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502
Deternune current location and heading of vehicle

506

Wait until
{ocation

Will vehicle cross
a region boundary within a D
-hl‘ eshold distance :(Qr tim_e_}‘ el

504 | i
NO-#~ changes by at

 {east a threshold
' distance |

YES

Search model data store for new prediction model parameters |
assoctated with a difterent region the vehicle 1s expected to enter |
after crossing the boundary '

508

- Use fallback

| model parameters
NO - as the new

- prediction model
| parameters

" Found new
prediction model
_ parameters? -

510

YES

514 - Load the new prediction model parameters from data store into |

MEeMmory

516 — Switch a prediction model’s configuration to the new prediction |
model parameters when the vehicle reaches the region boundary |
(or enters the different region)

J13 Generate one or more inferences based on the new prediction

model parameters using the prediction model

FIG. 5
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602 ~ Determine current location and a first predicted trajectory of
' vehicle for a predetermined duration of time using a current |«
prediction modeti '

606

| location
> N chaﬁ.ges by at :
| least a threshold |
' distance i

. Is vehicle predicted -
_tocross aregion boundary withmn the
- duration of time? "

604

608

610 €  617 -

b Use taliback
F model parameters
e NO ............ B 1S 1116 new

~ Found new
) prediction model |
T~—_parameters? "

YES

614 —

616 — | Determine a second predicted trajectory of the vehicle for the
1 predetermined duration of time using the new prediction model -
' parameters r

618

[dentify a location on the furst predicted trajectory that s a
minimum distance from the second predicted trajectory

prediction model parameters when the vehicle reaches the

identified location

FIG. 6
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702

{ using one or more first sets of model parameters associated with
‘the regions, wherein the performance assessment for cach region
: is based on sensor data captured m the region

704 -

706 or more regions for which the assessed

708 L
For each identified region:

" Is the region already ™~_
_associated with regton-specific
™~ _model p:arameters?. g

718

Store an association between the region and a L
._ " . Divide the region into two or
region-specific model with new parameters to

MOre New regions

Remove association between the
region and the region-specific
model and parameters

For each new region, store an association between the |

new region and a new region-specific model with |
parameters to be used for generating mferences m the
region :

FIG. 7 o | Train the new region-specific
- models
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GEOLOCALIZED MODELS FOR
PERCEPTION, PREDICTION, OR PLANNING

BACKGROUND

A modern vehicle may include one or more sensors or
sensing systems for monitoring the vehicle and environ-
ment, and may use data gathered from the sensors to make
inferences related to the present and future states of the
environment. These inferences may be used in tasks related
to detection and classification of objects in the environment
and planning of routes for the vehicle. Inferences may be
made using statistical models, which may be configured,
using appropriate parameters, to generate the inferences
based on representations of the environment. The param-
cters of the statistical models may be configured based on
training data that specifies correspondences between par-
ticular 1puts, e.g., environment representations, and out-
puts, e.g., inferences such as object classifications or routes.
The models may subsequently be used to generate infer-
ences based on sensor data collected as the vehicle drives
through new, previously-unseen environments. The models
may 1dentily outputs that correspond to inputs similar to the
ones represented by the sensor data, and the identified
outputs may be the inferences generated for the sensor data.

For example, the vehicle may use one or more cameras or
L1DAR to detect objects in the environment surrounding the
vehicle. The vehicle may use one or more computing
systems (€.g., an on-board computer) to collect and process
data from the sensors. The computing systems may generate
inferences based on the data using statistical models stored
in on-board storage space or downloaded from a cloud using
a wireless connection, and use the inferences to operate the
vehicle.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A illustrates an example vehicle environment that
includes a busy intersection with vehicles and numerous
pedestrians.

FIG. 1B illustrates an example map divided into regions.

FIG. 1C 1llustrates an example map divided into partially-
overlapping regions associated with models.

FIG. 1D illustrates an example map associated with a
single model and divided into regions having associated
performance assessments.

FIG. 1E illustrates an example map divided into regions
associated with models and performance assessments.

FIG. 1F 1llustrates an example map divided into regions
and smaller sub-regions.

FIG. 1G illustrates an example map divided 1nto regions
and smaller sub-regions associated with models and perfor-
mance assessments.

FIG. 1H illustrates an example map divided into regions
ol varying sizes.

FIG. 2A 1illustrates an example map associated with a
single model and divided into regions that correspond to
road segments and intersections.

FIG. 2B illustrates an example map associated with a
single model and divided into regions that correspond to

[

road segments and intersections having associated perfor-
mance assessments.

FIG. 2C 1llustrates an example map divided into regions
that correspond to road segments and intersections associ-
ated with models and having associated performance assess-
ments.
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FIG. 2D illustrates an example map divided into regions
and smaller sub-regions that correspond to road segments

associated with models and having associated performance
assessments.

FIG. 3 illustrates example perception, prediction, and
planning modules that use models associated with map
regions.

FIG. 4 illustrates an example block diagram of a system
for loading and activating geolocalized models.

FIG. 5 illustrates an example method for pre-loading
prediction model configurations when a vehicle approaches
a region boundary configuration and switching to the pre-
loaded parameters when the vehicle reaches the boundary.

FIG. 6 illustrates an example method for switching
between prediction model configurations associated with
different map regions at a minimum distance between tra-
jectories predicted using the model configurations.

FIG. 7 illustrates an example method for associating
region-specilic sets of model parameters with map regions
based on model performance.

FIG. 8 illustrates an example situation for a data-gather-
ing vehicle system to collect vehicle data of a nearby vehicle
and contextual data of the surrounding environment.

FIG. 9 illustrates an example block diagram of a trans-
portation management environment for matching nde
requestors with autonomous vehicles.

FIG. 10 illustrates an example block diagram of an
algorithmic navigation pipeline.

FIG. 11 1illustrates an example computer system.

DESCRIPTION OF EXAMPLE EMBODIMENTS

In the following description, various embodiments will be
described. For purposes of explanation, specific configura-
tions and details are set forth 1n order to provide a thorough
understanding of the embodiments. However, 1t will also be
apparent to one skilled 1n the art that the embodiments may
be practiced without the specific details. Furthermore, well-
known features may be omitted or simplified 1n order not to
obscure the embodiment being described. In addition, the
embodiments disclosed herein are only examples, and the
scope of this disclosure 1s not limited to them. Particular
embodiments may include all, some, or none of the com-
ponents, elements, features, functions, operations, or steps
of the embodiments disclosed above. Embodiments accord-
ing to the invention are in particular disclosed 1n the attached
claims directed to a method, a storage medium, a system and
a computer program product, wherein any feature mentioned
in one claim category, e.g., method, can be claimed 1n
another claim category, e.g., system, as well. The depen-
dencies or references back in the attached claims are chosen
for formal reasons only. However, any subject matter result-
ing from a deliberate reference back to any previous claims
(1n particular multiple dependencies) can be claimed as well,
so that any combination of claims and the features thereof
are disclosed and can be claimed regardless of the depen-
dencies chosen in the attached claims. The subject-matter
which can be claimed comprises not only the combinations
of features as set out 1n the attached claims but also any other
combination of features in the claims, wherein each feature
mentioned 1n the claims can be combined with any other
feature or combination of other features in the claims.
Furthermore, any of the embodiments and features described
or depicted herein can be claimed 1n a separate claim and/or
in any combination with any embodiment or {feature
described or depicted herein or with any of the features of
the attached claims.
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FIG. 1A illustrates an example vehicle environment 100
that includes a busy intersection with vehicles 107 and
numerous pedestrians 108. A computing system may use
various models, referred to herein as machine-learning mod-
cls, that have been trammed to perform tasks related to
controlling a vehicle’s operation. The tasks may include
perception-related tasks, prediction-related tasks, and plan-
ning-related tasks, among others. These models are ordinar-
ily tramned to infer results 1n environments that are suili-
ciently similar to other environments (on which the model
has been trained) so that the model can 1dentity the correct
results. The similarity between two environments may be
determined by comparing representations of the two envi-
ronments using a suitable metric, such as the positions,
shapes, sizes, or number of particular features i each of the
environments. It 1s difficult to train generalized models to
recognize unusual environments or to know how to respond
appropriately to unusual circumstances. Unusual environ-
ments may be, for example, environments that have one or
more unusual features, road conditions, objects, and/or
situations. Unusual environments may have one or more
features 1n common with typical environments, such as the
same types ol objects, same types of roads, same types of
traflic patterns, and so on. Thus, an unusual environment
may differ from typical environments in at least one char-
acteristic, such as having an unusual feature, road condition,
object, situation, road type, traflic pattern, or the like, while
having other characteristics that are the same as or similar to
features of typical environments. For example, the vehicle
environment 100 shown in FIG. 1A includes several pedes-
trians 106 located 1n trathc lanes of the streets, which are
unusual locations for pedestrians. Further, the vehicle envi-
ronment 100 includes a diagonal crosswalk across an inter-
section, which may be an unusual feature. Pedestrians are
likely to be located on the diagonal crosswalk, particularly
when the tratlic signal permits them to use the crosswalk.
The relative rarity of unusual environments causes difliculty
in training generalized machine-learning models to recog-
nize them and respond to them appropriately. Generalized
machine-learning models are trained based on many differ-
ent environments where the majority of events/training data
are not unusual features or events. As such, the generalized
models tend to be better at recognizing and responding to the
usual, commonly-occurring environments. This can contlict
with the goal of recognizing and responding to the specifics
of local environments. It 1s difhicult to train generalized
models to make correct inferences for both typical and
unusual environments. Further, machine-learning models
that are generalized for different environments are designed
to recognize patterns that occur at different environments in
different geographic locations. Typical environments or fea-
tures can be expected to be more likely to occur at multiple
different geographic locations than would be unusual envi-
ronments or features. Thus, machine-learning models may
be trained to work well globally, e.g., at numerous different
locations and/or at different locations that are geographically
distributed across large distances. Tramning a globalized
model on “local” environments or features that are specific
to particular locations can produce overfitting, 1n which a
model performs well 1n a particular location but poorly in
other locations.

For example, prediction models may predict future loca-
tions or movement (e.g., trajectories) ol objects detected in
the environment. The locations of pedestrians aflects the
performance of prediction models. Prediction models that
are not necessarily traimned on the unusual environments of
intersections having diagonal crosswalks may make predic-
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tions about the movement or locations of pedestrians that are
different from those a human driver or prediction models
trained on itersections having diagonal crosswalks would
make. Further, prediction models that are trained on streets
or intersections having few pedestrians may make predic-
tions that are different from those a human driver or pre-
diction models trained on streets or intersections having
pedestrians would make. For example, a generalized pre-
diction model may be unable to predict the trajectories of
pedestrians 106 located in the driving lanes (e.g., no pre-
diction), or may predict partially incorrect (e.g., correct
direction but too fast or to slow) or completely incorrect
(e.g., wrong direction and speed) trajectories for the pedes-
trians 106. These diflerent predictions may be partially or
completely incorrect, and may result 1in less-eflicient or
incorrect vehicle operations.

Perception models may perform perception-related tasks

such as i1dentifying the locations and types of objects 1n the
environment such as the pedestrian 106 and vehicle 107.
Perception tasks may be affected by lighting conditions,
which can be related to the vehicle environment. For
example, 1 the vehicle environment 100, the sun 108 may
be very bright. The light of the sun 108 may be blocked by
obstructions 1n the environment, such as buildings, at certain
times. Thus, the vehicle environment 100 may have unusual
lighting characteristics that are not used as factors by models
when making perception-related inferences. A model that 1s
not trained on such local lighting conditions may identity or
classily objects diflerently from a human or a model that 1s
trained on such lighting conditions, since 1image recognition
operations may be affected by the bright light from the sun
108. These different object identifications or classifications
may be incorrect, and may result 1n less-eflicient or incorrect
vehicle operations.
Planning models may perform planning-related tasks such
as determining paths for a vehicle to follow. A planning
model may 1dentily a set of potential maneuvers or trajec-
tories to take 1n the intersection of the vehicle environment
100, and may also identify corresponding likelihoods that
cach trajectory should be performed. A planning module of
the vehicle system (or another module) may select one of the
trajectories for use, e.g., the trajectory having the highest
likelihood. The planning model may identity these potential
trajectories and their likelithoods based on the topology of
the intersection, which may include the diagonal crosswalk,
and/or the locations of the pedestrian 106 and vehicle 107.
For example, the planning model may have been trained or
otherwise configured to 1dentily potential trajectories based
on 1ntersections that do not have diagonal crosswalks. Upon
encountering unusual environments such as the diagonal
crosswalk, such a planning model may identity potential
trajectories that are different from those a human driver or a
planning model trained or otherwise configured to process
the unusual environment (e.g., intersections having diagonal
crosswalks) would make. These different identified trajec-
tories may be incorrect, and may result in less-eflicient or
incorrect vehicle operations.

These problems training generalized models to make
correct 1nferences for both typical and unusual vehicle
environments are dithicult to solve because, for example,
including the unusual vehicle environments in the training
data with suflicient weight (e.g., number of example envi-
ronments) to produce a model that produces correct inier-
ences for the unusual environments can cause overfitting
errors 1n which the model produces incorrect inferences for
the typical environments. Thus, it 1s diflicult to train gener-
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alized perception, prediction, or planming models to make
correct inferences for both typical and unusual environ-
ments.

The performance of the model, e.g., how well the model
performs 1ts tasks, may be related to how similar the
newly-encountered environments are to the environments
used to train the model. Thus, the models are ordinarily
trained on substantial quantities of data that are, 1n aggre-
gate, similar to the average (e.g., common) vehicle environ-
ments that are expected to be encountered frequently. If the
training data 1s not sufliciently specific, e.g., contains few
pedestrians, then the models may produce underfitting
errors. I1 the traiming data 1s too specific, €.g., contains many
examples that are substantially different from the average
vehicle environment, then the models may produce overtit-
ting errors. Thus, to produce models that perform well 1n
commonly-encountered environments, tramning processes
often use training data that 1s similar to the commonly-
encountered environments, and attempt to mimmize over-
fitting and underfitting errors. However, training a general-
1zed model to perform well for unusual environments that
are rare and for commonly-encountered environments is
difficult and may not be feasible.

