any of the destination field identifier(s) already selected
for the scramble key (e.g., 221), the candidate 1s discarded
and another random candidate 1s generated by the random
number generator; otherwise, the candidate can be used as
the destination field identifier (e.g., 1) for the source field 2.
The destination field identifiers for the subsequent fields

US 11,868,274 B2

11

(e.g., 3, ..., N)can be selected 1n a stmilar way such that
the sequence (e.g., N-1, 1, N, . .., N2) in the scramble key
(221) 1s random but contains not duplicated i1dentifiers.

In some 1instances, the scramble key (221) and the data
item containing the fields (1, 2, 3, .. ., N) to be scrambled
have the same size. For example, to scramble a 64-bit data
item where each field has 4 bits and there are 16 4-bit fields
(e.g., N=16), the scramble key (221) can also be stored as
also a 64-bit data item. In such a situation, the scramble key
(221) can be scrambled using the same scrambler (112) for
scrambling the data item.

Alternatively, the scramble key (221) can have a size
different ifrom the data item that 1s scrambled using the
scramble key (221). For example, a data item can have 64
1-bit fields; the scramble key (221) has 64 6-bit destination
field 1dentifiers; and thus, the scramble key (221) 1s 6 times
the size of the 64-bit data item.

In some embodiments, a scramble key (e.g., 221) 1s
generated by rearranging the sequences of destination field
identifiers according to a sequence of outputs from a random
number generator. For example, the position sequence of 1,
2,3, ..., N can be used as an initial candidate of the
scramble key. In response to the random number generator
provides a random number 1 between 1 and N, the key
generator extracts the 1ith destination field identifier from the
sequence and 1nsert 1t ito a predetermined location (e.g., at
the beginning of the sequence, at the end of the sequence, at
another predetermined position, or at a position 1dentified by
the next random number generated by the random number
generator). After shuflling a number of times the sequence of
destination {field identifiers, the resulting randomized
sequence of the destination field 1dentifiers can be used as a
scramble key (e.g., 221), or as the unscramble key (e.g.,
223).

FIG. 8 illustrates a technique to add user specific data
protections.

For example, an object can be scrambled using a scramble
key (230). When 1stances of the object are used by diflerent
users, the user-specific instances can be further scrambled
based on user keys (231, . . ., 233).

Multiple layers of scrambling made using multiple keys
can be performed and/or unscrambled using a composite
key. For example, the scramble key (230) can be combined
with the user key A (231) to generate a scramble key (241)
for the user A; and the scramble key (230) can be combined
with the user key X (233) to generate a scramble key (243)
for the user X. The user X cannot derive the scramble key
(241) for user A from the scramble key (230) and the user
key X (233); and the user X cannot unscramble the object
instance scrambled using the scramble key (241) for user A
without the user key A (231).

For example, each user key (e.g., 231 or 233) can be a
random number specific for the respective user. The random
number can be added to each of the N destination field
identifiers 1n the scramble key (231), modulo N, to obtain a
user specific scramble key (e.g., 241 or 243).

For example, each user key (e.g., 231 or 233) can be a
separate scramble key that 1s used to scramble the common
scramble key (230) to generate the user specific scramble
keys (e.g., 241, or 243).

For example, FIG. 7 illustrates the scrambling of the
position sequence 1, 2, 3, . . ., N using the scramble key
(221) to generate the unscramble key (223). The unscramble
key (223) can be further scrambled using a user key (e.g.,
241, or 243) to generate the user specific unscramble key for
unscrambling the result generated from scrambling initially
using the scramble key (221) and then using the user key

10

15

20

25

30

35

40

45

50

55

60

65

12
(e.g., 241, or 243). The user specific scramble key can be
computed by scrambling the position sequence 1, ..., N-2,

N-1, N according to the user specific unscramble key.
Scrambling using the user specific scramble key generates
the same result as 1mitially scrambling using the scramble
key (221) and then further scrambling 1ts result using the

user key (e.g., 241, or 243).

In general, multiple layers of scrambling operations using,
multiple keys can be reduced to the scrambling using a
single composite key; and the single composite key can be
calculated from the multiple keys.

