USO011853273B1

12 United States Patent 10) Patent No.: US 11,853,273 B1

Stephan et al. 45) Date of Patent: Dec. 26, 2023
(54) PARTIAL MIGRATION OF APPLICATIONS USPC .o, 707/609
ACROSS DATABASE SYSTEMS See application file for complete search history.
(71) Applicant: Amazon Technologies, Inc., Seattle, (56) References Cited
WA (US)

U.S. PATENT DOCUMENTS

(72) Inventors: Roy Edward Stephan, Dunn Loring,

VA (US); Benjamin Snively, Orlando, 8,601,220 B1 12/2013 Corbin et al.
FL (US); John MacDonald Winford, 2012/0166483 Al* 6/2012 Choudhary GO6F 16/2471
Vancouver (CA); John Calhoun, 707/E17.014
Herndon, VA (US): Nathan McGuirt 2013/0091285 Al* 4/2013 Devarakonda GOGF 9/4856
T " " 709/226
Austin, TX (US) 2015/0200833 Al* 7/2015 Cutforth GOGF 3/067
: . 709/224
(73) Assignee: Amazon Technologies, Inc., Seattle,
WA (US) * cited by examiner
(*) Notice: Subject to any disclaimer, the term of this Primary Examiner — Hosain T Alam
patent 1s extended or adjusted under 35 Assistant Examiner — Tracy M McGhee

U.S.C. 154(b) by 377 days. (74) Attorney, Agent, or Firm — Robert C. Kowert;

(21) Appl. No.: 16/145,093 Kowert, Hood, Munyon, Rankin & Goetzel, P.C.

(22) Filed: Sep. 27, 2018 (57) ABSTRACT
Systems and methods are provided to enable a partial
(51) Int. CL. migration of applications from one database system to
Gool 16/24 (2019.01) another without modifying the applications. In embodi-
Goor 16/21 (2019.01) ments, a proxy server 1s configured to monitor the applica-
GOON 20/00 (2019.01) tion’s usage of a current database, and generate a migration
Gool 16/25 (2019.01) plan to partially migrate database objects used by the
GOoF 1672452 (2019.01) application to a different type of database. An object may be
GOol 1672455 (2019.01) selected for migration based on 1ts usage level or 1ts porta-
HO4L 67/56 (2022.01) bility. After the partial migration, the proxy server may
(52) U.S. Cl. remain in place as a request router to route the application’s
CPC ... GO6F 16/214 (2019.01); GO6F 16/2452 requests to the two databases. In embodiments, the migra-

(2019.01); GO6F 16/2455 (2019.01); GO6F tion system may forward queries to both databases and
16/252 (2019.01); GO6N 20/00 (2019.01); compare the query results received from the two. Based on
HO4L 67/56 (2022.05) the comparison results, the migration system may program-

(58) Field of Classification Search matically determine adjustments to 1ts query handling con-
CPC .. GO6F 16/214; GO6F 16/252; GO6F 16/2455; figuration settings.

GO6F 16/2452; GO6F 16/20; GO6F 16/24;
GO6N 20/00; HO4L 67/28 23 Claims, 12 Drawing Sheets

[—
! 140
- w] /

 serdeeprovidersetwork13 b

f

| |

! application A i apoiication B ‘.
l (fo be migrated) . L (partiatly migrated)
1 152 | 1 '

appfication migralion manager serdica 140

¥ Y
thatabase proxy 141 riafabase proxy 161

|

i database usage monior H
g 142 request e | fequest
! fransteior rouler
‘] 164 160

L J

FTHGration Glarn gererator
L S [T
|

% data fead

Bxecutor

ebject migrator 166
146

e e o o I—_'—_o—_o—_'—_o—_o—_'—_o—

|
L —_ —1

1
|
i
l
I
|
1
i
|
| .
I
|
1
1
]
|
|
1
|
!

lm mm s 2w mfs im ma]m ms ia mm m md e im m ma ma im omle in ma] ma o e m aa

151 1538 153h f7ih | 1730 1735

F

A e e e A e e e ey S ey S e Here e b e A e iy e ey e ey A e A e A e Ay e oy ek ey e e e

__L[
=
&)

[, .-"‘_--__T____-_""-. o
e N > B L B < A
Oidf aw =1t fallel
datahase database datafaze natabass

U.S. Patent Dec. 26, 2023 Sheet 1 of 12 US 11,853,273 B1

client(s) l 4

100

T T T T T T T T T idepovdernemor a0 T T T T T T TN

application A application B
(to be migrated) . (partially migrated)

dalabase requests 133 database requests 135

database usage monitor - |
147 | request | g fequest
| translafor | router

:
l
l
|
l
I
:
l
l
|
l
l
|
:
|
I
|
|
migration ptan generator B e |
144 b N
5 | z o

l

l

l

|

:

l

I

I

|

|

|

l

I

l

|

l

I

I - data feed

5 E executor
obfect migrator 166
146 f f

database

database
170

172

database
154

database

US 11,853,273 B1

Sheet 2 of 12

DeC. 26, 2023

U.S. Patent

00¢

togealdde Joj

sadA} jsenba
POAIBSQO

rie
g o/qe]

Ve Ol

3 ojqef

1 100601}

A¥4
.q QQ p H

08¢
N@mwww@%g @wﬁ\g

A 8dA]
ISanbai ajliAg

S 8npssoid paio)s

g 8/qe]

X 80A]

] mmhb@g peay

— »
o d¢ 9Ol
e
r~
2-.;
w 7/ ¢ 109lqo uoneunssp aje|ndod C7 2.nbIju0H
=
— ON :pasj ejep buiobuQ MV :smoJ ale.Bipy
n% 07¢ 3p09 uonendod 109igo ajelauan)
9JLIN "PEoY .SadA] 1sanbal ajeibip MY suwnjoo ajelbi
29¢ 199lqo uoneunssp sjesl) OIY UONePUSLILODA. UOReIBI
a PoYeIBIF JON :SNElS Jualun?
= 097 9p092 198I(0 uoneunsap sjeisusr)
e ‘g o[qe] 1o} uoneibiw ainbiyuon
3
7
a)eJbiw Jou o] 001 /0 A 1senbal sl | 48661
3 A|lenuew ajelbipy 0/ 000§ X 1sanbal peay G 90.d palI0Ig
= _ _ _
S (yseLya1 paoy elep M) Sjeibiy | soA | 00067 001 /0 A 3sanbas ajup okl
> ”
P
-

7 1sanbal 8JlpA\

Y 1sanbai peay dolqel

SjeIbIN S9A | 0002 002 / 0009

A 1sanhal 8]l

a)elbi SOA

001 /000G vV olqeL

Gre

X 1sanbai peay

v
108190

224
$adA) 1sanbay

74
JUNOI MOY

8v¢ 74

UONEPUSWIWO0IaY Ajigenod

SOJM/SPEDY

pC Ueld uoneibi

U.S. Patent

US 11,853,273 Bl

£ 9Ol
098¢ 06€
aSBaRIRD MOU aseqejep pjo

Sheet 4 of 12

Dec. 26, 2023

U.S. Patent

0EE 9inpayos
uoiesbit

\

sued

ajebiti 0} 8)08/go

223

uone.Bi

@ uO m.Q
ajeibiul 0} $308lgo

3‘qe
a)eibi 01 $108g0

el

Oy

y by
posn sja8lgo

m mﬁ { Mu { Q”
pasn 8198lqo

¢et

2‘9'e
pasn sjoelqo

A3

O

oV Lonesydde

ZY uoneandde

01€
L ¥ uoneaiidde

— "
o v Old
e
I~
2-.;
e
g
Nw 0Gp 8seqejep mau 07 8seqejep pjo
o
7.
- CCP 9JeLiojul aseqe)ep CPP 8oeLiojul aseqelep
62 Sisenbas | /2y Sjsenbai aseqejep /L¥
3 aseqejep pajejsuel) | s)senbal aseqejep
=
£,
3
e
S ————
e 0]8/S & nb aIn 34 nb SMMME
- 1OMIBS 10)e|sue.} }senba. 18]N0.)Sanbai oBesn oseqelep
S Axoud
&
-
S
-

CCF aseqejep pjo Joj 8aeLisjul aseqeep

CZ S}senbai aseqejep ¢ S}Senbai aseqejep

0cy 0Fy

7V uoneaidde ” L\ uoneaidde

U.S. Patent

G Ol

273 Bl

353

OGC aseqgejep mou

2

G 9seqelep pio

US 11

GG¢ 1A%
S}NSa S)nsay
Aionb Asonb

AN
Alonb pajejsues

Sheet 6 of 12

099
J0JBIedLU0D
synsal Asenb

V95 296
Sjuswsnipe Sjusuisnipe 05

Lonenbrus HoneInbruoo Synsel
... . L.k @ b Mu

Dec. 26, 2023

1811n0J 156nbai

791
i0jeisuel} jsenbai

0GG Aienb s8]

__ A
fienb

U.S. Patent

01L&

uoneondde

US 11,853,273 Bl

Sheet 7 of 12

Dec. 26, 2023

U.S. Patent

064G S8dA} jsenbai pojss)

7€9
804} 186hbas

_.]

N J

289
9dA] 189nbal

/

069 Buisa) passed

9 Ol

070 Bunsey Jjepun sedf 1senbai

-

\.

9
a0/ 1senbes

/

2v9 buise

bunsae) 8dA} 1s8nbal

019 $8dA] jsanbau pajeibiuun

\

pi9
8dA] jsonbai

099 uoneibiw jenred

69 bunse; paye;

" ”
979
adA} 1sonbai

\.

AT
adA} jsenbal

US 11,853,273 Bl

Sheet 8 of 12

Dec. 26, 2023

U.S. Patent

2
$8118ND O}
g uoneuLojsuen
Adde

9/
solisnh 0]
v uoneuLiojsuel)
Adde

72
Ajuo aseqgejep pio
0] Saiiont 8oy

vl
AJUO 8s808RIED MBU
0} SoLonb 8oy

uoneinbiuos Axold sseqejep

L Ol

8¢/
g uonejsues} reyuny
84inbai saLeNb swWos |
B

3
9¢c/ _

Y uohejsuel) joyuny
aimnbai svrenb sLWoS

- ™
pE.
asLqeIED PIo
UMM SHNS8) yojetut
10U Op S8lisnb suios

kL
eseqejep pjo yjm |
SynsaJ yojews sAeme |
seuenb slwos

0¢/
fopoLt buiuieal suiyoeil

0¢l
A B0A]
Aienb aseqejep

0t
X 9dA]
Aienb sseqejep

U.S. Patent Dec. 26, 2023 Sheet 9 of 12 US 11,853,273 B1

Collect usage data of an application to determine the application’s
usage level of objects in a first database
' 810

Determine portability levels of individual objects to a second
database of a different type
820

(Generate, based on the usage levels and the portability levels of the objects,
a migration plan for a partial migration of the application from the first database
to the second database
832

Perform the partial migration according to the migration plan
834

Route some database requests from the application {o
the first database
830

3 Translate and route some database requests from
| Performed the appiication fo the second database

| without modifying 839
| the application

U.S. Patent Dec. 26, 2023 Sheet 10 of 12 US 11,853,273 B1

Perform a partial migration of an application from an old database
fo a new database
840

Route database requests to both databases
8ol

[s the new dalabase
behaving correctly?
860

Cease routing database requests to new
database for problematic objects
87y

Any more database yes

objects to migrate?
860

fi0

U.S. Patent Dec. 26, 2023 Sheet 11 of 12 US 11,853,273 Bl

Perform a partial migration of an application from a first database to a second database
910

{ Performed during a testing period 920

Recelve a query from the application at a proxy server
930

Forward the query to the first database

!

