12 United States Patent

US011863610B2

(10) Patent No.: US 11,863,610 B2

Bogrett et al. 45) Date of Patent: Jan. 2, 2024
(54) TRANSACTION MANAGEMENT OF (56) References Cited
MULTIPLE NETWORKED RESOURCES
U.S. PATENT DOCUMENTS
(71) Applicant: XACTLY CORPORATION, Los
Gatos, CA (US) 6,314,430 B1* 11/2001 Chang GO6F 16/289
707/999.102
S
(72) Inventors: Steven Bogrett, Los Gatos, CA (US): 2000106710 AL+ §2009 Smith. Jr. e, HOAL 67,03
Oleksandr Podoprygora, Dublin, CA 719/315
(US) 2014/0032964 Al* 1/2014 Neerincx ... HOA4L 69/40
| | 707/634
(73) Assignee: f%é:)ﬂy Corporation, Los Gatos, CA (Continued)
| | o | Primary Examiner — Viet D Vu
(*) Notice: Subject to any disclaimer, the term of this (74) Attorney, Agent, or Firm — Baker Botts L.L.P.
patent 1s extended or adjusted under 35
(21) Appl. No.: 17/743,066 A method for managing multiple REST requests of a
browser or other client to resources 1n an atomic transaction
(22) Filed: May 12, 2022 using a transaction management process that 1s communi-
_ o catively coupled to a cluster of computer-executed server
(65) Prior Publication Data processes. In one approach, the process 1s programmed for
US 2023/0370517 Al Nov. 16, 2023 receiving from a browser process a request to start a trans-
action associated with a data access process; acquiring a
(51) Imt. CL database connection from the data access process and stor-
HO4L 67/02 (2022.01) ing the database connection 1n an open state; recerving from
HO4L 67/1097 (2022.01) the browser process REST queries for execution; forwarding
Gool 16/27 (2019.01) the REST queries to the data access process, and forwarding,
Goor 11714 (20006.01) responses from the data access process to the browser
HO4L 67/501 (2022.01) process; recerving a request from the browser process to end
(52) US. ClL the transaction, and only 1n response to the second request,
CPC ... HO4L 67/02 (2013.01); GOGF 11/1471 completing the transaction in communication with the data
(2013.01); GOGF 16/27 (2019.01); HO4L access process, and changing the database connection to a
67/1097 (2013.01); HO4L 67/561 (2022.05), closed state. As the connection to the database remains open,
GO6t 2201/80 (2013.01) multiple REST queries may be sent for updating multiple
(58) Field of Classification Search resources 1n a single transaction efliciently through the same

CPC ... HO4L 67/02; HO4L 67/561; HO4L 67/1097;
GO6F 16/27;, GO6F 11/1471; GO6F
2201/80

See application file for complete search history.

data access process without occupying extra server pro-
CESSes.

12 Claims, 5 Drawing Sheets

| TRANSACTION PROCESSING
INSTRUCTIONS 122 | -
: S g """""""""""""""" ’ //’”' Eﬁhﬁ
¥ _ v A Erwork
BROWSER DEVICE | | DATABASE CONNECTION |/t~ N ook N
i 110 i i INSTRUCTIONS 124 | \ - ,/ |
e suranavsmnes o s e RS , o s) T e I - |
E ! RESTQUERIESPROCESSING | |
| INSTRUCTIONS 128 ;
S |
{ ¥ . ¥
. TRANSACTION MANAGEMENT SYSTEM 120 pATAACCESS | UTHER
e e | CLUSTERED
. SERVER | .
| _ SERVERS
- B 1428
| i
- -
- 2
DATABASE |
e 44
. DATA ACCESS SYSTEM 140

Ak R R et " e el " i o I L B e FYrre T M LA L R b b ol e ke ol e A T A o el el A o A o o e el B Bl el ol o il o el el o e el ol il b e ML A

US 11,863,610 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS

2015/0365551 Al1* 12/2015 Panuganti HO4N 1/00503

358/1.15
2017/0180513 Al1* 6/2017 Doyle G06Q 20/12
2020/0409949 Al1* 12/2020 Saxena GO6F 9/505
2021/0328972 Al* 10/2021 Ionescu HO4L 63/0281

* cited by examiner

@\
-2 :
= b Ol
e
\&
en
S e
- OFT WILSAS $SI00V ViVC
2 R
\F,
° rA
2 SHAASES L yanuas _
7 UREELS L semnovviva |
s HIHLO _ 021 W3LSAS INSWIOYNYW NOILOVSNYHL
3]
<t “ Y aR
\ N GEF SNOLLOMYLSNS
N - ONISSIOOU SIUIAND 153
o :
. ! &
- m H
e T Yy
e . A
- L\\\\ o N m S m I
- e e FZT SNOLLONYLSNS i
.................. woman NOILDENNOO 3Svavivd | FOIATT HISMOUE
.m f..f:»./ . £ \u\.\i&u __ w : | .
w ()/f//{uiu\\n\ m.u“ IIIIIIIMW\.m
< N ZEF SNOLLOMYLSNS . Q
- | ONISSID0OUd NOILOVENYYL |
S
-

U.S. Patent Jan. 2, 2024 Sheet 2 of 5 US 11,863,610 B2

REGEIVE FROM A BROWSER PROCESS A FIRST REQUEST TO STARTA |)
TRANSACTION ASSOCIATED WITH A DATA ACCESS PROCESS -

ACQUIRE A DATABASE CONNECTION FROM THE DATA ACCESS PROCESS
AND STORE THE DATABASE CONNECUTION IN AN OPEN STATE I

RECEIVE FROM THE BROWSER PROCESS A PLURALITY OF REST QUERIES |
FOR EXECUTION, FORWARD THE PLURALITY OF REST QUERIES TO THE)
DATA ACCESS PROCESS, AND FORWARD RESPONSES FROM THE DATA

ACCESS PROCESS TO THE BROWSER PROCESS

REGEIVE A SECOND REQUEST FROM THE BROWSER PROCESS TO END
THE TRANSAGTION e

ONLY IN RESPONSE TO THE SECOND REQUEST, COMPLETE THE
TRANSACTION IN COMMUNICATION WITH THE DATA ACCESS PROCESS, 4
AND CHANGE THE DATABASE CONNECTION TO A CLOSED STATE

FIG. 2

210

£30

U.S. Patent Jan. 2, 2024 Sheet 3 of 5 US 11.863.610 B2

| GENERATE UNIQUE TRANSACTION IDENTIFIER FOR THE
 TRANSACTION IN ASSOCIATION WITH THE STORING OF THE | S0
| DATABASE CONNECTION **

%
¥
x
K
;
MWW—*’T—*\WWW
%
£
X
K
X
K

~ STORE UNIQUE TRANSACTION IDENTIFIERFORTHE
 TRANSACTION IN ASSOCIATION WITH THE STORING OF THE | 320
| DATABASE CONNECTION N

OF THE PLURALITY OF REST QUERIES FOR EXECUTING

% FARSE PARTICULAR TRANSACTION IDENTIFIER FOR BEACH L,/ 330

SN

~ PARTICULAR ID OF REST ™
YeEs 7 NO
f}\

——_QUERY MATCHES UNIQUE ID
* \ TRANSACTION?

