12 United States Patent

USO011853179B1

(10) Patent No.:

US 11,853,179 B1

Masters et al. 45) Date of Patent: *Dec. 26, 2023
(54) DETECTION OF A DMA (DIRECT MEMORY (52) U.S. CL
ACCESS) MEMORY ADDRESS VIOLATION CPC Go6l’ 117221 (2013.01); GO6F 13/28
WHEN TESTING PCIE DEVICES (2013.01); GO6F 13/4221 (2013.01); GO6F
2213/0026 (2013.01)
(71) - Applicant: TRLEDYNE LECROY, INC- 9 gif?éd . Cl?}sgé%c?gi?o% Sé%%th 13/221; GO6F 13/28
Th d Oaks. CA y M . . .
ousand Oaks, CA (US) GOGF 13/4221; GOGF 2213/0026
(72) Inventors: Aaron Masters, Loomis, CA (US); See application file for complete search history.
Kevin Lemay, Loomis, CA (US); (56) References Cited
Chuck Tuflli, Loomis, CA (US) _
U.S. PATENT DOCUMENTS
(73) Assignee: %ELEDngakLE&FO% INC 7,222,197 B2* 52007 Jeddeloh ... GOGF 13/4009
ousan S, (US) 710/78
| | - | 10,896,106 B2* 1/2021 Panis GOG6F 11/2236
(*) Notice: Subject to any disclaimer, the term of this 2004/0210817 Al* 10/2004 Kapoor GO6F 21/577
patent 1s extended or adjusted under 35 714/763
U.S.C. 154(b) by 516 days. 2005/0015378 Al* 1/2005 Gammel ... GOGF 12/1009
2016/0062911 Al* 3/2016 Kegelccoooeeee GO6F 12/02
This patent 1s subject to a terminal dis- 710/308
claimer. , ,
* cited by examiner
(21) Appl. No.: 16/728,338 Primary Examiner — Henry Tsai
_ Assistant FExaminer — Kim T Huvnh
22) Filed: Dec. 27, 2019 d
(22) Filed: Chr &1y (74) Attorney, Agent, or Firm — K&L Gates LLP
(57) ABSTRACT
Related U.S. Application Data A method for detecting a Direct Memory Access (DMA)
. L memory address violation when testing PCle devices 1s
(60) ggmggllognal application No. 62/785,915, filed on Dec. disclosed. The method for detecting a DMA memory address
’ ' violation when testing PCle devices applies to unintentional
(51) Int. CI and intentional accesses of memory space outside of an area
(}’0;5 12 1 3/78 (2006.01) in memory specified by the device driver developed for the
GO6F 11/22 (2006.01) device.
GO6F 13/42 (2006.01) 19 Claims, 3 Drawing Sheets
100

TEST
DEVICE

1/O0 MEMORY MANAGEMENT UNIT (IOMMU) PHYSICAL MEMORY
L AST ADDRESS
VIRTUAL PHYSICAL
MEMORY MEMORY
ADDRESS ADDRESS
SPACE SPACE
MEMORY
o ADDRESS .
o FENCE | i
i 5 ;
| SPECIFIED ——— Ty T s
yopus || ADDRESS | appmess | GoeicAL |
CONNECTION SPT’:";‘%%;QR MAPPING | MAPPED FROM! | memory | ACTUAL PHYSICAL
% FUNCTION TARGET || MEMORY 1 EMORY LOCATION
DEVICE) BUS
(VIRTUAL FOR TARGET DATA
... ADDRESS |
MEMORY |
ADDRESS |
FENCE |
f ADDRESS 0

U.S. Patent

100~

aaaaaaaa

Dec. 26, 2023

P UEY ST S S W |

Sheet 1 of 3

P P SR U SRY S Y SR [URE A YO S SRPY SR S SR S W)

VIRTUAL
MEMORY
ADDRESS
SPACE

B e R A R R A e e e R A R R R R e R]

