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SYSTEM, METHOD, AND COMPUTER
PROGRAM FOR DEFECT RESOLUTION

FIELD OF THE INVENTION

The present invention relates to handling defects detected
in computer systems.

BACKGROUND

Defects can be detected i computer systems during
testing or during production, but in any case associated with
the execution of some piece of code 1n the computer system.
A defect refers to an unintended functioning within the
computer system, and may be caused by an 1ssue 1n software
and/or hardware. Typically, defects are detected as a result of
an error being generated by the computer system or some
other unintended behavior being exhibited in the computer
system.

Many processes exist to detect and handle defects. How-
ever, since defects have many possible sources, there is
generally a significant amount of time that must be spent just
to 1dentily the correct source, let alone to then fix the defect
and rerun the relevant code. As a result of the amount of
work mvolved in handling defects, some defects may escape
detection and/or correction. In the case of defects detected
during testing, any unaddressed defects will end up 1n
production.

There 1s thus a need for addressing these and/or other
1ssues associated with the prior art.

SUMMARY

As described herein, a system, method, and computer
program are provided for defect resolution. Information
associated with a defect detected 1n a computer system 1s
received. The mformation 1s processed, using a first machine
learning model, to predict a source of the defect. The
information and the source of the defect are processed, using
a second machine learning model, to predict one or more
parameters for handling the defect. One or more actions are
caused to be performed to resolve the defect, based on the
predicted one or more parameters for handling the defect.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1illustrates a method for defect resolution, 1n
accordance with one embodiment.

FIG. 2 1llustrates a flow diagram of a system for defect
resolution, 1n accordance with one embodiment.

FIG. 3 illustrates a method for providing self-healing of
defects, 1n accordance with one embodiment.

FI1G. 4 1llustrates a flow diagram of a system for providing
seli-healing of defects, in accordance with one embodiment.

FIG. 5 illustrates a network architecture, in accordance
with one possible embodiment.

FIG. 6 illustrates an exemplary system, in accordance
with one embodiment.

DETAILED DESCRIPTION

FIG. 1 1illustrates a method for defect resolution, 1n
accordance with one embodiment. The method 100 may be
performed by any computer system(s) described below with
respect to FIGS. 5 and/or 6. In one example described
herein, the method 100 may be performed in the cloud, for
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example by one or microservices configured to provide
defect resolution, as described herein.

In operation 102, information associated with a defect
detected 1n a computer system 1s received. The “detect”
refers to an umntended functioning within the computer
system, which may be caused by an 1ssue 1n software and/or
hardware. In one embodiment, the defect may be detected as
an error. For example, the defect may be detected when the
computer system outputs an error. In an exemplary imple-
mentation, the error may occur during a testing automation
flow, which may be executed to test code within the com-
puter system). Of course, as another option, the error may
occur during normal execution of the code within the
computer system.

The information that 1s received 1n association with the
defect may include any type of information that 1s capable
of being used to resolve the defect. In one embodiment, the
information may include a description (e.g. textual descrip-
tion, category, etc.) of the defect. In another embodiment,
the information may include a log associated with detection
of the defect. In yet another embodiment, the information
may include a screenshot associated with detection of the
defect.

It should be noted that the information associated with the
efect may be recerved from any entity that detected the
efect. For example, the information may be received from
he same or different computer system, or even a service,
hat 1s operates to detect defects (e.g. via testing).

In operation 104, the information 1s processed, using a
first machine learning model, to predict a source of the
defect. The first machine learning model refers to a model
(e.g. regression model) that has been trained using a
machine learning algorithm to make predictions of a defect
source. The first machine learning model may be trained
using training data that imncludes historical information for
resolved defects. Accordingly, the information associated
with the defect may be mput to the first machine learming
model, which may then process the iput to output a
prediction of the source of the defect.

The source of the defect refers to any area of the computer
system 1n which the defect occurred, such as environmental,
data, functional, or maintenance. For example, the source
may refer to a part of the code 1n which the defect occurred.
In one embodiment, the first machine learning model may
classily the source of the defect from among a plurality of
classifications that include: environmental, data, functional,
and maintenance.