FORWARD PARTICULAR REST PROXY PARTICULAR REST QUERY)]
QUERY TOTHEDATAACCESS |/ 380 | TOAPARTICULAR SERVER
PROCESS - PROCESS AMONG THECLUSTER |/ 360
--- OF COMPUTER-EXECUTED |
 SERVER PROCESSES

FiG. 3

US 11,863,610 B2

Sheet 4 of 5

Jan. 2, 2024

U.S. Patent

4 F = 4 F I F= 4 F F = 4 F F =4 F- F=d F= F=d F= = 4 F =

1 F= 4 -

=T roa =T orom =T raT 4T r e T r s T - r s T T rasTr

4w T

a0y 4 =

4

+*

- F

\
Y
.

y Old

- a1 A L] ek Por oy - - - AN o P IR 4+ k- 4 & ko T PR - b oy oy a = - R P - -k oA osFoa [PR I] doA = 4= r s oa P Y - h o - - k4o ‘Ao A A4 [] N oAy P] 404 k4 4 Ao R A Y
L
-ﬁ-\l‘l.l.!.l.l..l.ll.l.l..!.ll..l..-_n.-_-..l.ln.I..l..._n.l..I..I.I..!.IIhll!llhlﬂ]!li'll!!*:; L
L
L
L

1
] r
& ; ;
I
3
. }
3
3
.rft" 3
o " a ;
3
3
+
1.1.—.
L)
e T R P T —ren B e T 2T v e, aw e, v e e o en e o I e, a e, B T ST T e S e ovw, o e awrew m e e s .

ok

L

AN

Ly
NOLLOVENYY
(N

L B L | + 1 & & 7 L B | LI L LI N B LI I B L

¢ SAUENT L83
HOW 410043
WL (34N

oy, iy gy s sl s Sy ik gy e e i i ik ey gk

Ol

h\.wﬁ“ﬁ“ﬂ“ﬁ*HE#WHH*##.'IG‘“H“!

LI J L B | * = § 44 + 4 1 & F L I - 4 & “ § 4+ & - 8 &+ F A 1+ F ¥ LI o+ F YA LI

ok PR+

+ P 4+

- a4 ox

ERE R

T N
e

L

- W L

Vet

. . e

Tl iy Sl

L T

EEE R |

.la.l“t.i.._t._i.i.‘t.l.l...t.—l.i.l.l.’.._ttillt*ti‘jt.—tti‘tt.ﬁti?

SHA

* F k& + 4 8 + F L I F Y+ P Fd+PFCc F A+ FAd L I

30
SN0
A5 233

L LI o+ Fdd o+ F 4+ ok P * P + = * F & & F

* F & & F

L L L B

ERLEE] -k

ey -

S

1 = /7

LN,

L I

LR L L]

L AU

-

a4 ey

4 & r g

4 = 8 4

4 = 4 & = 4

N a4 =

R B L ERL B CRERE B s A A Ay LAy

2 b el et oot ek vk e i ek el el o vt i e e el ke ol e e e el e e, o el o e el i e e el ek o i i

NOLLOANNQOD

A5V HY.LY
HLIM J0IAOHd

W ooy

= vl e i e i e e e vl e v e ti**t.ﬂii**t.‘i***t.‘.l—.tl*t.‘.l

PR U

L B

F % &= F &

] ER |

F &= ag

-.. L) ..u _.. .

L]

1+ P+

&#.ﬁlt.ﬁtt v gy iy] g e gl o] il il e g e g sy g e

sy =

* = P A

LI

* = F 1 4

* & F N 4

LR L I

* F & &=

L

-

10y
MNOLLUYLNYHL
LHYLS

3

\

L R * F & &= * P & & F L B F % &« a9 LI = q & F 3

L |

LEE RS

So4I0NHd

[

- -

oA

4 - k42

HAAULS

-2
P

& F 14

Ly

LR I

e e

EE

L et

-

0k
wadJ0d
w5 MOHY

* = F 1 #

LR B I

o e

L

+* 1 & =

EEE R

[P I R
PR

L R

[T T

+*

P | 4 r a2

F T Y

-Es- -2 a2 = a FRNF Y FRNFT [F T Y PR Y

% o+ 1 F + & B 4 + + 1 + 4 + + " 4 & L B + " & & = §h + & & L I R

+ + 1 +

US 11,863,610 B2

Sheet 5 of 5

Jan. 2, 2024

U.S. Patent

L N N B BE BRI

L B N N B DL B B DL B B DL I B O B BN B B B

L B B B B UL B B

AGOM LN
a0

+ F F 5

L
L
.
L
L
.
L
L
.
L
L
.
L
L
.
L
L
.
L
L
.
L
L
.
.
L
.
L
L
.
L
L
r
L
L
.
L
L
.

L B N N N N N N N N N N N N N N B N B)

i/ MNI

-
L . L . N N N N N N N N
L/

LI I I P |

- ,“'*

L B A A N NN EEEEEEEEEEEENN

=BT B

LN BB EEBEEBEEBEBEBEEBEEBEEEBEEBEEERERERNE,.

L N N N N N N N N L N N L N L N N N N

* F F PP EEFE S E

SR L E BRI
NOLLY OINDININO O

+ F FFFFESFFFEFFFEFFFEFFFEFFFFF S FFEFFESFF S F S F S S FF S F S S FF S S

LN N B B B B B B O B B O D B O B B O D B O D N B B B BN

LI IR I DL IR L IR L I I IR IR D DR DR DR D D D O B O

L I N N N I N N B N N B N N B N N N N B B B

L B N N B A RN EEEEEEEEEEIEEEEEEEIEIEIEIEENEENNE

AHNAZ
ATYHOLS

-
-
-
-
-
-
-
-
L
-
-
-
-
-
L
-
-
L
-
-
-
-
-
L
-
-
-

LN N B B B B B B B DL N B O O O B B O O B O B B B B B

L R L L N

L N L

LI NN B N B EEBEEBEEBEEEBEEEBEBEBEEBEEBEBEEBEBEBEBEEBEEEBEEREENSN,.

PUY

HOS5I00d

L B N N B B B B DL N B DL B B DL I B DL O B B B B
LI B B B B DL B B DL B B O I B DL I B DL B B B B BN

L N N L R L L L R L L
-

L N N N N N N N N R R N R R L N

AHOW AN

NEYEY

L N N N N N N N N N L N N N N N R N B B R L N

LB BN B B B DL B B O B DL B DL D B DL BN D D B B B B B BN

+ F FFFFEFFFESFFEFEFFFEFFFEFFEFEFFFESFSFEFESFFE S FFEFF S FFE S F S F S TS FE S F S S FFFEFF S F S F S F S S S S F S F S F S F S FFEFF S F S F S S FF S S FF S S F S F S S F S F S F S F S F S F S F S F ST

L N

LN B B B B B B B N B O B DL D B DL B O B B B B B B BB

L R N R N N e e

HOS AN

L R O e

-
-
-
-
-
-
-
-
-
-
-
h .
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

LN B B B N B N R N B N N N N N B B B R B B I

L I O N

ANAZC LN

L N N N N N N N N N N L N N N

AY HdSI

L R T

L I R

§ 9l

US 11,863,610 B2

1

TRANSACTION MANAGEMENT OF
MULTIPLE NETWORKED RESOURCES

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material that 1s subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as 1t appears 1n the Patent and Trademark Oflice patent
file or records, but otherwise reserves all copyright rights
whatsoever. Copyright © 2022 Xactly Corporation.