FIG. 1B 1llustrates an example map divided into regions.
In particular embodiments, machine-learning models that
perform tasks such as perception, prediction, or planning can
be trained and used 1n map regions in which unusual or rare
environments may be expected, while other generalized
models can be used in other regions. Additionally and/or
alternatively, separate localized machine-learning models
can be trained for each road segment that a vehicle may
travel without the use of a “generalized” model. Dividing the
map 104 into regions 111-116, which may be, e.g., geo-
graphical areas, road segments, or the like, training regions-
specific models on one or more of the regions 111-116
(instead of on the entire map 104), and using the region-
specific models to make inferences i1n their respective
regions provides a solution to the problem of traiming
generalized perception, prediction, or planning models to
make correct inferences for both typical and unusual envi-
ronments. In particular embodiments, the map 104 may be
divided into any number of regions. One or more of the
regions may subsequently be associated with corresponding
region-specific models (as shown 1n FIG. 1C). The region-
specific models may be trained based on data associated
with the region. Subsequent to being trained, each region-
specific model may be used to make inferences when the
vehicle 1s 1n the region associated with that model, e.g., to
make inferences related to perception, predictions, and/or
planning for vehicles located in the model’s associated
region. The regions with which the generalized model 1s
associated may be, for example, regions having a relatively
large number of typical environments 1n which the gener-
alized model 121 performs well (e.g., above a threshold
performance). Regions that are associated with the general-
1zed model are not ordinarily associated with a region-
specific model. A region-specific model may be associated
with a region or feature that 1s unusual 1n comparison to
other features or regions. Training a model specifically for
an unusual region may produce a model that performs better
than a generalized model 1n the unusual region. Region-
specific models may be associated with regions having a
relatively large number of unusual environments or features
in which the generalized model 121 does not perform well
(e.g., below a threshold performance). A vehicle may use a
first model associated with a first region to make inferences
while the vehicle 1s located in the first region. When the
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6

vehicle moves 1nto a second region, the vehicle may switch
to a second model associated with the second region, and use
the second model to make inferences while the vehicle 1s
located i the second region. In this way, inferences are
made using models specifically trained on the regions, and
unusual environments or features can be handled by the
models without aflecting the generalized model’s perfor-
mance in other regions.

Although overfitting 1s typically a problem, particular
embodiments may benefit from the use of overfitting 1n
geographic regions. The region-specific models have thus
been trained specifically on their associated regions, and
may be overfitted to the features and events that are specific
to their associated regions 1in comparison to other regions of
the map. However, since the vehicle uses each model 1n the
model’s associated regions, but not 1n other regions, each
model produces accurate results 1 its associated region.
Further, each model may produce results that are more
accurate than a generalized model that has been trained on
larger regions, because the models for specific regions can
be trained to make inferences based on unusual vehicle
environments 1n their associated regions that are rare 1n
other regions. Thus, using models tramned for specific
regions when the vehicle 1s located 1n those regions has
advantages over generalized models trained for common
regions because the region-specific models can generate
correct results 1n unusual regions. The regions-specific mod-
cls advantageously use localized training that would cause
overfitting errors 1n generalized models, without the disad-
vantages of localized training, since each region-specific
model 1s not ordinarily used 1n other regions.

In particular embodiments, models may be trained using
data that represents particular input scenarios, such as par-
ticular vehicle environments, e.g., scenes, containing roads,
intersections, vehicles, pedestrians, and other objects, and
particular corresponding outputs, such as subsequent move-
ment of the objects or actions that the vehicle performs. A
trained model may be represented as a set of parameters,
¢.g., weights, determined during the training process. The
trained model may then perform tasks such as perception,
prediction, and planning in newly-encountered environ-
ments by determining the appropnate outputs for the newly-
encountered environments according to the model’s train-
ing. For example, a prediction model may predict the likely
current or future driving behavior of a particular nearby
vehicle based on 1ts past behavior. The prediction model
may be, for example, a neural network model including a
number ol weight factors and parameters to be adjusted
during the training process. The prediction model may be
trained using past driving behavior data collected by, for
example, a fleet of data-gathering vehicles. During the
training process, a number of weighting factors of the
prediction model may be adjusted based on comparisons
between the known behaviors of the observed vehicles (the
ground truth) and the predicted behaviors of those vehicles
generated using the current weighting factors of the predic-
tion model.

In particular embodiments, the switching of models intro-
duced above may be performed when the vehicle enters the
second region (e.g., by crossing a boundary between the first
and second regions). However, the first and second models
may produce substantially different results for the same or
similar environments, so switching abruptly between models
may result in unexpected or undesirable vehicle behavior,
such as a sudden change 1n speed or heading. Thus, one or
more smoothing techniques may be used to reduce the
difference 1n results when the model switch occurs. For
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example, region boundaries may be extended so that each
region partially overlaps each adjacent region, and the
training ol the models associated with each region may
include the overlapping areas. The switch between models
may be performed when the vehicle is in the overlapping >
region, thereby reducing or eliminating abrupt changes in
vehicle operation. As another example smoothing technique,
when the vehicle 1s 1n a first region, heading toward a second
region, and within a threshold distance of the second region,
first and second prediction models associated with the first
and second regions, respectively, may be used to generate
first and second predicted trajectories for the vehicle. The
trajectories may be compared to identity a minimum dis-
tance between them, and the switch between models may
then be made when the vehicle 1s at the location of the
mimmum distance.

In particular embodiments, region-specific models may be
associated with regions based on the performance of other
models associated with larger enclosing regions. When the 2¢
performance of a model associated with a larger region 1s
below a performance threshold, then the larger region may
be divided into two or more sub-regions, and new region-
specific models may be associated with and trained for each
new sub-region. The sub-regions may be equal-size sub- 25
regions, or may have sizes or shapes based on topological
teatures of the map, or based on other features such as traflic
flow. Note that the term sub-region 1s used for explanatory
purposes to refer to the result of dividing a larger region, and
a sub-region may otherwise be understood as being the same 30
as a region, so the terms region and sub-region may be used
interchangeably.

In particular embodiments, a computing system may
include modules for different types of tasks such as percep-
tion, prediction, and planming. Diflerent tasks can mvolve 35
different types of models, which can be trained differently,
so the process of creating region-specific models can pro-
duce different region-specific models (which can be mapped
to different map regions) for each type of task. As a result,
cach of the computing system modules may be associated 40
with a different set of inference models. The perception
module may be associated with a set of perception models,
the prediction module can be associated with a set of
prediction models, and the planning module can be associ-
ated with a set of planming models. Each diflerent set of 45
inference modules may include one or more region-speciiic
models that are trained to perform type of task associated
with the set of models. The perception models can include,
¢.g., three region-specific perception models associated with
three corresponding regions of a map. The prediction models 50
can include, e.g., four region-specific prediction models
associated with four corresponding regions of the map. The
planning models can include, e.g., three region-specific
planning models associated with three -corresponding
regions of the map. These sets of perception models, pre- 55
diction models, and planning models, and their correspond-
Ing map regions, may be generated by a process that
identifies map regions to be associated with inference mod-
¢ls, trains the inference models based on the associated map
regions, and, 1I appropniate (e.g., to improve model perfor- 60
mance), splits map regions into multiple sub-regions having,
different sub-region-specific inference models. As a result of
using different inference models with each type of task, the
models for a particular type of task use different region-
specific models than other tasks. As the map regions may be 65
generated based on the region-specific models (e.g., on the
performance of the region-specific models), each type of
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task may have map regions that are shaped and arranged
differently than the map regions for the other types of tasks.

The map 104 1s divided 1nto six regions 111-116 of equal
s1ze. The regions are separated by boundanies. Each region
111-116 1s shown as being enclosed by a rectangle having a
dashed line. The rectangles formed by the dashed lines are
shown as being slightly smaller than the areas of the regions
111-116 for purposes of illustration and labeling of the
regions. However, the regions 111-116 cover the entire map
104 1n this example, and the region boundaries are shown as
solid lines. The map 104 may be divided into any suitable
number of regions ol any suitable sizes or shapes according
to any suitable criteria or map division (e.g., partitioning)
technique. Example map division techniques that may be
used include dividing into a specified number of equal-size
regions, dividing into regions of specified sizes, dividing
into regions of random size and shape, subject to constraints
such as minimum and maximum area limits, number of
sides, angles, or curves per region, and the like, dividing 1nto
regions according to map topology, or dividing into regions
based on other characteristics of the regions. For example,
one or more regions may conform to the shapes of corre-
sponding roads, road intersections, lanes, or other features of
the map 104. Thus, for example, a different region may be
created for each road segment having a length between a
minimum length and a maximum length. Each region for a
road segment may have the same boundaries as the road
segment, or may have boundaries that are a predetermined
distance from the road segment, so that the shape of the
region may be similar to but larger than the shape of the road
segment. As another example, a region may be created for
cach intersection that satisfies criteria such as being of at
least a minimum size (e.g., square units of area), having at
least a minimum amount of traffic flow, having at least a
minimum number of lanes, and so on. Each region for an
intersection may have the same boundaries as the intersec-
tion, or may enclose an area larger or smaller than the
intersection, €.g., a rectangle, bounding box, or circle that
encloses the intersection. In other examples, regions may be
created based on the density of roads, intersections, build-
ings, houses, and/or other map features. As an example, an
area ol at least a threshold size (e.g., square units of area)
having less than a threshold density of roads may form a first
region, and an adjacent area having more than the threshold
density of roads and less than a threshold maximum region
size¢ may form a second region. Although particular
examples of dividing maps 1nto regions are described herein,
any suitable technique may be used to divide a map into
regions. As another example, a map or a region of a map may
be divided, based on characteristics of the map or region,
into two or more regions, which may be referred to herein
as sub-regions. The characteristics may include map infor-
mation such as the types of map features, e.g., freeway,
freeway on-ramp or ofl-ramp, highway, city street, neigh-
borhood/residential street, trathic circle, crosswalk, school,
park, shopping center, business district, unpaved road, speed
limit (on roads), bridge, ferry, parking lot, and so on. The
characteristics may alternatively or additionally include
information that changes more frequently, such as traflic
conditions, average speed on roads, presence ol school
zones, presence ol road construction or road closures, acci-
dent reports, and so on.

A region may be identified (e.g., delineated) based on the
locations of one or more characteristics, e.g., so that the
boundary of an area or map feature having one or more of
the characteristics forms a boundary of a region. Alterna-
tively or additionally, a region may be 1dentified based on
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locations of one or more characteristics, but the boundary of
the area of the region may be larger than the area or map
feature having the characteristics. For example, a park 111a
does not have any roads within its boundary, but roads near
the park may be affected by the presence of the park (e.g.,
pedestrians may walk to and from the park via roads near the
park). A park region 1115 may be identified based on the
park 111a. The boundary of the park region 1115 may be
generated by expanding the boundary of the park 111a by a
threshold distance on each side of the park 111a to include
roads near the park 111a. The boundary of the park region
1115 1s thus shown as a rectangle that encloses roads within
a threshold distance of the park.

In another example, the region 113 may include a parking,
lot region 113a. The region 116 may include a road region
116a (which includes a road), another road region 1165
(which includes another road leading to a parking lot), and
a parking-lot region 116¢ (which includes the parking lot).
The boundaries of the parking-lot regions 113a, 116¢ and the
boundaries of the road regions 116a, 1165 may correspond
to the boundaries of the map features enclosed by those
regions. Thus, for example, the boundary of the parking-lot
region 113a may be the same as the boundary of the parking
lot based on which the parking-lot region 113q 1s 1dentified.
In other examples, one or more of the boundaries of the
regions may be larger than the feature (e.g., the parking lot)
enclosed by the regions, e.g., by a threshold distance, similar
to the expansion of the boundary of the park 111a to enclose
nearby roads, as described above.

In particular embodiments, each of the regions 111-116
may be associated with a corresponding machine-learming
model. A generalized model 121 may be associated with
regions ol the map that are not associated with region-
specific models 1215, 123a. For example, as shown 1n FIG.
1B, the entire map 104 may initially be associated with the
generalized model 121 (prior to associating any region-
specific models). The generalized model 121 may be used to
make inferences for the regions of the map with which it 1s
associated (and which are not associated with other models).
A region-specific model 1215 may be associated with the
park region 1115 1if, for example, vehicles are generally
driven differently 1n the park region 1115 than in other areas
of the map 104. If vehicles are generally driven differently
in different park regions, then different park regions may be
associated with different models. As another example, two
parking-lot regions 113a, 116¢ are associated with a single
region-specilic model 123a because vehicles are generally
driven the same 1n different parking lots. Road region 1164,
which corresponds to a road, 1s separate from the enclosing,
region 116 and associated with a road-specific model (not
shown) because vehicles are generally driven differently on
the corresponding road than in other areas of the enclosing
region 116. Another road-region 1165 that leads to the
parking lot region 116¢ 1s also associated with the road-
specific model (not shown) because vehicles are generally
driven the same 1n both road regions 116a, 1165. In par-
ticular embodiments, the model for an enclosing map or
region, such as the model 121 associated with the map 104,
1s not used 1n smaller regions such as regions 116, 1164, 111¢
that are associated with difterent models, as the different
models are used for those smaller regions instead of the
models associated with the enclosing map or region.

The generalized model 121 may be trained on the entire
map 104, or on one or more of the regions 111-116 not
associated with region-specific models 1215, 123a, 126a4.
The generalized model 121 may be trained on the map 104,
and each of the region-specific models may be created by
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copying the generalized model 121. The region-specific
models may then be trained on training data associated with,
¢.g., recerved 1n, the corresponding regions. Training data
associated with a region may be, e.g., training data captured
or detected by sensors of a vehicle when the vehicle was
located in the region. As another example, training data
associated with a region may include training data having
one or more associated locations that are in the region.
Training data may include, for example, such as sensor data
and associated driver actions or vehicle operations.

Although different regions are described herein as being
associated with different models, the regions may alterna-
tively be associated with a single model that may be con-
figured differently for different regions using a different set
of parameters for each region. Thus, the term “model” may
refer to a model configured with a particular set of param-
cters, and different models may refer to the same model
configured with different sets of parameters. So, {for
example, the term “region-specific model” may refer to a
region-specilic set of model parameters being used with a
region-independent model to form a region-specific model.
The region-independent model may include, for example,
program code or mstructions for generating inferences based
on parameters that may be changed by loading different
parameters mto the model. Thus, each model may be con-
figured according to a set of model parameters, e.g., weights
or the like determined 1n a training process. A model may be
configured for use 1n a particular region by loading a set of
parameters associated with that region into the model.
Although the map 104 1s shown as being divided into a
particular number of regions 111-116 having particular
shapes and sizes, 1n other examples the map 104 may be
divided a diflerent number of regions, which may each be of
a different si1ze and/or shape. The region boundaries are thus
not necessarily straight lines.