MEMORY
ADDRESS
FENCE

I/0 BUS

CONNECTION

SPECIFIED
ADDRESS

SPACE FOR
TARGET
(DEVICE)

|

ADDRESS
MAPPING
FUNCTION

MEMORY
ADDRESS
FENCE

|

PHYSICAL
MEMORY

ADDRESS
SPACE

e el R R R R A R R R R R R R R R R R A R A A R R i

PHYSICAL
ADDRESS
MAPPED FROM
TARGET
VIRTUAL
ADDRESS

SYSTEM
MEMORY

BUS

US 11,853,179 B1

PHYSICAL MEMORY

dmank shumden s nhmnlnnk i P S SRy

ACTUAL PHYSICAL
MEMORY LOCATION
FOR TARGET DATA

FI1G.1

ADDRESS O

U.S. Patent Dec. 26, 2023 Sheet 2 of 3 US 11,853,179 B1

200

START
~210
; [

ENABLE THE 1/0 MEMORY
MANAGEMENT UNIT (IOMMU)

220
/

ALLOCATE DOMAIN
("FENCE AREA™)

230
f.

ADD PERIPHERAL COMPONENT
INTERCONNECT EXPRESS (PCIE) DEVICE

; /240

ADD MEMORY ADDRESS
FOR THE PCIE DEVICE

MONITOR DIRECT MEMORY ACCESS
(DMA) FOR "OUT OF FENCE" ACCESS

END

FI1G.2

US 11,853,179 B1

Sheet 3 of 3

Dec. 26, 2023

U.S. Patent

¢ DI

O

AGOMLIN

133
S340IA4d

OT€

d0OSS3004d

0ct

NOHY

mmm
SIDIAIA
1NdLNO

ST¢€

AdOWIIN
INJLSAS

3OVHOLS

S50

00¢

US 11,853,179 Bl

1

DETECTION OF A DMA (DIRECT MEMORY
ACCESS) MEMORY ADDRESS VIOLATION
WHEN TESTING PCIE DEVICES

CLAIM OF BENEFIT TO PRIOR APPLICATION

This application claims benefit to U.S. Provisional Patent
Application 62/785,913, entitled “Detection of a DMA
(Direct Memory Access) memory address violation when
testing PCle Devices,” filed Dec. 28, 2018. The U.S. Pro-
visional Patent Application 62/785,915 1s 1incorporated
herein by reference.

BACKGROUND

Embodiments of the mvention described in this specifi-
cation relate generally to error detection during device
development and testing, and more particularly, to a method
for detecting a Direct Memory Access (DMA) memory
address violation when testing peripheral component inter-
connect express (PCle) devices.

Development of device drivers for devices with a DMA
engine 1s oiten faced with the challenge of ensuring that the
device does not access memory space outside the area
specified by the device driver. While such memory accesses
may be unintentional, the failure to detect this possibility can
be staggering. Specifically, when such a device accesses
memory space outside the area specified by the device
driver, functional errors are likely to occur because this type
of DMA access can create an error that ranges from simple
data corruption to total system failure. It 1s diflicult, but
preferable, to detect, catch, or anticipate such errors or
fallures 1 a test environment early in the development
process, because these failures can be very dithicult and time
consuming to debug after development when the additional
complexity results in problems that are almost impossible to
root cause.

Another problem 1n the development of device drivers for
devices with a DMA engine 1s the possibility of intentional/
purposeful accesses of memory space outside of the area
specified by the device driver. Such intentional/purposeful
accesses ol memory space outside the permitted area can
arise for the purpose of system hacking, unauthorized data
access, launching malware, infecting a system with a virus,
logging system activities/events that are not intended to be
exposed, etc. While there are many existing applications and
systems that focus on DMA access restrictions, the detection
of memory space accesses during the development/testing of
device dnivers for devices with a DMA engine does not
occur in the present state of the field.

Therefore, what 1s needed 1s a way to detect a DMA
memory address violation, whether unintentional or inten-
tional, when testing PCle devices during development.

BRIEF DESCRIPTION

A novel method for detecting a Direct Memory Access
(DMA) memory address violation when testing peripheral
component iterconnect express (PCle) devices 1s disclosed.
In some embodiments, the method for detecting a DMA
memory address violation when testing PCle devices applies
to unintentional and intentional accesses ol memory space
outside of an area in memory specified by the device driver
developed for the device.