FIELD OF THE DISCLOSURE

One technical field of the present disclosure 1s computer-
implemented methods of managing application program-
ming interface (API) transactions. Another technical field 1s
methods 1mplemented 1n stored programs for managing
representational state transier (REST) transactions concern-
ing multiple REST resources.

BACKGROUND

The approaches described 1n this section are approaches
that could be pursued, but not necessarily approaches that
have been previously conceirved or pursued. Therelore,
unless otherwise indicated, 1t should not be assumed that any
of the approaches described in this section qualify as prior
art merely by their inclusion 1n this section.

Representational state transter (REST) 1s an application
programming interface (API) protocol that 1s widely used in
web service development for its flexibility and easy-to-
implement architecture style. In a typical implementation, a
client program transmits a REST query to a server process
to start a transaction associated with a particular query and
receives a response from the server. Responses can be
formatted, for example, JSON data format, XML data for-
mat, or HyperText Markup Language (HI' ML) pages trans-
mitted over the Hypertext Transter Protocol (HTTP).
Depending on whether the request can be served, the REST
query 1s committed or rolled back. Thus, a transaction of a
single REST query 1n this model 1s atomic.

However, some applications or programming environ-
ments require the ability to execute multiple REST queries
for various operations on REST resources that are associated
with a single transaction. Example contexts include the need
to reduce server ftraflic, to minmimally occupy server
resources and to improve the efliciency of updating multiple
REST resources.

In one approach, a software program implements methods
of managing a single transaction with multiple REST
resources by defining a larger resource which includes all the
resources that need updating by a client. Another approach
1s to implement a distributed transactions manager, in which
a backend transaction manager 1s communicatively coupled
to a frontend transaction manager. These approaches require
implementing a new server to manage operations with
multiple resources and require additional endpoints for
processing the multiple REST queries. None operates purely
at the client and the operations at the server level cannot
interoperate with existing endpoint processing such as inter-
cepting, delegating, or proxying without adding a new
Server.

10

15

20

25

30

35

40

45

50

55

60

65

2
SUMMARY

The appended claims may serve as a summary of the
invention.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:

FIG. 1 1s a block diagram that illustrates an example
distributed computing system with which an embodiment
may be implemented;

FIG. 2 1s a flow diagram that illustrates a process for
executing multiple REST queries within one transaction, 1n
an embodiment;

FIG. 3 1s a flow diagram that illustrates a process for
generating and storing a umique transaction identifier for the
transaction in association with the storing of the database
connection, 1n an embodiment:;

FIG. 4 1s a flow diagram that illustrates processing and
generating results 1 response to a client-imtiated start
transaction request, 1n an embodiment; and

FIG. 5 1s a block diagram that illustrates a computer
system upon which an embodiment could be implemented.

DETAILED DESCRIPTION

In the following description, numerous specific details are
stated to provide a thorough understanding of the present
invention and to describe clear examples. It will be apparent,
however, that the present invention may be practiced with-
out these specific details. In other instances, well-known
structures and devices are shown in block diagram form to
avold unnecessarily obscuring the present invention.
Embodiments are described 1n sections below according to
the following outline:

1. General Overview

2. Structural Overview of an Example Embodiment

3. Functional Overview of an Example Embodiment

4. Implementation Example—Hardware Overview

1. General Overview

In one embodiment, a computer-implemented method of
transaction management ol multiple resources comprises a
client declaring the starting of a transaction that 1s associated
with multiple resources, executing multiple REST queries
within the single transaction, and declaring an ending of the
transaction. A transaction management process receives the
declaration of a start of a transaction and independently
manages acquiring a database connection, tracking which
queries are associated with a transaction, locally executing
or proxying queries depending on the location of endpoints,
and committing or rolling back queries to the database. One
or more server processes supply and release database con-
nections and execute REST queries. Embodiments provide
the key benefits of removing the need for clients to 1nstan-
tiate and manage additional servers for executing multiple
REST queries while allowing clients to efliciently update
multiple REST resources in one transaction. Implementation
cost 1s minimal, typically adding one network hop to the
end-to-end process.

In an embodiment, a computer-implemented method
comprises, using a transaction management process that 1s
communicatively coupled to a cluster ol computer-executed
server processes, receiving from a browser process a first
request to start a transaction associated with a data access
process, acquiring a database connection from the data
access process and storing the database connection 1n an
open state, receiving from the browser process multiple

US 11,863,610 B2

3

REST queries for execution, programmatically forwarding
multiple REST quenies to the data access process and
programmatically forwarding responses from the data
access process to the browser process, receiving a second

4

to the problem of machine learning model development,
validation, and deployment. In this manner, the disclosure
presents a technical solution to a technical problem, and any
interpretation of the disclosure or claims to cover any

request from the browser process to end the transaction, and 5 judicial exception to patent eligibility, such as an abstract

only 1n response to the second request, programmatically
completing the transaction in communication with the data
access process, and changing the database connection to a
closed state.

In an embodiment, the method further comprises gener-
ating and storing a unique transaction identifier for the
transaction 1n association with storing the database connec-
tion of the data access process. The database connection may
be associated with a server node at which the first request of
the transaction arrives, and the ftransaction management
process may be programmed to keep the transaction open
until a second request to end the transaction is received. In
an embodiment, each of the multiple REST queries sent by
the browser process comprises a particular transaction i1den-
tifier, which the transaction management process can use to
associate the query with an open transaction.

In an embodiment, a process ol forwarding multiple
REST queries further comprises determining whether the
unique transaction identifier of the transaction associated
with a data access process matches the particular transaction
identifier. The data access process can manage a server node.
When the particular transaction identifier of the particular
REST query among the plurality of REST queries matches
the unique transaction identifier, then the transaction man-
agement process forwards that particular REST query to the
data access process for execution by the server node. When
the particular transaction identifier of the particular REST
query among the plurality of REST queries does not match
the unique transaction identifier, then the transaction man-
agement process 1s programmed to proxy that particular
REST query to a diflerent particular server process among a
cluster of computer-executed server processes.

The term “data access process™ can refer, 1n an embodi-
ment, to a particular process executed by a particular server
among a cluster of servers that 1s communicatively coupled
to one or more client terminals for example browsers, and
communicatively coupled to one or more databases. The
data access process provides access to a server node that
implements a REST service and can be communicatively
coupled to a database. The data access process can 1mple-
ment multiple REST resources each of which 1s capable of
invocation via queries.

In this manner, the methods and systems of the disclosure
do not require using container-managed transactions, since
only a single transaction management process and a single
server process are needed to execute multiple REST queries
operations with existing REST endpoints. Furthermore, the
methods and systems of the disclosure do not require clients
to manage committing and rolling back operations for
multiple REST queries as an atomic transaction.

Additional aspects and features of embodiments will be
apparent from the description herein in other sections.

2. Structural Overview ol an Example Emodiment

FIG. 1 1s a block diagram that illustrates an example
distributed computing system with which an embodiment
may be implemented. FIG. 1, and the other drawing figures
and all of the description and claims 1n this disclosure, are
intended to present, disclose and claim a technical system
and technical methods in which specially programmed com-
puters, using a special-purpose distributed computer system
design, execute functions that have not been available before
to provide a practical application of computing technology

10

15

20

25

30

35

40

45

50

55

60

65

idea, mental process, method of organizing human activity
or mathematical algorithm, has no support 1n this disclosure
and 1s erroneous.