In operation 106, the mformation and the source of the
defect are processed, using a second machine learning
model, to predict one or more parameters for handling the
defect. The second machine learning model refers to a model
that has been trained using a machine learning algorithm to
make predictions of defect handling parameters. The second
machine learning model may be trained using training data
that includes the historical information for resolved detects.
Accordingly, the source of the defect, and possibly any of
the information associated with the defect, may be mput to
the second machine learning model, which may then process
the 1put to output a prediction of the one or more param-
cters for handling the defect.

The parameters for handling the defect refer to any
indicators that specity how the defect 1s to be handled (e.g.
how the defect 1s to be automatically resolved). In one
embodiment, the one or more parameters for handling the
defect may include a microservice to be used for handling
the defect. In another embodiment, the one or more param-
eters for handling the defect may include a healing function
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to execute for handling the defect. Accordingly, the second
machine learning model may classily the one or more
parameters for handling the defect from among a plurality of
classifications that include different microservices and/or
different handling functions.

For example, when the source of the defect 1s environ-
mental, the parameters may indicate a diflerent environment
topology 1n which the code should be executed. As another
example, when the source of the defect 1s data, the param-
cters may indicate a different data type on which the code
should be executed. As yet another example, when the
source ol the defect i1s functional, the parameters may
indicate a different business process flow to be used in
association with the code. As still yet another example, when
the source of the defect 1s maintenance, the parameters may
indicate to perform automatic learning to update automation
scripts.

In operation 106, one or more actions are caused to be
performed to resolve the defect, based on the predicted one
or more parameters for handling the defect. The actions refer
to any functions preconfigured for resolving defects. For
example, the actions may be performed by one of the
different microservices and/or different handling functions
specified by the parameters predicted for the defect.

To this end, in one embodiment, the one or more actions
to resolve the defect may include executing a healing
function specified by the one or more parameters. In one
embodiment, the healing function may be deployed to the
environment 1n which the defect was detected. As an option,
the method 100 may also include re-executing the code in
which the defect was detected, after performing the one or
more actions to resolve the defect. This re-execution may
ensure that the defect has been resolved (1.e. 1s not subse-
quently detected).

In an embodiment, the method 100 may include perform-
ing the one or more actions to resolve the defect. In another
embodiment, the method 100 may include causing another
entity to perform the one or more actions to resolve the
defect. Such other entity may be a different computer
system, or even a service, that 1s operates to resolve defects.
In any case, the actions may be automatically determined
based on the predicted parameters and the actions 1n turn
may be automatically performed to resolve the defect 1n an
automated manner (1.e. without human intervention).

The method 100 described herein may reduce the amount
of work mvolved 1n handling defects by utilizing machine
learning models that are able to predict both the defect
source and resolution parameters for use in resolving the
defect. Further, reducing the amount of work may eliminate
any defects from going unaddressed, and therefore may
prevent any defects from ending up 1n production of the code
(particularly where the defects are detected during testing of
the code).

More 1llustrative information will now be set forth regard-
ing various optional architectures and uses in which the
foregoing method may or may not be implemented, per the
desires of the user. It should be strongly noted that the
following information 1s set forth for illustrative purposes
and should not be construed as limiting in any manner. Any
of the following features may be optionally incorporated
with or without the exclusion of other features described.

FIG. 2 illustrates a flow diagram of a system 200 for
defect resolution, 1n accordance with one embodiment. As
an option, the system 200 may be implemented 1n the
context of the details of the previous figure and/or any
subsequent figure(s). Of course, however, the system 200
may be implemented 1n the context of any desired environ-
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ment. Further, the aforementioned definitions may equally
apply to the description below.

As shown, a defect detector 202 interfaces a defect
handling predictor 204 which 1n turn interfaces a defect
resolution handler 206. Each of these components 202-206
may be implemented 1n separate computer systems, one or
more of the same computer system, as separate services (€.g.
microservices ), 1n one or more of the same services, or any
combination thereof.

The defect detector 202 operates to detect defects 1n
computer systems. The defect detector 202 may be config-
ured to detect defects during normal code execution. As
another option, the defect detector 202 may perform testing
of code to detect defects. The defect detector 202 gathers
information associated with any detected defect, such as a
description of the defect, a log of the defect, a screenshot
associated with the defect, etc.