In some embodiments, the method for detecting a DMA
memory address violation when testing PCle devices com-
prises (I) enabling an /O memory management unit

5

10

15

20

25

30

35

40

45

50

55

60

65

2

(IOMMU), (11) allocating a domain as a memory fence area
in the IOMMU, (111) adding a peripheral component inter-
connect express (PCle) device, (1v) adding a memory
address for the PCle device, and (v) monitoring direct
memory access (DMA) for any accesses to memory space
outside of the memory fence area.

In some embodiments, the method for detecting a DMA
memory address violation when testing PCle devices
detects, 1n a test environment during a device testing phase
of development, functional errors that occur when a device
with a DMA engine accesses memory space outside of the
area specified by the device driver. In some embodiments,
the method for detecting a DMA memory address violation
when testing PCle devices detects when a device with a
DMA engine purposely accesses the memory space outside
of the area specified by the device drive for a nefarious
purpose. Examples of a nefarious purpose include, without
limitation, system hacking, unauthorized data access,
launching malware, infecting a system with a virus, logging
or tracking system activities or events that are not intended
to be exposed.

The preceding Summary 1s mtended to serve as a brief
introduction to some embodiments of the invention. It 1s not
meant to be an introduction or overview of all mventive
subject matter disclosed 1n this specification. The Detailed
Description that follows and the Drawings that are referred
to 1 the Detailled Description will further describe the
embodiments described 1in the Summary as well as other
embodiments. Accordingly, to understand all the embodi-
ments described by this document, a full review of the
Summary, Detailed Description, and Drawings 1s needed.
Moreover, the claimed subject matters are not to be limited
by the 1llustrative details in the Summary, Detailed Descrip-
tion, and Drawings, but rather are to be defined by the
appended claims, because the claimed subject matter can be

embodied in other specific forms without departing from the
spirit ol the subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

Having described the invention in general terms, refer-
ence 1s now made to the accompanying drawings, which are
not necessarily drawn to scale, and wherein:

FIG. 1 conceptually 1llustrates a block diagram of detec-
tion of a DMA memory address violation when testing PCle
devices 1n some embodiments.

FIG. 2 conceptually illustrates a method for detecting a
Direct Memory Access (DMA) memory address violation
when testing PCle devices 1n some embodiments.

FIG. 3 conceptually 1llustrates an electronic system with
which some embodiments of the invention are implemented.

DETAILED DESCRIPTION

In the following detailed description of the invention,
numerous details, examples, and embodiments of the inven-
tion are described. However, 1t will be clear and apparent to
one skilled in the art that the mnvention 1s not limited to the
embodiments set forth and that the invention can be adapted
for any of several applications.

Some embodiments of the invention include a novel
method for detecting a Direct Memory Access (DMA)
memory address violation when testing peripheral compo-
nent interconnect express (PCle) devices. In some embodi-
ments, the method for detecting a DMA memory address
violation when testing PCle devices applies to unintentional

US 11,853,179 Bl

3

and intentional accesses of memory space outside of an area
in memory specified by the device driver developed for the
device.

In some embodiments, the method for detecting a DMA
memory address violation when testing PCle devices com-
prises (I) enabling an /O memory management unit
(IOMMU), (11) allocating a domain as a memory fence area
in the IOMMU, (i11) adding a peripheral component inter-
connect express (PCle) device, (iv) adding a memory
address for the PCle device, and (v) monitoring direct
memory access (DMA) for any accesses to memory space
outside of the memory fence area.

In some embodiments, the method for detecting a DMA
memory address violation when testing PCle devices
detects, 1n a test environment during a device testing phase
ol development, functional errors that occur when a device
with a DMA engine accesses memory space outside of the
area specified by the device driver. In some embodiments,
the method for detecting a DMA memory address violation
when testing PCle devices detects when a device with a
DMA engine purposely (intentionally) accesses the memory
space outside of the area specified by the device drive for a
nefarious purpose. Examples of a nefarious purpose include,
without limitation, system hacking, unauthorized data
access, launching malware, infecting a system with a virus,
logging or tracking system activities or events that are not
intended to be exposed.