For example, an object can be protected via scrambling
using an object key assigned to the object. A virtual machine
can be protected via scrambling using a virtual machine key
assigned to the virtual machine. A user or user account can
be protected via scrambling using a user key assigned to the
user or user account. A running process can be protected via
scrambling using a process key assigned to the running
process. Instead of separately using the object key, the
virtual machine key, the user key, and the process key for
unscrambling a data item of the object used in the process
running in the virtual machine for the user or user account,
a single combined unscramble key can be generated from
the object key, the virtual machine key, the user key, and the
process key; and the combined unscramble key can be used
for the unscrambling of the scrambled data item protected
via the object key, the virtual machine key, the user key, and
the process key. The combined unscramble key can be
derived from a subset of the object key, the virtual machine
key, the user key, and the process key. Similarly, the single
combined scramble key can be calculated from the object
key, the virtual machine key, the user key, and the process
key for scrambling clear data into a scrambled form pro-
tected via the object key, the virtual machine key, the user
key, and the process key such that a malicious program in
possession of some of the keys but not all of the keys cannot
unscramble the data.

The processor (101) can be configured to dynamically
calculate the combined keys from multiple layers of keys
(e.g., keys for protections of objects, virtual machines,
users/user accounts, and running processes). Thus, the size
of the key store (167) can be reduced for different combi-
nations of objects, virtual machines, users/user accounts,
and/or running processes.

FIG. 9 shows a method of key management for data
protection 1n a computer processor. For example, the method
of FIG. 9 can be implemented in the computer system of
FIG. 1, 4, or 5 with an unscrambler (113) of FIG. 3.

At block 201, a computer system stores scrambled data
(109) 1n a memory (105).

For example, the computer system can have multiple
processors (e.g., 101 and 102) that share the same memory
(105). It can be desirable to prevent a malicious program
running 1n one processor (€.g., 102) to access the content of
another processor (e.g., 101) via exploiting certain security
vulnerabilities.

At block 203, a first processor (101) of the computer
system stores keys (e.g., 255) 1n a secure zone (165) of the
first processor (101) that 1s coupled with the memory in the
computer system.

At block 205, the first processor (101) converts the
scrambled data (109) into unscrambled data (117) 1n an
unscrambled zone (163) of the first processor (101) using the
keys retrieved from the secure zone (163), in response to
execution of 1nstructions configured to operate on the

unscrambled data (117).

US 11,868,274 B2

13

At block 207, the first processor (101) operates, 1n the
unscrambled zone, on the unscrambled data (117).

At block 209, the first processor (101) prevents a second
processor (102) coupled with the memory (105) 1n the
computer system from accessing the unscrambled data (117)
in the unscrambled zone (163) of the first processor (101).

The first processor (101) and the second processor (102)
can further share a storage device (104) that stores the
scrambled data (109), and/or an external cache (103) that

stores the scrambled data. The second processor (102) may
even have access to data in a scrambled zone (161) inside the
first processor (101), such as accessing the internal cache
(107) of the processor (101) via a cache coherence protocol.
In some instances, the first processor (101) and the second
processor (102) can be processing cores packaged 1n a same
integrated circuit chip.

For example, the unscrambled zone (163) can include a
memory address register (169) configured to store a virtual
memory address (169) used to i1dentily the location of the
scrambled data (109) for loading into the unscrambled zone
(163). The first processor (101) 1s configured to unscramble
the scrambled data (109) in response to an instruction using,
the virtual memory address (195) to load the scrambled data
(109) for operations within the unscrambled zone (163).

For example, the unscrambled zone can include an execu-
tion unit (115) that 1s configured to perform the operations
on a data item located at the virtual memory address (195)
during the execution of an instruction.

The virtual memory address (195) can include a field
containing an object 1identifier (199); and the first processor
(101) 1s configured to retrieve, generate, and/or obtain an
unscramble key (223) based on the object 1dentifier (199).

For example, the technique of FIG. 6 to retrieve a key
(255) from a key store (167) illustrated 1 FIG. 5 can be

used.

For example, the secure zone (165) has a key store (167).
The first processor (101) 1s configured to hash (181) at least
the object identifier (199) into an index (185) and use the
index (185) to retrieve an entry (250) from the key store
(167).

For example, the entry (250) can include at least one of a
status idication (251) of whether an object represented by
the object 1dentifier 1s scrambled, a type (253) of scrambling
of the object, or a key (255), or any combination thereof.