FIG. 1C illustrates an example map 104 divided into
partially-overlapping regions 161-166 associated with mod-
els 121-126. The regions 161-166 are similar to the regions
111-116 of FIG. 1B, but are partially-overlapping. The
partially-overlapping regions may be used to smooth tran-
sitions between pairs of the models 121-126 that may occur
when switching to a new (e.g., different) one of the models
121-126 as a result of a vehicle moving mto a new (e.g.,
different) one of the regions 161-166. For example, the
vehicle may use a first model 121 associated with a first
region 161 to make inferences while the vehicle 1s located 1n
the first region 161. When the vehicle moves 1nto a second
region 162, the vehicle may switch to a second model 122
associated with the second region 162, and use the second
model 122 to make inferences while the vehicle 1s located in
the second region 162. This switching of models may be
performed when the vehicle enters the second region (e.g.,
by crossing a boundary between the first and second
regions). However, the first and second models 121, 122
may produce substantially different results for the same or
similar environments, so switching abruptly between models
may result 1n unexpected or undesirable vehicle behavior,
such as a sudden change 1n speed or heading. Thus, one or
more smoothing techniques may be used to reduce the
difference 1n results when the model switch occurs. For
example, region boundaries may be extended so that each of
the regions 161-166 partially overlaps each adjacent region,
and the models 121-126 associated with the regions may be
trained on the overlapping areas (in addition to the non-
overlapping areas of their respective regions) so that each
pair of adjacent models 1s coherent 1n the overlapping area
of the pair of regions associated with the pair of adjacent
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models. The switch between models may be performed
when the vehicle 1s 1n the overlapping region, thereby
reducing or eliminating abrupt changes in vehicle operation.

In FIG. 1C, each of the regions partially overlaps two or
more other regions. For example, region 161 partially over-
laps regions 162, 164, and 165. Thus, a vehicle traveling
between any two regions of the map 104 passes through an
area 1n which the two regions overlap. Each of the regions
161-166 1s associated with a corresponding model 121-126.
Each model 121-126 may be trained on data (e.g., driving
events and the like) associated with locations within the
boundaries of the corresponding one of the regions 161-166
(but not, 1n particular embodiments, with data not associated
with the corresponding one of the regions 161-166). Thus,
for example, model 121 may be trained based on training
data associated with any location in region 161, which may
include the area of region 161 not overlapped by any other
regions, as well as the areas of region 161 that overlap
regions 162, 164, and 165 (but not on training data associ-
ated with locations not 1n those areas). Similarly, each of the
regions 162-166 may be trained on training data associated
with the non-overlapped of overlapped areas of the respec-
tive regions. When a vehicle moves from one region to
another, e.g., from region 161 to region 162, the switch from
the model 121 (e.g., from the model parameters associated
with region 161) to model 122 (e.g., to the model parameters
associated with region 162) may be performed when the
vehicle 1s 1n the area 1n which regions 161 and 162 overlap
(e.g., the right-side portion of region 161 and the left-side
portion of region 162 shown in FIG. 1C). In particular
embodiments, the overlapping regions may include traflic
events to provide training data for the first and second
models. Thus, the first and second regions may be defined
such that there 1s at least one intersection 1n their overlap-
ping common area.

FIG. 1D illustrates an example map associated with a
single model 121 and divided into regions 111-116 having
associated performance assessments. The performance
assessments may be generated for the regions shown by
using techniques based on simulation, feedback from human
drivers, or a combination thereof. A performance assessment
may produce a number of measures of the quality or
correctness of a model’s output according to different per-
formance metrics, e.g., precision, recall, and so on. The
example performance assessments shown 1 FIG. 1D are
expressed as a single number for each model. The number 1s
a percentage and may be based on one or more performance
metrics, €.2., as an average ol the multiple performance
metrics converted to a percentage. Thus, 1n this example,
model performance may range from 0% (worst perifor-
mance) to 100% (best performance). Although performance
1s measured as a percentage value 1n the examples described
herein, there are many different ways to measure and rep-
resent performance, and different types and/or values of
thresholds that may be used. In other examples, performance
may be classified into particular safety ratings (e.g., A, B, C,
1, 2, 3). Further, other performance metric thresholds may be
used. For example, instead of specific percentage thresholds,
performance metric thresholds may be inherently normal-
1zed through the metrics themselves for each time of model
(or combination of models, 1if multiple models are evaluated
together). As another example, performance may be mea-
sured based on passenger comiort ratings, abruptness of
speed or direction changes, fuel efliciency, and so on.

FIG. 1D shows example performance measures for the
generalized model 121 when the model 1s used to generate
inferences on each of the regions 111-116. The example
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values are shown for explanatory purposes, and the perfor-
mance of a model on the regions may produce other values
in other examples. The performance assessments shown 1n
FIG. 1D for the generalized model 121 include a perfor-
mance of 90% on region 111, 60% on region 112, 50% on
region 113, 65% on region 114, 65% on region 115, and 70%
on region 116. The model 121 may perform diflerently on
different regions because of differences in the environments
of the different regions. In this example, model 121 performs
well on region 111 (region 111 may be similar to the regions
on which model 121 was trained).

In particular embodiments, a threshold model perfor-
mance value may be used to determine whether to create and
associate a new model with a particular region. In the
examples described herein, the threshold model pertor-
mance 1s 80%. Any example model performance assess-
ments below 80% result in the model being replaced with
one or more region-specific models 1 the examples
described herein. Thus, the generalized model 121 will be
replaced with region-specific models 1 regions 112-116
because the performance assessments for those regions are
below 80%. Other threshold values, or other model replace-
ment criteria, may be used 1n other examples. For example,
instead of using an absolute threshold value, models having
performance that differs from an average performance of the
models by more than a threshold percentage may be
replaced with region-specific models. The region-specific
models created for regions 112-116 are shown in FIG. 1E
and described below.

FIG. 1E illustrates an example map 104 divided into
regions 111-116 associated with models 121-126 and per-
formance assessments. According to the performance
assessments shown i FIG. 1D, the performance of the
generalized model 121 on regions 112-116 1s sufliciently
poor that the model replacement criteria (performance
<80%) 1s satisfied, and one or more localized models for
cach or a combination of one or more of the different regions
122-126 may be trained. Thus, 1n this example, the gener-
alized model 121 1s replaced with one or more localized
models for regions 122-126. In other examples, the gener-
alized model 121 may be replaced with a single localized
model (not shown) for regions 122-126 (in which case
regions 122-126 may be represented as a single region
instead of five separate regions). If a single localized model
1s used for a single region at this point in the example, then
the single region may subsequently be divided into two or
more sub-regions associated with two or more different
models if the single region or the sub-regions are 1dentified
as satisiying the model replacement criteria.

Further, 1in the example of FIG. 1E the generalized model
121 remains associated with region 111, 1n which 1ts per-
formance was 90%. New models 122-126 have been created
(e.g., by copyving the generalized model 121 or other existing
model, or as an untrained model). Each of the new models
122-126 1s associated with a respective one of the regions
112-116. Each of the new models 122-126 may be config-
ured 1 accordance with a corresponding set of model
parameters (e.g., weights), which may have been generated
in a previous training process. The new models 122-126 may
be trained based on training data associated with locations in
their respective regions 112-116. This training process may
be performed prior to using the models 122-126 to make
inferences 1n vehicle systems. After the training process has
been performed, the performance of each of the models
122-126 15 assessed using performance measurement tech-
niques such as those described above with reference to FIG.
1D. The resulting performance assessments are 70% for
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model 122, 80% for model 123, 85% for model 124, 85% for
model 125, and 50% for model 126. Thus, model 122 (for
region 112) and model 126 for region 116) are still below
80% and satisty the model replacement criteria. Models 122
and 126 are replaced with new models as shown 1n FIG. 1F
and described below.

FIG. 1F illustrates an example map 104 divided into
regions and smaller sub-regions. According to the perfor-
mance assessments shown in FIG. 1E, the performance of
model 122 on region 112 and the performance of model 126
on region 116 are suiliciently poor that the model replace-
ment criteria (performance <80%) 1s satisfied, and those
models are replaced by dividing their regions (112 and 116)
into smaller sub-regions. Region 112 1s divided into four
sub-equal-sized regions 112A-D 1n this example. Region
116 1s divided into three sub-regions 116A-C 1n this
example. Sub-region 116B 1s determined based on the
location of the road, and conforms to the shape of the road
in the region 116. A region division process may have
determined that the trailic volume or flow on the road is
substantially greater than or different from the traflic flow 1n
other areas of the region 116, so the road was assigned to a
separate sub-region 116B from the other portions of the
region 116. Areas having diflerent or unique tratlic charac-
teristics may be used as regions (or sub-regions) because a
region (or sub-region)-specific model may perform better on
those areas than a more generalized model such as model
126. Although particular numbers and arrangements of
sub-regions are shown and described 1n this example, any
suitable number and/or arrangement of sub-regions may be
used. Although region 112 1s divided into four equally-size
sub-regions 1n this example, region 112 may be divided into
any suitable number of sub-regions of any suitable sizes
based on features 1n the maps or other characteristics (e.g.,
locations of intersections or other dividing features that may
cause regions to be split into sub-regions). Further, although
particular regions are divided into particular numbers of
sub-regions ol particular sizes 1n the examples described
herein, each region may be divided into any suitable number
of sub-regions of any suitable sizes based on features 1n the
maps or other characteristics.

FIG. 1G illustrates an example map 104 divided into
regions and smaller sub-regions associated with models and
performance assessments. Region-specific models 122A-D
have been associated with sub-regions 112A-112D and
trained based on data associated with the respective sub-
regions 112A-D. Similarly, region-specific models 126 A-C
have been associated with sub-regions 116A-C and trained
based on data associated with the respective sub-regions
116 A-C. The performance of these new models has been
assessed as described above with reference to FIG. 1D. For
sub-regions 122 A-D, the resulting performance assessments
are 85% for model 122A, 90% for model 122B, 95% for
model 122C, and 90% for model 122D. For sub-regions
116 A-C, the resulting performance assessments are 85% for
model 126A, 90% for model 126B, and 90% {for model
126C. Since the performance assessments are above the
threshold of 80%, the model replacement criteria 1s not
satisfied for any regions of the map 104, and no further
regions or models are created 1n this example.

FIG. 111 illustrates an example map 104 divided into
regions 131-139 of varying sizes. Map regions may be of
different si1zes and/or shapes. The regions 131-139 have been
determined based on topology of the map 130 by 1dentifying
areas having features, such as road segments or intersections
that may be different from other areas, and assigning each
potentially different area to a different region. Region 131
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includes a residential development area and two road seg-
ments that ordinarily have medium levels of traflic flow
(e.g., medium number of vehicles per unit of time and/or
medium average vehicle speed). Region 132 includes road
segments ordinarily having low to medium levels of traflic
flow. Region 133 includes an intersection ordinarily having
a medium to high levels of straight and turning traflic flow.
Region 134 includes an intersection ordinarily having low
levels of traflic flow between intersecting road segments.
Region 135 includes road segments ordinarily having low
levels of traflic flow. Region 136 includes a road segment
ordinarily low levels of traflic flow. Region 137 includes an
intersection ordinarily having medium to high levels of
straight traflic flow and medium levels of turning trathic flow.
Region 138 includes a road segment ordinarily having low
to medium levels of traflic tflow. Region 139 includes a road
segment ordinarily having medium to high levels of traflic
flow. Each of the regions 131-139 1s associated with a
corresponding one of the region-specific models 141-149. A
region 140 1s not associated with a region-specific model,
and may be associated with a generalized model (not
shown).

FIG. 2A 1illustrates an example map associated with a
single model and divided into regions that correspond to
road segments and intersections. Regions that represent road
segments or intersections are shown in the examples of FIG.
2A-2D. In particular embodiments, regions that represent
road segments or intersections may be associated with the
road segments or intersections themselves, instead of being
associated with a geographical area that includes the road
segments or intersections. Alternatively or additionally,
regions that represent road segments or intersections may be
associated with geographical areas that include the road
segments or intersections. The map 204 shows the same
geographical area as map 104 of FIG. 1D, but with regions
221-234 that correspond to roads or intersections instead of
regions 111-116 that correspond to geographical areas.

FIG. 2B illustrates an example map 204 associated with
a single model 221M and divided into regions 221-234 that
correspond to road segments and intersections having asso-
ciated performance assessments. The performance assess-
ments shown 1n FIG. 2B are for a generalized model 221M
and may be generated as described above with reference to

FIG. 1D and include a performance of 80% on region 221,
60% on region 222, 50% on region 223, 80% on region 224,

60% on region 225, 55% on region 226, 85% on region 227,
85% on region 228, 90% on region 229, 60% on region 230,
80% on region 231, 90% on region 232, 95% on region 233,
and 85% on region 234. The model replacement criteria
(performance <80%) 1s satisfied for regions 222, 223, 225,
226, and 230, so the general-purpose model 221M will be
replaced with region-specific models for those regions, as
shown 1n FIG. 2C and described below.

FIG. 2C illustrates an example map divided into regions
that correspond to road segments and intersections associ-
ated with models and having associated performance assess-
ments. According to the performance assessments shown in
FIG. 2B, the performance of the generalized model 221M on
regions 222, 223, 225, 226, and 230 1s sufliciently poor that
the model replacement criteria (performance <80%) 1s sat-
isfied, and the generalized model 221M 1s replaced for those
regions. The generalized model 221M remains associated
with the other regions of the map 204.