As stated above, there 1s a present need for a way to detect
an intentional or umintentional DMA memory address vio-
lation when testing PCle devices during development due to
at least two known problems or 1ssues 1n the field of device
development/testing when a device with a DMA engine
accesses memory space outside of a permitted area of
memory as specified by the associated device drniver. First,
development of device drivers for devices with a DMA
engine 1s often faced with the challenge of ensuring that the
device does not access memory space outside the area
specified by the device driver. While such memory accesses
may be unintentional, the failure to detect this possibility can
be staggering. Specifically, when such a device accesses
memory space outside the area specified by the device
driver, functional errors are likely to occur because this type
of DMA access can create an error that ranges from simple
data corruption to total system failure. It 1s diflicult, but
preferable, to detect, catch, or anticipate such errors or
fallures 1 a test environment early in the development
process, because these failures can be very difhicult and time
consuming to debug after development when the additional
complexity results 1n problems that are almost impossible to
root cause. The second problem in the development of
device drnivers for devices with a DMA engine 1s the possi-
bility of intentional/purposeful accesses of memory space
outside of the area specified by the device driver. Such
intentional/purposetul accesses of memory space outside the
permitted area can arise for the purpose of system hacking,
unauthorized data access, launching malware, infecting a
system with a virus, logging system activities/events that are
not intended to be exposed, etc. While there are many
existing applications and systems that focus on DMA access
restrictions, the detection of memory space accesses during
the development/testing of device drivers for devices with a
DMA engine does not occur 1n the present state of the field.
Embodiments of the method for detecting a DMA memory
address violation when testing PCle devices of the present
disclosures addresses these 1ssues and solves these problems
by enabling the I/O Memory Management Unit (IOMMU)

to re-map physical memory addresses to virtual addresses.

10

15

20

25

30

35

40

45

50

55

60

65

4

Typically, the IOMMU 1s disabled unless a virtual machine
software 1s installed and running. Once the virtual address 1s
established for a given device, any DMA (memory access)
outside the virtual address space by the device causes a
memory access error and be flagged.

Embodiments of the method for detecting a DMA
memory address violation when testing PCle devices
described 1n this specification differ from and improve upon
currently existing options. In particular, some embodiments
differ by providing the ability to set memory address range
access detection areas (memory fences/barriers) for the
purpose ol error detection or security in either a production
or a test environment. In contrast, the existing applications
and systems that focus on DMA access restrictions do not
provide anything like the method for detecting a DMA
memory address violation when testing PCle devices—
specifically, in making it possible to set memory address
range access detection areas (fences/barriers) for the purpose
of error detection or security (regardless of whether 1n
production environment or in test environment).

The method for detecting a DMA memory address vio-
lation when testing PCle devices of the present disclosure
may be comprised of the following elements. This list of
possible constituent elements 1s intended to be exemplary
only and it 1s not intended that this list be used to limait the
method for detecting a DMA memory address violation
when testing PCle devices of the present application to just
these elements. Persons having ordinary skill in the art
relevant to the present disclosure may understand there to be
equivalent elements that may be substituted within the
present disclosure without changing the essential function or
operation of the method for detecting a DMA memory
address violation when testing PCle devices.

1. Enable the I/O Memory Management Unit (IOMMU)

2. Allocate domain (also referred to as a “fence area”™ or
“memory fence area”)

3. Add PCle device

4. Add memory address for PCle device

5. Monitor direct memory access (DMA) for any accesses
to memory space outside of the memory fence area

The method for detecting a DMA memory address vio-
lation when testing PCle devices of the present disclosure
generally works by implementation of the method for detect-
ing a DMA memory address violation when testing PCle
devices, which includes enabling the IOMMU (I/O Memory
Management Unit), and then using the IOMMU to re-map
physical memory addresses to virtual addresses. By way of
example, FIG. 1 conceptually illustrates a block diagram
100 1n which IOMMU 1is enabled and used to re-map
physical memory addresses to virtual addresses. Specifi-
cally, FIG. 1 highlights mapping and fencing of virtual
memory to physical memory over a PCle bus and a system
memory bus. When a target device accesses a memory
address that 1s outside of the memory address fence, an error
will be generated and a test engineer will receirve a notifi-
cation from an application that implements the method for
detecting a DMA memory address violation when testing
PCle devices (e.g., an application with a graphical user
interface (GUI)) and the error will be logged in a test log.