The defect handling predictor 204 operates to predict
parameters for handling defects detected by the defect
detector 202. The defect handling predictor 204 receives the
information associated with a detected defect from the
defect detector 202, and processes the mformation using a
first machine learning model 206 and a second machine
learning model 208 to predict the parameters. In particular,
the first machine learning model 206 processes the infor-
mation to predict a source of the defect, and then the second
machine learning model 208 processes the source of the
defect and optionally any of the information to predict
parameters for handling defect.

The defect handling predictor 204 may initially train the
first machine learming model 206 and the second machine
learning model 208 to make the aforementioned predictions.
The defect handling predictor 204 may also periodically
re-train the first machine learning model 206 and the second
machine learning model 208 when new data for resolved
defects 1s available for use as training data. This re-training
may improve the accuracy of the first machine learming
model 206 and the second machine learning model 208.

The defect resolution handler 210 operates to perform
actions to resolve the defects detected by the defect detector
202. The actions may be performed by executing microser-
vices and/or self-healing functions that are configured to
resolve the defects. In any case, the defect resolution handler
210 resolves a defect by performing one or more actions that
are determined based on the parameters predicted by the
defect handling predictor 204. In other words, 1n response to
the defect resolution handler 210 receiving, from the defect
handling predictor 204, parameters predicted for a defect,
the defect resolution handler 210 may determine one or
more actions that correspond to those parameters and may
then perform those actions to resolve the defect.

FIG. 3 illustrates a method 300 for providing self-healing
of defects, 1n accordance with one embodiment. As an
option, the method 300 may be carried out 1n the context of
the details of the previous figure and/or any subsequent
figure(s). Of course, however, the method 300 may be
carried out in the context of any desired environment.
Further, the aforementioned definitions may equally apply to
the description below.

In operation 302, machine learning models are trained.
With respect to operation 302, a first machine learning
model (e.g. item 206 of FIG. 2) 1s trained to make predic-
tions of defect source and a second machine learning model
(e.g. item 208 of FIG. 2) 1s trained to make predictions of
defect handling parameters. The machine learning models
may be tramned using training data that includes historical
information for resolved defects. As an option, the historical
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information may be cleaned and normalized using natural
language processing (NLP) to build a tokenized dictionary.
In one embodiment, the first machine learning model may be
a regression model.

In operation 304, a defect 1s detected 1n a flow. The flow
refers to an execution flow for code. The defect may be
detected by an error thrown during the execution of the code.

In operation 306, the defect 1s processed using the
machine learning models to predict a source of the defects
and parameters for handling the defect. In particular, the first
machine learning model processes mformation associated
with the defect to predict the source of the defect and the
second machine learning model processes the source of the
defect to predict the parameters for handling the defect.

In operation 308, actions are performed to resolve the
defect, based on the predicted parameters for handling the
defect. In other words, the defect 1s resolved 1n accordance
with the predicted parameters for handling the defect. The
defect may be resolved by correcting the code 1n which the
defect occurred.

In operation 310, the flow 1s rerun (1.e. the code 1s
re-executed). It may then be verified that the defect was in
tact resolved by the actions corresponding to the predicted
parameters. If the defect 1s determined to not be resolved, as
a result of rerunning the tlow, an alert may be provided to a
team that developed the portion of the code in which the
defect was detected (1.e. the source of the defect). If the
defect 1s determined to be resolved, as a result of rerunning
the flow, the method 300 may end with regard to that defect.

FIG. 4 illustrates a flow diagram of a system 400 for
providing self-healing of defects, in accordance with one
embodiment. As an option, the system 400 may be imple-
mented 1n the context of the details of the previous figure
and/or any subsequent figure(s). Of course, however, the
system 400 may be implemented in the context of any
desired environment. Further, the atorementioned defini-
tions may equally apply to the description below.

Information 402 associated with a detected defect 1s
collected. The information can include application images,
testing logs, etc. A microservices architecture 404 analyzes
the information using machine learning models (AI/ML
models) to predict a source of the defect and parameters for
handling the defect. An automatic health healing component
406 (shown as a bot) determines an automatic fix for the
defect, based on the parameters for handling the defect. The
parameters may 1ndicate which preconfigured automatic fix
1s to be implemented for resolving the defect.