:

i

:

i

!

:

i

|

:

:

3

i

3

| _

: Transtate and forward the query to the Second database
| 290
: |
i
i
i
i
:
|
:
3
i
:
:
i
i
;

Compare query results of the query from the two databases

Comparison results o

salisfy a testing criterion?

Adjust a query handfing conﬁguration of the proxy server
980

U.S. Patent Dec. 26, 2023 Sheet 12 of 12 US 11,853,273 Bl

computing system 1000

processor processor

processor
10104 1010b

1010n

I/O interface
1030

network interface

rogram
st 1040

instructions
1025

neltwork(s)
1050

other

device(s)
1060

FIG. 10

US 11,853,273 Bl

1

PARTIAL MIGRATION OF APPLICATIONS
ACROSS DATABASE SYSTEMS

BACKGROUND

Recent advances 1n virtualization technologies have
increased the reliability, scalability, and cost efliciency of
cloud computing. Cloud-based database services, 1n particu-
lar, have enabled consumers to flexibly structure their com-
puting and storage costs in response to immediately per-
ceived computing and storage needs. To transition
computing systems to the cloud, owners of production
applications must sometimes migrate the applications from
legacy databases to newer databases 1n the cloud. However,
such migrations are not straightforward because the appli-
cations may rely on a large set objects 1n the legacy database,
which may implement sophisticated database functionality
that 1s not easily portable to the new database. Despite
careful testing, migration of an application between data-
bases often entails substantial amounts of risk for the
application owner. For example, subtle differences 1n data-
base behavior may go unnoticed until after the migration has
been completed. These diflerences may sometimes cause
severe problems 1n the migrated application. Moreover, 1n
some cases, an application being migrated cannot be easily
modified (e.g., because the original source code or devel-
opment team 1s no longer available). Accordingly, the new
database system must continue to provide the database
interface of the legacy database. These problems complicate
the migration of large applications, making such processes
expensive, time-intensive, and highly error-prone.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram illustrating an example appli-
cation migration management system that migrates applica-
tions to different database systems without moditying the
application, according to some embodiments.

FIGS. 2A and 2B illustrate an example set of database
requests used by an application and an example migration
plan generated by an application migration management
system, according to some embodiments.

FIG. 3 illustrate an example database proxy that generates
a migration schedule and migration plans to migrate mul-
tiple applications, according to some embodiments.

FI1G. 4 1llustrates an example proxy server that 1s used to
implement a database proxy that migrates applications to
different database systems without moditying the applica-
tion, according to some embodiments.

FIG. 3 illustrates an example query results comparator
used to make configuration adjustments to a database proxy,
according to some embodiments.

FIG. 6 1llustrates an example testing process of different
types of database requests from an application being
migrated by an application migration management system,
according to some embodiments.

FIG. 7 illustrates an example machine learning model that
1s used to programmatically learn to query handling behav-
1ors for queries 1ssued by an application, according to some
embodiments.

FIGS. 8A and 8B are flowcharts illustrating processes of
performing partial migration according to a migration plan
generated by an application migration management system,
according to some embodiments.

FIG. 9 1s a flowchart illustrating a process of testing
queries received by an application migration management

10

15

20

25

30

35

40

45

50

55

60

65

2

system and responsively adjusting the query handling con-
figuration of the system, according to some embodiments.

FIG. 10 1s a block diagram 1llustrating an example com-
puter system that can be used to implement one or more
portions of an application migration management system
that migrates applications to diflerent database systems
without moditying the application, according to some
embodiments.

While embodiments are described herein by way of
example for several embodiments and illustrative drawings,
those skilled 1n the art will recognize that embodiments are
not limited to the embodiments or drawings described. It
should be understood, that the drawings and detailed
description thereto are not intended to limit embodiments to
the particular form disclosed, but on the contrary, the inten-
tion 1s to cover all modifications, equivalents and alterna-
tives falling within the spirit and scope as defined by the
appended claims. The headings used herein are for organi-
zational purposes only and are not meant to be used to limait
the scope of the description or the claims. As used through-
out this application, the word “may” 1s used 1n a permissive
sense (1.e., meaning having the potential to), rather than the
mandatory sense (1.e., meaning must). Similarly, the words
“include,” “including,” and “includes™ mean including, but
not limited to.

It will also be understood that, although the terms first,
second, etc. may be used herein to describe various ele-
ments, these elements should not be limited by these terms.
These terms are only used to distinguish one element from
another. For example, a first contact could be termed a
second contact, and, similarly, a second contact could be
termed a first contact, without departing from the scope of
the present invention. The first contact and the second

contact are both contacts, but they are not the same contact.

DETAILED DESCRIPTION OF EMBODIMENTS

The systems and methods described herein may be
employed 1n various combinations and 1n various embodi-
ments to 1implement an application migration management
system to migrate applications to different database systems
without modifying the application. In some embodiments, a
proxy server 1s configured to monitor an application’s usage
of a current database, and generate a migration plan to
partially migrate database objects used by the application
based on observed usage data. A database object may be a
unit of the database that can be independently migrated.
Depending on the type of database, a database object may be
a table, a view, an 1ndex, a stored procedure, a trigger, or a
variety of other types of objects supported by the database.
A database object may be selected for a partial migration of
the application based on a number of factors, such as its
usage level or 1ts portability. In some embodiments, after the
migration, the proxy server may remain in place as a request
router to route application’s requests to the two databases
and a request translator for the new database. In some
embodiments, the system may implement a test process for
the migrated application, wherein the queries from the
application are forwarded to both databases and the query
results are compared. Based on the comparison results, the
system may programmatically decide to make configuration
adjustments, for example, to switch over to the new database
for certain types of database requests, or fall back to the old
database for certain other types of database requests.

Applications that run on one type of legacy database
system may sometimes be migrated to another type of
database system. For example, 1n some cases, application

US 11,853,273 Bl

3

migrations may be performed to transition these applications
into cloud-based service provider networks. However, appli-
cation migrations are not typically straightforward because
the applications rely on a large set database objects in the
legacy database, which may implement sophisticated data-
base functionality that 1s not easily portable to the new
database. Accordingly, migration of large applications often
entails substantial amounts of risk for the application owner.
Moreover, 1n some cases, an application being migrated
cannot be easily modified (e.g., because the original source
code or development team 1s no longer available). The new
database solution must thus continue to provide the database
interface of the legacy database. These problems complicate
the task of migrating large applications, making such pro-
cesses expensive, time-intensive, and highly error-prone.
Accordingly, embodiments of an application migration
management system are disclosed herein to migrates appli-
cations to different database systems without the need to

modily the applications. In some embodiments, the appli-
cation’s usage of a first database (e.g., the legacy database)
1s observed for a period of time. In some embodiments, a
proxy server may be used to observe the application’s
database requests and store i1ts observations as part of the
application’s usage data. The usage data may indicate, for
example, the different types of database requests that are
generated by the application, the volume or frequency of
different request types, and the database objects that are used
by each request type. In some embodiments, the usage data
may also include data from other sources, such as the
database itself or a transaction log maintained by the data-
base. For example, the proxy server may determine the size
(c.g. 1tem count or data size) of a table used by the
application. As another example, the proxy server may
analyze the transaction logs of a database to determine a
table that 1s updated via a database trigger. Such triggered
updates may be implemented in embedded database code
and not be easily detectable from just the database request
alone.

In some embodiments, the application migration manage-
ment system may generate a migration plan for the appli-
cation based on the collected usage data. In some embodi-
ments, the migration plan may specily a partial migration
that only migrates some subset of the database objects used
by the application. In some embodiments, the selection of
objects to be migrated 1s performed according to a selection
policy. In some embodiments, the selection process may be
based on a number of factors, such as a usage level of an
object by the application (e.g., the number of requests hitting
the object or size of the object), or a portability indicator,
indicating whether the object can be easily implemented 1n
the new database system (e.g., without human intervention).
In some embodiments, the system may recommend that
complex objects such as stored procedures or database
triggers be migrated manually.

In some embodiments, after the application 1s partially
migrated, the proxy server may remain 1n place to act as a
request router the application. In some embodiments, the
proxy server may present a database interface of the legacy
database, and forward some of the application’s requests to
the legacy database and some to the new database. In
addition, the proxy server may also serve as a request
translator for the new database. By using the proxy server
approach, the application does not need to be modified at all.
The application may simply continue to 1ssue its database
requests as before. Indeed, for some applications, the migra-
tion process may not require an actual examination of the

10

15

20

25

30

35

40

45

50

55

60

65

4

application code. This migration approach thus vastly sim-
plifies the application migration process, at least for a
portion of the application.

In some embodiments, the proxy server allows the appli-
cation to continue to operate over both databases for some
time without being fully migrated to the new database.
However, by offloading at least some of the request traflic
from the old database to the new database, some of resources
used by the old database may be retired, thereby reducing
the application’s reliance on the old database and improving
the usage efliciency of the application. In some embodi-
ments, manual eflorts may be used to gradually migrate
other parts of the application to the new database in piece-
meal fashion, without impacting the operation of the appli-
cation.

In some embodiments, as the application 1s migrated to
the new database, diflerent types of requests may be
observed during a testing period. For example, in some
embodiments, queries from the application may undergo a
test period, where each received query 1s forward to both
databases. The query results from the two databases may be
compared to determine how closely query results from the
new database matches the results from the old database. In
some embodiments, 1f the results match to a sufficient
degree, the query 1s deemed to have passed to test, and all
turther trathic from queries of that type may be forwarded
only to the new database. In some embodiments, 11 the query
results from the two databases fail to sufliciently match, the
queries may be reverted back to the old database. Such
testing allows the migration system to automatically detect
hidden problems caused by the migration process and take
corrective actions before the problems are mamifested 1n the
application.

In some embodiments, the proxy server may implement a
machine learning process to learn the correct query results
for different types ol queries. In some embodiments, a
machine learning model may be used to automatically
predict certain differences between the query results from
the two databases. In some embodiments, these predicted
differences may be eliminated by applying prescribed trans-
formations on queries forwarded to the new database or
query results received from the new database. Over time, the
combination of the machine learning model and the correc-
tive transformations teaches the proxy server accurately
mimic the response behavior of the old database. Advanta-
geously, this process may be performed without analyzing
database code 1n the legacy database or replicating database
objects from the legacy database.