In an embodiment, a distributed computer system can
comprise a browser device 110, a transaction management
system 120, a network 130, and a data access system 140.
Other embodiments can use different architectures to imple-
ment the functions that are described in other sections herein
and the specific architecture of FIG. 1 1s not required 1n all
embodiments.

Browser device 110 can comprise an end station comput-
ing device such as a desktop computer, workstation, laptop
computer, or mobile computing device, executing an oper-
ating system, one or more application programs, and an
internet browser. Or, browser device 110 may broadly rep-
resent any computing process, stored program, or computing
system that 1s configured to generate and transmit REST
requests and queries to the transaction management system
120. Requests and queries can originate from an application
program or browser executing at browser device 110 and the
particular point of origin 1s not critical 1n an embodiment.
Although only one browser device 110 is 1llustrated in FIG.
1 to show a clear example, other practical embodiments may
include any number of browser devices.

Browser device 110 1s communicatively coupled directly
or mndirectly to transaction management device system 120
and can be communicatively coupled via network 130 or
other links. In an embodiment, transaction management
system 120 1s communicatively coupled to data access
system 140 directly or indirectly via one or more networks
130. Network 130 broadly represents one or more digital
data communication networks and may comprise any com-
bination of local area networks, wide area networks, campus
networks, or internetworks using any of wired or wireless,
terrestrial, or satellite data communication links.

In one embodiment, the transaction management system
120 may be implemented at or integrated with the same
computing device as the browser device 110. The Transac-
tion management system 120 1s specially programmed with
transaction processing instructions 122, database connection
instructions 124, and REST queries processing instructions
126. Each of the transaction processing instructions 122,
database connections instructions 124, and REST queries
processing instructions 126 comprises one or more one or
more sequences of executable program instructions that are
arranged and programmed to cause one or more processors
of the transaction management system 120 to execute the
functions that are further described herein 1n other sections
concerming FIG. 2, FIG. 3, and FIG. 4.

In an embodiment, transaction processing instructions
122 are programmed to recetve REST requests and queries
from browser device 110. The transaction processing
instructions 122 are programmed to communicate with the
data connection instructions 124 and REST queries process-
ing instructions 126 to determine transaction status, data
connection status, and the status of executing REST queries,
among other functions.

In an embodiment, database connection instructions 124
are programmed to acquire a database connection from data
access system 140 via network 130 and store the database
connection 1 an open state. The database connection
istructions 124 are programmed to communicate with

US 11,863,610 B2

S

transaction processing instructions 122 and REST queries
processing instructions 126 to determine transaction status,
data connection status, and the status of executing REST
queries, among other functions.

In an embodiment, REST queries processing instructions
126 are programmed to execute or cause the execution of
REST queries and to determine whether REST queries
received from browser device 110 have been executed. In
some embodiments, REST queries processing instructions
126 are programmed to forward the REST quernies to data
access system 140 and to forward responses from data
access system 140 to the browser device 110. In some
embodiments, REST queries processing instructions 126 are
programmed to communicate with transaction processing
instructions 122 and data connection instructions 124 to
determine transaction status, data connection status, and the
status of executing REST queries, among other functions.

In an embodiment, execution of instructions 122, 124,
126 results 1n the transaction management system 120
receiving a start transaction request from browser device
100, acquiring a database connection from data access
system 140 through network 130, storing database connec-
tion from data access system 140 through network 130,
tforwarding multiple REST queries from browser device 100
to data access system 140, forwarding multiple REST que-
ries responses from data access system 140 to browser
device 100, receiving an end transaction REST request from
browser device 100, and closing the database connection
from data access system 140 via network 130. In this
manner, embodiments can be programmed to solve the
technical problem of how to efliciently execute multiple
REST queries within a single transaction and how to avoid
making transaction management a burden to client pro-
CEeSSes.

Data access system 140 may comprise one or more server
computers or server processes arranged 1n a cluster, such as
data access server 142 A and other servers 142B. Each of the
clustered servers can be programmed or configured to access
database 144. In some embodiments, a single shared data-
base 144 1s used and other embodiments may use multiple
shared databases.

The data access server 142 A 1s programmed or configured
to generate responses to a first request to start a transaction
and to a later request to terminate a transaction, and to
generate responses to one or more REST quernies that the
browser device 120 originates. In some embodiments, data-
base connection instructions 124 of transaction management
system 120 may be programmed to acquire a connection to
database 144 or to store connection to database 144 at data
access server 142A. Responses to the multiple REST queries
sent by the browser device 120 may be generated at the same
access server 142 A where the connection to database 144 1s
acquired and stored.

Similarly, other embodiments may include more than one
database 144. Although server 142A 1s 1llustrated as com-
municatively coupled to the transaction management system
120 and database 144, other embodiments may include one
or more other clustered servers 142B being communica-
tively coupled to the transaction management system 120
and database 144. Data process server 142A 1s one of the
clustered servers in one embodiment.

3. Functional Overview of an Example Embodiment

FIG. 2 1s a flow diagram that illustrates a process for
executing multiple REST queries within one transaction, 1n
an embodiment. FIG. 2 and each other flow diagram herein
1s intended as an 1llustration at the functional level at which
skilled persons, in the art to which this disclosure pertains,

5

10

15

20

25

30

35

40

45

50

55

60

65

6

communicate with one another to describe and implement
algorithms using programming. The flow diagrams are not
intended to illustrate every instruction, method object or
sub-step that would be needed to program every aspect of a
working program, but are provided at the same functional
level of illustration that 1s normally used at the high level of
skill 1n this art to communicate the basis of developing
working programs.

In general, in an embodiment, a browser process 1nitiates
a transaction to cause the execution of multiple REST
queries to be processed by the transaction management
system. In an embodiment, the transaction management
system 1s programmed to generate a unique transaction
identifier for the transaction, for later use to determine
whether each of the multiple REST queries sent by the
browser process 1s associated with the same transaction and
can be executed via the same data access process and/or the
same local server node that 1s associated with a database
connection.

Referring first to block 210, in an embodiment, the
process of FIG. 2 1s programmed to receive a first REST
request from a browser process to start a transaction asso-
clated with a data access process. For example, browser
device 110 transmits a request to 1nitiate a transaction to the
transaction management system 120 (FIG. 1). In some
embodiments, the data access process implements REST
resources and 1s communicatively coupled to a database; the
data access process typically implements multiple REST
resources that are capable of invocation via queries.

In one embodiment, the browser process may implement
an additional REST resource corresponding to a transaction
that defines changes to the transaction such as starting and
ending the transaction. TABLE A 1s an example definition
process that may be used to define the transaction REST
resource under the SPRING BOOT environment. SPRING
1s a popular Java application framework and SPRING
BOOT 1s a facility to help developers create stand-alone,
production-grade SPRING-based applications with less
ellort.

The example code shown i TABLE A, as well as 1n
TABLE B, TABLE C, TABLE D, and TABLE E as
described 1n other sections, are provided solely to 1llustrate
clear examples of the application of the principles of this
disclosure and not to limit the scope of the appended claims
to these particular examples. In other embodiments, alter-
native Java REST API frameworks may be used to imple-
ment the functions of the transaction management library.