Typically, the IOMMU 1s disabled unless a wvirtual
machine soitware program 1s installed and running. Once
the virtual address 1s established for a given device, any
DMA (memory access) outside the virtual address space by
the device will cause a memory access error. By flagging
these errors and then correlating them to the device, the user
can be notified that the device 1s attempting to access
memory beyond the space allocated for that specific device.

US 11,853,179 Bl

S

While this 1dea 1s used 1n virtual machine applications and
systems, the improvements to these features as imtended for
detection of unpermitted memory accesses by a device
therefore provides a new way to find memory excursions on
storage devices either under test or in a production system
that use the PCle interface.

By way of example, FIG. 2 conceptually illustrates a
method for detecting a Direct Memory Access (DMA)
memory address violation when testing PCle devices 200.
As shown 1n this figure, the method for detecting a Direct
Memory Access (DMA) memory address violation when
testing PCle devices 200 starts by enabling (at 210) the I/O
memory management unit (IOMMU). Next, the method for
detecting a Direct Memory Access (DMA) memory address
violation when testing PCle devices 200 allocates (at 220)
the domain (or rather, the “fence area™). After enabling the
IOMMU and allocating the domain, the method for detect-
ing a Direct Memory Access (DMA) memory address vio-
lation when testing PCle devices 200 of some embodiments
adds (at 230) a peripheral component interconnect express
(PCle) device. The method for detecting a Direct Memory
Access (DMA) memory address violation when testing PCle
devices 200 then adds (at 240) a memory address for the
PCle device. Finally, the method for detecting a Direct
Memory Access (DMA) memory address violation when
testing PCle devices 200 monitors (at 250) direct memory
access (DMA) for accesses to memory space that are outside
of the fence area. In some embodiments, the method for
detecting a Direct Memory Access (DMA) memory address
violation when testing PCle devices 200 performs the moni-
toring (at 230) repeatedly until intentionally ended.

Essentially, the method for detecting a Direct Memory
Access (DMA) memory address violation when testing PCle
devices 200 shown in FIG. 2 just allocates the domain and
the PCle device and the memory addresses for the devices
are then added. The method for detecting a Direct Memory
Access (DMA) memory address violation when testing PCle
devices 200 also monitors the memory accesses ol the
device and when a memory address outside of the memory
address fence 1s detected, an error 1s generated and a test
engineer will receive the error notification from the graphi-
cal user interface (GUI) of the kernel configuration module
or program and the error will be logged 1n a test log.

To make the method for detecting a DMA memory
address violation when testing PCle devices of the present
disclosure, one may implement the method for detecting a
DMA memory address violation when testing PCle devices
by a program module. Specifically, the method for detecting,
a DMA memory address violation when testing PCle
devices can be implemented as a set of system commands 1n
a kernel configuration module (such as a proprietary kernel
configuration module known by the name “OakGate Kernel
Configuration Module”) which includes sets of computer
instructions, electronic system instructions, and/or machine-
readable instructions for enabling the IOMMU and config-
uring the IOMMU to create virtual addresses for specific
devices on the PCle backplane.

As 1ndicated above, once the virtual memory space 1s
defined and enabled, any memory accesses a device makes
outside that specified virtual memory space triggers an error
message that will be displayed to the user and/or the test wall
fail. In some embodiments, the method for detecting a DMA
memory address violation when testing PCle devices, when
implemented as the kernel configuration module, detects and
categorizes these errors, and then presents them to the user

10

15

20

25

30

35

40

45

50

55

60

65

6

indicating the device and its operation that caused the error
and any addresses accessed outside the specified memory
space.