As may be understood, the application migration man-
agement system described herein may be used to automate
and simplity application migration processes for large, com-
plex applications. The migration process does not require the
application to be recoded. In some embodiments, the migra-
tion process does not require a detailed analysis of the
application code. In some embodiments, migration process
can be performed gradually, 1n a piecemeal fashion, so as to
avoid the substantial risks associated with a full switchover.
In some embodiments, the gradual migration process may be
performed 1n accordance with a testing schedule of the
application. For example, an application may be partially
migrated for a first set of database objects, and application
features that rely on the first set of database objects may be
tested. The application may then be partially migrated for a
second set of database objects, and features that rely on the
second set ol objects may be tested. In this manner, the
application may be migrated on a feature-by-feature basis to
facilitate application testing. In some embodiments, the

US 11,853,273 Bl

S

application migration management system may be used by
or mcorporated into a large software testing system, and
used to upgrade different software to new databases. In some
embodiments, individual migrated request types may be
automatically tested to ensure that their results match the
expected results of the old database. In some embodiments,
the proxy server may be left in place to provide a request
routing and translation interface that for the new database. In
some embodiments, the system may additionally provide a
layer of machine learned transformations to replicate the
behavior of the old database. These and other features and
benefits of the inventive system and method are described in
turther detail below, 1n connections with the figures.

FIG. 1 1s a block diagram illustrating an example appli-
cation migration management system that migrates applica-
tions to different database systems without modifying the
application, according to some embodiments. As shown, 1n
some embodiments, the system 100 may include one or
more clients 110, which communicates with a service pro-
vider network 130 over a network 120. In some embodi-
ments, an application migration manager service 140 may be
implemented within the service provider network 130.

The service provider network 130 may provide computing,
resources via one or more computing services to the client(s)
110. The service provider network 130 may be operated by
an entity to provide one or more services, such as various
types of cloud-based computing or storage services, acces-
sible via the Internet and/or other networks to client(s) 110.
In some embodiments, the service provider network 130
may 1mplement a web server, for example hosting an e-com-
merce website. Service provider network 130 may include
numerous data centers hosting various resource pools, such
as collections of physical and/or virtualized computer serv-
ers, storage devices, networking equipment and the like,
needed to implement and distribute the infrastructure and
services ollered by the service provider network 130. In
some embodiments, service provider network 130 may
employ computing resources for 1ts provided services. These
computing resources may in some embodiments be offered
to chient(s) 110 1n units called “instances,” such as virtual
compute 1nstances.

The client(s) 110 may encompass any type of client
configurable to submit requests to the service provider
network 130. For example, a given client 110 may include
a suitable version of a web browser or may include a plug-in
module or other type of code module configured to execute
as an extension to or within an execution environment
provided by a web browser. Alternatively, a client 110 may
encompass a client application such as a dashboard appli-
cation (or user interface thereol), a media application, an
oflice application or any other application that may make use
of the computing resources to perform various operations. In
some embodiments, such an application may include sufli-
cient protocol support (e.g., for a suitable version of Hyper-
text Transier Protocol (HTTP)) for generating and process-
ing network-based services requests without necessarily
implementing full browser support for all types ol network-
based data. In some embodiments, client(s) 110 may be
configured to generate network-based services requests
according to a Representational State Transter (REST)-style
network-based services architecture, a document- or mes-
sage-based network-based services architecture, or another
suitable network-based services architecture. In some
embodiments, the service provider network 130 may offer 1ts
services as web services, and the client(s) 110 may invoke
the web services via published interfaces for the web ser-
vices. In some embodiments, a client 110 (e.g., a computa-

10

15

20

25

30

35

40

45

50

55

60

65

6

tional client) may be configured to provide access to a
computing service 130 1n a manner that 1s transparent to
applications implemented on the client(s) 110 utilizing com-
putational resources provided by the service provider net-
work 130.

The client(s) 110 may convey network-based services
requests to the service provider network 130 via network
120. In various embodiments, network 120 may encompass
any suitable combination of networking hardware and pro-
tocols necessary to establish network-based communica-
tions between clients 110 and service provider network 130.
For example, a network 120 may generally encompass the
various telecommunications networks and service providers
that collectively implement the Internet. A network 120 may
also include private networks such as local area networks
(LANSs) or wide area networks (WANSs) as well as public or
private wireless networks. For example, both a client 110
and the service provider network 130 may be respectively
provisioned within enterprises having their own internal
networks. In such embodiments, the network 120 may
include the hardware (e.g., modems, routers, switches, load
balancers, proxy servers, etc.) and software (e.g., protocol
stacks, accounting software, firewall/security software, etc.)
necessary to establish a networking link between the client
110 and the Internet as well as between the Internet and
service provider network 130. In some embodiments, client
(s) 110 may communicate with service provider network 130
using a private network rather than the public Internet.

In some embodiments, the service provider network 130
may provide a database service or a data warehouse service,
which are supported by database systems hosted in the
service provider network (e.g., databases 150, 152, 170,
172). In some embodiments, the clients 110 may be the
applications that are being migrated across the databases. In
some embodiments, the service provider network 130 may
host a number of different applications, such as application
Al 132 and application A2 134, as shown, and these may be
the applications that are being migrated. In some embodi-
ments, application A 132 may be running outside of the
service provider network 130. In some embodiments, the old
database 150 or the new database 152 may be running
outside of the service provider network 130.

In some embodiments, the application migration manager
140 may be implemented as a configurable service of the
service provider network. As discussed, in some embodi-
ments, these systems or services may be hosted on instances
of virtual machines, which are hosted on physical hosts 1n
the service provider network 130. In some embodiments,
many server nodes may be combined into a cluster, which
may be used to support a distributed database system,
application, or application migration manager. In some
embodiments, mdividual server nodes may be added or
removed to these systems or services on-demand, or auto-
matically depending on a scaling policy. In this manner,
these systems or services may be automatically scaled. In
some embodiments, the application migration manager 140
may be 1mplemented on a client-addressable server or
appliance. For example, 1n some embodiments, the applica-
tion migration manager 140 may be presented to the appli-
cation as just another database instance, which 1s able to
accept database connections just like the legacy database.

As shown, i this example, application A 132 1s an
application to be migrated. Prior to the migration, applica-
tion A runs on top of the old database 150. In this example,
the application migration manager service 140 employs a
database proxy 141 to migrate application A from the old
database 150 to the new database 152. In some embodi-

US 11,853,273 Bl

7

ments, database proxy 141 may be a proxy server. In some
embodiments, the proxy server may be implemented as one
or more virtual machine instances within the service pro-
vider network. In some embodiments, the database proxy
may present to application A the same database interface as
the old database 150. For example, application A may
connect to the database proxy 141 using a type of database
connection that 1s the same as what may be used for database
150. Accordingly, database proxy 141 may appear to appli-
cation A as the old database 150, and the functionalities of
the database proxy 141 may be performed transparently,
without any changes to or awareness by application A.

As shown, to mmtially migrate the application A 132,
database proxy 141 may employ a database usage monitor
142, a migration plan generator 144, and an object migrator
146. In some embodiments, the database usage monitor 142
may be tasked with momtoring or collecting usage data
indicating how application A 1s using the old database. In
some embodiments, the database proxy 141 may be imple-
mented on one or more proxy servers, which may intercept
database requests 133 from the application 132, and then
torward 151 these requests to the old database 150. In some
embodiments, the proxy servers may be used to implement
another primary function for the old database, for example,
a request router, a load balancer, a database cache subsys-
tem, or the like. In such embodiments, the functionality of
the database usage monitor 142 may be added onto these
subsystems.

In some embodiments, the database usage monitor 142
may observe the database requests 133 from the application
132, and record certain usage data or metrics for the
requests. In some embodiments, such usage data may 1ndi-
cate the types ol database requests 1ssued by the application
132. In some embodiments, the usage data may indicate, for
individual request types, whether the request 1s a read or
write request, the diflerent database objects (e.g., tables)
used by the request, and the volume or frequency of the
request 1ssued by the application.

In some embodiments, the database usage monitor 142
may also obtain usage information from the old database
150. Such usage immformation may include information that
are not available from the database requests 133. For
example, 1n some embodiments, the usage information 141
may indicate, the size (e.g., row count or data size) of
different objects 1n the old database. In some embodiments,
the usage information may be obtained from object metadata
in the old database 150. In some embodiments, the usage
data may also indicate different other objects that are
allected by the database requests 133. For example, 1n some
embodiments, the old database 150 may employ database
triggers, so that an update request to one table will trigger
updates to a number of other tables. Such triggered updates
may not be observable from the database request 133. Thus,
in some embodiments, the database usage monitor 142 may
examine the transaction log or some other source of infor-
mation to determine this sort of usage information.

In some embodiments, after a period of observation, the
database usage monitor 142 may provide the usage data to
a migration plan generator 144. In some embodiments, the
migration plan generator 144 may generate a migration plan
to migration the application 132 from the old database 150
to the new database 152. In some embodiments, the migra-
tion plan may specily a partial migration. For example, in
some embodiments, the migration plan may specily that
only a subset of database objects used by application 132 are
to be migrated. In some embodiments, only a subset of
columns or attributes of certain database objects are

10

15

20

25

30

35

40

45

50

55

60

65

8

included in the migration. In some embodiments, only a
subset of rows or items ol certain database objects are
included 1n the migration. In some embodiments, a database
object may be migrated only for certain types of database
requests (e.g., read requests), while other types of database
requests are to be serviced by the old database 150. In some
embodiments, the migration plan generator 144 may gener-
ate a migration plan that includes recommendations to a
client, which may be approved or modified by the client. In
some embodiments, the migration plan generator 144 may
generate multiple successive migration plans, to progres-
sively or gradually migrate database objects used by the
application 132 to the new database 152 in stages.

In some embodiments, the database objects or object
attributes may be selected to be included i the migration
based on a number of factors. In some embodiments, one
factor may be a usage level or usage metric of the object
determined based on the usage data collected by the data-
base usage monitor 142. In some embodiments, depending
on the policy of the migration system, database objects with
higher usage may be given priority, because migrating these
objects will produce the most benefits for the old database 1n
terms of reduce resource burdens. In some embodiments,
database objects with lower usage may be given priority,
because such objects present less migration risk.

In some embodiments, the selection may also depend on
a portability of the database object. The portability of a
database object may indicate a degree of difliculty that 1s
involved 1n implementing an object 1in the new database 152.
In some embodiments, an object may be readily portable via
an automatically generated mapping of attributes. In some
embodiments, the migration plan generator 144 may be able
to automatically generate code to create a corresponding
destination object 1n the new database. In some embodi-
ments, some objects may not be easily migratable. For
example, some objects may include attributes (e.g., certain
types of large binary object attributes) that are not supported
in the new database. In some embodiments, complex objects
such as materialized views, imdexes, stored procedures, or
triggers, may not be supported 1n the new database. In some
embodiments, such portability information may be assigned
to the objects 1in the new database via a set of rules provided
to the migration plan generator 144. In some embodiments,
the migration plan generator 144 may provide a recommen-
dation as to the migration of a certain object, without
generating code for the migration. For example, in some
embodiments, the usage data may indicate that a database
trigger can be implemented via another means 1n the new
database 152, and include the recommendation 1n the migra-
tion plan.