For example, the key store (167) 1n the secure zone (165)
can further include a collision chain (260) configured to
identify different entries (e.g., 262 and 264) for different
object 1dentifiers (e.g., 261 and 263) that are hashed 1nto a
same 1ndex (e.g., 183). The first processor (101) can identily
the entry (250) using the collision chain (260) if there 1s a
hash collision for the index (185).

For example, the first processor (101) can further store at
least one of a key for a virtual machine hosted 1n the
computer system, a key for a user account, or a key for a
running process, or any combination thereof. The scrambled
data can be protected via multiple layers of scrambling
corresponding to multiple keys, such as the key for the
object, the key for the virtual machine, the key for the user
account, and/or the key for the running process for which the
first processor (101) 1s currently executing instructions. The
first processor (101) can compute a combined key from the
multiple keys to implement the scrambling or unscrambling,
corresponding to the multiple keys. The combined key can
be computed from scrambling one key using another key.
The combined key can be specific to an object, a user using
the object, a process running a program for the user, and/or

10

15

20

25

30

35

40

45

50

55

60

65

14

a virtual machine 1n which the program 1s being executed
using the first processor (101).

In general, the unscrambled data (117) can be an instruc-
tion, an address, or an operand of an instruction. The
scrambled data (109) and the unscrambled data (117) can
have a same set of bits having different orders from one
another.

The techniques disclosed herein can be implemented 1n a
computer system (e.g., 1llustrated in FIGS. 1 and 3) that has
at least one processor (e.g., 101) coupled to a memory
system (e.g., 104, 105 and/or 103) via one or more buses.
The memory system can have multiple memory compo-
nents.

For example, the buses can include a memory bus con-
necting to one or more memory modules and/or include a
peripheral 1internet connecting to one or more storage
devices. Some of the memory components (e.g., 103 and/or
105) can provide random access; and the some of the
memory components (e.g., 104) can provide persistent stor-

age capability. Some of the memory components (e.g., 103
and/or 105) can be volatile 1n that when the power supply to
the memory component 1s disconnected temporarnly, the
data stored in the memory component will be corrupted
and/or erased. Some of the memory components (e.g., 104)
can be non-volatile in that the memory component 1s capable
ol retaining content stored therein for an extended period of
time without power.

In general, a memory system can also be referred to as a
memory device. An example of a memory device 1s a
memory module (e.g., 105) that 1s connected to a central
processing unit (CPU) via a memory bus. Examples of

memory modules include a dual in-line memory module
(DIMM), a small outline DIMM (SO-DIMM), a non-volatile

dual in-line memory module (INVDIMM), etc. Another
example of a memory device 1s a storage device (104) that
1s connected to the central processing unit (CPU) via a
peripheral interconnect (e.g., an input/output bus, a storage
area network). Examples of storage devices include a solid-
state drive (S5D), a tlash drive, a universal serial bus (USB)
flash drive, and a hard disk drive (HDD). In some 1nstances,
the memory device 1s a hybrid memory/storage system that
provides both memory functions and storage functions.
The memory components can include any combination of
the different types of non-volatile memory components
and/or volatile memory components. An example of non-
volatile memory components includes a negative-and
(NAND) type flash memory with one or more arrays of
memory cells such as single level cells (SLCs) or multi-level
cells (MLCs) (e.g., triple level cells (TLCs) or quad-level
cells (QLCs)). In some instances, a particular memory
component can include both an SLC portion and an MLC
portion of memory cells. Each of the memory cells can store
one or more bits of data (e.g., data blocks) used by the
processor (e.g., 101 or 102). Alternatively, or in combina-
tion, a memory component can include a type of volatile
memory. In some 1instances, a memory component can
include, but i1s not limited to, random access memory
(RAM), read-only memory (ROM), dynamic random access
memory (DRAM), synchronous dynamic random access
memory (SDRAM), phase change memory (PCM), magneto
random access memory (MRAM), Spin Transier Torque
(STT)-MRAM, {ferroelectric random-access memory (Fe-
TRAM), ferroelectric RAM (FeRAM), conductive bridging
RAM (CBRAM), resistive random access memory
(RRAM), oxide based RRAM (OxRAM), negative-or
(NOR) flash memory, electrically erasable programmable
read-only memory (EEPROM), nanowire-based non-vola-

US 11,868,274 B2

15

tile memory, memory that incorporates memristor technol-
ogy, and/or a cross-point array of non-volatile memory cells.
A cross-point array of non-volatile memory can perform bit
storage based on a change of bulk resistance, 1n conjunction
with a stackable cross-gridded data access array. Addition-
ally, 1n contrast to many flash-based memories, cross-point
non-volatile memory can perform a write 1n-place operation,
where a non-volatile memory cell can be programmed
without the non-volatile memory cell being previously
erased.

