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(57) ABSTRACT

An artificial intelligence (Al) automation to improve net-
work quality based on predicted locations i1s provided. A
method can include training, by a first device comprising a
processor and according to model configuration parameters
receirved from a second device that 1s not the first device, a
local machine learning model with training data derived
from first location data collected by the first device; trans-
mitting, by the first device to the second device, anonymized
model features associated with the local machine learming
model; in response to the transmitting of the anonymized
model features, receiving, by the first device from the
second device, an aggregated machine learning model; and

estimating, by the first device, a future position of the first
device by applying the aggregated machine learning model
to second location data collected by the first device.

20 Claims, 13 Drawing Sheets
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1

ARTIFICIAL INTELLIGENCE AUTOMATION
TO IMPROVE NETWORK QUALITY BASED
ON PREDICTED LOCATIONS

TECHNICAL FIELD

The present disclosure relates to communication net-
works, and, 1n particular, to techniques for utilizing artificial
intelligence (Al) automation to improve network quality
based on predicted locations.

BACKGROUND

Due to the nature of mobile communications, the perfor-
mance of a cellular network, such as a Fifth Generation (5G)
network, can 1n some cases be sensitive to small changes in
location. This can, in turn, adversely aflect the performance
of mobile applications such as video streaming applications,
augmented reality applications, and/or other applications
that utilize regular transters of data, lowering the overall
user experience associated with these applications. As a
result, it 1s desirable to implement techniques to improve the
resilience of mobile applications to changes 1n location.

DESCRIPTION OF DRAWINGS

FIG. 1 1s a block diagram of a system that facilitates Al
automation to improve network quality based on predicted
locations 1 accordance with various aspects described
herein.

FI1G. 2 1s a block diagram that depicts the functionality of
the mobile device of FIG. 1 1n further detail 1n accordance
with various aspects described herein.

FIG. 3 1s a block diagram of a system that facilitates
generation of meta-location data 1n accordance with various
aspects described herein.

FIG. 4 1s a diagram depicting respective types ol meta-
location data that can be generated by the system of FIG. 3
in accordance with various aspects described herein.

FIG. 5 1s a block diagram of a system that facilitates
location prediction based on meta-location data in accor-
dance with various aspects described herein.

FIG. 6 1s a graphical illustration of an example 1mple-
mentation of the system of FIG. 5 in accordance with
various aspects described herein.

FIG. 7 1s a block diagram of a system that facilitates
tederated learning for a location prediction model in accor-
dance with various aspects described herein.

FIG. 8 1s a block diagram of a system that facilitates
device registration for federated learning 1n accordance with
various aspects described herein.

FIG. 9 1s a diagram depicting an example federated
learning process that can be performed 1n accordance with
various aspects described herein.

FIG. 10 1s a block diagram of a system that facilitates
estimation of future network conditions 1n accordance with
various aspects described herein.

FIG. 11 1s a block diagram of a system that facilitates
predictive data caching in accordance with various aspects
described herein.

FIG. 12 1s a flow diagram of a method that facilitates Al
automation to improve network quality based on predicted
locations 1n accordance with various aspects described
herein.

FIG. 13 depicts an example computing environment in
which various embodiments described herein can function.

10

15

20

25

30

35

40

45

50

55

60

65

2
DETAILED DESCRIPTION

Various specific details of the disclosed embodiments are
provided in the description below. One skilled 1n the art wall
recognize, however, that the techniques described herein can
in some cases be practiced without one or more of the
specific details, or with other methods, components, mate-
rials, etc. In other instances, well-known structures, mate-
rials, or operations are not shown or described 1n detail to
avoild obscuring certain aspects.

In an aspect, a method as described herein can include
training, by a first device including a processor and accord-
ing to model configuration parameters received from a
second device that 1s not the first device, a local machine
learning model with training data derived from first location
data collected by the first device. The method can further
include transmitting, by the first device to the second device,
anonymized model features associated with the local
machine learning model. The method can further include, 1n
response to the transmitting of the anonymized model fea-
tures, receiving, by the first device from the second device,
an aggregated machine learning model. The method can
additionally include estimating, by the first device, a future
position ol the first device by applying the aggregated
machine learning model to second location data collected by
the first device.