In some embodiments, the selection of objects for the
partial migration may depend on which database requests
from the application 132 use the objects. For example, 1n
some embodiments, certain high priority requests from the
application are to be prioritized for migration. Accordingly,
the migration plan may indicate that all database objects
used by these high priority requests are to be included 1n the
migration plan.

As shown, 1n some embodiments, the database proxy 141
may implement an object migrator 146, which may be tasks
with performing some ol the migration steps in the migra-
tion process. As shown, the object migrator 146 may receive
the migration plan from the migration plan generator, and
carry out portions of the migration plan programmatically. In
some embodiments, the object migrator 146 may perform
the migration on an object-by-object basis. In some embodi-
ments, the object migrator 146 may generate code to 1mple-

US 11,853,273 Bl

9

ment or create a destination object 1n the new database for
cach object to be migrated. In some embodiments, the object
migrator 146 may also generate code to read data 153a from
a source object 1n the old database and write data 1535 to a
destination object in the new database. In some embodi-
ments, such generate code may be reviewed and edited by a
user. In some embodiments, manually written code may be
submitted to the migrator 146 and incorporated into the
migration process. In some embodiments, the migration may
be performed in manually controllable steps, which may be
started, stopped, and monitored. In some embodiments, the
migration (or mndividual migration steps) may be scheduled
to be performed at a specified time. In some embodiments,
the migration process may be performed to build a partial
database for the application in the new database system
without stopping the application 132.

As shown, application B 134 1s a partially migrated
application that 1s running on top of another database proxy
161. In some embodiments, the database proxy 161 may be
responsible for both the initial migration of an application
(e.g. application A 132) and also supporting the operations
ol a partially migrated application (e.g. application B 134).
In some embodiments, the database proxy 161 may expose
a database interface to application B that i1s the same as the
database interface of the old database 170. For example, the
proxy 161 may allow application B to connect to 1t using a
database connection that can be used for the old database.
Accordingly, application B may operate over the proxy 161
obliviously and in the same way that it would over the old
database 170. In some embodiments, the database proxy 161
may remain 1n place with the application permanently, in
order to serve as a translator of the application’s database
requests (e.g. requests 135) to the new database. In some
embodiments, the initial migration and the continuing sup-
port of a partially migrated application may be performed on
separate servers. In some embodiments, as discussed, the
database proxies may be implemented using a fleet of server
nodes, which may be individually assigned to different
applications and/or databases.

In this example, as shown, the application B 134 has been
partially migrated from old database 170 to new database
172. The partial migration may be performed, for example,
in similar fashion as discussed for application A 132. As
shown, to support the continuing operation of application B,

the database proxy 161 implements a number of components
including a request router 160, a request translator 164, and
a data feed executor 166.

In some embodiments, the request router 160 may receive
database requests 1335 from the application 134, and route
the requests according to a set of configuration settings for
the application. In some embodiments, the configuration
settings may be generated at least in part by the migration
plan generator 144. In some embodiments, the configuration
settings may be configurable by a human administrator, or
programmatically via a validation policy. In some embodi-
ments, certain types of database requests 135 may be routed
171a to the old database 170, for example, because the
database objects required by the requests only exist in the
old database. In some embodiments, certain types of data-
base requests 135 may be routed 1715 to the new database
172, because the database objects required by the requests
exist in the new database. In some embodiments, for a
particular database object, read requests may be directed to
the new database 172 and write requests may be directed to
the old database 170. In some embodiments, a database

10

15

20

25

30

35

40

45

50

55

60

65

10

requests (for example a query) may be directed to both
databases, for example to test the query handling function-
ality 1n the new database.

In some embodiments, the request translator 164 may be
implemented to translate requests forwarded to the new
database 172. As may be understood, received database
requests 135 may be recerved in a format or protocol that 1s
intended for the old database 170. In this way, the applica-
tion 134, which was originally designed to run on the old
database 170, does not have to be changed to run on the new
database 172. For example, the request translator 164 may
automatically change requests 1n one structured language
query (SQL) format to another SQL format that 1s compat-
ible with the new database. As another example, the trans-
lator 164 may translate SQL queries to read request for a
NoSQL or non-relational database. For example, the trans-
lator 164 may receive as input strings representing SQL
queries destined for the old relational database, and generate
as output objects 1n a JavaScript Objection Notation (JSON)
(or some other format) representing “get 1tem” requests to a
NoSQL database, in accordance with the NoSQL database’s
access interface. Similarly, the translator 164 may receive
isert statements 1 SQL and translate these statements to
“put 1tem” requests to the NoSQL database. Depending on
the embodiment and the databases involved, the translation
may also occur in the reverse direction (e.g., from NoSQL
database requests to SQL database requests).

In some embodiments, each of the database requests
1ssued by application 134 may be translated according to a
translation function. In some embodiments, the translation
function may be generated programmatically during the
migration process. In some embodiments, the translation
function may be manually specified or modified by a user. In
some embodiments, the translation behavior of the database
proxy may be dependent on conditions detected by the
database proxy 161. For example, as discussed in further
detail below, in some embodiments, the database proxy 161
may employ machine learning to update 1ts query handling
behavior over time. In some embodiments, the translation
behavior of the database proxy 161 may employ both a
translation function, which may be static, and also a machine
learning component, which may be used to dynamically
adjust certain aspects of the translation behavior based on
observed inputs or conditions. For example, the translation
function and the machine learning component may operate
in series or in parallel to translate imcoming database
requests. In some embodiments, the machine learning com-
ponent may be an independently configurable component of
the translator 164 for diflerent types of database requests,
and may be completely optional for certain types of requests.

In some embodiments, the data feed executor 166 may be
implemented to execute one or more data feeds to read data
173a from the old database 170 and write the data 1735 to
the new database 172. In some embodiments, these data
feeds may be specified in the migration plan. For example,
in some embodiments, an object in the old database 170 may
have been migrated to the new database 172 for read
requests only, but not write requests. In this situation, a data
feed may be created and periodically executed by the data
feed executor 166 to refresh or synchronize the destination
object 1n the new database with changes to the object from
the old database. In some embodiments, data feeds may be
used to perform the synchronization 1n the opposite direction
(1.e., from the new database to the old database). In some
embodiments, the synchronization may be performed from
one object to another (e.g., from one table in the old database
to another table in the new database). In some embodiments,

US 11,853,273 Bl

11

the synchronization may be implemented using other objects
provided by the databases, for example, by reading from a
transaction log or update stream generated by the source
database, or by writing to a transaction log or write stream
that 1s used to populate the destination database. In some
embodiments, code for an ongoing data feed may be gen-
crated as part of the migration plan. In some embodiments,
certain operational aspects of the data feed executor 166
may be specified by the configuration settings of the data-
base proxy 161. For example, 1n some embodiments, the
configuration settings may specity how oiten and when the
data feed executor 166 will be executed for particular
objects 1n the new database.

FIGS. 2A and 2B illustrate an example set of database
requests used by an application and an example migration
plan generated by an application migration management
system, according to some embodiments.

As shown, FIG. 2A depicts three request types observed
for an application, read request type X 210, write request
type Y 220, and write request type Z 230. The application
may be, for example, application A 132 as discussed in
connection with FIG. 1. As discussed, in some embodi-
ments, a database proxy may observe database requests from
an application to determine the application’s usage data of
the legacy database. The request types shown here may be
determined from requests observed from the application. In
some embodiments, each request type may be a type of SQL
statement. For example, read request type X 210 may be a
type of select statement generated from the application, and
write request types Y and Z may be two types of insert
statements generated from the application.

As shown, each request type may refer to or use a number
of different database objects. In the figure, read request type
X uses table A 212, table B 214, and a stored procedure S
216. For example, the request type X may correspond to a
select statement that joins tables A and B, and explicitly calls
the stored procedure S to generate a select attribute. As
shown, write request type Y uses table A 212, a trigger T
222, and a table C 224. For example, the write request of
type Y may insert a row into table A, which 1n turn invokes
trigger T to insert another row into table C. In some
embodiments, the impact of the request type Y on trigger T
and table C may be not readily apparent from the database
request alone. However, 1n some embodiments, database
proxy may collect usage data from multiple sources (e.g., the
metadata of table A or the translation log of the database) in
order to 1dentity impacted objects such as trigger T 222 and
table C 224. As shown, write request type Z only uses table
B 214.

FIG. 2B depicts a migration plan 240 that may be gen-
crated from the request types seen 1n FIG. 2A. As discussed,
the 1 some embodiments, the database proxy may gather
usage data for the application, which are used to generate the
migration plan. In some embodiments, as shown, the migra-
tion plan may be displayed in a graphical user interface
(GUI). In some embodiments, the graphical user interface
may allow a user or administrator to see a migration rec-
ommendation 248 for each object in the database.

As shown, 1n the depicted GUI shows a table on the top
portion, which includes a row for each object used by the
application 1n the legacy database. The table also 1ncludes,

in different columns or fields, different types of information
that influenced 1ts recommendation decision, shown at fields
248.

As shown, field 244 indicates which observed request
types used the object. In some embodiments, the database
proxy may prefer to migrate all objects impacted by an

10

15

20

25

30

35

40

45

50

55

60

65

12

individual request as a group, so that entire request types can
be migrated to the new database. As shown, 1n this example,
all objects associated with read request type X are to be
migrated, so that after the partial migration, read request
type X can be 1ssued to the new database.

As shown, ficlds 245 and 246 indicate different types of
usage data for the objects. Field 245 indicates the read and
write request count for each object observed during the
observation period. Field 246 indicates the row count 1n each
object. In some embodiments, objects with high usage levels
may be given priority in the migration plan.

As shown, field 247 indicates a portability of each data-
base object. In some embodiments, this indicator may be
determined from a set of migration rules configured for the
database proxy. In some embodiments, the portability 1ndi-
cator may indicate yes when code to create a destination
object 1n the new database can be automatically generated.
In some embodiments, a database object may still be 1ndi-
cated for migration, even when it 1s not readily portable to
the new database (for example, stored procedure S). In some
embodiments, the migration plan may indicate an instruction
to manually migrate the object. For example, the GUI may
allow a user to manually upload a code module that imple-
ments the stored procedure S 1n the new database.

As shown, 1n this example, the migration plan generator
recommends the migration of tables A, B, and C, and the
stored procedure S. However, as shown, the table C 1s
migrated with a data feed refresh. This may be indicated
because 1n the legacy database, table C 1s update by a trigger,
which 1s diflicult to port to the new database. As shown, the
trigger T 1s not 1indicated for migration. Without trigger T,
table C may not be properly updated 1n the new database.
Thus, it may be easier to simply refresh table C in the new
database from the master version of table C 1n the legacy
database. The functionality to properly update table C may
be implemented at a later stage, for example, via another
migration plan that implements trigger T 1n the new data-
base.