In general, a processor (e.g., 101 or 102) can utilize a
memory system (e.g., 103, 104, and/or 105) as physical
memory that includes one or more memory components.
The processor (e.g., 101 or 102) can load nstructions from
the memory system (e.g., 103, 104, and/or 105) for execu-
tion, provide data to be stored at the memory system (e.g.,
103, 104, and/or 105), and request data to be retrieved from
the memory system (e.g., 103, 104, and/or 105).

The processor (e.g., 101 or 102) can include a memory
management unit (MMU), execution units (e.g., 115), such
as an arithmetic-logic unit, and/or registers (e.g., 133) to
hold instructions for execution, data as operands of mstruc-

tions, results of instruction executions, and/or addressed
(e.g., 195) for loading instructions from the memory system
(e.g., 103, 104, and/or 105), retrieving data from the
memory system (e.g., 103, 104, and/or 105), and/or storing,
results into the memory system (e.g., 103, 104, and/or 105).
The processor (e.g., 101) can have an internal cache (107)
and/or an external cache (103) as a proxy of a portion of a
memory module (e.g., 105) and/or a storage device (e.g.,
104).

Scrambled data (109) for processing and/or executing 1n
the processor (101) can be 1imitially stored 1n a storage device
(e.g., 104) or a memory module (e.g., 103). The scrambled
data (109) can include instructions for executing in the
execution units (e.g., 115) of the processor (101) and/or
operands for processing during execution of the instructions.
The scrambled data (109) can include results generated by
the execution units (e.g., 1135) processing the operands
during the execution of the mstructions. The Scrambled data
(109) routines stored initially in the memory (105) or the
storage device (104) can be loaded to the external cache
(103) and/or the internal cache (187) in a scrambled form,
betfore being unscrambled as the unscrambled data (117) for
processing 1n the execution units (e.g., 115) 1 an
unscrambled form.

The techniques disclosed herein can be applied to at least
to computer systems where processors are separated from
memory and processors communicate with memory and
storage devices via communication buses and/or computer
networks. Further, the techniques disclosed herein can be
applied to computer systems 1n which processing capabili-
ties are integrated within memory/storage. For example, the
processing circuits, including executing units and/or regis-
ters of a typical processor, can be implemented within the
integrated circuits and/or the integrated circuit packages of
memory media to performing processing within a memory
device. Thus, a processor (e.g., 101) as discussed above and
illustrated 1n the drawings 1s not necessarily a central
processing unit 1n the von Neumann architecture. The pro-
cessor can be a unit integrated within memory to overcome
the von Neumann bottleneck that limits computing perfor-
mance as a result of a limit 1n throughput caused by latency
in data moves between a central processing unit and memory
configured separately according to the von Neumann archi-
tecture.

5

10

15

20

25

30

35

40

45

50

55

60

65

16

The description and drawings of the present disclosure are
illustrative and are not to be construed as limiting. Numer-
ous specific details are described to provide a thorough
understanding. However, 1n certain instances, well known or
conventional details are not described in order to avoid
obscuring the description. References to one or an embodi-
ment 1n the present disclosure are not necessarily references
to the same embodiment; and, such references mean at least
one.

In the foregoing specification, the disclosure has been
described with reference to specific exemplary embodiments
thereof. It will be evident that various modifications can be
made thereto without departing from the broader spirit and
scope as set forth in the following claims. The specification
and drawings are, accordingly, to be regarded 1n an 1llus-
trative sense rather than a restrictive sense.

What 1s claimed 1s:

1. A computer system, comprising:

a memory configured to store scrambled data;

a first processor coupled with the memory, the first

processor having:

a secure zone configured to store keys; and

an unscrambled zone configured to operate on
unscrambled data; and

a second processor coupled with the memory, wherein the

second processor 1s prevented from accessing the
unscrambled data;

wherein the unscrambled zone 1includes a memory address

register configured to store a virtual memory address.