To use the method for detecting a Direct Memory Access
(DMA) memory address violation when testing PCle
devices of the present disclosure, one may start with a kernel
configuration module (implementation of the method for
detecting a Direct Memory Access (DMA) memory address
violation when testing PCle devices) that 1s deployed 1 a
test system or test environment, such as an OakGate test
system. Although usage of the kernel configuration module
(implementation of the method for detecting a Direct
Memory Access (DMA) memory address violation when
testing PCle devices) 1s possible with an OakGate test
system, the method for detecting a Direct Memory Access
(DMA) memory address violation when testing PCle
devices 200 and usage of a kernel configuration module 1s
not limited to only an OakGate test system. A person of
relevant skill in the art would appreciate that there are
alternatives to using an OakGate test system. However, the
implementation of the method for detecting a Direct
Memory Access (DMA) memory address violation when
testing PCle devices within the OakGate test system allows
for a simple “enable memory fencing option” selection.
Once the option to enable memory fencing 1s selected, all
memory accesses by the device under test are checked
against what has been specified for that device. It the device
under test attempts a memory access outside the specified
address space, an error 1s flagged and logged.

Many of the above-described features and applications are
implemented as software processes that are specified as a set
of 1nstructions recorded on a computer readable storage
medium (also referred to as computer readable medium or
machine readable medium). When these instructions are
executed by one or more processing unit(s) (e.g., one or
more processors, cores of processors, or other processing
units), they cause the processing unit(s) to perform the
actions indicated 1n the instructions. Examples of computer
readable media include, but are not limited to, CD-ROMs,
flash drives, RAM chips, hard drives, EPROMs, etc. The
computer readable media does not include carrier waves and
clectronic signals passing wirelessly or over wired connec-
tions.

In this specification, the terms “software”, “program”,
“application”, “module”, and “kernel Conﬁguratlon module”
are meant to include firmware residing 1n read-only memory
or applications stored 1n magnetic storage, which can be read
into memory for processing by a processor. Also, in some
embodiments, multiple software immventions can be 1mple-
mented as sub-parts of a larger program while remaining,
distinct software inventions. In some embodiments, multiple
software inventions can also be implemented as separate
programs. Finally, any combination of separate programs
that together implement a software invention described here
1s within the scope of the mvention. In some embodiments,
the software programs, when installed to operate on one or
more electronic systems, define one or more specific
machine implementations that execute and perform the

operations of the software programs.

FIG. 3 conceptually illustrates an electronic system 300
with which some embodiments of the invention are imple-
mented. The electromic system 300 may be a computer,
phone (cell phone, mobile phone, smartphone, etc.), PDA
(1Pod, other handheld computing device, etc.), or any other
sort of electronic device or computing device. Such an
clectronic system 1ncludes various types of computer read-
able media and interfaces for various other types of com-

US 11,853,179 Bl

7

puter readable media. Electronic system 300 includes a bus
305, processing unit(s) 310, a system memory 315, a read-
only 320, a permanent storage device 325, mput devices
330, output devices 335, and a network 340.

The bus 303 collectively represents all system, peripheral,
and chipset buses that communicatively connect the numer-
ous 1internal devices of the electronic system 300. For
instance, the bus 305 communicatively connects the pro-
cessing unit(s) 310 with the read-only 320, the system
memory 315, and the permanent storage device 325.

From these various memory units, the processing unit(s)
310 retrieves 1nstructions to execute and data to process 1n
order to execute the processes of the invention. The pro-
cessing unit(s) may be a single processor or a multi-core
processor 1n different embodiments.

The read-only-memory (ROM) 320 stores static data and
instructions that are needed by the processing unit(s) 310
and other modules of the electronic system. The permanent
storage device 325, on the other hand, 1s a read-and-write
memory device. This device 1s a non-volatile memory unit
that stores instructions and data even when the electronic
system 300 1s ofl. Some embodiments of the mvention use
a mass-storage device (such as a magnetic or optical disk
and 1ts corresponding disk drive) as the permanent storage
device 325.