As shown, the example GUI also includes a lower portion
that indicates different migration configuration settings for a
particular selected object in the table. In this example, table
B 1s selected. As shown, the current migration status of table
B 1s not migrated. The current migration recommendation 1s
to “auto,” which indicates that a destination object can be
created and populated via code that 1s automatically gener-
ated by the migration management system. The settings
turther indicate that for the migration of table B, all columns
and all rows are to be implemented 1n the new database, and
both read and write type requests for table B are to be routed
to the new database. Finally, the configuration settings
indicate that no ongoing data feed 1s to be used for table B.
For some objects, an ongoing data feed may be implemented
in order to synchronize the state of the destination object
with 1ts counterpart in the old database. As shown 1n this
example, Table C 1s to be refreshed with an ongoing data
feed. In some embodiments, some or all of these configu-
ration settings may be advisory. For example, some or all of
these settings may be changed manually via the configure
button 250.

As shown, the bottom portion of the GUI also includes a
number of additional buttons. In this example, these buttons
may be used to manually perform migration steps for the
migration of table B. In some embodiments, a migration step
may be performed manually so that an administrator or user
can observe the migration of individual objects to as to
correct any that migration errors. In some embodiments, the
migration process may be carried out automatically accord-

US 11,853,273 Bl

13

ing to a specified schedule, for example, at a time at night
when the application 1s not expected to be active.

As shown, button 260 allows a user to generate and see
the code to create the destination object for table B in the
new database. In some embodiments, the user may be
permitted to modily and save the generated code. In some
embodiments, along with the destination object creation
code, the migration plan generator may also generate one or
more translation functions to translate requests directed table
B into requests directed to the destination table 1in the new
database. As shown, button 262 may execute the destination
object creation code in the new database to create the
destination object for table B.

As shown, button 270 may be used to generate object
population code to populate the destination object with data
from table B. In some embodiments, the process may be
performed by dumping the data of table B into an interme-
diate form outside of the legacy database, and then loading
the intermediate form into the new database. In some
embodiments, the population process may directly load the
destination object via an mm-memory transfer. As with the
destination object creation code, 1n some embodiments, the
object population code may be edited and stored by the user.
As shown, button 272 may itiate the populate process for
the destination object 1n the new database. In some embodi-
ments, this may be a long running process which may be
started and paused by the user. In some embodiments, the
GUI may allow the user to track the process of the popu-
lation process. In this manner, the application migration
management system may make recommendations to the user
for a partial migration of the application, and at the same
time allow the user to have control over the migration
pProcess.

FI1G. 3 1llustrate an example database proxy that generates
a migration schedule and migration plans to migrate mul-
tiple applications, according to some embodiments.

As shown, 1n some embodiments, the database proxy 141
may be used to manage the migration of many applications,
such as applications A1l 310, A2 312, and A3 314. In some
embodiments, as shown, the applications may all share a
single legacy database 350. In some embodiments, some
applications may share common database objects 1in the
legacy database 350.

In some embodiments, as shown, respective usage data
320, 322, and 324 may be collected for the applications
being migrated. Such usage data may be collected using the
techniques discussed in connection with FIG. 1. For
example, 1n some embodiments, database requests from the
applications may be observed, for example, at a proxy
server. The requests may be aggregated for each application
to determine the application’s request types, counts, etc. In
this example, as shown, applications Al and A2 uses some
common database objects from the old database: objects b
and ¢. However, application A3 does not use any objects that
are shared with applications Al or A2.

In some embodiments, as shown, an application migration
schedule 330 may be generated based on the usage data of
the applications. For example, 1n some embodiments, the
schedule may prioritize certain applications to be partially
migrated first based on the application’s usage profile. In
some embodiments, depending on the migration manager’s
scheduling policy, an application with a higher usage level
(e.g., 1n terms of request volume) may be migrated earlier.
In some embodiments, an application with lower usage level
may be migrated earlier, 1n order to reduce migration risk. In
some embodiments, an application’s rank in the schedule
may be dependent on the number of database objects that it

10

15

20

25

30

35

40

45

50

55

60

65

14

uses. In some embodiments, an overall portability index may
be determined for each application to indicate the difliculty
level of completely porting the application to the new
database 360. In some embodiments, applications that are
more easily ported may be scheduled to be migrated earlier.
In some embodiments, migration of applications that use
common database objects may be coordinated, so that the
partial migration of one application does not cause error in
another application. As shown, 1n this example, since appli-
cations Al and A2 share common database objects, their
respective migrations may be coordinated so that certain
common objects are migrated for the two applications
together.

In some embodiments, as shown, respective migration
plans 340, 342, and 344 may be generated for each appli-
cation. In some embodiments, these migration plans may be
generated from the usage data using similar techniques as
discussed 1n connection with FIG. 1. Additionally, 1n some
embodiments, an mdividual migration plan for a particular
application may also be dependent on the migration plans of
other applications. For example, 1f certain database objects
are already to be migrated because of another application
(e.g., objects b and ¢ for applications Al and A2), request
types 1n a later application that employ those objects may be
automatically added for the migration the application 1n
question. In some embodiments, the migration of such
shared objects may be coordinated so that the migrations
satisty the requirements of all applications volved. In
some embodiments, the aggregate usage of all of the appli-
cations may cause a particular database object to be
migrated, even though the usage levels of the object for each
application individually would not trigger a migrate.
Accordingly, as may be understood, the migration plans of
cach mdividual application may be dependent on the migra-
tion plans of other applications.

As shown, the migration plans 340, 342, and 344 of each
application may be provided to the object migrator 146,
which may then perform the migrations according to the
application migration schedule 330. In some embodiments,
the migration process may be displayed and tracked via a
GUI provided by the application migration manager. In
some embodiments, the migration process may be paused,
resumed, or edited via the GUI, for example, to add or
remove applications from the schedule.

FIG. 4 1llustrates an example proxy server that 1s used to
implement a database proxy that migrates applications to
different database systems without moditying the applica-
tion, according to some embodiments.

As shown, 1n some embodiments, a proxy server 430 may
be used to implement some components of the database
proxies discussed i FIG. 1, such as the database usage
monitor 142, the request router 160, or the request translator
164. In some embodiments, the proxy server 430 may server
a different primary function, such as a load balancer, request
router, database cache subsystem, or the like. In such
embodiments, the application migration management com-
ponents may be added or piggybacked on the proxy server
as a secondary function of these servers. In some embodi-
ments, a service provider network may host a plurality of
these proxy servers, such may be assigned to different
applications (e.g., applications 410 and 412) and databases
(e.g., databases 440 and 450). In some embodiments, dif-
ferent components (e.g., components 142, 160, and 164)
may reside on different proxy servers for the same applica-
tion. In some embodiments, the proxy servers may be
implemented as virtual machine instances that are nstanti-
ated are provided to clients on an as-needed basis.

US 11,853,273 Bl

15

As shown, 1n some embodiments, the proxy server 430
may provide a database interface 435 which mimics the

database interface of the old database 440. Thus, the data-

base iterface 435 provides the same access functions (e.g.,
read and write requests functions or protocols) as the data-
base 1nterface 4435 of the old database. Accordingly, appli-
cations such as application A1 410 and A2 420 do not need
to be modified at all. They may simply issue the same
database requests 415 and 425 as they did prior to the
migration. The proxy server 430 will present the appearance
of the old database 440 to the applications. In some embodi-
ments, the proxy server 430 will be left in place after the
migration to act as a request translator for the applications
410 and 412 to the new database 450.

As shown, 1n some embodiments, the proxy server 430
may be used to implement the database usage monitor 142,
which receives database requests from the applications and
forwards them to the old database 440. During this process,
all database request traflic may be observed by the proxy
server. In some embodiments, the applications may simply
establish a database connection with the proxy server as if 1t
was the database.

As shown, 1n some embodiments, after partial migration
has begun, the proxy server 430 may be used to implement
the request router 160 and request translator 164. In some
embodiments, the request router may determine which
requests are to be forwarded to the old database 440 and
which requests are to be forwarded to the new database 4350,
given the current state of the partial migration. In some
embodiments, requests forwarded to the new database 450
are translated by the request router 164. The output of the
request translator 1s a set of translated database requests 429,
which 1s acceptable to the new database 450 via its database
interface 4355. For example, 1n some embodiments, the
translation may entail adjust a database request for syntac-
tical differences between the query language of the two
databases. In some embodiments, a request may be changed
drastically to account for the different database objects that
have been implemented 1n the new database to mirror the
data in the old database. In some embodiments, responses
from the databases 440 and 450 may be returned to the
application via the database interface 435 in the same way
that requests responses are provided by the old database 440.
Accordingly, the entire migration process may be com-
pletely transparent to the applications 410 and 420. In some
embodiments, applications 410 and 420 may not have to be
stopped during the course of migration process.

FIG. 3 illustrates an example query results comparator
used to make configuration adjustments to a database proxy,
according to some embodiments.

As shown, 1n some embodiments, the database proxy 161
may 1mplement a query results comparator 560. The query
results comparator 560 may be used to perform a test of the
partially migrated system in the new database 350, and
perform certain corrective actions. For example, in some
embodiments, the query results comparator 560 may be
configured to conditionally or periodically adjust the con-
figuration of the request router 160 or the request translator
164, based on the comparison results.

As shown, in some embodiments, a partially migrated
application 510 may send queries 520 to the database proxy
161. In some embodiments, the database proxy may send the
query to both the old database 540 and the new database 550.
As shown, the received query 520 1s sent to the old database
as query 522, and also to new database as a test query 550.

10

15

20

25

30

35

40

45

50

55

60

65

16

As discussed, the request translator 164 may be used to
convert the test query 550 to a translated query for the new
database.

In some embodiments, query results 525 and 555 from
both the old database and the new database are provided to
the query results comparator 560. In some embodiments, the
query results comparator 560 may perform a comparison of
the query results, to check that the query results from the two
databases match. In some embodiments, the comparison
check may only sample some subset of the query results 1n
order to make the comparison process faster. If the query
results differ, this may indicate that there was a migration
problem that occurred with the partial migration (e.g., either
a database object was not properly populated or the query
was not properly translated), and that adjustments need to be
made to the data 1n the new database 350. In some embodi-
ments, the query results may be compared for particular
query types, during a testing period. Query comparison
results may be aggregated for the period, and used to decide
at the end of the period whether the type of query 1s correctly
handled by the new database 550. In some embodiments,
while query results from the new database 550 are being

observed or tested during the testing period, the actual query
results 530 returned to the application are the query results
525 from the old database.

In some embodiments, 1n addition to determining whether
the query results 5535 of the new database correctly match the
query results 525 from the old database, the query results
comparator 560 may also perform configuration adjustments
562 and 564 to the request router 160 and request translator
164. In some embodiments, 1f the results from the new
database sutliciently matches the results from the old data-
base, the query results comparator 560 may configure the
request router 160 to always direct queries to the new
database 350, and return the query results 5535 generated by
the new database 550. In some embodiments, after the
queries have been cut over to the new database, the request
router 160 may still perform periodic checks of the query
result against the old database 540. However, such periodic
checking may be performed less frequently.

In some embodiments, if the results from the new data-
base do not suiliciently match results from the old database,
the query results comparator 160 may cause the request
router 160 to direct all further queries of that type to the old
database only. In some embodiments, the query result mis-
matches may be logged, so that a user can later analyze the
cause of the mismatches, and migrate the data again to
correct the problem.