As shown 1n FIG. 2C, new models 222M, 223M, 225M,
226M, and 230M have been created (e.g., by copying the
generalized model 221M or other existing model, or as an
untrained model). Each of the new models 1s associated with
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a respective one of the regions 222, 223, 225, 226, 230. Each
of the new models may be configured 1n accordance with a
corresponding set of model parameters (e.g., weights),
which may have been generated 1n a previous training
process. The new models may be trained based on traiming
data associated with locations 1n their respective regions.
This traiming process may be performed prior to using the
models 222M, 223M, 225M, 226M, and 230M to make
inferences 1n vehicle systems. After the training process has
been performed, the performance of each of the models
222M, 223M, 225M, 226M, and 230M 1s assessed using
performance measurement techniques such as those
described above with reference to FIG. 1D. The resulting
performance assessments are 90% for model 222M, 60% for
model 223M, 85% for model 225M, 65% for model 226 M,
and 65% for model 230M. Thus, models 223M, 225M,
226M, and 230M are still below 80% and satisiy the model
replacement criteria. These models are replaced with new
models as shown in FIG. 2D and described below.

FIG. 2D 1illustrates an example map 204 divided into
regions and smaller sub-regions that correspond to road
segments associated with models and having associated
performance assessments. According to the performance
assessments shown 1n FIG. 2C, the performances for model
223M on region 223, model 226M on region 226, and model
230M on region 230 are suiliciently poor that the model
replacement criteria (performance <80%) 1s satisfied, and
those models are replaced by dividing their regions (223,
226, 230) 1nto smaller sub-regions 1n this example. Example
region 223 1s a road segment that intersects a bicycle path.
A bicycle path intersecting a road segment 1s an unusual
vehicle environment, so region 223 1s divided imto two
sub-regions 223A and 2238, one of which (223B) includes
the bicycle path and the other of which (223 A) does not, so
that a region-specific model can be trained for each the two
different regions 223A, 223B of the road segment 223.
Accordingly, region-specific models 223MA and 223MB are
created for regions 223A and 223B, respectively.

Example region 226 i1s divided into two sub-regions
226A,226B. A region division process may have determined
that the traflic volume or flow on the road in sub-region
226A 1s substantially slower than the traflic flow 1n region
2268, e.g., because of the upcoming intersection 225 for
trailic flowing toward the intersection 225, so the area of the
road having slower traflic 1s assigned to a separate sub-
region 226A from area of the road having faster traflic
(sub-region 226B). Accordingly, region-specific models
226MA and 226MB are created for regions 226 A and 226B,
respectively.

Example region 230 i1s divided into two sub-regions
230A, 230B because topological (e.g., topographical) data
indicates that the portion of the region (road) 230 at approxi-
mately the mid-point between regions (intersections) 225
and 231 1s the crest of a steep hill, and there 1s little visibility
between the two halves of the region (road) 230. Thus, tratlic
flow 1s faster on the descending side of the hill crest than on
the ascending side. Since the hill crest in the road segment
on the ascending side 1s an unusual topological feature, a
sub-region 230B 1s created for that road-segment. The
remaining portion of the region (road) 230 1s associated with
a new sub-region 230A. Region-specific models 230MA and
230MB are created for regions 230A and 230B, respectively.

The performance of these new models has been assessed
as described above with reference to FIG. 1D. For sub-

regions 223A and 223B, the resulting performance assess-
ments are 85% for model 223MA, and 85% for model

223MB. For sub-regions 226A and 226B, the resulting
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performance assessments are 85% for model 226MA and
80% for model 226MB. For sub-regions 230A and 230B, the
resulting performance assessments are 90% for model
230MA and 80% for model 230MB. Since the performance
assessments are above the threshold of 80%, the model
replacement criteria 1s not satisfied for any regions of the
map 204, and no further regions or models are created 1n this
example. Although particular numbers and arrangements of
sub-regions are shown and described 1n this example, any
suitable number and/or arrangement of sub-regions may be
used.

FIG. 3 illustrates example perception, prediction, and
planning modules 300 that use models 304 associated with
map regions. A computing system may include modules 300
for different types of tasks such as perception, prediction,
and planning. Different tasks can involve different types of
models 304, which can be trained differently, so the process
of creating reg10n-spec1ﬁc models 304 can produce different
region-speciiic models for each type of task. The region-
specific models can 1n turn correspond to different map
regions. As a result, each of the computing system modules
300 may be associated with a different set of inference
models 304.

In particular embodiments, the perception module 302
may be associated with a set of perception models 306, the
prediction module 322 may be associated with a set of
prediction models 326, and the planning module 342 may be
associated with a set of planning models 346. Each difierent
set 306, 326, 346 of inference modules 304 may include one
Or more region-speciﬁc models that are trained to perform
type of task associated with the set 306, 326, 346 of
inference models 304. As an example, the perception models
306 can include, e.g., three region-specific perception mod-
els 311, 312, 313 associated with three corresponding
regions R1, R2, R3 of a map. The prediction models 326 can
include, e.g., four region-specific prediction models 331,
332, 333, 334 associated with four corresponding regions
R11, R12, R13, R14 of the map. The planning models 346
can include, e.g., three region-specific planning models 351,
352, 353 associated with three corresponding regions R21,
R22, R23 of the map. These sets of perception models 306,
prediction models 326, and planning models 346, and their
corresponding map regions, may be generated by a process
that 1dentifies map regions to be associated with inference
models 304, trains the inference models 304 based on the
associated map regions, and, if appropriate (e.g., to improve
model performance), splits map regions into multiple sub-
regions having different sub-region-specific mnference mod-
els. In particular embodiments, as a result of using different
inference models 304 with each type of computing task
module 300, the models 304 for a particular type of com-
puting task modules 300 may use different region-specific
models than other types of computing task modules 300. As
the map regions may be generated based on the region-
specific models 304 (e.g., on the performance of the region-
specific models), each type of computing task module 300
may have map regions that are shaped and arranged difler-
ently than the map regions for the other types of computing
task modules, as can be seen in FIG. 3.

FIG. 4 1llustrates an example block diagram of a system
400 for loading and activating geolocalized models. The
system 400 may load and activate a model 1n response to a
request from a module 404 to perform an inference. When
the model has been loaded and activated, the system 400
may send inference requests from the computing modules
404 directly to the activate model. Methods for improving
the smoothness of model changes are shown 1 FIGS. 5 and
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6. The system 400 may include a model interface 408, which
may interact with one or more computing modules 404, such
as a sensor data module 402 perception module, a prediction
module, a planning module, and a control module. The
model interface 408 provides an interface between comput-
ing modules 404 and region-specific models. In response to
receiving a request for an inference 406 from one or more of
the computing modules 404 (e.g., a request for a prediction
from the prediction module), the model interface 408 may
send a model request 410 to a model switcher 412 for a
model of the type that corresponds to the computing module
404 that submitted the request for inference 406. For
example, 11 the prediction module submitted the request for
inference 406, then the model interface may send a model
request 410 for a prediction model.

The model switcher 412 may receive the model request
410 and, 1n response, 1dentily one or more model selection
factors 414, such as a current vehicle location, current time
of day, current lighting conditions, current weather condi-
tions, and so on, from the vehicle sensors 402 or other data
sources (e.g., a map database, a weather service, a vehicle
system clock, and so on). The model switcher 412 may
generate a data store query 416 based on the requested type
of model and the model selection factors 414 (e.g., the
current vehicle location). The model data store 418 may
identify an entry in the data store 418 having model selection
factors (e.g., location) 420 that match those in the data store
query 416. If a match between the query 416 and the stored
selection factors 420 1s found, then a model 422, which may
be represented as model parameters (such as weights),
associated with the matching selection factors may be
retrieved, the retrieved model parameters 428 may be sent to
a GPU 430.

In particular embodiments, the model parameters 428
may be loaded 1into a memory 432 of a Graphics Processing,
Unit (GPU) 430. Loading the model parameters 428 may
involve retrieving the model parameters 428 from the model
data store 418 as described above. The model data store 418
may be stored locally, e.g., on a local storage device of the
vehicle system, and/or remotely, e.g., 1n a cloud storage
device accessible via network communication. Thus, there
may be delay while the model parameters 428 are retrieved
and loaded into the memory 432. In particular embodiments,
the model parameters 438 may be pre-loaded (e.g., pre-
cached), e.g., by loading model parameters 438 for regions
prior to entering the regions. For example, the model param-
cters for a region may be pre-loaded when the vehicle 1s
heading toward the region and within a threshold distance of
the region, or 1s predicted to arrive at the region within a
threshold time, or when the vehicle 1s 1n an overlapping
boundary of the region prior to entering the region.

In particular embodiments, when the new model param-
cters 438 have been loaded, the model loader 412 may send
a model switch instruction 440 to the GPU 430 or other
component that interacts with the GPU 430 to cause the new
model parameters 438 to be swapped with current model
parameters 436. The model switch instruction 440 may
cause a current model pointer 434 to refer to the new model
parameters 438 mstead of the current model parameters 436.
Changing the pointer 434 or performing similar instructions
to switch to the new model parameters, subsequent inference
requests sent to a model 410 may use the new model
parameters 438 mstead of the current model parameters 436.
After sending the model switch instruction 440, the model
loader 412 may send a model ready response 442 to the
model iterface 408. The model interface 408 may forward
the inference request 406 to the model 410, and the model
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410 may perform the requested inference by interacting with
the GPU 430 via a computation request/response 442. The
GPU 430 may perform the inference by executing compu-
tations using the new model parameters 438 and generating
computation results. The model 410 may receive computa-
tion results from the GPU 430 and generate an inference
result, which may be based on or include the computation
results. The model 410 may send the inference result to the
model interface 408, which may forward the inference as an
inference response 444 to the computing modules 444.

In particular embodiments, if the new model parameters
438 for a region have been pre-loaded, then the system 400
may switch to the new model parameters 438 when the
vehicle enters the region (e.g., crosses the boundary of the
region). To switch to the new model parameters 438, the
system 400 (e.g., the model loader 412 or other component
of the system 412 mvoked at other times subsequent to
loading of the model parameters 438) may change the
current model pointer 434 to reference the new model
parameters 438 instead of the current model parameters 436.
Thus, switching the configurations of the model 410 from
the current model parameters 436 to the new model param-
cters 438 may be performed by updating a reference (e.g.,
the model pointer 434) associated with the configuration of
the model 410 to refer to the new model parameters 438 in
the memory 432.

FIG. 5 illustrates an example method for pre-loading
prediction model configurations when a vehicle approaches
a region boundary configuration and switching to the pre-
loaded parameters when the vehicle reaches the boundary.
The method 500 may begin at step 502, where a vehicle
system may determine a current location and heading of a
vehicle. At step 504, the vehicle system may determine
whether the vehicle will cross a region boundary within a
threshold distance (or time). If so, at step 508, the vehicle
system may search a model data store for new prediction
model parameters associated with a different region that the
vehicle 1s expected to enter after crossing the region bound-
ary. If not, at step 506, the vehicle system may wait until the
vehicle’s location changes by at least a threshold distance,
then mvoke step 502 again.

Continuing from step 508, at step 510, the vehicle system
may determine whether the search 1n step 508 found the new
prediction model parameters associated with the different
region. IT not, at step 512, the vehicle system may use
fallback model parameters as the new prediction model
parameters. The fallback model parameters may be, e.g.,
parameters of a generalized model that 1s associated with the
different region or with a map that includes the different
region. Otherwise, at step 514, the vehicle system may load
the new prediction model parameters from data store into
memory, €.g., mto a memory of a GPU. At step 516, the
vehicle system may switch a prediction model’s configura-
tion to the new prediction model parameters when the
vehicle reaches the region boundary or enters the different
region. At step 518, the vehicle system may generate one or
more inferences based on the new prediction model param-
eters using the prediction model.

FIG. 6 1illustrates an example method 600 for switching
between prediction model configurations associated with
different map regions at a minimum distance between tra-
jectories predicted using the model configurations. As an
example of smoothing the transition between regions, when
the vehicle 1s 1n a first region, heading toward a second
region, and within a threshold distance of the second region,
first and second prediction models associated with the first
and second regions, respectively, may be used to generate
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first and second predicted trajectories for the vehicle. The
trajectories may be compared to identily a minimum dis-
tance between them. The minimum distance may correspond
to, €.g., a point of greatest agreement between the trajecto-
ries. The switch between models may then be made at a
location that corresponds to the location of the minimum
distance. The method may begin at step 602, where a vehicle
system may determine current location and a first predicted
trajectory of vehicle for a predetermined duration of time
using a current prediction model. The predetermined dura-
tion of time may be a duration of time that begins at the
current time or 1n the future. At step 604, the vehicle system
may determine, based on the first predicted trajectory,
whether the vehicle 1s predicted to cross a region boundary
within the duration of time. If not, at step 606 the vehicle
system may wait until the vehicle’s location changes by at
least a threshold distance and imnvoke step 602 again. At step
608, the vehicle system may search a model data store for
new prediction model parameters associated with a diflerent
region the vehicle 1s expected to enter after crossing the
boundary. At step 610, the vehicle system may determine
whether the new prediction model parameters associated
with the different region were found. If not, at step 612, the
vehicle system may use fallback model parameters as the
new prediction model parameters. The fallback model
parameters may be, e.g., parameters ol a generalized model
that 1s associated with the different region or with a map that
includes the different region.

At step 614, the vehicle system may begin loading the
new parameters from data store into memory, €.g., a memory
of a GPU. At step 616, the vehicle system may determine a
second predicted trajectory of the vehicle for the predeter-
mined duration of time using the new prediction model
parameters. At step 618, the vehicle system may i1dentily a
location on the first predicted trajectory that 1s a minimum
distance from the second predicted trajectory. At step 620,
by which point the new parameters have been loaded into the
memory, the vehicle system may switch from the current
prediction model parameters to the new prediction model
parameters when the vehicle reaches the 1dentified location,
¢.g., by instructing the GPU to use the new prediction model
parameters.

FIG. 7 1llustrates an example method 700 for associating,
region-specific sets ol model parameters with map regions
based on model performance. In particular embodiments,
region-speciiic models may be associated with regions based
on the performance of other models associated with larger
enclosing regions. When the performance of a model asso-
ciated with a larger region 1s below a performance threshold
(and, optionally, the size of the region (e.g., area 1n square
units) 1s above a size threshold, then the larger region may
be divided into two or more sub-regions, and new region-
specific models may be associated with and trained for each
new sub-region. The sub-regions may be equal-size sub-
regions, or may have sizes or shapes based on topological
teatures of the map, or based on other features such as traflic
flow. Thus, for example, when a region’s performance 1s
below the performance threshold, and the region 1includes a
road and a parking lot, the region may be divided into two
sub-regions: one for the road (and having a shape that
conforms to the road) and the other for the remaining portion
of the region (which includes the parking lot). Each sub-
region may be associated with a corresponding model, and
cach model may be trained based on training data associated
with the corresponding sub-region.