Other embodiments use a removable storage device (such
as a floppy disk or a flash drive) as the permanent storage
device 325. Like the permanent storage device 325, the
system memory 315 1s a read-and-write memory device.
However, unlike storage device 325, the system memory
315 1s a volatile read-and-write memory, such as a random
access memory. The system memory 313 stores some of the
instructions and data that the processor needs at runtime. In
some embodiments, the mvention’s processes are stored 1n
the system memory 315, the permanent storage device 325,
and/or the read-only 320. For example, the various memory
units include instructions for processing appearance altera-
tions of displayable characters in accordance with some
embodiments. From these various memory units, the pro-
cessing unit(s) 310 retrieves 1nstructions to execute and data
to process 1n order to execute the processes of some embodi-
ments.

The bus 303 also connects to the mnput and output devices
330 and 335. The mput devices enable the user to commu-
nicate information and select commands to the electronic
system. The mput devices 330 include alphanumeric key-
boards and pointing devices (also called *“cursor control
devices”). The output devices 335 display images generated
by the electronic system 300. The output devices 335
include printers and display devices, such as cathode ray
tubes (CRT) or liquid crystal displays (LCD). Some embodi-
ments include devices such as a touchscreen that functions
as both mput and output devices.

Finally, as shown 1n FIG. 3, bus 305 also couples elec-
tronic system 300 to a network 340 through a network
adapter (not shown). In this manner, the computer can be a
part of a network of computers (such as a local area network
(“LAN), a wide area network (“WAN”), or an intranet), or
a network ol networks (such as the Internet). Any or all
components of electronic system 300 may be used 1n con-
junction with the invention.

These functions described above can be implemented in
digital electronic circuitry, in computer software, firmware
or hardware. The techniques can be implemented using one
or more computer program products. Programmable proces-
sors and computers can be packaged or included 1n mobile
devices. The processes may be performed by one or more

10

15

20

25

30

35

40

45

50

55

60

65

8

programmable processors and by one or more set of pro-
grammable logic circuitry. General and special purpose
computing and storage devices can be interconnected
through communication networks.

Some embodiments 1include electronic components, such
as microprocessors, storage and memory that store computer
program instructions in a machine-readable or computer-
readable medium (alternatively referred to as computer-
readable storage media, machine-readable media, or
machine-readable storage media). Some examples of such
computer-readable media include RAM, ROM, read-only
compact discs (CD-ROM), recordable compact discs (CD-
R), rewritable compact discs (CD-RW), read-only digital
versatile discs (e.g., DVD-ROM, dual-layer DVD-ROM), a
variety of recordable/rewritable DVDs (e.g., DVD-RAM,

DVD-RW, DVD+RW, etc.), flash memory (e.g., SD cards,

mini-SD cards, micro-SD cards, etc.), magnetic and/or solid
state hard drives, read-only and recordable Blu-Ray® discs,
ultra density optical discs, any other optical or magnetic
media, and floppy disks. The computer-readable media may
store a computer program that 1s executable by at least one
processing unit and includes sets of instructions for per-
forming various operations. Examples of computer pro-
grams or computer code include machine code, such as i1s
produced by a compiler, and files including higher-level
code that are executed by a computer, an electronic com-
ponent, or a miCroprocessor using an interpreter.

While the invention has been described with reference to
numerous specific details, one of ordinary skill 1n the art wall
recognize that the mnvention can be embodied in other
specific forms without departing from the spirit of the
invention. For instance, FIG. 2 conceptually 1llustrates a
process 1n which the specific operations of the process may
not be performed in the exact order shown and described.
Specific operations may not be performed in one continuous
series of operations, and diflerent specific operations may be
performed 1n different embodiments. Furthermore, the pro-
cess could be implemented using several sub-processes, or
as part of a larger macro process. Thus, one of ordinary skill
in the art would understand that the invention 1s not to be
limited by the foregoing illustrative details, but rather 1s to
be defined by the appended claims.

We claim:
1. A method for testing PCie devices, the method com-
prising:

enabling an input/output (I/0) memory management unit
(IOMMU);

adding a peripheral component interconnect express
(PCie) device;

creating by the IOMMU a domain, wherein the domain 1s
a specified virtual memory address space for the
device;

allocating by the IOMMU the domain to the device,
wherein the domain defines access-allowed memory
address spaces of virtual memory for the device;

mapping a physical memory address space to virtual
address space, wherein the physical memory space 1s
physical memory addresses for the device;

monitoring direct memory access (DMA) for accesses by
the device to memory space that are outside of the
domain; and

detecting a DMA memory address violation by the PCle
device.