In some embodiments, the query results comparator 560
may programmatically make certain adjustments 564 to the
translation behavior of the request translator 164, based on
the results of the comparison. In some embodiments, the
query translations may be performed using a translation or
transformation function. In some embodiments, parameters
in the translation or transformation function may be adjusted
by the query results comparator. For example, the query
results comparator 560 may be configured to select one of
two formatting for the query results 355 returned from the
new database 550, based on the comparison results. In some
embodiments, the comparison results may be used to train a
machine learning model so that the database proxy gradually
learns when query results will not match, and use those
learnings to perform the translation adjustments predictively
without the comparator 560.

FIG. 6 1llustrates an example testing process of di
types of database requests from an application

Terent
being,

US 11,853,273 Bl

17

migrated by an application migration management system,
according to some embodiments.

As shown, 1n some embodiments, the testing process of an
application migration may be controlled by a request testing
component 640, which may be implemented as part of the
database proxy 161 or the application migration manage-
ment service 140 of FIG. 1. In some embodiments, the
request testing component 640 may be configurable via a
testing policy, which may include user-configurable rules
that specily when different request types of the application
are to be transitioned from one testing stage to the next.

As shown, 1n some embodiments, the testing process may
be performed of individual database request types observed
for an application. As discussed, in some embodiments, the
application may be migrated in stages, where different
request types are migrated at different times in different
partial migrations 660. In the depicted example, the testing
process employs three stages. The first stage corresponds to
a first group 610 of request types (612, 614, and 616), which
are unmigrated request types that are still being directed to
the old database. The second stage corresponds to a second
group 620 of request types (622 and 624), which are request
types that have been migrated but are currently under
testing. The third stage corresponds to a third group 630 of
request types (632 and 634), which are request types that
have successtully passed testing process. For the request
types 1 group 630, the requests may be forwarded only to
the new database without any reliance on the old database.
Depending on the embodiment, the testing process may
include more or diflerent testing stages or request type
groups, whose transitions are dictated by the testing policy.

As shown, the request testing component 640 may per-
form testing 642 on the request types under testing. For
example, 1n some embodiments, the queries to the new
database may be tested by comparing their query results

against results obtained from the old database, as discussed
in connection with FIG. 5. In some embodiments, results of
update requests may be tested by periodically comparing the
data state of data objects in the two databases. For example,
in some embodiments, the request testing module may
compare row counts or a hash values computed from the
contents of the two databases. The results of such testing
may indicate whether the request types under testing are
behaving correctly.

If a request type passes the testing stage 650, it may be
promoted so that the new database will be used to perma-
nently handle requests of that type. In some embodiments,
additional periodic testing may be performed for a period of
time, before resources 1n the old database are permanently
retired. IT the request type fails testing 6435, 1t may be
demoted back as an unmigrated request type. In some
embodiments, the testing results may be logged and
recorded by the application migration management system,
so that a later attempt to migrate the request type can be
designed to correct the 1ssues discovered during the testing.

FIG. 7 illustrates an example machine learning model that
1s used to programmatically learn to query handling behav-
1ors for queries 1ssued by an application, according to some
embodiments.

As shown, 1n some embodiments, the database proxy may
implement a machine learning process, which ftrains a
machine learning model 730. In some embodiments, the
machine learning model 730 may observer database requests
from the application, and gradually learn, based on the
characteristics of the requests, what actions to take for that
request.

10

15

20

25

30

35

40

45

50

55

60

65

18

As shown, 1n some embodiments, the machine learning

model may be used to observe a particular type of database
query, for example database query type X 710. In some
embodiments, database query type X may be a particular
type of select statement 1ssued by the application. In some
embodiments, the machine learning model may learn, via a
machine learning process and through repeated observation
of queries of type 170, that some queries 732 to the new
database with particular filtering conditions (or other query
characteristics) always return correct results (for example
based on a match of query results from the old database). On
the other hand, the machine learning model may learn that
some queries 734 with certain characteristics to the new
database oiten returned incorrect results. For example, que-
ries directed to data in one region may be always correct,
while queries directed to data in another region may be
frequently incorrect. Over time, the machine learning model
may become extremely accurate 1 predicting whether que-
ries will or will not return correct results.

After the model 730 1s sufliciently tramned, in some
embodiments, the database proxy may apply configuration
adjustments 740 to the database proxy based on the predic-
tions of the model. For example, in some embodiments,
queries that are predicted to return correct results 732 may
be reconfigured to be routed 742 to the new database only.
On the other hand, queries that are predicted to return
incorrect results 734 may be reconfigured to be routed 744
to the old database only. In some embodiments, the incorrect
queries may be examined more closely to determine the
cause of these errors. In some embodiments, the application
migration management system may simply leave the
machine learning model 730 1n place to continue servicing
queries of type X 710 using both databases.

As shown, for another example database query type Y
720, the machine learning model 730 may learn that certain
queries 736 always require a particular translation A (for
example via a matching with results from the old database),
while certain other queries 738 always require another type
of translation B. In some embodiments, the transformations
may be determined by human users from observing sample
query result mismatches from the two databases. In some
embodiments, the migration system may then apply these
user-supplied transformations by trial-and-error, and deter-
mine which transformations should be applied to which
queries (or query results) in order to produce matching
results with the old database. In some embodiments, after
the model 730 learns to apply the transformations to always
arrive at the correct results, the model may be made a
permanent part of the migration system. In some embodi-
ments, the transformation selections of the model may
become part of the configuration change of the migration
system. For example, 1n some embodiments, queries that are
determined to require translation A 736 may be configured
746 to receive transformation A, and queries that are deter-
mined to require translation B 738 may be configured 748 to
receive transformation B. Advantageously, this machine
learning process allows the migration system to mimic the
behavior of the old database by observing the interactions
between the application and the old database, and without
analyzing the code of the application or the old database.

FIGS. 8A and 8B are flowcharts illustrating processes of
performing partial migration according to a migration plan
generated by an application migration management system,
according to some embodiments. The process depicted in the
FIG. 8A may be performed, for example, by the database
proxy 141 of FIG. 1.

US 11,853,273 Bl

19

The process begins at operation 810, where usage data of
an application 1s collected and used to determine the appli-
cation’s usage level of objects 1n a first database. The first
database may be for example a legacy database that 1s used
by the application, which will be replaced, at least 1n part by
a new database. In some embodiments, the usage data may
be collected by a proxy server, which intercepts and for-
wards database requests from the application to the database.
In some embodiments, the usage data may indicate the
different types of requests 1ssued by the application and also
the volume of the requests for each request type. In some
embodiments, the usage data may also include the size of the
objects used by the application. In some embodiments, the
usage data may also include mnformation gathered from one
or more transaction logs in the database.

At operation 820, for individual database objects used by
the application, a portability level 1s determined to port the
object to a second database of a different type. For example,
the second database may be a new database that will be used
to partially replace the legacy database. In some embodi-
ments, the portability level may indicate how easily it 1s to
implement a destination object to replicate the functionality
of a given object 1n the old database. In some embodiments,
the portability level may 1indicate whether a given object can
be 1mplemented using automatically generated code. In
some embodiments, the portability level may indicate that
only a subset of attributes of a given table can be automati-
cally migrated. In some embodiments, the indicated porta-
bility level may be accompanied by a recommendation as to
how to migrate the other columns of table. In some embodi-
ments, the portability level of the object may be determined
based on an analysis of the schema of the object and a set of
object migration rules provided to application migration

manager.

As shown, operations 832, 834, 836, and 838 arc per-
formed without moditying the application being migrated.
As discussed, 1n some embodiments, the entire migration
process 1s carried out using a proxy server that exposes the
database interface of the old database. Accordingly, the
migration process does not require any changes to the
application. In some embodiments, the migration process
may treat the application as a black box, and no code
analysis need to be performed on the application for the
migration. In some embodiments, the application does not
need to be stopped during the migration.

At operation 832, a migration plan 1s generated for the
application based on the usage levels and portability levels
of the objects. The migration plan may specily a process for
a partial migration of the application from the first database
to the second database. In some embodiments, the migration
plan may be capable of specilying a full migration of the
application under certain circumstances. In some embodi-
ments, the migration plan may be generated according to a
set of rules indicated 1n a migration policy. For example, 1n
some embodiments, the database proxy may migrate objects
in groups according to how they are used by the applica-
tion’s database requests. In some embodiments, heavily used
objects or request types may be given priority to be
migrated. In some embodiments, lesser used objects or
request types may be given priority. In some embodiments,
the portability level of an object may impact whether it 1s
included in the partial migration.

The migration plan may also specily certain configuration
settings on how individual database objects are to be
migrated. In some embodiments, the migration plan may
include a recommendation to manually migrate a particular
object. In some embodiments, the migration plan may

10

15

20

25

30

35

40

45

50

55

60

65

20

indicate, for a particular object, that only certain columns or
attributes are to be migrated. In some embodiments, the
migration plan may indicate, for a particular object that only
certain rows or data items are to be migrated. In some
embodiments, the migration plan may indicate, for a par-
ticular object, that the object will be maintained 1n both
databases and that certain types of requests will be serviced
using the object 1n the old database and certain other types
of requests will be serviced using the object 1n the new
database. In some embodiments, the migration plan may
include or be used to generate database code to create and/or
populate the destination object created 1n the new database.
In some embodiments, the code may be viewable and
editable by a user, for example, via a graphical user interface
presented by the application migration manager. In some
embodiments, many different aspects of the migration plan,
including those objects selected for migration, may be
adjusted manually by a user.

At operation 834, the partial migration 1s performed
according to the migration plan. In some embodiments, the
database proxy may implement one or more components to
perform the partial migration, at least in part. In some
embodiments, the migration may be performed on an object-
by-object basis, for example, via an object migrator com-
ponent 146, as described 1in connection with FIG. 1. In some
embodiments, the database proxy may allow users to upload
custom migration code, so that portions of the partial migra-
tion may be run according to the custom code. In some
embodiments, the migration process may be scheduled to
occur at a specified time, and in specified migration stages.
In some embodiments, the progress of the migration may be
tracked, for example, via a graphical user interface of the
application migration manager.

At operations 836, some database requests from the
application are routed to the first database. In some embodi-
ments, the application may continue to operate without
modification over the two databases. In some embodiments,
after the partial migration, the database proxy may remain n
place to act as a request router for the application to the first
database. In some embodiments, the request router may be
the request router 160 of FIG. 1. In some embodiments, a
single database request may be routed to both databases for
testing or other purposes.

At operation 838, some database requests from the appli-
cation are translated and then routed to the second database.
In some embodiments, after the partial migration, the data-
base proxy may remain in place to act as a request router and
request translator the application to the second database. In
some embodiments, the request router may be the request
router 160 of FIG. 1, and the request translator may be
request translator 164 of FIG. 1. In some embodiments, a
single database request may be routed to both databases for
testing or other purposes.

FIG. 8B depicts a process where partial migrations are
repeatedly performed on an application until the application
1s completely migrated to the new database.

At operation 840, a partial migration 1s performed on an
application to migrate 1t from an old database to a new
database. The operation may be performed by a database
proxy such as database proxy 141 of FIG. 1 or an application
migration manager 140, as discussed in FIG. 1. In some
embodiments, this migration may be performed 1n similar
fashion as discussed 1n connection with operation 834 of
FIG. 8A. In some embodiments, the migration may be
performed according to a migration plan, as discussed in
connection with operation 832 of FIG. 8A.