TABLE A

Transaction Resource Definition Library Code Example

(@Configuration

@Component Scan({"com.xactly.rest.transaction.manager.rest' })
public class RestConfig {

create transaction

$ curl http://127.0.0.1:8080/transactions -X "POST" -v

* Trying 127.0.0.1. ..

* TCP_NODELAY set

* Connected to 127.0.0.1 (127.0.0.1) port 8080 (#0)

> POST /transactions HTTP/1.1

> Host: 127.0.0.1:8080

> User-Agent: curl/7.64.1

> Accept: */*

>

< HTTP/1.1 201

< Location: http://127.0.0.1:8080/transactions/127.0.0.1-3
< Content-Length: O

< Date: Fr1, 07 May 2021 19:00:46 GMT
<

US 11,863,610 B2

7
TABLE A-continued

Transaction Resource Definition Library Code Example

* Connection #0 to host 127.0.0.1 left intact

* Closing connection O

commuit transaction

$ curl http://127.0.0.1:8080/transactions/127.0.0.1-3 -X "DELETE"
-d "COMMIT" -H "Content-Type: text/plain” -v

* Trying 127.0.0.1. . .

* TCP_NODELAY set

* Connected to 127.0.0.1 (127.0.0.1) port 8080 (#0)
> DELETE /transactions/127.0.0.1-3 HTTP/1.1

> Host: 127.0.0.1:8080

> User-Agent: curl/7.64.1

> Accept: */*

> Content-Type: text/plain

> Content-Length: 6
>

* upload completely sent off: 6 out of 6 bytes
< HTTP/1.1 204

< Date: Fr1, 07 May 2021 18:59:40 GMT
<

* Connection #0 to host 127.0.0.1 left intact
* Closing connection O

In TABLE A, a transaction REST resource 1s as Trans-
actionResource.class; and 1s imported using the SPRING
annotation (@ComponentScan.

At block 220, the process 1s programmed to acquire a
database connection from the data access process and to
store the database connection 1n an open state. In an embodi-
ment, the transaction management process 120 1s pro-
grammed to programmatically request data access process
140 to provide a database connection and to store, 1n main
memory, state data identifying the database connection. The
data access process can be configured to execute as a
particular server process among a cluster ol computer-
executed server processes.

At block 230, the process 1s programmed to recerve from
the browser process a plurality of REST queries for execu-
tion, to programmatically forward the plurality of REST
queries to the data access process, and to programmatically
forward responses from the data access process to the
browser process. The transaction management process 120
can be programmed to execute block 230. For example, once
the database connection 1s established and while the data-
base connection remains 1n an open state, the browser device
110 sends multiple REST queries associated with updating
multiple resources to the transaction management process
120 for processing. The transaction management process
120 forwards the multiple REST quernies to data access
process 140 for execution using the same server that estab-
lished the database connection. The transaction management
process 120 also receives responses from the same server
and forwards the responses to the browser device 110.

At block 240, the process 1s programmed to receive a
second request from the browser process to end the trans-
action. The transaction management process 120 can be
programmed to execute block 240. The second request can
be a REST request that 1s formatted for making changes to
the transaction resource that was established via the first
REST request, as defined in TABLE A.

At block 250, the process 1s programmed to execute, only
in response to the second REST request, to programmati-
cally complete the transaction 1 communication with the
data access process and to change the database connection to
a closed state. Completion, 1n this context, can involve
instructing a commit or rollback. The transaction manage-
ment process 140 can be programmed to execute block 250.
In one embodiment, the transaction management process

10

15

20

25

30

35

40

45

50

55

60

65

8

maintains a database connection in the open state, forwards
REST queries from the browser process to the data access
process and 1ts server for processing, and forwards responses
from the server to the browser process. The transaction
management process repeats these steps until 1t receives a
request to end the transaction. In response, the transaction
associated with the server and database connection 1s either
committed or rolled back, the transaction management pro-
cess subsequently closes the database connection.

Using the process of FIG. 2, a browser process or other
client can transmit a plurality of different REST requests, all
of which the transaction management process manages as an
atomic transaction, after acquiring a database connection via
a data access process that manages both a database and a
server to execute the REST requests. The browser process or
other client signals that start and end of a transaction. In
response to a request signaling the end of a transaction that
involved multiple REST queries, the transaction manage-
ment process can commit or roll back all the requests in
communication with the data access process.

In some embodiments, the transaction management pro-
cess uses a unique transaction identifier to associate incoms-
ing client requests with existing transactions, database con-
nections, and servers. FIG. 3 1s a flow diagram that
illustrates a process for generating and storing a unique
transaction identifier for the transaction 1n association with
the storing of the database connection, 1n one embodiment.
In one embodiment, the transaction management system 140
(FIG. 1) can be programmed to execute the process of FIG.
3.

At block 310, the process 1s programmed to generate a
unmique transaction identifier for a transaction, typically at
the time that a database connection 1s stored, for example,
near 1n time to block 220 of FIG. 2. A unique transaction
identifier can comprise a randomly or pseudorandomly
generated integer, alphanumeric character sequence, byte
sequence, or a bit sequence, alone or 1n combination with a
date or time value, information relating to the data access
process, server to service requests, and/or database connec-
tion. For example, the unique transaction identifier may
comprise a location identifier such as a network address of
the server in data access process 140 that initiates a database
connection. In an embodiment, the unique transaction 1den-
tifier may comprise an IP address of the server, alone or in
combination with one or more of the values specified above.

At block 320, the process 1s programmed to store the
unique transaction identifier for the transaction, for example,
in association with the storing of the database connection. In
one embodiment, the transaction management system 140
may comprise memory or non-volatile storage capable of
storing transaction identifiers for thousands to millions of
transactions. Storage can occur transiently in the main
memory of a computer that implements the transaction
management system 140 and identifiers can be deleted or
overwritten when a transaction closes. Alternatively, 1den-
tifiers of transactions can be stored persistently 1n a database
for audit, logging, archive, or performance monitoring pur-
poses.

At block 330, which can be executed asynchronously
and/or at a different point 1n time compared with block 310,
320, the process 1s programmed to parse a particular trans-
action 1dentifier that has been received i1n connection with
cach of the plurality of REST quernies mmitiated by the
browser process (FIG. 2). For example, block 330 can be
executed just after block 230 in connection with processing
an inbound query from the browser process, browser device
110, or another client.

US 11,863,610 B2

9

TABLE B 1s an example of library code programmed for
parsing transaction identifiers that the transaction manage-

ment process may be programmed to implement in the
SPRING BOOT environment.

TABL

(L]

B

Parsing Transaction Identifier Library Code Example

@ Configuration
@ComponentScan({"com.xactly.rest.transaction.manager.rest" })

public class Restconfig {
(Bean

public TransactionalResourcelnterceptor getTransactionldReader() {
return new TransactionalResourcelnterceptor(’ Transactionld");

;

(@Bean
public MappedInterceptor transactionldInterceptor
(TransactionalResourcelnterceptortransactionalResourcelnterceptor) {
return new MappedInterceptor(new String|]("/books/**'"),
transactionalResourcelnterceptor);

h
h

The example library of TABLE B implements a Spring
Handler Interceptor to intercept specified endpoints and read
the transaction 1dentifier from the header of a REST request.
In an embodiment, the iterceptor can be defined by Trans-
actionalResourcelnterceptor.class. The name of the transac-
tion 1dentifier header can be defined 1n the constructor of
TransactionalResourcelnterceptor.class. One or more trans-
actional endpoints can be defined by MappedInterceptor-
.class.