The method 700 may begin at step 702, where a vehicle
system may divide geographical map into initial regions. For

10

15

20

25

30

35

40

45

50

55

60

65

20

example, the regions may be 1dentified as described above
with reference to FIG. 1B. At step 704, the vehicle system
may determine per-region performance assessments of first
model(s) using one or more first sets of model parameters
associated with the regions, wherein the performance assess-
ment for each region 1s based on sensor data captured 1n the
region. At step 706, the vehicle system may 1dentily one or
more regions for which the assessed performance i1s below
a minimum performance threshold. At step 708, the vehicle
system may begin a loop that executes step 710 (and the
tollowing steps) for each i1dentified region. At step 710, the
vehicle system may determine whether the region 1s already
associated with region-specific model parameters. If not, at
step 712 the vehicle system may store an association
between the region and a region-specific model with new
parameters to be used for generating inferences in the
region. At step 714 the vehicle system may generate an
inference using region-specilic model and specified mnput
parameters. At step 716, the vehicle system may train the
new region-specific models based on traiming data associ-
ated with the regions of the corresponding new region-
specific models, e.g., sensor data received by a vehicle when
the vehicle was 1n the corresponding regions. Step 716 may
invoke step 704 to repeat the portion of the method that
identifies regions and associates models and/or model
parameters with the regions.

Referring again to the result of step 710, 1f the vehicle
system determines that the region 1s already associated with
region-specific model parameters, at step 718 the vehicle
system may divide the region mto two or more new regions.
At step 720, the vehicle system may remove association
between the region and the region-specific model and
parameters. At step 722, the vehicle system may, for each
new region, store an association between the new region and
a new region-speciiic model with parameters to be used for
generating inferences 1n the region. At step 716, the vehicle
system may tramn the new region-specific models as
described above and imnvoke step 704 to repeat the portion of
the method that starts at step 704. In particular embodi-
ments, the method may stop repeating based on a condition
evaluated at one or more of the steps. For example, step 706
may determine whether each of the identified regions 1s
smaller than a threshold size (1n units of area). If so, step 706
may end the process 700. As another example, step 704 may
determine whether the per-region performance assessments
have been re-evaluated for the same regions and have not
decreased. If none of the performance assessments have
decreased, or none have decreased by more than a threshold
amount, then step 704 may end the process 700.

FIG. 8 illustrates an example situation 800 for a data-
gathering vehicle system 810 to collect vehicle data of a
nearby vehicle 820 and contextual data of the surrounding
environment. In particular embodiments, the vehicle system
810 (e.g., autonomous vehicles, manually-driven vehicles,
computer-assisted-driven vehicles, human-machine hybrid-
driven vehicles, etc.) may have a number of sensors or
sensing systems 812 for monitoring the vehicle status, other
vehicles and the surrounding environment. The sensors or
sensing systems 812 may include, for example, but are not
limited to, cameras (e.g., optical camera, thermal cameras),
L1DARs, radars, speed sensors, steering angle sensors, brak-
ing pressure sensors, a GPS, inertial measurement units
(IMUs), acceleration sensors, etc. The vehicle system 810
may include one or more computing systems (e.g., a data
collection device, a mobile phone, a tablet, a mobile com-
puter, an on-board computer, a high-performance computer)
to collect data about the vehicle, the nearby vehicles, the
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surrounding environment, etc. In particular embodiments,
the vehicle system 810 may collect data of the vehicle 1tself
related to, for example, but not limited to, vehicle speeds,
moving directions, wheel directions, steering angles, steer-
ing force on the steering wheel, pressure of braking pedal,
pressure ol acceleration pedal, acceleration (e.g., based on
IMU outputs), rotation rates (e.g., based on IMU/gyroscope
outputs), vehicle moving paths, vehicle trajectories, loca-
tions (e.g., GPS coordination), signal status (e.g., on-ofl
states of turning signals, braking signals, emergence sig-
nals), human driver eye movement, head movement, etc.
In particular embodiments, the vehicle system 810 may
use one or more sensing signals 822 of the sensing system
812 to collect data of the nearby vehicle 820. For example,
the vehicle system 810 may collect the vehicle data and
driving behavior data related to, for example, but not limited
to, vehicle images, vehicle speeds, acceleration, vehicle
moving paths, vehicle driving trajectories, locations, turning,
signal status (e.g., on-ofl state of turning signals), braking
signal status, a distance to another vehicle, a relative speed
to another vehicle, a distance to a pedestrian, a relative speed
to a pedestrian, a distance to a traflic signal, a distance to an
intersection, a distance to a road sign, a distance to curb, a
relative position to a road line, an object 1n a field of view
of the vehicle, positions of other trailic agents, aggressive-
ness metrics of other vehicles, etc. In addition, the sensing
system 812 may be used to identify the nearby vehicle 820,
which could be based on an anonymous vehicle i1dentifier
based on the license plate number, a QR code, or any other
suitable 1dentifier that uniquely identifies the nearby vehicle.
In particular embodiments, the vehicle system 810 may
collect contextual data of the surrounding environment
based on one or more sensors associated with the vehicle
system 810. In particular embodiments, the vehicle system
810 may collect data related to road conditions or one or
more objects of the surrounding environment, for example,
but not limited to, road layout, pedestrians, other vehicles
(c.g., 820), trailic status (e.g., number of nearby vehicles,
number ol pedestrians, traflic signals), time of day (e.g.,
morning rush hours, evening rush hours, non-busy hours),
type of trathc (e.g., high speed moving traflic, accident
events, slow moving traflic), locations (e.g., GPS coordina-
tion), road conditions (e.g., constructing zones, school
zones, wet surfaces, ice surfaces), intersections, road signs
(c.g., stop sign 860, road lines 842, cross walk), nearby
objects (e.g., curb 844, light poles 850, billboard 870),
buildings, weather conditions (e.g., raining, fog, sunny, hot
weather, cold weather), or any objects or agents in the
surrounding environment. In particular embodiments, the
contextual data of the vehicle may include navigation data of
the vehicle, for example, a navigation map, a navigating,
target place, a route, an estimated time of arriving, a detour,
etc. In particular embodiments, the contextual data of the
vehicle may include camera-based localization data includ-
ing, for example, but not limited to, a point cloud, a depth
of view, a two-dimensional profile of environment, a three-
dimensional profile of environment, stereo 1mages of a
scene, a relative position (e.g., a distance, an angle) to an
environmental object, a relative position (e.g., a distance, an
angle) to road lines, a relative position 1n the current
environment, a trailic status (e.g., high traflic, low tratlic),
driving trajectories of other vehicles, motions of other traflic
agents, speeds of other traflic agents, moving directions of
other traflic agents, signal statuses of other vehicles, etc. In
particular embodiments, the vehicle system 810 may have a
perception of the surrounding environment based on the
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contextual data collected through one or more sensors in
real-time and/or based on historical contextual data stored in
a vehicle model database.

FIG. 9 illustrates an example block diagram of a trans-
portation management environment for matching ride
requestors with autonomous vehicles. In particular embodi-
ments, the environment may include various computing
entities, such as a user computing device 930 of a user 901
(e.g., a ride provider or requestor), a transportation manage-
ment system 960, an autonomous vehicle 940, and one or
more third-party system 970. The computing entities may be
communicatively connected over any suitable network 910.
As an example and not by way of limitation, one or more
portions of network 910 may include an ad hoc network, an

extranet, a virtual private network (VPN), a local area
network (LAN), a wireless LAN (WLAN), a wide area
network (WAN), a wireless WAN (WWAN), a metropolitan
area network (MAN), a portion of the Internet, a portion of
Public Switched Telephone Network (PSTN), a cellular
network, or a combination of any of the above. In particular
embodiments, any suitable network arrangement and proto-
col enabling the computing entities to communicate with
cach other may be used. Although FIG. 9 illustrates a single
user device 930, a single transportation management system
960, a single vehicle 940, a plurality of third-party systems
970, and a single network 910, this disclosure contemplates
any suitable number of each of these entities. As an example
and not by way of limitation, the network environment may
include multiple users 901, user devices 930, transportation
management systems 960, autonomous-vehicles 940, third-
party systems 970, and networks 910.

The user device 930, transportation management system
960, autonomous vehicle 940, and third-party system 970
may be communicatively connected or co-located with each
other 1n whole or 1n part. These computing entities may
communicate via different transmission technologies and
network types. For example, the user device 930 and the
vehicle 940 may communicate with each other via a cable or
short-range wireless communication (e.g., Bluetooth, NFC,
WI-FI, etc.), and together they may be connected to the
Internet via a cellular network that 1s accessible to either one
of the devices (e.g., the user device 930 may be a smart-
phone with LTE connection). The transportation manage-
ment system 960 and third-party system 970, on the other
hand, may be connected to the Internet via their respective
LAN/WLAN networks and Internet Service Providers (ISP).
FIG. 9 illustrates transmission links 950 that connect user
device 930, autonomous vehicle 940, transportation man-
agement system 960, and third-party system 970 to com-
munication network 910. This disclosure contemplates any
suitable transmission links 930, including, e.g., wire con-
nections (e.g., USB, Lightming, Digital Subscriber Line
(DSL) or Data Over Cable Service Interface Specification
(DOCSIS)), wireless connections (e.g., WI-FI, WiMAX,
cellular, satellite, NFC, Bluetooth), optical connections
(e.g., Synchronous Optical Networking (SONET), Synchro-
nous Digital Hierarchy (SDH)), any other wireless commu-
nication technologies, and any combination thereof. In par-
ticular embodiments, one or more links 950 may connect to
one or more networks 910, which may include 1n part, e.g.,
ad-hoc network, the Intranet, extranet, VPN, LAN, WLAN,
WAN, WWAN, MAN, PSTN, a cellular network, a satellite
network, or any combination thereof. The computing entities
need not necessarily use the same type of transmission link
950. For example, the user device 930 may communicate
with the transportation management system via a cellular
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network and the Internet, but communicate with the autono-
mous vehicle 940 via Bluetooth or a physical wire connec-
tion.

In particular embodiments, the transportation manage-
ment system 960 may fulfill ride requests for one or more
users 901 by dispatching suitable vehicles. The transporta-
tion management system 960 may receive any number of
ride requests from any number of ride requestors 901. In
particular embodiments, a ride request {from a ride requestor
901 may include an identifier that identifies the ride
requestor 1n the system 960. The transportation management
system 960 may use the 1dentifier to access and store the ride
requestor’s 901 information, 1n accordance with the request-
or’s 901 privacy settings. The ride requestor’s 901 1informa-
tion may be stored in one or more data stores (e.g., a
relational database system) associated with and accessible to
the transportation management system 960. In particular
embodiments, ride requestor information may include pro-
file information about a particular ride requestor 901. In
particular embodiments, the ride requestor 901 may be
associated with one or more categories or types, through
which the ride requestor 901 may be associated with aggre-
gate information about certain ride requestors ol those
categories or types. Ride information may include, for
example, preferred pick-up and drop-ofl locations, driving
preferences (e.g., salety comiort level, preferred speed, rates
of acceleration/deceleration, safety distance from other
vehicles when travelling at various speeds, route, etc.),
entertainment preferences and settings (e.g., preferred music
genre or playlist, audio volume, display brightness, etc.),
temperature settings, whether conversation with the driver 1s
welcomed, frequent destinations, historical riding patterns
(c.g., time of day of travel, starting and ending locations,
etc.), preferred language, age, gender, or any other suitable
information. In particular embodiments, the transportation
management system 960 may classity a user 901 based on
known information about the user 901 (e.g., using machine-
learning classifiers), and use the classification to retrieve
relevant aggregate iformation associated with that class.
For example, the system 960 may classity a user 901 as a
young adult and retrieve relevant aggregate information
associated with young adults, such as the type of music
generally preferred by young adults.

Transportation management system 960 may also store
and access ride information. Ride information may include
locations related to the nide, traflic data, route options,
optimal pick-up or drop-oil locations for the rnide, or any
other suitable information associated with a ride. As an
example and not by way of limitation, when the transpor-
tation management system 960 receives a request to travel
from San Francisco International Airport (SFO) to Palo Alto,
California, the system 960 may access or generate any
relevant ride information for this particular ride request. The
ride mmformation may include, for example, preferred pick-
up locations at SFO; alternate pick-up locations in the event
that a pick-up location 1s incompatible with the ride
requestor (e.g., the ride requestor may be disabled and
cannot access the pick-up location) or the pick-up location
1s otherwise unavailable due to construction, traflic conges-
tion, changes 1n pick-up/drop-off rules, or any other reason;
one or more routes to navigate from SFO to Palo Alto;
preferred off-ramps for a type of user; or any other suitable
information associated with the ride. In particular embodi-
ments, portions of the ride information may be based on
historical data associated with historical rides facilitated by
the system 960. For example, historical data may include
aggregate mformation generated based on past ride infor-
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mation, which may include any ride information described
herein and telemetry data collected by sensors in autono-
mous vehicles and/or user devices. Historical data may be
associated with a particular user (e.g., that particular user’s
preferences, common routes, etc.), a category/class of users
(e.g., based on demographics), and/or all users of the system
960. For example, historical data specific to a single user
may include information about past rides that particular user
has taken, including the locations at which the user 1s picked
up and dropped ofl, music the user likes to listen to, trathic
information associated with the rides, time of the day the
user most often rides, and any other suitable information
specific to the user. As another example, historical data
associated with a category/class of users may include, e.g.,
common or popular ride preferences of users in that cat-
cgory/class, such as teenagers preferring pop music, ride
requestors who frequently commute to the financial district
may prefer to listen to the news, etc. As yet another example,
historical data associated with all users may include general
usage trends, such as traflic and ride patterns. Using histori-
cal data, the system 960 in particular embodiments may
predict and provide ride suggestions 1n response to a ride
request. In particular embodiments, the system 960 may use
machine-learning, such as neural networks, regression algo-
rithms, instance-based algorithms (e.g., k-Nearest Neigh-
bor), decision-tree algorithms, Bayesian algorithms, cluster-
ing algorithms, association-rule-learning algorithms, deep-
learning algorithms, dimensionality-reduction algorithms,
ensemble algorithms, and any other suitable machine-learn-
ing algorithms known to persons of ordinary skill 1n the art.
The machine-learning models may be trained using any
suitable training algorithm, including supervised learning
based on labeled training data, unsupervised learning based
on unlabeled traiming data, and/or semi-supervised learning
based on a mixture of labeled and unlabeled training data.