US 11,853,273 Bl

21

At operation 850, database requests are routed to both
databases. In some embodiments, this operation may be
performed by a database proxy such as database proxy 141
or 161 in FIG. 1. In some embodiments, the database proxy
may provide a database interface that 1s the same as the
database interface of the old database. In some embodi-
ments, the database proxy may also perform a translation of
the database request for the new database. In some embodi-
ments, this operation may be performed in similar fashion as
discussed for operations 836 and 838 of FIG. 8A.

At operation 860, a determination 1s made whether the
new database 1s behaving correctly. For example, 1n some
embodiments, the query results or database state of the new
database and the old database may be compared. In some
embodiments, the new database may be deemed to be not
behaving correctly 1 mismatches are detected. In some
embodiments, this operation may be performed during a
testing or observation period of the new database. In some
embodiments, this operation may be performed using the
query results comparator 560 of FIG. 5 or the request type
testing module 640 of FIG. 6.

At operation 870, if the new database 1s not behaving
correctly, database requests for problematic objects 1n the
new database will cease to be routed to the new database.
For example, 1n some embodiments, 11 a potential problem
1s detected for a particular table 1n the new database, queries
against the table may be stopped. Such queries may be
reverted back to the version of the table in the old database.
In some embodiments, the errors may be captured so that a
user may later analyze the errors and attempt to migrate the
table again.

At operation 880, 1f the new database 1s behaving cor-
rectly, a determination 1s made whether additional database
object remain to be migrated. In some embodiments, the
application migration management system or the database
proxy may maintain metadata as to the migration state of the
application. Such information may be used to determine 1f
more objects remain to be migrated.

If there are still more objects to migrate, the process
proceeds back to operation 840. In some embodiments, this
process may include an additional period of observation for
usage data, and the generation of another partial migration
plan. In some embodiments, the application migration man-
agement system will continue to schedule objects for partial
migration according to a scheduling policy. In some embodi-
ments, multiple partial migrations may be performed for the
application at the same time (e.g., multiple migration plans
are progressing in parallel). In some embodiments, addi-
tional partial migrations may involve more and more user
intervention. However, the application will continue to oper-
ate throughout the migration process without change. In
some embodiments, the application may never be fully
migrated, but continue to operate permanently on both
databases.

If there are no more objects to migration, the process
proceeds to operation 890, where the routing of database
requests to the old database 1s ceased, and the old database
1s retired. In some embodiments, objects 1n the old database
may be retired 1n piecemeal, for example, after it 15 deter-
mined that their counterpart objects 1n the new database are
behaving correctly, in operation 860. In this manner, the
resources needed for the old database can be gradually
reduced. Moreover, by migrating the application 1n this
gradual manner, risks of the migration are substantially
reduced.

FIG. 9 1s a flowchart illustrating a process of testing
queries received by an application migration management

10

15

20

25

30

35

40

45

50

55

60

65

22

system and responsively adjusting the query handling con-
figuration of the system, according to some embodiments.
The process depicted 1n the figure may be performed, for
example, by the database proxy 161 of FIG. 1, or the query
results comparator 560 of FIG. 5.

At operation 910, a partial migration of an application 1s
performed from a first database to a second database. In
some embodiments, this partial migration may migrate some
database objects used by the application from the first
database to the second database. Operation 910 may be
performed 1n a similar manner as operation 834, as discussed
in connection with FIG. 8A.

As shown, operations 930, 940, 950, 960, and 970 may be
performed during a testing period 920. In some embodi-
ments, diflerent types of queries or other database requests
may undergo a testing period where their efiect or results
from the new database are compared against effects or result
from the old database. In some embodiments, the results of
this testing may influence how the queries or other data
requests are handled.

At operation 930, a query 1s recerved from the application
at a proxy server. As discussed, 1n some embodiments, the
application migration management system may be imple-
mented using a proxy server that will remain 1n place as a
request router and translator after the migration. In some
embodiments, the proxy server may present a database
interface that 1s the same as the database interface of the old
database, and receive application queries via this database
interface. In some embodiments, the proxy server may be
the proxy server 430, as discussed 1n connection with FIG.
4.

At operation 940, the query 1s forwarded to the first
database. In some embodiments, during this testing period,
the old database 1s used as the actual database for the query.
Thus, query results from the old database are returned to the
application.

At operation 950, the query 1s translated and forwarded to
the second database. In some embodiments, during the
testing period, the proxy server also generates a second
query for the new database, in order to test the query
handling behavior of the new database. In some embodi-
ments, the second query i1s translated for the database
interface of the new database, using a request translator.

At operation 960, the query results obtained from the two
databases are compared. In some embodiments, the com-
parison may be a full comparison of the entire result sets
return from the two databases. In some embodiments, the
comparison may be made using one or more probabilistic
data structures, such as one or more hash codes, checksums,
data sizes, etc., of the results sets. In some embodiments,
only a sample of the result sets from the two databases may
be compared. In some embodiments, the results of the
comparison may be incorporated into an aggregate result for
the query type. In some embodiments, individual mis-
matches that are identified may also be logged.

At operation 970, a determination 1s made whether the
comparison results for the query type satisfies a testing
criterion. In some embodiments, the testing criterion may be
check for every query. In some embodiments, the testing
criterion may be checked for a certain number of queries, or
over a fixed time period. In some embodiments, the test
criterion may indicate a success condition, where a query
type 1s accepted to be behaving correctly on the new
database if the query results match results from the old
database to a suflicient degree. In some embodiments, the
test criteria may indicate a failure condition, where a query
type 1s deemed to be behaving incorrectly on the new

US 11,853,273 Bl

23

database 11 the query results do not match results from the
old database to a suflicient degree. In some embodiments,
the testing criterion may also conditions for particular
groups of queries within a particular query type. For
example, 1n some embodiments, the testing criterion may be
met when queries with a particular filtering condition fails to
suiliciently match results from the old database. The meeting
of these testing criterion may then be used to trigger con-
figuration changes, as shown.

At operation 980, the query handling configuration of the
proxy server 1s adjusted. In some embodiments, the adjust-
ment may be triggered by the meeting of one or more testing,
criteria, according to a configuration adjustment policy. For
example, 1n some embodiments, a query type that passes the
testing performed 1n the testing period 920 may be promoted
to be permanently handled by the new database. In some
embodiments, the query type may still be checked occasion-
ally against the old database. In some embodiments, after
suilicient testing, the resources in the old database support-
ing the query type may be retired. In some embodiments, 1f
the query type fails the testing performed in the testing
period 920, the query type may be demoted back to an
unmigrated state. In some embodiments, queries in an
unmigrated state may be serviced using the old database
alone. In some embodiments, the problems detected during
the testing period may be logged so that they may be studied
to implement another partial migration the query type.

In some embodiments, the configuration setting adjust-
ment may involve changing the configuration to perma-
nently apply a transformation to queries having one or more
characteristics. In some embodiments, the proxy server may
make these adjustments via a rule-based decision-making
system. In some embodiments, the proxy server may learn,
via a machine learning process, that queries having particu-
lar characteristics require a transformation to be applied to
their query results. In some embodiments, the proxy server
may learn that queries meeting certain criteria will return
incorrect results from the new database, and adjust the
routing configuration to stop forwarding such queries to the
new database. In some embodiments, when these learnings
become sufliciently accurate, the machine learning model
that 1s tramned to recognize these characteristics may be
made a permanent part of the query handling configuration
ol the proxy server. Depending on the predictions generated
from the model, different transformations may be applied to
the query or query results. In some embodiments, the proxy
server can use the machine learning model to transform
queries or query results to mimic the behavior of the old
database without sending the queries to the old database.

FIG. 10 1s a block diagram illustrating an example com-
puter system that can be used to implement one or more
portions of an application migration management system
that migrates applications to diflerent database systems
without modilying the application, according to some
embodiments. Computer system 1000 may include or be
configured to access one or more nonvolatile computer-
accessible media. In the illustrated embodiment, computer
system 1000 includes one or more processors 1010 coupled
to a system memory 1020 via an mput/output (I/0) interface
1030. Computer system 1000 further includes a network
interface 1040 coupled to 1/0O intertace 1030.

In various embodiments, computer system 1000 may be a
uniprocessor system including one processor 1010, or a
multiprocessor system including several processors 1010
(e.g., two, four, eight, or another suitable number). Proces-
sors 1010 may be any suitable processors capable of execut-
ing instructions. For example, in various embodiments,

10

15

20

25

30

35

40

45

50

55

60

65

24

processors 1010 may be general-purpose or embedded pro-
cessors 1mplementing any of a variety of instruction set
architectures (ISAs), such as the x86, PowerPC, SPARC, or
MIPS ISAs, or any other suitable ISA. In multiprocessor
systems, each of processors 1010 may commonly, but not
necessarily, implement the same ISA.

System memory 1020 may be configured to store mnstruc-
tions and data accessible by processor(s) 1010. In various
embodiments, system memory 1020 may be implemented
using any suitable memory technology, such as static ran-
dom access memory (SRAM), synchronous dynamic RAM
(SDRAM), nonvolatile/Flash-type memory, or any other
type of memory. In the illustrated embodiment, program
instructions and data implementing one or more desired
functions, such as those methods, techniques, and data
described above, are shown stored within system memory
1020 as code 1025 and data 1035.

In one embodiment, I/O mterface 1030 may be configured
to coordinate I/O traflic between processor 1010, system
memory 1020, and any peripheral devices 1n the device,
including network interface 1040 or other peripheral inter-
faces. In some embodiments, I/O interface 1030 may per-
form any necessary protocol, timing or other data transior-
mations to convert data signals from one component (e.g.,
system memory 1020) into a format suitable for use by
another component (e.g., processor 1010). In some embodi-
ments, /O mterface 1030 may include support for devices
attached through various types of peripheral buses, such as
a variant of the Peripheral Component Interconnect (PCI)
bus standard or the Umversal Serial Bus (USB) standard, for
example. In some embodiments, the function of I/O 1nter-
face 1030 may be split into two or more separate compo-
nents, such as a north bridge and a south bridge, for example.
Also, 1n some embodiments some or all of the functionality
of IO imterface 1030, such as an interface to system memory
920, may be incorporated directly into processor 1010.

Network interface 1040 may be configured to allow data
to be exchanged between computer system 1000 and other
devices 1060 attached to a network or networks 1050, such
as other computer systems or devices, such as routers and
other computing devices, as illustrated 1n FIGS. 1 through 9,
for example. In various embodiments, network interface
1040 may support communication via any suitable wired or
wireless general data networks, such as types of Ethernet
network, for example. Additionally, network interface 1040
may support communication via telecommunications/tele-
phony networks such as analog voice networks or digital
fiber communications networks, via storage area networks
such as Fibre Channel SANs, or via any other suitable type
of network and/or protocol.