In another aspect, a system as described herein can
include a processor and a memory that stores executable
instructions that, when executed by the processor, facilitate
performance of operations. The operations can include train-
ing, based on configuration parameters received from net-
work equipment that 1s distinct from the system, a local
machine learning model with training data based on first
location data associated with the system; sending, to the
network equipment, anonymized model data associated with
the local machine learning model; 1n response to the sending
of the anonymized model data, receiving, from the network
equipment, a global machine learning model; and estimating
a future position associated with the system by applying the
global machine learning model to second location data
associated with the system.

In a further aspect, a non-transitory machine-readable
medium as described herein can include executable nstruc-
tions that, when executed by a processor of a first device,
facilitate performance of operations. The operations can
include, based on model configuration data received from
second network equipment that 1s distinct from the first
network equipment, training a local data model with traiming
data derived from first location data collected by the first
network equipment; transmitting, to the second network
equipment, anonymized model parameter data associated
with the local data model; and determining an estimated
future position of the first network equipment by applying a
global data model, received from the second network equip-
ment 1n response to the transmitting, to second location data
collected by the first network equipment.

Referring first to FIG. 1, a system 100 that facilitates Al
automation to improve network quality based on predicted
locations 1s illustrated. System 100 as shown by FIG. 1
includes a mobile device 10 that can communicate using
resources enabled via one or more networks 20. In an
implementation, the mobile device 10 can be a network
equipment device, and/or any device that 1s capable of
network communication and not fixed to a physical location.
By way of example, the mobile device 10 can be a smart-
phone, a tablet or laptop computer, a smart watch or other
wearable device, and/or any other suitable device presently
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existing or developed in the future. In some cases, the
mobile device 10 can receive network connectivity from
another device that i1s physically and/or communicatively
coupled to the device, such as a portable hotspot or other
network adapter.

The network 20 shown i FIG. 1 can be a cellular
communication network, e.g., a Long Term Evolution (LTE)
and/or Fifth Generation (5G) cellular network. Also or
alternatively, the network 20 could operate according to
other suitable network technologies, such as Wi-Fi, BLU-
ETOOTH®, or the like. While only one network 20 1s shown
in FIG. 1 for simplicity of illustration, it 1s noted that the
mobile device 10 can communicate with any number of
networks 20, including one network and multiple networks.
Additionally, while various references are made 1n this
description to particular network technologies, 1t 1s noted
that these references are made solely as non-limiting
examples of network technologies that could be used 1n
accordance with various implementations as described
herein and that other technologies could also be used.

As further shown 1n FIG. 1, the mobile device 10 can
communicate with a server 30 via the network 20. While
only one server 30 1s illustrated 1n FIG. 1 for simplicity of
illustration, 1t 1s noted that the mobile device 10 could
communicate with any number of servers 30 via any number
ol networks 20. Operation of the server 30 1s described 1n
turther detail below with respect to, e.g., FIGS. 7-9.

The mobile device 10 shown 1n FIG. 1 includes one or
more transceivers 12 that can communicate with (e.g.,
transmit messages to and/or recerve messages from) the
server 30 and/or other devices 1n system 100, e.g., via the
network 20. The transceiver 12 can include respective
antennas and/or any other hardware or software components
(e.g., an encoder/decoder, modulator/demodulator, etc.) that
can be utilized to process signals for transmission and/or
reception by the mobile device 10 and/or associated devices.

The mobile device 10 shown in FIG. 1 further includes a
processor 14 and a memory 16, which can be utilized to
tacilitate various functions of the mobile device 10. For
instance, the memory 16 can include a non-transitory com-
puter readable medium that contains computer executable
instructions, and the processor 14 can execute instructions
stored by the memory 16. For simplicity of explanation,
various actions that can be performed via the processor 14
and the memory 16 of the mobile device 10 are shown and
described below with respect to various logical components.
In an aspect, the components described herein can be
implemented in hardware, soitware, and/or a combination of
hardware and software. For instance, a logical component as
described herein can be implemented via instructions stored
on the memory 16 and executed by the processor 14. Other
implementations of various logical components could also
be used, as will be described 1n further detail where appli-
cable. In addition, an example computer architecture that
can be utilized wholly or 1n part to implement various logical
components described herein 1s described in further detail
with respect to FIG. 13.