In particular embodiments, transportation management
system 960 may include one or more server computers. Each
server may be a umtary server or a distributed server
spanmng multiple computers or multiple datacenters. The
servers may be of various types, such as, for example and
without limitation, web server, news server, mail server,
message server, advertising server, file server, application
server, exchange server, database server, proxy server,
another server suitable for performing functions or processes
described herein, or any combination thereof. In particular
embodiments, each server may include hardware, software,
or embedded logic components or a combination of two or
more such components for carrying out the appropnate
functionalities implemented or supported by the server. In
particular embodiments, transportation management system
960 may include one or more data stores. The data stores
may be used to store various types of information, such as
ride information, ride requestor information, ride provider
information, historical information, third-party information,
or any other suitable type of information. In particular
embodiments, the information stored in the data stores may
be organized according to specific data structures. In par-
ticular embodiments, each data store may be a relational,
columnar, correlation, or any other suitable type of database
system. Although this disclosure describes or illustrates
particular types ol databases, this disclosure contemplates
any suitable types of databases. Particular embodiments may
provide interfaces that enable a user device 930 (which may
belong to a ride requestor or provider), a transportation
management system 960, vehicle system 940, or a third-
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party system 970 to process, transform, manage, retrieve,
modily, add, or delete the information stored in the data
store.

In particular embodiments, transportation management
system 960 may include an authorization server (or any
other suitable component(s)) that allows users 901 to opt-in
to or opt-out of having their information and actions logged,
recorded, or sensed by transportation management system
960 or shared with other systems (e.g., third-party systems
970). In particular embodiments, a user 901 may opt-in or
opt-out by setting appropriate privacy settings. A privacy
setting of a user may determine what information associated
with the user may be logged, how mformation associated
with the user may be logged, when information associated
with the user may be logged, who may log information
assoclated with the user, whom information associated with
the user may be shared with, and for what purposes 1nfor-
mation associated with the user may be logged or shared.
Authorization servers may be used to enforce one or more
privacy settings of the users 901 of transportation manage-
ment system 960 through blocking, data hashing, anony-
mization, or other suitable techniques as appropniate.

In particular embodiments, third-party system 970 may be
a network-addressable computing system that may provide
HD maps or host GPS maps, customer reviews, music or
content, weather information, or any other suitable type of
information. Third-party system 970 may generate, store,
receive, and send relevant data, such as, for example, map
data, customer review data from a customer review website,
weather data, or any other suitable type of data. Third-party
system 970 may be accessed by the other computing entities
of the network environment either directly or via network
910. For example, user device 930 may access the third-
party system 970 via network 910, or via transportation
management system 960. In the latter case, if credentials are
required to access the third-party system 970, the user 901
may provide such information to the transportation manage-
ment system 960, which may serve as a proxy for accessing,
content from the third-party system 970.

In particular embodiments, user device 930 may be a
mobile computing device such as a smartphone, tablet
computer, or laptop computer. User device 930 may include
one or more processors (e.g., CPU and/or GPU), memory,
and storage. An operating system and applications may be
installed on the user device 930, such as, e.g., a transporta-
tion application associated with the transportation manage-
ment system 960, applications associated with third-party
systems 970, and applications associated with the operating
system. User device 930 may include functionality for
determining 1ts location, direction, or orientation, based on
integrated sensors such as GPS, compass, gyroscope, or
accelerometer. User device 930 may also include wireless
transceivers for wireless communication and may support
wireless communication protocols such as Bluetooth, near-
field communication (NFC), infrared (IR) communication,
WI-FI, and/or 2G/3G/4G/LTE mobile communication stan-
dard. User device 930 may also include one or more
cameras, scanners, touchscreens, microphones, speakers,
and any other suitable input-output devices.

In particular embodiments, the vehicle 940 may be an
autonomous vehicle and equipped with an array of sensors
944, a navigation system 946, and a ride-service computing
device 948. In particular embodiments, a tleet of autono-
mous vehicles 940 may be managed by the transportation
management system 960. The fleet of autonomous vehicles
940, 1n whole or 1 part, may be owned by the enfity
associated with the transportation management system 960,

10

15

20

25

30

35

40

45

50

55

60

65

26

or they may be owned by a third-party entity relative to the
transportation management system 960. In either case, the
transportation management system 960 may control the
operations of the autonomous vehicles 940, including, e.g.,
dispatching select vehicles 940 to fulfill ride requests,
instructing the vehicles 940 to perform select operations
(e.g., head to a service center or charging/fueling station,
pull over, stop immediately, self-diagnose, lock/unlock com-
partments, change music station, change temperature, and
any other suitable operations), and instructing the vehicles
940 to enter select operation modes (e.g., operate normally,
drive at a reduced speed, drive under the command of human
operators, and any other suitable operational modes).

In particular embodiments, the autonomous vehicles 940
may receive data from and transmit data to the transportation
management system 960 and the third-party system 970.
Example of recerved data may include, e.g., instructions,
new soitware or software updates, maps, 3D models, traimned
or untrained machine-learning models, location information
(e.g., location of the rnide requestor, the autonomous vehicle
940 1tselt, other autonomous vehicles 940, and target des-
tinations such as service centers), navigation information,
trattic information, weather information, entertainment con-
tent (e.g., music, video, and news) ride requestor informa-
tion, ride information, and any other suitable information.
Examples of data transmitted from the autonomous vehicle
940 may include, e.g., telemetry and sensor data, determi-
nations/decisions based on such data, vehicle condition or
state (e.g., battery/fuel level, tire and brake conditions,
sensor condition, speed, odometer, etc.), location, navigation
data, passenger mputs (e.g., through a user interface in the
vehicle 940, passengers may send/receive data to the trans-
portation management system 960 and/or third-party system
970), and any other suitable data.

In particular embodiments, autonomous vehicles 940 may
also communicate with each other as well as other tradi-
tional human-driven vehicles, including those managed and
not managed by the transportation management system 960.
For example, one vehicle 940 may communicate with
another vehicle data regarding their respective location,
condition, status, sensor reading, and any other suitable
information. In particular embodiments, vehicle-to-vehicle
communication may take place over direct short-range wire-
less connection (e.g., WI-FI, Bluetooth, NFC) and/or over a
network (e.g., the Internet or via the transportation manage-
ment system 960 or third-party system 970).

In particular embodiments, an autonomous vehicle 940
may obtain and process sensor/telemetry data. Such data
may be captured by any suitable sensors. For example, the
vehicle 940 may have aa Light Detection and Ranging
(L1IDAR) sensor array of multiple LiDAR transceivers that
are configured to rotate 360°, emitting pulsed laser light and
measuring the reflected light from objects surrounding
vehicle 940. In particular embodiments, L1IDAR transmitting,
signals may be steered by use of a gated light valve, which
may be a MEMSs device that directs a light beam using the
principle of light diffraction. Such a device may not use a
gimbaled mirror to steer light beams i 360° around the
autonomous vehicle. Rather, the gated light valve may direct
the light beam 1nto one of several optical fibers, which may
be arranged such that the light beam may be directed to
many discrete positions around the autonomous vehicle.
Thus, data may be captured 1n 360° around the autonomous
vehicle, but no rotating parts may be necessary. A L1IDAR 1s
an eflective sensor for measuring distances to targets, and as
such may be used to generate a three-dimensional (3D)
model of the external environment of the autonomous
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vehicle 940. As an example and not by way of limitation, the
3D model may represent the external environment including
objects such as other cars, curbs, debris, objects, and pedes-
trians up to a maximum range ol the sensor arrangement
(e.g., 50, 100, or 200 meters). As another example, the
autonomous vehicle 940 may have optical cameras pointing
in different directions. The cameras may be used for, e.g.,
recognizing roads, lane markings, street signs, traflic lights,
police, other vehicles, and any other visible objects of
interest. To enable the vehicle 940 to “see” at night, infrared
cameras may be installed. In particular embodiments, the
vehicle may be equipped with stereo vision for, e.g., spotting,
hazards such as pedestrians or tree branches on the road. As
another example, the vehicle 940 may have radars for, e.g.,
detecting other vehicles and/or hazards atar. Furthermore,
the vehicle 940 may have ultrasound equipment for, e.g.,
parking and obstacle detection. In addition to sensors
enabling the vehicle 940 to detect, measure, and understand
the external world around 1t, the vehicle 940 may further be
equipped with sensors for detecting and self-diagnosing the
vehicle’s own state and condition. For example, the vehicle
940 may have wheel sensors for, e.g., measuring velocity;
global positioning system (GPS) for, e.g., determining the
vehicle’s current geolocation; and/or inertial measurement
units, accelerometers, gyroscopes, and/or odometer systems
for movement or motion detection. While the description of
these sensors provides particular examples of utility, one of
ordinary skill 1in the art would appreciate that the utilities of
the sensors are not limited to those examples. Further, while
an example of a utility may be described with respect to a
particular type of sensor, it should be appreciated that the
utility may be achieved using any combination of sensors.
For example, an autonomous vehicle 940 may build a 3D
model of 1ts surrounding based on data from its LiDAR,
radar, sonar, and cameras, along with a pre-generated map
obtained from the transportation management system 960 or
the third-party system 970. Although sensors 944 appear in
a particular location on autonomous vehicle 940 1n FIG. 9,
sensors 944 may be located 1n any suitable location in or on
autonomous vehicle 940. Example locations for sensors
include the front and rear bumpers, the doors, the front
windshield, on the side panel, or any other suitable location.

In particular embodiments, the autonomous vehicle 940
may be equipped with a processing unit (e.g., one or more
CPUs and GPUs), memory, and storage. The vehicle 940
may thus be equipped to perform a variety of computational
and processing tasks, including processing the sensor data,
extracting uselul information, and operating accordingly.
For example, based on images captured by its cameras and
a machine-vision model, the vehicle 940 may 1dentify par-
ticular types ol objects captured by the images, such as
pedestrians, other vehicles, lanes, curbs, and any other
objects of interest.

In particular embodiments, the autonomous vehicle 940
may have a navigation system 946 responsible for safely
navigating the autonomous vehicle 940. In particular
embodiments, the navigation system 946 may take as input
any type ol sensor data from, e.g., a Global Positioning
System (GPS) module, mertial measurement unit (IMU),
[L1DAR sensors, optical cameras, radio frequency (RF)
transceivers, or any other suitable telemetry or sensory
mechanisms. The navigation system 946 may also utilize,
¢.g., map data, traflic data, accident reports, weather reports,
instructions, target destinations, and any other suitable infor-
mation to determine navigation routes and particular driving,
operations (e.g., slowing down, speeding up, stopping,
swerving, etc.). In particular embodiments, the navigation
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system 946 may use 1ts determinations to control the vehicle
940 to operate 1n prescribed manners and to guide the
autonomous vehicle 940 to its destinations without colliding
into other objects. Although the physical embodiment of the
navigation system 946 (¢.g., the processing unit) appears in
a particular location on autonomous vehicle 940 1n FIG. 9,
navigation system 946 may be located 1in any suitable
location 1 or on autonomous vehicle 940. Example loca-
tions for navigation system 946 include inside the cabin or
passenger compartment ol autonomous vehicle 940, near the
engine/battery, near the front seats, rear seats, or 1n any other
suitable location.

In particular embodiments, the autonomous vehicle 940
may be equipped with a ride-service computing device 948,
which may be a tablet or any other suitable device installed
by transportation management system 960 to allow the user
to interact with the autonomous vehicle 940, transportation
management system 960, other users 901, or third-party
systems 970. In particular embodiments, installation of
ride-service computing device 948 may be accomplished by
placing the nde-service computing device 948 inside
autonomous vehicle 940, and configuring 1t to communicate
with the vehicle 940 via a wire or wireless connection (e.g.,
via Bluetooth). Although FIG. 9 illustrates a single ride-
service computing device 948 at a particular location 1n
autonomous vehicle 940, autonomous vehicle 940 may
include several nde-service computing devices 948 1n sev-
cral different locations within the vehicle. As an example
and not by way of limitation, autonomous vehicle 940 may
include four ride-service computing devices 948 located 1n
the following places: one 1n front of the front-left passenger
seat (e.g., driver’s seat in traditional U.S. automobiles), one
in front of the front-right passenger seat, one 1n front of each
of the rear-left and rear-right passenger seats. In particular
embodiments, ride-service computing device 948 may be
detachable from any component of autonomous vehicle 940.
This may allow users to handle ride-service computing
device 948 in a manner consistent with other tablet com-
puting devices. As an example and not by way of limitation,
a user may move ride-service computing device 948 to any
location 1n the cabin or passenger compartment ol autono-
mous vehicle 940, may hold ride-service computing device
948, or handle ride-service computing device 948 i any
other suitable manner. Although this disclosure describes
providing a particular computing device i a particular
manner, this disclosure contemplates providing any suitable
computing device 1n any suitable manner.

FIG. 10 illustrates an example block diagram of an
algorithmic navigation pipeline. In particular embodiments,
an algorithmic navigation pipeline 1000 may include a
number of computing modules, such as a sensor data module
1005, perception module 1010, prediction module 1015,
planning module 1020, and control module 1025. Sensor
data module 1005 may obtain and pre-process sensor/telem-
etry data that 1s provided to perception module 1010. Such
data may be captured by any suitable sensors of a vehicle.
As an example and not by way of limitation, the vehicle may
have a Light Detection and Ranging (L1iDAR) sensor that 1s
configured to transmit pulsed laser beams 1n multiple direc-
tions and measure the reflected signal from objects sur-
rounding vehicle. The time of tlight of the light signals may
be used to measure the distance or depth of the objects from
the LiDAR. As another example, the vehicle may have
optical cameras pointing 1n different directions to capture
images ol the vehicle’s surrounding. Radars may also be
used by the vehicle for detecting other vehicles and/or
hazards at a distance. As further examples, the vehicle may
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be equipped with ultrasound for close range object detec-
tion, e.g., parking and obstacle detection or mirared cameras
for object detection in low-light situations or darkness. In
particular embodiments, sensor data module 1005 may
suppress noise in the sensor data or normalize the sensor
data.