2. The computer system of claim 1, wherein the first
processor 1s configured to unscramble the scrambled data in
response to an instruction using the virtual memory address
to load the scrambled data for operations within the
unscrambled zone.

3. The computer system of claim 2, wherein the
unscrambled zone includes an execution umt configured to
perform the operations on a data item located at the virtual
memory address stored in the memory address register.

4. The computer system of claim 2, wherein the virtual
memory address includes a field contaiming an object 1den-
tifier; and the first processor i1s configured to retrieve an
unscramble key based on the object 1dentifier.

5. The computer system of claim 4, wherein the secure
zone 1ncludes a key store; and the first processor 1s config-
ured to hash at least the object 1dentifier into an index and
use the index to retrieve an entry from the key store; wherein
the unscramble key 1s based on the entry.

6. The computer system of claim 3, wherein the entry
includes at least one of an indication of whether an object
represented by the object identifier 1s scrambled, a type of
scrambling of the object, a scramble key corresponding to
the unscramble key, or the unscramble key, or any combi-
nation thereof.

7. The computer system of claim 5, wherein the secure
zone Turther includes a collision chain configured to 1dentity
different entries for different object identifiers that are
hashed into the same index; and the first processor 1s
configured to i1dentily the entry using the collision chain.

8. The computer system of claim 4, wherein the first
processor 1s further configured to store at least one of a key
for a virtual machine hosted 1n the computer system, a key
for a user account, or a key for a runming process, or any
combination thereof.

9. The computer system of claim 4, wherein the scrambled
data 1s protected via an object key and at least one of a
virtual machine key, a user key, or a process key, or any
combination thereol, wherein the object key 1s associated

US 11,868,274 B2

17

with the object among a plurality of objects, the virtual
machine key 1s associated with a virtual machine among a
plurality of virtual machines, the user key 1s associated with
a user account among a plurality of user accounts; and the
process key 1s associated with a running process among a
plurality of running processes.

10. The computer system of claim 9, wherein the first
processor 1s configured to generate the unscramble key for
the scrambled data from:

the object key retrieved from the secure zone using the

object 1dentifier; and

the at least one of the virtual machine key, the user key,

or the process key, or any combination thereof.

11. The computer system of claim 9, wherein the first
processor 1s configured to generate the unscramble key
through scrambling the object key according to the at least
one of the virtual machine key, the user key, or the process
key, or any combination thereof.

12. The computer system of claim 1, further comprising:

a storage device configured to store the scrambled data,

wherein the scrambled data in the memory 1s loaded
from the storage device.

13. The computer system of claim 12, wherein the first
processor 1ncludes a scrambled zone having an internal
cache configured to store the scrambled data; and the second
processor 1s provided with access to the scrambled zone via
a cache coherence protocol.

14. The computer system of claim 13, wherein the first
processor and the second processor are packaged 1n a same
integrated circuit chip.

15. A method, comprising:

storing scrambled data 1n a memory of a computer sys-

tem,;

storing keys 1n a secure zone of a first processor coupled

with the memory 1n the computer system;

10

15

20

25

30

18

converting, by the first processor, the scrambled data into

unscrambled data;

operating, by the first processor, on the unscrambled data;

and
loading the scramble data from the memory into the
processor according to a virtual memory address;

wherein a second processor coupled with the memory 1n
the computer system 1s prevented from accessing the
unscrambled data.

16. The method of claim 15,

wherein the virtual memory address contains an object

identification; and

obtaining an unscramble key using the object 1dentifica-

tion.

17. The method of claim 16, wherein the unscramble key
1s specific for a user for which the first processor 1s executing
the 1nstructions.

18. A computer processor, comprising:

a memory providing a scrambled zone configured to store

scrambled data; and

a secure zone configured to store keys;

wherein the computer processor 1s configured to convert

the scrambled data into unscrambled data, stored 1n an
unscrambled zone, using the keys retrieved from the
secure zZone;

wherein the unscrambled zone 1includes a memory address

register configured to store a virtual memory address.

19. The computer processor of claam 18, wherein the
unscrambled data 1s an instruction, an address, or an operand
ol an 1nstruction.

20. The computer processor of claim 19, wherein the
scrambled data and the unscrambled data have a same set of
bits having diflerent orders from one another.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