2. The method of claim 1, wherein monitoring 1s repeated

until imtentionally stopped.

US 11,853,179 Bl

9

3. The method of claim 1, wherein the IOMMU includes
the virtual memory address space and the physical memory
address space.
4. The method of claim 2, wherein the IOMMU further
comprises an address mapping function.
5. The method of claim 4, wherein the address mapping
function maps a virtual address of a target device in the
virtual memory address space to a physical address 1n the
physical memory address space.
6. A non-transitory computer readable medium storing a
kernel configuration module which, when executed by a
processor of a computing device, tests PCie devices, the
kernel configuration module comprising sets of instructions
for:
enabling an input/output (I/0) memory management unit
(IOMMU) of the computing device;

adding a peripheral component interconnect express
(PCie) device;

creating by the IOMMU a domain, wherein the domain 1s
a specified virtual memory address space for the
device;
allocating by the IOMMU the domain to the device,
wherein the domain defines access-allowed memory
address spaces of virtual memory for the device;

mapping a physical memory address space to virtual
address space, wherein the physical memory space 1s
physical memory addresses for the device;

monitoring direct memory access (DMA) for accesses by
the device to memory space that are outside of the
domain; and

detecting a DMA memory address violation by a PCle

device.

7. The non-transitory computer readable medium of claim
6, wherein allocating a memory space domain comprises
allocating a memory address fence 1n a virtual memory
address space of the IOMMU.

8. The non-transitory computer readable medium of claim
7, wherein the IOMMU comprises the physical memory
address space, an address mapping function, and the virtual
memory address space.

9. The non-transitory computer readable medium of claim
8, wherein adding a memory address for the PCie device
comprises a set of instructions for mapping a virtual address
of the PCie device 1n the virtual memory address space to a
physical address 1n the physical memory address space.

10. The non-transitory computer readable medium of
claim 9, wherein mapping comprises a set of mstructions for
using the address mapping function in the IOMMU.

11. The method of claim 1, further comprising:

generating an error 1f access ol a memory address outside

of the domain 1s detected.

5

10

15

20

25

30

35

40

45

50

10

12. The method of claim 11, further comprising:
correlating the error with a device that 1s accessing the
memory address outside of the domain.
13. The method of claim 1, further comprising;:
displaying an error notification on a GUI 1f access of a
memory address outside of the domain 1s detected.
14. The method of claim 1, further comprising:
testing the PCie device via a test system or application
platform.
15. The non-transitory computer readable medium of
claim 6, further comprising:
generating an error 1f access of a memory address outside
of the domain 1s detected.
16. The non-transitory computer readable medium of
claim 15, further comprising:
correlating the error with the PCie device that 1s accessing,
the memory address outside of the domain.
17. The non-transitory computer readable medium of
claim 6, further comprising:
displaying an error notification on a GUI 1f access of a
memory address outside of the domain 1s detected.
18. The non-transitory computer readable medium of
claim 6, further comprising:
testing the PCie device via a test system or application
platform.
19. A memory space violation detection system compris-
ng:
one or more target test devices;
an I/O Memory Management Unit (IOMMU) connected
to the one or more target test devices via an 1/O bus
connection, the IOMMU comprising;:

a virtual memory address space that defines a memory
address fence to limit memory access of the one or
more target test devices to specified address spaces;
and

a physical memory address space, mapped via an
address mapping function, from the one or more
specified address spaces accessed by the target test
devices; and

a physical memory, connected to the IOMMU wvia a
system memory bus, wheremn the physical memory
includes physical memory locations for data from the
one or more target test devices;

a processor configured to:

monitor direct memory access (DMA) for accesses by
the device to memory space outside of the memory
address fence; and

detecting a DMA memory address violation by the
device.

	Front Page
	Drawings
	Specification
	Claims