Perception module 1010 1s responsible for correlating and
fusing the data from the different types of sensors of the
sensor module 1005 to model the contextual environment of
the vehicle. Perception module 1010 may use information
extracted by multiple independent sensors to provide infor-
mation that would not be available from any single type of
sensors. Combining data from multiple sensor types allows
the perception module 1010 to leverage the strengths of
different sensors and more accurately and precisely perceive
the environment. As an example and not by way of limita-
tion, 1mage-based object recognition may not work well 1n
low-light conditions. This may be compensated by sensor
data from LiDAR or radar, which are effective sensors for
measuring distances to targets i low-light conditions. As
another example, 1image-based object recognition may mis-
takenly determine that an object depicted 1n a poster 1s an
actual three-dimensional object in the environment. How-
ever, 1I depth mformation from a LiDAR 1s also available,
the perception module 1010 could use that additional 1nfor-
mation to determine that the object 1n the poster 1s not, in
fact, a three-dimensional object.

Perception module 1010 may process the available data
(e.g., sensor data, data from a high-definition map, etc.) to
derive information about the contextual environment. For
example, perception module 1010 may include one or more
agent modelers (e.g., object detectors, object classifiers, or
machine-learning models trained to derive information from
the sensor data) to detect and/or classily agents present in the
environment of the vehicle (e.g., other vehicles, pedestrians,
moving objects). Perception module 1010 may also deter-
mine various characteristics of the agents. For example,
perception module 1010 may track the velocities, moving,
directions, accelerations, trajectories, relative distances, or
relative positions of these agents. In particular embodiments,
the perception module 1010 may also leverage information
from a high-definition map. The high-definition map may
include a precise three-dimensional model of the environ-
ment, including buildings, curbs, street signs, traflic lights,
and any stationary fixtures in the environment. Using the
vehicle’s GPS data and/or 1mage-based localization tech-
niques (e.g., simultaneous localization and mapping, or
SLAM), the perception module 1010 could determine the
pose (e.g., position and orientation) of the vehicle or the
poses of the vehicle’s sensors within the high-definition
map. The pose information, 1n turn, may be used by the
perception module 1010 to query the high-definition map
and determine what objects are expected to be in the
environment.

Perception module 1010 may use the sensor data from one
or more types of sensors and/or mformation derived there-
from to generate a representation of the contextual environ-
ment of the vehicle. As an example and not by way of
limitation, the representation of the external environment
may 1nclude objects such as other vehicles, curbs, debris,
objects, and pedestrians. The contextual representation may
be limited to a maximum range of the sensor array (e.g., 50,
1000, or 200 meters). The representation of the contextual
environment may include information about the agents and
objects surrounding the vehicle, as well as semantic 1nfor-
mation about the traflic lanes, traflic rules, trathic signs, time
of day, weather, and/or any other suitable information. The
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contextual environment may be represented 1n any suitable
manner. As an example and not by way of limitation, the
contextual representation may be encoded as a vector or
matrix of numerical values, with each value in the vector/
matrix corresponding to a predetermined category of infor-
mation. For example, each agent in the environment may be
represented by a sequence of values, starting with the
agent’s coordinate, classification (e.g., vehicle, pedestrian,
etc.), orientation, velocity, trajectory, and so on. Alterna-
tively, information about the contextual environment may be
represented by a raster image that visually depicts the agent,
semantic information, etc. For example, the raster image
may be a birds-eye view of the vehicle and 1ts surrounding,
up to a predetermined distance. The raster image may
include visual information (e.g., bounding boxes, color-
coded shapes, etc.) that represent various data of interest
(e.g., vehicles, pedestrians, lanes, buildings, etc.).

The representation of the present contextual environment
from the perception module 1010 may be consumed by a
prediction module 1013 to generate one or more predictions
of the future environment. For example, given a represen-
tation of the contextual environment at time to, the predic-
tion module 1015 may output another contextual represen-
tation for time t,. For instance, i1f the to contextual
environment 1s represented by a raster image, the output of
the prediction module 1015 may be another raster image
(c.g., a snapshot of the current environment) that depicts
where the agents would be at time t, (e.g., a snapshot of the
future). In particular embodiments, prediction module 1015
may include a machine-learning model (e.g., a convolutional
neural network, a neural network, a decision tree, support
vector machines, etc.) that may be trained based on previ-
ously recorded contextual and sensor data. For example, one
training sample may be generated based on a sequence of
actual sensor data captured by a vehicle at times t, and t,.
The captured data at times to and t; may be used to generate,
respectively, a first contextual representation (the traiming,
data) and a second contextual representation (the associated
ground-truth used {for ftramming). During training, the
machine-learning model may process the first contextual
representation using the model’s current configuration
parameters and output a predicted contextual representation.
The predicted contextual representation may then be com-
pared to the known second contextual representation (1.e.,
the ground-truth at time t,). The comparison may be quan-
tified by a loss value, computed using a loss function. The
loss value may be used (e.g., via back-propagation tech-
niques) to update the configuration parameters of the
machine-learning model so that the loss would be less 1t the
prediction were to be made again. The machine-learning
model may be trained iteratively using a large set of training
samples until a convergence or termination condition 1s met.
For example, training may terminate when the loss value 1s
below a predetermined threshold. Once ftrained, the
machine-learning model may be used to generate predictions
of future contextual representations based on current con-
textual representations.

Planning module 1020 may determine the navigation
routes and particular driving operations (e.g., slowing down,
speeding up, stopping, swerving, etc.) of the vehicle based
on the predicted contextual representation generated by the
prediction module 1015. In particular embodiments, plan-
ning module 1020 may utilize the predicted information
encoded within the predicted contextual representation (e.g.,
predicted location or trajectory of agents, semantic data,
etc.) and any other available mmformation (e.g., map data,
tratlic data, accident reports, weather reports, target desti-
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nations, and any other suitable information) to determine
one or more goals or navigation mnstructions for the vehicle.
As an example and not by way of limitation, based on the
predicted behavior of the agents surrounding the vehicle and
the tratlic data to a particular destination, planning module
1020 may determine a particular navigation path and asso-
ciated driving operations for the vehicle to avoid possible
collisions with one or more agents.

In particular embodiments, planning module 1020 may
generate, based on a given predicted contextual representa-
tion, several different plans (e.g., goals or navigation mnstruc-
tions) for the vehicle. For each plan, the planning module
1020 may compute a score that represents the desirability of
that plan. For example, 1f the plan would likely result 1n the
vehicle colliding with an agent at a predicted location for
that agent, as determined based on the predicted contextual
representation, the score for the plan may be penalized
accordingly. Another plan that would cause the vehicle to
violate traflic rules or take a lengthy detour to avoid possible
collisions may also have a score that 1s penalized, but the
penalty may be less severe than the penalty applied for the
previous plan that would result 1n collision. A third plan that
causes the vehicle to simply stop or change lanes to avoid
colliding with the agent in the predicted future may receive
the highest score. Based on the assigned scores for the plans,
the planning module 1020 may select the best plan to carry
out. While the example above used collision as an example,
the disclosure herein contemplates the use of any suitable
scoring criteria, such as travel distance or time, fuel
economy, changes to the estimated time of arrival at the
destination, passenger comiort, proximity to other vehicles,
the confidence score associated with the predicted contex-
tual representation, etc.

Based on the plan generated by planning module 1020,
which may include one or more navigation path or associ-
ated driving operations, control module 1025 may determine
the specific commands to be 1ssued to the actuators of the
vehicle. The actuators of the vehicle are components that are
responsible for moving and controlling the vehicle. The
actuators control driving functions of the vehicle, such as for
example, steering, turn signals, deceleration (braking),
acceleration, gear shiit, etc. As an example and not by way
of limitation, control module 1025 may transmit commands
to a steering actuator to maintain a particular steering angle
for a particular amount of time to move a vehicle on a
particular trajectory to avoid agents predicted to encroach
into the area of the vehicle. As another example, control
module 1025 may transmit commands to an accelerator
actuator to have the vehicle safely avoid agents predicted to
encroach into the area of the vehicle.

FIG. 11 illustrates an example computer system 1100. In
particular embodiments, one or more computer systems
1100 perform one or more steps ol one or more methods
described or illustrated herein. In particular embodiments,
one or more computer systems 1100 provide the function-
alities described or 1llustrated herein. In particular embodi-
ments, soltware running on one or more computer systems
1100 performs one or more steps of one or more methods
described or illustrated herein or provides the functionalities
described or 1illustrated herein. Particular embodiments
include one or more portions of one or more computer
systems 1100. Herein, a reference to a computer system may
encompass a computing device, and vice versa, where
appropriate. Moreover, a reference to a computer system
may encompass one or more computer systems, where
appropriate.
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This disclosure contemplates any suitable number of
computer systems 1100. This disclosure contemplates com-
puter system 1100 taking any suitable physical form. As
example and not by way of limitation, computer system
1100 may be an embedded computer system, a system-on-
chip (SOC), a single-board computer system (SBC) (such as,
for example, a computer-on-module (COM) or system-on-
module (SOM)), a desktop computer system, a laptop or
notebook computer system, an interactive kiosk, a main-
frame, a mesh of computer systems, a mobile telephone, a
personal digital assistant (PDA), a server, a tablet computer
system, an augmented/virtual reality device, or a combina-
tion of two or more of these. Where appropriate, computer
system 1100 may include one or more computer systems
1100; be unitary or distributed; span multiple locations; span
multiple machines; span multiple data centers; or reside 1n a
cloud, which may include one or more cloud components 1n
one or more networks. Where appropriate, one or more
computer systems 1100 may perform without substantial
spatial or temporal limitation one or more steps of one or
more methods described or 1llustrated herein. As an example
and not by way of limitation, one or more computer systems
1100 may perform in real time or 1n batch mode one or more
steps ol one or more methods described or illustrated herein.
One or more computer systems 1100 may perform at dii-
ferent times or at diflerent locations one or more steps of one
or more methods described or illustrated herein, where
appropriate.

In particular embodiments, computer system 1100
includes a processor 1102, memory 1104, storage 1106, an
input/output (I/0) interface 1108, a communication interface
1110, and a bus 1112. Although this disclosure describes and
illustrates a particular computer system having a particular
number of particular components 1 a particular arrange-
ment, this disclosure contemplates any suitable computer
system having any suitable number of any suitable compo-
nents 1 any suitable arrangement.

In particular embodiments, processor 1102 includes hard-
ware for executing instructions, such as those making up a
computer program. As an example and not by way of
limitation, to execute instructions, processor 1102 may
retrieve (or fetch) the mstructions from an internal register,
an i1nternal cache, memory 1104, or storage 1106; decode
and execute them; and then write one or more results to an
internal register, an internal cache, memory 1104, or storage
1106. In particular embodiments, processor 1102 may
include one or more 1nternal caches for data, instructions, or
addresses. This disclosure contemplates processor 1102
including any suitable number of any suitable internal
caches, where appropriate. As an example and not by way of
limitation, processor 1102 may include one or more nstruc-
tion caches, one or more data caches, and one or more
translation lookaside buflers (TLBs). Instructions in the
instruction caches may be copies of istructions 1n memory
1104 or storage 1106, and the instruction caches may speed
up retrieval of those instructions by processor 1102. Data in
the data caches may be copies of data in memory 1104 or
storage 1106 that are to be operated on by computer instruc-
tions; the results of previous instructions executed by pro-
cessor 1102 that are accessible to subsequent 1nstructions or
for writing to memory 1104 or storage 1106; or any other
suitable data. The data caches may speed up read or write
operations by processor 1102. The TLBs may speed up
virtual-address translation for processor 1102. In particular
embodiments, processor 1102 may include one or more
internal registers for data, instructions, or addresses. This
disclosure contemplates processor 1102 including any suit-
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able number of any suitable internal registers, where appro-
priate. Where appropriate, processor 1102 may include one
or more arithmetic logic units (ALUs), be a multi-core
processor, or include one or more processors 1102. Although
this disclosure describes and illustrates a particular proces-
sor, this disclosure contemplates any suitable processor.

In particular embodiments, memory 1104 includes main
memory for storing instructions for processor 1102 to
execute or data for processor 1102 to operate on. As an
example and not by way of limitation, computer system
1100 may load instructions from storage 1106 or another
source (such as another computer system 1100) to memory
1104. Processor 1102 may then load the instructions from
memory 1104 to an internal register or internal cache. To
execute the instructions, processor 1102 may retrieve the
instructions from the internal register or internal cache and
decode them. During or after execution of the instructions,
processor 1102 may write one or more results (which may be
intermediate or final results) to the internal register or
internal cache. Processor 1102 may then write one or more
of those results to memory 1104. In particular embodiments,
processor 1102 executes only instructions in one or more
internal registers or internal caches or in memory 1104 (as
opposed to storage 1106 or elsewhere) and operates only on
data 1n one or more 1nternal registers or internal caches or 1n
memory 1104 (as opposed to storage 1106 or elsewhere).
One or more memory buses (which may each include an
address bus and a data bus) may couple processor 1102 to
memory 1104. Bus 1112 may include one or more memory
buses, as described in further detail below. In particular
embodiments, one or more memory management units
(MMUSs) reside between processor 1102 and memory 1104
and facilitate accesses to memory 1104 requested by pro-
cessor 1102. In particular embodiments, memory 1104
includes random access memory (RAM). This RAM may be
volatile memory, where appropriate. Where approprate, this
RAM may be dynamic RAM (DRAM) or static RAM
(SRAM). Moreover, where appropriate, this RAM may be
single-ported or multi-ported RAM. This disclosure contem-
plates any suitable RAM. Memory 1104 may include one or
more memories 1104, where appropriate. Although this
disclosure describes and illustrates particular memory, this
disclosure contemplates any suitable memory.