A governance report 408 may be generated for the defect.
Further, a microservices execution 410 of the automatic fix
may be performed. Once the automatic fix has been 1mple-
mented by the microservices execution 410, an email may be
sent to the relevant development team with information
about the defect and the implementation of the automatic fix
for the defect.

FIG. 5 illustrates a network architecture 500, in accor-
dance with one possible embodiment. As shown, at least one
network 502 1s provided. In the context of the present
network architecture 500, the network 502 may take any
form including, but not limited to a telecommunications
network, a local area network (LAN), a wireless network, a
wide area network (WAN) such as the Internet, peer-to-peer
network, cable network, etc. While only one network 1s
shown, 1t should be understood that two or more similar or
different networks 502 may be provided.

Coupled to the network 502 1s a plurality of devices. For
example, a server computer 504 and an end user computer
506 may be coupled to the network 502 for communication
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purposes. Such end user computer 506 may include a
desktop computer, lap-top computer, and/or any other type
of logic. Still yet, various other devices may be coupled to
the network 502 including a personal digital assistant (PDA)
device 508, a mobile phone device 510, a television 512, etc.

FIG. 6 illustrates an exemplary system 600, 1n accordance
with one embodiment. As an option, the system 600 may be
implemented 1n the context of any of the devices of the
network architecture 500 of FIG. 5. Of course, the system
600 may be implemented 1n any desired environment.

As shown, a system 600 1s provided including at least one
central processor 601 which 1s connected to a communica-
tion bus 602. The system 600 also includes main memory
604 [e.g. random access memory (RAM), etc.]. The system
600 also includes a graphics processor 606 and a display
608.

The system 600 may also include a secondary storage
610. The secondary storage 610 includes, for example, solid
state drive (SSD), flash memory, a removable storage drive,
ctc. The removable storage drive reads from and/or writes to
a removable storage unit 1n a well-known manner.

Computer programs, or computer control logic algo-
rithms, may be stored 1n the main memory 604, the second-
ary storage 610, and/or any other memory, for that matter.
Such computer programs, when executed, enable the system
600 to perform various functions (as set forth above, for
example). Memory 604, storage 610 and/or any other stor-
age are possible examples of non-transitory computer-read-
able media.

The system 600 may also include one or more commu-
nication modules 612. The communication module 612 may
be operable to facilitate communication between the system
600 and one or more networks, and/or with one or more
devices through a variety of possible standard or proprietary
communication protocols (e.g. via Bluetooth, Near Field
Communication (NFC), Cellular communication, etc.).

As used here, a “computer-readable medium” includes
one or more of any suitable media for storing the executable
instructions of a computer program such that the instruction
execution machine, system, apparatus, or device may read
(or fetch) the instructions from the computer readable
medium and execute the instructions for carrying out the
described methods. Suitable storage formats include one or
more of an electronic, magnetic, optical, and electromag-
netic format. A non-exhaustive list of conventional exem-
plary computer readable medium includes: a portable com-
puter diskette; a RAM; a ROM; an erasable programmable
read only memory (EPROM or flash memory); optical
storage devices, including a portable compact disc (CD), a

portable digital video disc (DVD), a high definition DVD
(HD-DVD™), a BLU-RAY disc; and the like.

It should be understood that the arrangement of compo-
nents illustrated in the Figures described are exemplary and
that other arrangements are possible. It should also be
understood that the various system components (and means)
defined by the claims, described below, and illustrated in the
vartous block diagrams represent logical components in
some systems configured according to the subject matter
disclosed herein.

For example, one or more of these system components
(and means) may be realized, 1n whole or 1n part, by at least
some ol the components illustrated in the arrangements
illustrated 1n the described Figures. In addition, while at
least one of these components are implemented at least
partially as an electronic hardware component, and therefore
constitutes a machine, the other components may be 1mple-
mented 1n software that when included in an execution
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environment constitutes a machine, hardware, or a combi-
nation of software and hardware.