At block 340, the process 1s programmed to test whether
the particular transaction identifier of a particular recerved
REST query matches the stored unique transaction identifier
for the transaction. The test of block 340 recognizes that
REST queries are received asynchronously via a sessionless
transport protocol, so any given mbound REST query may
or may not be associated with a known transaction. Further-
more, some queries may reference resources that the data
access system 140 manages, and others may implicate
resources e¢lsewhere, requiring proxy service lor those

resources.
If the test of block 340 1s positive, TRUE, or YES, then

control transfers to block 350. A block 350, when the
particular transaction 1dentifier of the particular REST query
among the plurality of REST queries matches the unique
transaction i1dentifier, the process 1s programmed to forward
that particular REST query to the data access process. In an
embodiment, the transaction management process forwards
the particular REST query to the same single server that
started the transaction using an IP address in the header of
the particular REST query and matching an IP address of the
server node.

Alternatively, 11 the test of block 340 i1s negative, FALSE,
or NO, then at block 360, the process 1s programmed to
proxy the particular REST query to a particular server
process among the cluster of computer-executed server
processes. In an embodiment, proxying at block 360 further
comprises determiming whether the particular transaction
identifier of a particular REST query matches another
unique transaction identifier of another particular server
node. If the identifiers match, the transaction management
process forwards the particular REST query to the other
server node; 1f the i1dentifiers don’t match any stored trans-
action identifiers, then the transaction management process
torwards the particular REST query to a randomly or pseu-
dorandomly selected server process among the cluster of
computer-executed server processes.

10

15

20

25

30

35

40

45

50

55

60

65

10

In an embodiment, each transaction identifier corresponds
to a specified endpoint, such as one of the server processes
among the cluster of computer-executed server processes,
and the ftransaction identifier can comprise a network
address of the endpoint. For example, the database connec-
tion may be a Transmission Control Protocol (TCP) con-
nection which forces that REST request to be processed by
the same server by routing requests to a consistent TCP port.
For example, the interceptor code of TABLE B illustrates
proxying a REST request to a consistent node. In some
embodiments, the transaction identifier contains an IP
address of the node where the transaction started.

In an embodiment, to store a database connection 1n an
open state and prevent committing a transaction before
executing all the REST queries of the transaction, a con-
nection interface can be programmed to implement a wrap-
per function that intercepts calls to commit a transaction and
defers executing a commit until all quenies of the transaction
have been processed. For example, TABLE C 1illustrates a
program for wrapping a transaction in Spring Boot environ-
ment using a Connection.commit function.

TABL.

(L]

C

Wrapping Connection Library Code Example

@ Configuration
public class DataSourceConfig {
@Bean
public DataSource getDataSource(DataSourceProperties properties,
TransactionalResourcelnterceptor
transactionalResourcelnterceptor) {
final var datasource = properties.initializeDataSourceBuilder().
build();
return new RTMDataSource(
datasource,
transactionalResourcelnterceptor::getTransactionld
);
h
h

In this embodiment, RTMDataSource.class 1s used to
wrap a data source and execute a commit or rollback only
when all quernies have been processed for a transaction.
Queries of transactions may also result 1n exceptions.
TABLE D 1s an example exception handling library that the
transaction management process may be programmed to
implement.

TABL

T

D,

Exception Handling Library Code Example

@ControllerAdvice
public class ErrorHandler {
@ExceptionHandler(RTMTransactionNotFoundException.class)
public ResponseEntity<String> databaseError
(RTMTransactionNotFoundException e) (
return ResponseEntity
.badRequest()
body(e.getMessage()) ;

In some embodiments, end transaction endpoint and
REST queries endpoints may return a bad request exception,
for example, when the transaction i1dentifier cannot be suc-
cessiully parsed. Or, a transaction could be closed before all
the REST queries are executed. In an embodiment, the
transaction management process can be programmed to
output, for example, RTMTransactionNotFoundException.

US 11,863,610 B2

11

In a REST response, an implementation may use the Spring
annotation @ExceptionHandler.

FI1G. 4 1s a flow diagram that illustrates executing multiple
REST queries and managing the execution of the multiple
queries 1n a single transaction, 1n an embodiment. FIG. 4
focuses on operations executed using functional elements
such as a browser process 420, transaction management
process 430, and server process 440.

At step 401, a browser process 420 at a client terminal
generates a first REST request associated with starting a
transaction and sends the request to the transaction manage-
ment process 430 to declare the imitiation of a transaction.
Once the transaction management process 430 receives the
first REST request, the transaction management process 430
acquires a database connection from a server process 440 at
step 402. At step 403, 1n response to the transaction man-
agement process 430 acquiring the database connection, the
server process 440 provides the transaction management
process 430 with the database connection.

At step 404, the transaction management process 430
stores the database connection and maintains the database
connection 1n an open state. At step 405, once the database
connection has been established, the transaction manage-
ment process 430 generates a unique transaction identifier
for the transaction in association with the storing of the
database connection with the server process 440 and stores
the unique transaction i1dentifier.

At step 406, while the database connection 1s kept open by
the transaction management process 430, the browser pro-
cess 420 sends multiple REST queries for execution to the
transaction management process 430. In response to receiv-
ing multiple REST queries for execution, the transaction
management process 430 parses each of the REST queries
and obtains a particular transaction identifier of each REST
queries to be executed.

At step 407, the transaction management process 430
determines whether the particular transaction i1dentifier of
cach particular REST query among the multiple REST
queries matches the unique transaction identifier stored with
the server process 440 at step 405. When a match 1s found,
the transaction management process 430 forwards the par-
ticular REST query to the server process 440 for processing.
When the particular transaction identifier does not match,
the transaction management process 430 proxies that par-
ticular REST query to a particular server process among the
cluster of computer-executed server processes.

At step 409, the server process 440 processes the multiple
REST queries with the matching transaction i1dentifiers and
forward responses to the multiple REST queries with the
matching transaction identifiers and the database connection
remains in the open state.

At step 410, the browser process 420 determines whether
all the REST queries have been executed. When there 1s a
need to execute more REST queries, steps 406-409 are
repeated until all the REST queries have been processed.
When there 1s no need to execute any more REST queries,
the browser process 420 generates a second REST request,
associated with ending the transaction and sends that request
to the transaction management process 430 to declare the
termination of the transaction. In response, the transaction
management process 430 closes the database connection at
step 412. At step 412, the process further comprises com-
mitting the transaction with the database via the server
process 440 or rolling back the transaction with the database
via the server process 440.

10

15

20

25

30

35

40

45

50

55

60

65

12

At step 413, 1n response to the transaction management
process 430 closing database connection, the server process
440 releases the database connection with the transaction
management process 430.

TABLE E 1illustrates an example of browser-executed

code to implement client-side functions of the processes that

have been previously described. In the embodiment of
TABLE E, JAVASCRIPT code allows clients to manage

multiple REST resources 1n a single transaction using the
Java Spring environment with Spring Boot.