In particular embodiments, storage 1106 includes mass
storage for data or instructions. As an example and not by
way of limitation, storage 1106 may include a hard disk
drive (HDD), a floppy disk drive, flash memory, an optical
disc, a magneto-optical disc, magnetic tape, or a Universal
Serial Bus (USB) drive or a combination of two or more of
these. Storage 1106 may include removable or non-remov-
able (or fixed) media, where appropriate. Storage 1106 may
be iternal or external to computer system 1100, where
appropriate. In particular embodiments, storage 1106 1is
non-volatile, solid-state memory. In particular embodi-
ments, storage 1106 includes read-only memory (ROM).
Where appropnate, this ROM may be mask-programmed

ROM, programmable ROM (PROM), erasable PROM
(EPROM), electrically erasable PROM (EEPROM), electri-
cally alterable ROM (EAROM), or flash memory or a
combination of two or more of these. This disclosure con-
templates mass storage 1106 taking any suitable physical
form. Storage 1106 may 1nclude one or more storage control
units facilitating communication between processor 1102
and storage 1106, where appropriate. Where appropriate,
storage 1106 may include one or more storages 1106.
Although this disclosure describes and 1illustrates particular
storage, this disclosure contemplates any suitable storage.

10

15

20

25

30

35

40

45

50

55

60

65

34

In particular embodiments, I/O interface 1108 includes
hardware, software, or both, providing one or more inter-
faces for communication between computer system 1100
and one or more I/0O devices. Computer system 1100 may
include one or more of these 1/0 devices, where appropriate.
One or more of these I/O devices may enable communica-
tion between a person and computer system 1100. As an
example and not by way of limitation, an I/O device may
include a keyboard, keypad, microphone, monitor, mouse,
printer, scanner, speaker, still camera, stylus, tablet, touch
screen, trackball, video camera, another suitable I/O device
or a combination of two or more of these. An I/0O device may
include one or more sensors. This disclosure contemplates
any suitable I/O devices and any suitable I/O interfaces 1108
for them. Where appropnate, I/O interface 1108 may include
one or more device or software drivers enabling processor
1102 to drive one or more of these I/O devices. 1/0 1nterface
1108 may include one or more I/O interfaces 1108, where
appropriate. Although this disclosure describes and 1llus-
trates a particular I/O interface, this disclosure contemplates
any suitable I/O interface.

In particular embodiments, communication interface 1110
includes hardware, software, or both providing one or more
interfaces for communication (such as, for example, packet-
based communication) between computer system 1100 and
one or more other computer systems 1100 or one or more
networks. As an example and not by way of limitation,
communication interface 1110 may include a network 1inter-
tace controller (NIC) or network adapter for communicating
with an Ethernet or any other wire-based network or a
wireless NIC (WNIC) or wireless adapter for communicat-
ing with a wireless network, such as a WI-FI network. This
disclosure contemplates any suitable network and any suit-
able communication interface 1110 for 1t. As an example and
not by way of limitation, computer system 1100 may com-
municate with an ad hoc network, a personal area network
(PAN), a local area network (LLAN), a wide area network
(WAN), a metropolitan area network (MAN), or one or more
portions of the Internet or a combination of two or more of
these. One or more portions of one or more of these
networks may be wired or wireless. As an example, com-
puter system 1100 may communicate with a wireless PAN
(WPAN) (such as, for example, a Bluetooth WPAN), a
WI-FI network, a WI-MAX network, a cellular telephone
network (such as, for example, a Global System for Mobile
Communications (GSM) network), or any other suitable
wireless network or a combination of two or more of these.
Computer system 1100 may include any suitable commu-
nication interface 1110 for any of these networks, where
appropriate. Communication interface 1110 may include one
or more communication interfaces 1110, where appropriate.
Although this disclosure describes and illustrates a particular
communication interface, this disclosure contemplates any
suitable communication interface.

In particular embodiments, bus 1112 includes hardware,
soltware, or both coupling components of computer system
1100 to each other. As an example and not by way of
limitation, bus 1112 may include an Accelerated Graphics
Port (AGP) or any other graphics bus, an Enhanced Industry
Standard Architecture (EISA) bus, a front-side bus (FSB), a
HYPERTRANSPORT (HT) interconnect, an Industry Stan-
dard Architecture (ISA) bus, an INFINIBAND interconnect,
a low-pin-count (LPC) bus, a memory bus, a Micro Channel
Architecture (MCA) bus, a Peripheral Component Intercon-
nect (PCI) bus, a PCI-Express (PCle) bus, a serial advanced
technology attachment (SATA) bus, a Video FElectronics
Standards Association local (VLB) bus, or another suitable
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bus or a combination of two or more of these. Bus 1112 may
include one or more buses 1112, where appropriate.
Although this disclosure describes and illustrates a particular
bus, this disclosure contemplates any suitable bus or inter-
connect.

Herein, a computer-readable non-transitory storage
medium or media may include one or more semiconductor-
based or other types of integrated circuits (ICs) (such, as for
example, field-programmable gate arrays (FPGAs) or appli-
cation-specific ICs (ASICs)), hard disk drnives (HDDs),
hybrid hard drives (HHDs), optical discs, optical disc drives
(ODDs), magneto-optical discs, magneto-optical drives,
floppy diskettes, floppy disk drives (FDDs), magnetic tapes,
solid-state drives (SSDs), RAM-drives, SECURE DIGITAL
cards or drives, any other suitable computer-readable non-
transitory storage media, or any suitable combination of two
or more ol these, where appropriate. A computer-readable
non-transitory storage medium may be volatile, non-vola-
tile, or a combination of volatile and non-volatile, where
appropriate.

Herein, “or”

or’ 1s 1nclusive and not exclusive, unless
expressly indicated otherwise or indicated otherwise by
context. Theretore, herein, “A or B” means “A, B, or both.”
unless expressly indicated otherwise or indicated otherwise
by context. Moreover, “and” 1s both joint and several, unless
expressly indicated otherwise or indicated otherwise by
context. Therefore, herein, “A and B” means “A and B,
jointly or severally,” unless expressly indicated otherwise or
indicated otherwise by context.

The scope of this disclosure encompasses all changes,
substitutions, variations, alterations, and modifications to the
example embodiments described or 1llustrated herein that a
person having ordinary skill in the art would comprehend.
The scope of this disclosure 1s not limited to the example
embodiments described or 1illustrated herein. Moreover,
although this disclosure describes and 1llustrates respective
embodiments herein as including particular components,
clements, feature, functions, operations, or steps, any of
these embodiments may include any combination or permu-
tation of any of the components, elements, features, func-
tions, operations, or steps described or illustrated anywhere
herein that a person having ordinary skill in the art would
comprehend. Furthermore, reference 1n the appended claims
to an apparatus or system or a component of an apparatus or
system being adapted to, arranged to, capable of, configured
to, enabled to, operable to, or operative to perform a
particular function encompasses that apparatus, system,
component, whether or not it or that particular function is
activated, turned on, or unlocked, as long as that apparatus,
system, or component 1s so adapted, arranged, capable,
configured, enabled, operable, or operative. Additionally,
although this disclosure describes or illustrates particular
embodiments as providing particular advantages, particular
embodiments may provide none, some, or all of these
advantages.

What 1s claimed 1s:

1. A method comprising, by a computing system associ-
ated with a vehicle:

identifying one or more first sets ol model parameters that

are predefined from a prior training associated with a
first region which 1s a current location of the vehicle
and configuring one or more machine-learning models
with the one or more first sets of model parameters;
switching the one or more machine-learning models from
the first sets of model parameters to one or more second
sets of model parameters that are predefined from a
prior training associated with a second region upon
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determining the current location 1s 1n the second region,
wherein the one or more first sets of model parameters
and the one or more second sets of model parameters
are learned weights of the one or more machine learn-
ing models;

generating, using the one or more machine-learming mod-

cls configured with the one or more second sets of
model parameters, inferences based on sensor data
generated by sensors of the vehicle when the vehicle 1s
in the second region;

causing the vehicle to perform operations according to the

inferences; and

dividing the second region into at least two subregions

with new parameters when an assessed performance of
the second sets of model parameters with the machine-
learning models indicates performance below a mini-
mum threshold.

2. The method of claim 1, wherein the first sets of model
parameters and the second sets of model parameters are
generated by training the one or more machine learning
models based on previously-captured sensor data collected
in the first and second regions, respectively and from back-
propagation ol a loss value generated by a loss function
during training.

3. The method of claim 2, wherein the one or more
machine learning models comprise one or more perception
models trained to 1dentify, based on the first or second sensor
data, one or more types of objects i1n the first or second
regions, respectively.

4. The method of claim 3, wherein the perception models
comprise a plurality of perception models trained based on
a plurality of lighting conditions, a plurality of weather
conditions, a plurality of times of day, or a combination
thereof.

5. The method of claim 4, wherein 1dentitying the first sets
and the second sets of model parameters further comprises
identifying, 1n a data store, the first and second sets of model
parameters that are associated with current lighting condi-
tions 1n an environment of the vehicle, weather conditions 1n
the environment, time of day, or a combination thereof.

6. The method of claim S, wherein the lighting conditions,
weather conditions, time of day, or a combination thereof,
associated with the first sets and the second sets of model
parameters were determined when the first sets and second
sets of model parameters were generated by training the
perception models.

7. The method of claim 2, wherein the one or more
machine learming models comprise one or more prediction
models trained to predict one or more trajectories of one or
more objects represented 1n the first or second sensor data.

8. The method of claim 7, wherein the prediction models
having configurations based on the corresponding first sets
of model parameters associated with the first regions are
trained to predict the trajectories based on observed trajec-
tories of objects captured in the past in the first regions.

9. The method of claim 2, wherein the one or more
machine learning models comprise one or more planning
models trained to 1dentify, based on the first or second sensor
data, one or more vehicle trajectories for maneuvering
through an environment of the vehicle 1n the first or second
regions, respectively.

10. The method of claim 9, wherein the one or more
vehicle trajectories comprise a plurality of vehicle trajecto-
ries resulting in a corresponding plurality of different
maneuvers being performed.

11. The method of claim 1, wherein 1dentifying the first
sets and the second sets of model parameters comprises
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retrieving the first and second sets of model parameters from
a data store, wherein the first and second sets of model
parameters are associated 1n the data store with the first and
second regions, respectively, and wherein switching
includes removing the first sets of model parameters from
the machine-learning models and inserting the one or more
second sets.

12. The method of claim 1, wherein the first region 1is
separated from the second region by a region boundary, and
switching the one or more models from the first sets of
model parameters to the second sets of model parameters 1s
in response to the vehicle being located less than a first
threshold distance from, the region boundary, the method
turther comprising:

in response to determining, based on the current location

and a current heading of the vehicle, that the vehicle 1s

less than a second threshold distance from the region

boundary, wherein the second threshold distance 1s

greater than the first threshold distance:

loading the second sets of model parameters from a
data store 1nto a memory device on the vehicle.

13. The method of claim 1, wherein the first and second
sets of model parameters are loaded 1nto a memory device
on the vehicle for predetermined sets of first and second
regions, wherein the predetermined sets are determined
based on a route plan of the vehicle.

14. The method of claim 1, wherein each of the first and
second regions 1s specified as a geographical area, a road
segment, an intersection, or a combination thereof.

15. The method of claim 1, further comprising;:

identifying a region of a map for which performance of a

generalized machine-learning model 1s to be assessed;
determining, using the generalized machine-learning
model configured 1n accordance with a set of general-
1zed model parameters associated with the map, an
assessed performance of the generalized machine-
learning model for the region of the map;
determining that the assessed performance of the gener-
alized machine-learning model for the region of the
map 1s below a mimmum performance threshold;

generating a localized machine-learning model having a

set of localized model parameters; and

associating the localized machine-learning model with the

region of the map for use in generating one or more
subsequent inferences 1n the region of the map.

16. The method of claim 1, further comprising;:

assessing a performance of the second sets of model

parameters for the second region according to a per-
formance metric that assesses at least characteristics of
control of the vehicle within the second region.

17. A system comprising: one or more processors and one
or more computer-readable non-transitory storage media
coupled to one or more of the processors, the one or more
computer-readable non-transitory storage media comprising
instructions operable when executed by one or more of the
processors to cause the system to:

determine whether a current location of a vehicle 1s 1n a

first region;

identily one or more {irst sets of model parameters that are

predefined from a prior training associated with the first
region and configuring one or more machine-learning
models with the one or more first sets ol model param-
eters:;

switch the one or more machine-learning models from the

one or more first sets of model parameters to one or
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more second sets of model parameters that are pre-
defined from a prior training associated with a second
region upon determiming the current location 1s 1n the
second region, wherein the one or more first sets of
model parameters and the one or more second sets of
model parameters are learned weights of the one or
more machine learning models;
generate, using the one or more machine-learning models
configured with the one or more second sets of model
parameters, one or more corresponding inferences
based on second sensor data generated by sensors of the
vehicle when the vehicle 1s 1n the second region;

cause the vehicle to perform one or more operations based
at least on the inferences; and
divide the second region into at least two subregions with
new parameters when an assessed performance of the
second sets of model parameters with the machine-
learning models indicates performance below a mini-
mum threshold.
18. The system of claim 17, wherein the first sets of model
parameters and the second sets of model parameters are
generated by training the one or more machine learning
models based on previously-captured sensor data collected
in the first and second regions, respectively.
19. One or more computer-readable non-transitory stor-
age media embodying soiftware that 1s operable when
executed to cause one or more processors to perform opera-
tions comprising:
determining whether a current location of a vehicle 1s 1n
a first region;

identifying one or more first sets of model parameters that
are predefined from a prior training associated with the
first region and configuring one or more machine-
learning models with the one or more first sets of model
parameters;
switching the one or more machine-learning models from
the one or more first sets ol model parameters to one or
more second sets of model parameters that are pre-
defined from a prior training associated with a second
region upon determiming the current location 1s 1n the
second region, wherein the one or more first sets of
model parameters and the one or more second sets of
model parameters are learned weights of the one or
more machine learning models;
generating, using the one or more machine-learning mod-
cls configured with the one or more second sets of
model parameters, one or more corresponding infer-
ences based on second sensor data generated by sensors
of the vehicle when the vehicle 1s in the second region;

causing the vehicle to perform one or more operations
based at least on the inferences; and

dividing the second region into at least two subregions

with new parameters when an assessed performance of

the second set of parameters with the machine-learning
models 1ndicates performance below a minimum
threshold.

20. The one or more computer-readable non-transitory
storage media of claim 19, wherein the first sets of model
parameters and the second sets of model parameters are
generated by training the one or more machine learning
models based on previously-captured sensor data collected
in the first and second regions, respectively.
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