The processor 14 and the memory 16 of the mobile device
10, in various 1mplementations as described below, can
provide highly accurate location prediction from location
data, e.g., Global Positioning System (GPS) traces or the
like, 1in a manner that 1s feasible to execute on a smartphone
or similar device. This location prediction can be fine
grained in both the spatial and temporal scales, e.g., with
prediction error within the range of conventional GPS error
and the ability to predict locations at temporal steps of one
minute or less. Additionally, this location prediction can be
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utilized for pedestrians and bicyclists, which generally dem-
onstrate less predictable movement than motor vehicles.
Predicted locations determined 1n this manner can, in turn,
be utilized to improve the performance of a network or
applications enabled via the network, e.g., augmented real-
ity, mobile gaming, video streaming, or the like.

Additionally, the processor 14 and the memory 16 of the
mobile device 10 can operate based on information derived
from location data rather than the location data 1tself. As a
result, location prediction as performed by the mobile device
10 can provide a high degree of accuracy even for locations
that have not previously been visited by a given device user.
Further, location prediction as described herein can be
performed without exposing personally identifying data
outside the mobile device 10, thereby protecting user pri-
vacy.

With reference now to FIG. 2, a block diagram of a system
200 that facilitates Al automation to improve network qual-
ity based on predicted locations 1s illustrated. Repetitive
description of like elements employed 1n other embodiments
described herein 1s omitted for brevity. System 200 as shown
in FI1G. 2 includes a mobile device 10 that can operate 1n a
similar manner to that described above with respect to FIG.
1.

With reference now to FIG. 2, a block diagram of a system
200 that facilitates Al automation to improve network qual-
ity based on predicted locations 1s illustrated. Repetitive
description of like elements employed 1n other embodiments
described herein 1s omitted for brevity. System 200 as shown
in FIG. 2 includes a mobile device 10 that can operate 1n a
similar manner to that described above with respect to FIG.
1. The mobile device 10 shown 1n FIG. 2 includes a local
training component that can train, according to model con-
figuration parameters received from a server 30 (or other
suitable device that 1s not the mobile device 10), a local
machine learning model with training data that 1s derived
from location data collected by the mobile device 10. In an
implementation, the training data can include meta-location

data, which 1s described 1n further detail below with respect
to FIGS. 3-4.

As further shown in FIG. 2, the mobile device 10 of
system 200 includes a server interface component 220 that
can transmait, to the server 30 and/or another suitable device,
anonymized model features that are associated with the local
machine learning model utilized by the local training com-
ponent 210. In response to transmitting the anonymized
model features, the server interface component 220 can
further recerve, from the server 30 and/or a different device,
an aggregated (global) machine learming model.

The mobile device 10 of system 200 additionally includes
a position estimation component 230 that can, upon receiv-
ing the aggregated or global machine learning model via the
server iterface component 220, estimate a future position of
the mobile device 10 by applying the received aggregated or
global machine learning model to additional location data
collected by the mobile device 10. Location data associated
with the mobile device 10 that 1s utilized by the position
estimation component 230 can be the same as, or difierent
from, the location data utilized by the local training com-
ponent 210 as described above.

In an implementation, the mobile device 10 of system 200
can perform a technique referred to herein as federated
meta-location learning (FMLL). FMLL, as utilized by the
mobile device 10, can incorporate three main components:
meta-location generation, a prediction model, and a feder-
ated, privacy-preserving learning framework. Meta-location
data, as will be described 1n further detail herein with respect
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to FIGS. 3-4, can represent device location data as relative
points 1n an abstract two-dimensional (2D) space, e.g., a grid
of fixed-size cells. As will be described herein, meta-
location can enable training on data received from multiple
physical locations and can reduce prediction bias introduced
by using raw location data. The prediction model, as will be
described 1n further detail herein with respect to FIGS. 5-6,
can utilize multiple sub-models to learn the speed and
direction of mobile users as well as mnformation about user
movement preferences. The federated, privacy preserving
learning framework, as will be described in further detail
below with respect to FIGS. 7-9, can protect user privacy by
combining federated learning with the abstract 2D repre-
sentation of user location data facilitated by meta-location.