In some embodiments, system memory 1020 may be one
embodiment of a computer-accessible medium configured to
store program 1nstructions and data as described above for
FIGS. 1 through 9 for implementing embodiments of meth-
ods and apparatus for traflic analysis. However, in other
embodiments, program instructions and/or data may be
received, sent or stored upon different types of computer-
accessible media. Generally speaking, a computer-acces-
sible medium may include non-transitory storage media or
memory media such as magnetic or optical media, e.g., disk
or DVD/CD coupled to computer system 1000 via I/O
interface 1030. A non-transitory computer-accessible stor-
age medium may also include any volatile or non-volatile

media such as RAM (e.g. SDRAM, DDR SDRAM,
RDRAM, SRAM, etc.), ROM, etc, that may be included 1n
some embodiments of computer system 1000 as system
memory 1020 or another type of memory. Further, a com-

US 11,853,273 Bl

25

puter-accessible medium may include transmission media or
signals such as electrical, electromagnetic, or digital signals,
conveyed via a communication medium such as a network
and/or a wireless link, such as may be implemented via
network interface 1040.

Although specific embodiments have been described
above, these embodiments are not intended to limit the scope
of the present disclosure, even where only a single embodi-
ment 1s described with respect to a particular feature.
Examples of features provided in the disclosure are intended
to be 1llustrative rather than restrictive unless stated other-
wise. The scope of the present disclosure includes any
feature or combination of features disclosed herein (either
explicitly or implicitly), or any generalization thereof,
whether or not 1t mitigates any or all of the problems
addressed herein. Accordingly, new claims may be formu-
lated during prosecution of this application (or an applica-
tion claiming priority thereto) to any such combination of
features. In particular, with reference to the appended
claims, features from dependent claims may be combined
with those of the independent claims and features from
respective independent claims may be combined 1n any
appropriate manner and not merely 1n the specific combi-
nations enumerated in the appended claims.

The methods described herein may be implemented in
software, hardware, or a combination thereof, in different
embodiments. In addition, the order of the blocks of the
methods may be changed, and various elements may be
added, reordered, combined, omitted, modified, etc. Various
modifications and changes may be made as would be
obvious to a person skilled in the art having the benefit of
this disclosure. The various embodiments described herein
are meant to be 1llustrative and not limiting. Many varia-
tions, modifications, additions, and improvements are pos-
sible. Accordingly, plural instances may be provided for
components described herein as a single mstance. Bound-
aries between various components, operations and data
stores are somewhat arbitrary, and particular operations are
illustrated 1n the context of specific illustrative configura-
tions. Other allocations of functionality are envisioned and
may fall within the scope of claims that follow. Finally,
structures and functionality presented as discrete compo-
nents in the example configurations may be implemented as
a combined structure or component. These and other varia-
tions, modifications, additions, and improvements may fall

within the scope of embodiments as defined in the claims
that follow.

What 1s claimed 1s:
1. A system, comprising:
one or more computing devices configured to:
collect, via a proxy server of a first database, usage data
of an application’s use of the first database, including
usage levels of individual objects stored in the first
database by the application;
generate, based at least m part on the usage data, a
migration plan for a partial migration of the appli-
cation from the first database to a second database of
a different type, wherein the migration plan indicates
a subset of the objects to migrate from the first
database to the second database and a subset of the
objects to remain 1n the first database, wherein the
subset of objects to migrate 1s selected based at least
in part on the usage levels of the individual objects
by the application;
perform the partial migration according to the migra-
tion plan; and

10

15

20

25

30

35

40

45

50

55

60

65

26

perform, via the proxy server and subsequent to the
partial migration:
route database requests from the application directed
to the subset of remaining objects to the first
database; and
route other database requests from the application

directed to the subset of migrated objects to the
second database, wherein the other database
requests are translated from a format or protocol
of the first database to a diflerent format or pro-
tocol of the second database according to a trans-
lation function generated as part of the partial
migration;
wherein the partial migration and the routing of data-
base requests are performed without modifying the
application.

2. The system of claim 1, wherein to generate the migra-
tion plan, the one or more computing devices 1s configured
to:

select the subset of objects to migrate to the second

database based at least 1n part on a portability indicator
of the imndividual objects to the second database.

3. The system of claim 1, whereimn the one or more
computing devices 1s configured to generate the migration
plan to indicate that a particular object used by the appli-
cation 1s to be stored in both the first and the second
database, and that one type of database request for the
particular object 1s to be routed to the first database and
another type of database request for the particular object 1s
to be routed to the second database.

4. The system of claim 1, wherein the proxy server 1s
configured to, subsequent to the partial migration:

route a query from the application to the first database;

route a translated version of the query to the second

databases:;

compare respective query results of the query from the

two databases; and

adjust a query handling configuration of the proxy server

based at least in part on the comparison of query
results.

5. The system of claim 4, wherein the proxy server 1s
configured to perform the adjustment of the querying hand-
ing configuration as part of a machine learning process that
learns to make different configuration adjustments based at
least 1n part on one or more characteristics of queries.

6. A computer-implemented method, comprising;:

performing, by a proxy server of a first database:

collecting usage data of an application’s use of a {first
database, including usage levels of individual objects
stored 1n the first database by the application;
generating, based at least 1n part on the usage data, a
migration plan for a partial migration of the appli-
cation from the first database to a second database of
a different type, wherein the migration plan indicates
a subset of the objects to migrate from the first
database to the second database and a subset of the
objects to remain in the first database, wherein the
subset of objects to migrate 1s selected based at least
in part on the usage levels of the individual objects
by the application;
performing the partial migration according to the
migration plan; and
subsequent to the partial migration:
routing at least some database requests from the
application directed to the subset of remaining
objects to the first database; and

US 11,853,273 Bl

27

routing other database requests from the application
directed to the subset of migrated objects to the
second database, wherein the other database
requests are translated from a format or protocol
of the first database to a diflerent format or pro-
tocol of the second database according to a trans-
lation function generated as part of the partial
migration;

wherein the partial migration and the translating and

routing of database requests are performed without
moditying the application.

7. The method of claim 6, further comprising the proxy
SErver:

collecting usage data for a plurality of applications shar-

ing the first database; and

generating respective migration plans for individual ones

of the applications, wherein a particular migration plan
for one of the applications 1s generated based at least 1n
part on another migration plan for another one of the
applications.

8. The method of claim 6, wherein:

the first database 1s executing outside a service provider

network:

the second database 1s executing 1n the service provider

network:; and

the partial migration 1s performed as one stage of a

multi-stage migration of the application from the first
database to the second database.

9. The method of claim 6, wherein:

the collecting of the usage data 1s based at least 1n part on

metadata of objects 1n the first database or one or more
transaction logs of the first database.

10. The method of claim 6, wherein the generating of the
migration plan comprises:

selecting the subset of objects to migrate to the second

database based at least 1n part on a portability indicator
of the individual objects to the second database.

11. The method of claim 6, wherein the generating of the
migration plan comprises:

indicating 1n the migration plan computer-executable

istructions to implement a first object 1n the second
database:; and

indicating 1n the migration plan that a second object used

by the application 1s not fully supported by the second
database and a recommendation to manually migrate
the second object to the second database.

12. The method of claim 6, wherein the generating of the
migration plan comprises:

indicating 1n the migration plan that a particular object

used by the application 1s to be stored in both the first
and the second database, and that one type of database
request for the particular object 1s to be routed to the
first database and another type of database request for
the particular object 1s to be routed to the second
database.

13. The method of claim 6, wherein the translating of
database requests comprises receiving an input database
request for the first database specified 1n a structured query
language (SQL) and generating an output database request
for the second database that 1s not specified in SQL.

14. The method of claim 6, further comprising;:

performing, by the proxy server and subsequent to the

partial migration:

routing a query irom the application to the first data-
base;

routing a translated version of the query to the second
database;

28

comparing respective query results of the query from
the two databases; and
adjusting a query handling configuration of the proxy
server based at least 1n part on the comparison of
5 query results.

15. The method of claim 14, wherein adjusting the query
handling configuration comprises changing the translation
function.

16. The method of claim 14, wherein the adjusting of the
query handling configuration 1s performed as part of a
machine learning process that learns to make diflerent
configuration adjustments based at least 1n part on one or
more characteristics of queries.

17. A non-transitory computer-accessible storage medium
storing program instructions that when executed on one or
more processors of a proxy server of a first database, cause
the proxy server to:

collect usage data of an application’s use of a first

database, including usage levels of individual objects
stored 1n the first database by the application;

obtain a migration plan for a partial migration of the

application from the first database to a second database
of a different type, wherein the migration plan 1is
generated based at least 1n part on the usage data and
indicates a subset of the objects to migrate from the first
database to the second database and a subset of the
objects to remain in the first database, wherein the
subset of objects to migrate 1s selected based at least in
part on the usage levels of the individual objects by the
application;

perform the partial migration according to the migration

plan; and

subsequent to the partial migration:

route database requests from the application directed to
the subset of remaining objects to the first database;
and

route other database requests from the application
directed to the subset of migrated objects to the
second database, wherein the other database requests
are translated from a format or protocol of the first
database to a different format or protocol of the
second database according to a translation function
generated as part of the partial migration;

wherein the partial migration and the translating and

routing of database requests are performed without
moditying the application.

18. The non-transitory computer-accessible storage
medium of claim 17, wherein the program 1nstructions when
executed on the one or more processors cause the proxy
50 server 10:

obtain another migration plan for a complete migration of

the application from the first database to the second
database:

perform the complete migration according to the other

migration plan; and

cease routing database requests from the application to the

first database.

19. The non-transitory computer-accessible storage
medium of claim 17, wherein to translate the database
60 requests, the program instructions when executed on the one
Or more processors cause the proxy server to:

recerve an input database request for the first database

specified 1n a structured query language (SQL); and
generate an output database request for the second data-
base that 1s not specified 1n SQL.

20. The non-transitory computer-accessible storage
medium of claam 17, wherein to translate the database

10

15

20

25

30

35

40

45

55

65

US 11,853,273 Bl

29

requests, the program instructions when executed on the one
Or more processors cause the proxy server to:
receive an mput database request for the first database that
1s not specified 1n a structured query language (SQL);
and

generate an output database request for the second data-

base that 1s specified 1n SQL.

21. The non-transitory computer-accessible storage
medium of claim 17, wherein the program 1nstructions when
executed on the one or more processors cause the proxy
server 1o:

route a query from the application to the first database;

route a translated version of the query to the second

database:

compare respective query results of the query from the

two databases; and

adjust a query handling configuration of the proxy server

based at least in part on the comparison of query
results.

22. 'The non-transitory computer-accessible storage
medium of claim wherein to adjust the query handling
configuration of the proxy server, the program instructions
when executed on the one or more processors cause the
proxy server to cease forwarding queries meeting one or
more criteria to the first or the second database.

23. The non-transitory computer-accessible storage
medium of claim 20, wherein the program instructions when
executed on the one or more processors cause the proxy
server to perform the adjustment of the querying handing
configuration as part ol a machine learning process that
learns to make different configuration adjustments based at
least 1n part on one or more characteristics of queries.

G e x Gx ex

10

15

20

25

30

30

	Front Page
	Drawings
	Specification
	Claims