TABLE E

JavaScript Client Code Example

console.log(' App started’) ;
class Transaction {
static startTransaction() {
return window
fetch(this.baseUrl, {method: 'POST'})
then(response => {
if (!response.ok)
throw new Error(response, body);
return response.headers.get('Location’).substring

(this.baseUrl.length + 1);
\ 1);

static commitTransaction(transactionld) {
return this._endTransaction(transactionld, 'COMMIT');
h
static rollbackTransaction() {
return this._endTransaction(transactionld. 'ROLLBACK');
h
static _endTransaction (transactionld, method) {
return window

fetch (' $(this.baseUrl)/$(transactionld)’, {
method: 'DELETE',
headers: {'Content-Type': 'text/plain’},
body.method

)

then (response => {
if (!response.ok)

throw new Error(response.body);
D;
h
h

Transaction.baseUrl = 'http://localhost:8080/transactions’;
class Book (
static loadBooks(transactionld) {
const headers = { };
if (transactionld !== undefined)
headers ["Transactionld'] - transactionld,
return window
fetch(this.baseUrl, (headers;})
then {response => [
if (!response.ok)
throw new Error(response.body);
return response.json() ;

1);
i

static createBook(book, transactionId) {

const headers = {

'Content-Type': 'application/json’
3
if (transactionld !== undefined)

headers ["Transactionld’' | = transactionld;
return window

Jfetch(this.baseUrl, [

method: 'POST",

headers,
body: ISON. stringify (book)

H
then(response => {
if (!response.ok)
throw new Error(response.body);
return response.json{);

1;

US 11,863,610 B2

13
TABLE E-continued

JavaScript Client Code Example

Book.baseUrl = 'http://localhost:8080/books';
Transaction.startTransaction()

then(transactionld => {
console.log('transactionld:", transactionld);
return Book.createBook({name: 'MyBook'}, transactionId)
then(book => {

console.log('created book:", book);
return'Book.loadBooks (transactionld);

7)
then(books => {

console.log(""'Books within transaction:”, books);
return Book.loadBooks() ;

7)
then{ooks => {

console.log("Books out of transaction:", books);
return Transaction.commitTransaction(transactionld);

9k
19,
then(() => {

console.log("Committed");
return Book.loadBooks();

Y
then(books => {

console.log("Committed Books:", books);

7)

.catch(err => {
console.log(err);
1);

4. Hardware Overview

According to one embodiment, the techniques described
herein are implemented by one or more special-purpose
computing devices. The special-purpose computing devices
may be hard-wired to perform the techniques, or may
include digital electronic devices such as one or more
application-specific integrated circuits (ASICs) or field pro-
grammable gate arrays (FPGAs) that are persistently pro-
grammed to perform the techniques, or may 1nclude one or
more general purpose hardware processors programmed to
perform the techniques pursuant to program instructions in
firmware, memory, other storage, or a combination. Such
special-purpose computing devices may also combine cus-
tom hard-wired logic, ASICs, or FPGAs with custom pro-
gramming to accomplish the techniques. The special-pur-
pose computing devices may be desktop computer systems,
portable computer systems, handheld devices, networking
devices or any other device that incorporates hard-wired
and/or program logic to implement the techniques.

For example, FIG. 5 1s a block diagram that 1llustrates a
computer system 300 upon which an embodiment of the
invention may be implemented. Computer system 500
includes a bus 502 or other communication mechanism for
communicating information, and a hardware processor 504
coupled with bus 502 for processing information. Hardware
processor 504 may be, for example, a general purpose
MICroprocessor.

Computer system 500 also includes a main memory 506,
such as a random access memory (RAM) or other dynamic
storage device, coupled to bus 502 for storing imnformation
and 1instructions to be executed by processor 504. Main
memory 506 also may be used for storing temporary vari-
ables or other intermediate mformation during execution of
instructions to be executed by processor 504. Such nstruc-
tions, when stored in non-transitory storage media acces-
sible to processor 504, render computer system 500 1nto a

special-purpose machine that 1s customized to perform the
operations specified 1n the instructions.

10

15

20

25

30

35

40

45

50

55

60

65

14

Computer system 300 further includes a read only
memory (ROM) 508 or other static storage device coupled
to bus 502 for storing static information and 1nstructions for
processor 504. A storage device 310, such as a magnetic
disk, optical disk, or solid-state drive 1s provided and
coupled to bus 502 for storing information and instructions.

Computer system 500 may be coupled via bus 302 to a
display 512, such as a cathode ray tube (CRT), for displaying
information to a computer user. An iput device 514, includ-
ing alphanumeric and other keys, 1s coupled to bus 502 for
communicating information and command selections to
processor 504. Another type of user mput device 1s cursor
control 516, such as a mouse, a trackball, or cursor direction
keys for communicating direction mformation and com-
mand selections to processor 504 and for controlling cursor
movement on display 512. This mput device typically has
two degrees of freedom 1n two axes, a first axis (e.g., X) and
a second axis (e.g., v), that allows the device to specily
positions 1n a plane.

Computer system 500 may implement the techniques
described herein using customized hard-wired logic, one or
more ASICs or FPGAs, firmware and/or program logic
which in combination with the computer system causes or
programs computer system 500 to be a special-purpose
machine. According to one embodiment, the techniques
herein are performed by computer system 500 1n response to
processor 504 executing one or more sequences of one or
more instructions contained i main memory 306. Such
instructions may be read mnto main memory 506 from
another storage medium, such as storage device 510. Execu-
tion of the sequences of instructions contained 1n main
memory 506 causes processor 504 to perform the process
steps described heremn. In alternative embodiments, hard-
wired circuitry may be used in place of or in combination
with solftware 1nstructions.

The term “‘storage media” as used herein refers to any
non-transitory media that store data and/or instructions that
cause a machine to operate in a specific fashion. Such
storage media may comprise non-volatile media and/or
volatile media. Non-volatile media includes, for example,
optical disks, magnetic disks, or solid-state drives, such as
storage device 510. Volatile media includes dynamic
memory, such as main memory 506. Common forms of
storage media include, for example, a floppy disk, a flexible
disk, hard disk, solid-state drive, magnetic tape, or any other
magnetic data storage medium, a CD-ROM, any other
optical data storage medium, any physical medium waith
patterns of holes, a RAM, a PROM, and EPROM, a FLASH-
EPROM, NVRAM, any other memory chip or cartridge.

Storage media 1s distinct from but may be used 1n con-
junction with transmission media. Transmission media par-
ticipates 1n transferring information between storage media.
For example, transmission media includes coaxial cables,
copper wire and fiber optics, including the wires that com-
prise bus 502. Transmission media can also take the form of
acoustic or light waves, such as those generated during
radio-wave and 1nfra-red data communications.

Various forms of media may be mvolved 1n carrying one
or more sequences of one or more instructions to processor
504 for execution. For example, the instructions may ini-
tially be carried on a magnetic disk or solid-state drive of a
remote computer. The remote computer can load the mnstruc-
tions into 1ts dynamic memory and send the 1nstructions over
a telephone line using a modem. A modem local to computer
system 500 can receive the data on the telephone line and
use an 1infra-red transmitter to convert the data to an infra-red
signal. An 1nfra-red detector can receive the data carried 1n

US 11,863,610 B2

15

the mira-red signal and appropriate circuitry can place the
data on bus 502. Bus 302 carries the data to main memory
506, from which processor 504 retrieves and executes the
instructions. The instructions received by main memory 506
may optionally be stored on storage device 510 erther before
or after execution by processor 504.