More particularly, at least one component defined by the
claims 1s 1mplemented at least partially as an electronic
hardware component, such as an instruction execution
machine (e.g., a processor-based or processor-containing
machine) and/or as specialized circuits or circuitry (e.g.,
discreet logic gates interconnected to perform a specialized
function). Other components may be implemented 1n soit-
ware, hardware, or a combination of software and hardware.
Moreover, some or all of these other components may be
combined, some may be omitted altogether, and additional
components may be added while still achieving the tunc-
tionality described herein. Thus, the subject matter described
herein may be embodied in many different variations, and all
such varnations are contemplated to be within the scope of
what 1s claimed.

In the description above, the subject matter 1s described
with reference to acts and symbolic representations of
operations that are performed by one or more devices, unless
indicated otherwise. As such, 1t will be understood that such
acts and operations, which are at times referred to as being
computer-executed, include the manipulation by the proces-
sor of data 1n a structured form. This manipulation trans-
forms the data or maintains it at locations in the memory
system of the computer, which reconfigures or otherwise
alters the operation of the device mn a manner well under-
stood by those skilled in the art. The data 1s maintained at
physical locations of the memory as data structures that have
particular properties defined by the format of the data.
However, while the subject matter 1s being described in the
foregoing context, it 1s not meant to be limiting as those of
skill in the art will appreciate that several of the acts and
operations described heremafter may also be implemented 1n
hardware.

To facilitate an understanding of the subject matter
described herein, many aspects are described in terms of
sequences of actions. At least one of these aspects defined by
the claims 1s performed by an electronic hardware compo-
nent. For example, 1t will be recognized that the various
actions may be performed by specialized circuits or cir-
cuitry, by program instructions being executed by one or
more processors, or by a combination of both. The descrip-
tion herein of any sequence of actions 1s not intended to
imply that the specific order described for performing that
sequence must be followed. All methods described herein
may be performed in any suitable order unless otherwise

indicated herein or otherwise clearly contradicted by con-
text.

The use of the terms “a” and “an” and “the” and similar
referents 1in the context of describing the subject matter
(particularly 1n the context of the following claims) are to be
construed to cover both the singular and the plural, unless
otherwise indicated herein or clearly contradicted by con-
text. Recitation of ranges of values herein are merely
intended to serve as a shorthand method of referring indi-
vidually to each separate value falling within the range,
unless otherwise indicated herein, and each separate value 1s
incorporated 1nto the specification as 11 1t were imndividually
recited herein. Furthermore, the foregoing description 1s for
the purpose of illustration only, and not for the purpose of
limitation, as the scope of protection sought 1s defined by the
claims as set forth hereinafter together with any equivalents
thereol entitled to. The use of any and all examples, or
exemplary language (e.g., “such as™) provided herein, is
intended merely to better illustrate the subject matter and
does not pose a limitation on the scope of the subject matter
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unless otherwise claimed. The use of the term “based on”
and other like phrases indicating a condition for bringing
about a result, both 1n the claims and 1n the written descrip-
tion, 1s not mtended to foreclose any other conditions that
bring about that result. No language in the specification
should be construed as indicating any non-claimed element
as essential to the practice of the invention as claimed.

The embodiments described herein included the one or
more modes known to the inventor for carrying out the
claimed subject matter. Of course, variations of those
embodiments will become apparent to those of ordinary skill
in the art upon reading the foregoing description. The
inventor expects skilled artisans to employ such vanations
as appropriate, and the inventor intends for the claimed
subject matter to be practiced otherwise than as specifically
described herein. Accordingly, this claimed subject matter
includes all modifications and equivalents of the subject
matter recited 1n the claims appended hereto as permitted by
applicable law. Moreover, any combination of the above-
described elements 1 all possible vanations thereof 1is
encompassed unless otherwise indicated herein or otherwise
clearly contradicted by context.

While various embodiments have been described above,
it should be understood that they have been presented by
way ol example only, and not limitation. Thus, the breadth
and scope of a preferred embodiment should not be limited
by any of the above-described exemplary embodiments, but
should be defined only 1in accordance with the following
claims and their equivalents.

What 1s claimed 1s:

1. A non-transitory computer-readable media storing com-
puter instructions which when executed by one or more
processors of a device cause the device to:

detect an error output by a computer system during

execution of code within the computer system, wherein
the error 1s 1indicative of a defect within the code;

in response to detecting the error, receive information

describing the defect;

process the mformation, using a first machine learning

model, to predict a source of the defect, wherein the
source 1s a part ol the code in which the defect
occurred;

process the information and an i1dentifier of the source of

the defect, using a second machine learning model, to
predict one or more parameters for handling the defect,
wherein the second machine learning model predicts
the one or more parameters for handling the defect
from among a plurality of classifications that include
different microservices and different handling func-
tions; and

cause one or more actions to be performed to resolve the

defect, using the predicted one or more parameters for
handling the defect.

2. The non-transitory computer-readable media of claim
1, wherein the error occurs during a testing automation flow
being executed to test the code.

3. The non-transitory computer-readable media of claim
1, wherein the information includes a log associated with the
defect.

4. The non-transitory computer-readable media of claim
1, wherein the information includes a screenshot associated
with the defect.

5. The non-transitory computer-readable media of claim
1, wherein the first machine learning model classifies the
source of the defect from among a plurality of classifications
that include:

environmental,
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data,

functional, and

maintenance.

6. The non-transitory computer-readable media of claim
5, wherein when the source of the defect 1s environmental,
the one or more parameters indicate a diflerent environment
topology 1n which the code should be executed.

7. The non-transitory computer-readable media of claim
5, wherein when the source of the defect 1s data, the one or
more parameters indicate a diflerent data type on which the
code should be executed.

8. The non-transitory computer-readable media of claim
5, wherein when the source of the defect 1s functional, the
one or more parameters indicate a different business process
flow to be used in association with the code.

9. The non-transitory computer-readable media of claim
5, wherein when the source of the defect 1s maintenance, the
one or more parameters indicate to perform automatic
learning to update automation scripts.

10. The non-transitory computer-readable media of claim
1, wherein handling the defect includes automatically
resolving the defect.

11. The non-transitory computer-readable media of claim
1. wherein the device i1s further caused to:

train the first machine learning model to make predictions

of defect source, and

train the second machine learning model to make predic-

tions of defect handling parameters.

12. The non-transitory computer-readable media of claim
11, wherein the first machine learning model and the second
machine learning model are trained using training data that
includes historical information for resolved defects.

13. The non-transitory computer-readable media of claim
1, wherein the first machine learning model 1s a regression
model.

14. The non-transitory computer-readable media of claim
1, wherein the device 1s further caused to:

re-execute code in which the defect was detected, after

performing the one or more actions to resolve the
defect, to ensure that the defect has been resolved.

15. The non-transitory computer-readable media of claim

1, wherein the one or more actions are performed by one of

"y

the different microservices or one of the different handling
functions specified 1n the one or more parameters.

16. A method, comprising:

at a computer system:
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detecting an error output by a computer system during
execution of code within the computer system, wherein
the error 1s indicative of a defect within the code;

in response to detecting the error, receiving information
describing the defect;

processing the information, using a first machine learning
model, to predict a source of the defect, wherein the
source 1s a part ol the code in which the defect
occurred:

processing the information and an i1dentifier of the source
of the defect, using a second machine learning model,
to predict one or more parameters for handling the
defect, wherein the second machine learning model
predicts the one or more parameters for handling the
defect from among a plurality of classifications that
include different microservices and different handling
functions; and
causing one or more actions to be performed to resolve the
defect, using the predicted one or more parameters for
handling the detfect.
17. A system, comprising:
a non-transitory memory storing instructions; and
one or more processors in communication with the non-
transitory memory that execute the instructions to:
detect an error output by a computer system during execu-
tion of code within the computer system, wherein the error
1s 1indicative of a defect within the code;:
in response to detecting the error, receive information
describing the defect;
process the information, using a first machine learning
model, to predict a source of the defect, wherein the
source 1s a part ol the code in which the defect
occurred;
process the mformation and an i1dentifier of the source of
the defect, using a second machine learning model, to
predict one or more parameters for handling the defect,
wherein the second machine learning model predicts
the one or more parameters for handling the defect
from among a plurality of classifications that include
different microservices and different handling func-
tions; and
cause one or more actions to be performed to resolve the

defect, using the predicted one or more parameters for
handling the defect.
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