Computer system 300 also includes a communication
interface 518 coupled to bus 502. Communication 1nterface
518 provides a two-way data communication coupling to a
network link 520 that 1s connected to a local network 522.
For example, communication interface 518 may be an
integrated services digital network (ISDN) card, cable
modem, satellite modem, or a modem to provide a data
communication connection to a corresponding type of tele-
phone line. As another example, communication interface
518 may be a local area network (LAN) card to provide a
data communication connection to a compatible LAN. Wire-
less links may also be implemented. In any such implemen-
tation, communication interface 518 sends and receirves
clectrical, electromagnetic or optical signals that carry digi-
tal data streams representing various types ol information.

Network link 520 typically provides data communication
through one or more networks to other data devices. For
example, network link 3520 may provide a connection
through local network 522 to a host computer 524 or to data
equipment operated by an Internet Service Provider (ISP)
526. ISP 526 1n turn provides data communication services
through the worldwide packet data communication network
now commonly referred to as the “Internet” 528. Local
network 522 and Internet 528 both use electrical, electro-
magnetic or optical signals that carry digital data streams.
The signals through the various networks and the signals on
network link 520 and through communication interface 518,
which carry the digital data to and from computer system
500, are example forms of transmission media.

Computer system 300 can send messages and receive
data, including program code, through the network(s), net-
work link 520 and communication interface 518. In the
Internet example, a server 530 might transmit a requested
code for an application program through Internet 528, ISP
526, local network 522 and communication interface 518.

The recerved code may be executed by processor 504 as
it 1s received, and/or stored in storage device 510, or other
non-volatile storage for later execution.

In the foregoing specification, embodiments of the inven-
tion have been described with reference to numerous spe-
cific details that may vary from implementation to imple-
mentation. The specification and drawings are, accordingly,
to be regarded in an 1illustrative rather than a restrictive
sense. The sole and exclusive indicator of the scope of the
invention, and what 1s intended by the applicants to be the
scope of the invention, 1s the literal and equivalent scope of
the set of claims that issue from this application, in the
specific form 1n which such claims 1ssue, including any
subsequent correction.

What 1s claimed 1s:

1. A computer-implemented method, comprising:

using a transaction management process that 1s commu-
nicatively coupled to a cluster of computer-executed
server processes, receiving from a browser process a
first request to start a transaction associated with a data
access process, the data access process implementing
representational state transier (REST) and being com-
municatively coupled to a database, the data access
process 1implementing a plurality of REST resources
that are capable of mvocation via queries;

10

15

20

25

30

35

40

45

50

55

60

65

16

using the transaction management process, acquiring a
database connection from the data access process and
storing the database connection 1 an open state;

using the transaction management process, generating and
storing a unique transaction identifier for the transac-
tion 1n association with the storing of the database
connection at a first point in time;

using the transaction management process, receiving from
the browser process a plurality of REST queries via a
sessionless transport protocol for execution;

using the transaction management process, and while the
database connection 1s 1n the open state, programmati-
cally forwarding the plurality of REST queries to the
data access process based on each particular transaction
identifier parsed by the transaction management pro-
cess for each of the plurality of REST queries, deter-
mining that, for at least one of the plurality of REST
queries, the corresponding parsed transaction identifier
does not match the unique transaction identifier, and 1n
response to the determination, proxying the at least one
of the plurality of REST query to a particular server
process among the cluster of computer-executed server
Processes;

using the transaction management process, and while the
database connection 1s 1n the open state, programmati-
cally forwarding responses from the data access pro-
cess to the browser process;

using the transaction management process, receiving a
second request from the browser process to end the
transaction, and only 1n response to the second request,
programmatically completing the transaction 1 com-
munication with the data access process, and changing
the database connection to a closed state;

the method being executed using one or more computing
devices.

2. The method of claim 1, the forwarding steps further

comprising;

determining that, for at least one of the plurality of REST
queries, the corresponding parsed transaction identifier
matches the unique transaction identifier, and 1n
response to the match, forwarding that particular REST
query to the data access process.

3. The method of claim 1, the data access process being
configured to execute as a particular server process among
the cluster of computer-executed server processes.

4. The method of claim 2, the particular transaction
identifier corresponding to a specified endpoint, the endpoint
being one of the server processes among the cluster of
computer-executed server processes, the particular transac-
tion 1dentifier comprising a network address of the endpoint.

5. The method of claim 1, the completing the connection
further comprising committing the transaction with the
database via the data access process.

6. The method of claim 1, the completing the connection
to further comprising rolling back the transaction with the
database via the data access process.

7. One or more non-transitory computer-readable storage
media storing one or more sequences of 1nstructions which,
when executed using one or more processors, cause the one
Or more processors to execute:

using a transaction management process that 1s commu-
nicatively coupled to a cluster of computer-executed
server processes, receiving from a browser process a
first request to start a transaction associated with a data
access process, the data access process implementing
representational state transier (REST) and being com-

US 11,863,610 B2

17

municatively coupled to a database, the data access
process implementing a plurality of REST resources;

using the transaction management process, acquiring a
database connection from the data access process and
storing the database connection 1n an open state;

using the transaction management process, generating and
storing a unique transaction identifier for the transac-
tion in association with the storing of the database
connection at a first point in time;

using the transaction management process, recerving from
the browser process a plurality of REST queries via a
sessionless transport protocol for execution;

using the transaction management process, and while the
database connection 1s 1n the open state, programmati-
cally forwarding the plurality of REST queries to the
data access process based on each particular transaction
identifier parsed by the transaction management pro-
cess for each of the plurality of REST queries, deter-
mining that, for at least one of the plurality of REST
queries, the corresponding parsed transaction 1dentifier
does not match the unique transaction 1dentifier, and 1n
response to the determination, proxying the at least one
of the plurality of REST query to a particular server
process among the cluster of computer-executed server
Processes;

using the transaction management process, and while the
database connection 1s 1n the open state, programmati-
cally forwarding responses from the data access pro-
cess to the browser process;

using the transaction management process, receiving a
second request from the browser process to end the
transaction, and only in response to the second request,
programmatically completing the transaction in com-
munication with the data access process, and changing
the database connection to a closed state.

10

15

20

25

30

18

8. The non-transitory computer-readable storage media of
claim 7, the instructions which when executed cause the
forwarding further comprising one or more sequences of
instructions which, when executed using the one or more
processors, cause the one or more processors to execute:

determining that, for at least one of the plurality of REST

queries, the corresponding parsed transaction identifier
matches the unique transaction identifier, and 1n
response to the match, forwarding that particular REST
query to the data access process.

9. The non-transitory computer-readable storage media of
claim 7, the data access process being configured to execute
as a particular server process among the cluster of computer-
executed server processes.

10. The non-transitory computer-readable storage media
of claiam 8, the transaction identifier corresponding to a
specified endpoint, the endpoint being one of the server
processes among the cluster of computer-executed server
processes, the transaction identifier comprising a network
address of the endpoint.

11. The non-transitory computer-readable storage media
of claim 7, the instructions which when executed cause
completing the connection further comprising one or more
sequences of instructions which, when executed using the
one or more processors, cause the one or more processors to
execute committing the transaction with the database via the
data access process.

12. The non-transitory computer-readable storage media
of claim 7, the instructions which when executed cause
completing the connection further comprising one or more
sequences of instructions which, when executed using the
one or more processors, cause the one or more processors to
execute rolling back the transaction with the database via the
data access process.

	Front Page
	Drawings
	Specification
	Claims