Turning to FIG. 3, a block diagram of a system 300 that
facilitates generation of meta-location data in accordance
with various aspects described herein i1s illustrated. Repeti-
tive description of like elements employed 1n other embodi-
ments described herein 1s omitted for brevity. System 300 as
shown 1 FIG. 3 includes a position location system 40,
which can be associated with a mobile device (e.g., a mobile
device 10 as shown in FIGS. 1-2) or other suitable device.
The position location system 40 can collect, measure, or
otherwise determine position data for one or more associated
devices according to one or more position location tech-
niques known 1n the art. By way of example, the position
location system 40 can utilize satellite positioning (e.g.,
GPS), cellular triangulation positioning, inertial positioning,
and/or other suitable techniques.

In an implementation, the position location system 40 can
construct a data sequence that 1s representative of a history
of physical locations of an associated device within an area,
¢.g., as collected at intervals of a regular or 1rregular period.
The area associated with this data sequence can be any
suitable defined geographical space, such as a city or a
portion of a city (e.g., a city block, a public square, etc.), a
geometric region ol a predefined size (e.g., a square region
of a given area or side length), or the like.

As further shown in FIG. 3, the position location system
40 can provide the data sequence described above to a
meta-location component 310, which can derive meta-loca-
tion data, or other model training data, from the input data
sequence. As shown 1n FIG. 3, the meta-location component
310 includes a relative point sequencing component 320 that
can determine a second data sequence that 1s representative
of amounts of relative spatial displacement of the device
associated with the position location system 40 between the
physical locations represented 1n the input data sequence. As
shown 1n FIG. 3, the data sequence generated by the relative
point sequencing component 320 1s referred to herein as a
sequence of relative points.

The meta-location component 310 of system 300 further
includes an occupancy matrix generation component 330
that can determine an occupancy matrix, €.g., that 1s repre-
sentative of frequencies at which the physical locations
represented 1n the input data sequence are located within
respective defined sub-areas of the area associated with the
input data sequence. Stated another way, the occupancy
matrix generation component 330 can generate a histogram,
in matrix form, corresponding to the defined sub-areas
associated with each physical location 1 the mput data
sequence. As shown 1n FIG. 3, the matrix generated by the
occupancy matrix generation component 330 1s referred to
herein as a historic region occupancy matrix.

In an 1implementation, the position location system 40 can
collect information associated with travel direction, speed,
user movement preferences, road characteristics, and/or
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other information present in GPS trajectories and/or other
data generated by the position location system 40. The
meta-location component 310 can then process this raw
location data to generate meta-location, which represents
trajectories as relative points 1n an abstract 2D space.

In another implementation in which the position location
system 40 1ncludes a GPS sensor embedded 1n a mobile
device, raw location data can be recorded by the mobile
device using the embedded GPS sensor. In the following
description, L =(lat,, lon,) denotes the latitude and longitude
of a given user at time t. In some 1nstances, learning can be
performed based on the transportation mode, such as walk-
ing or bicycling. As a result, only the data specific to the
desired transportation mode can selected for further process-
ing in such instances. If the transportation mode 1s not
explicitly known, 1t can be inferred from accelerometer data
and/or other data associated with the mobile device.

Referring next to FI1G. 4 and with further reference to FIG.
3, diagram 400 1llustrates example meta-location data that
can be generated from input sequences of physical locations
410 (also referred to herein as simply input sequences). In an
implementation, raw location data for a given user as
provided via the sequences of physical locations 410 can be
processed, e.g., as shown 1 FIG. 3, to produce fixed-length
sequences of relative points 420 and historic region occu-
pancy matrices 430 (also referred to herein as simply
occupancy matrices) of a given space considered for pre-
diction (e.g., the area associated with the physical locations
as described above with respect to FIG. 3) for the corre-
sponding user. The mput sequences 410 shown 1n diagram
400 can contain the speed and direction information of
respective trajectories of a user. The occupancy matrices can
record frequently visited places and the most likely trajec-
tories between these places. The inputs can computed offline
(e.g., when an associated device 1s charging) and can be
updated over time based on new data to enable re-training.

To generate the mput sequences, the relative point
sequencing component 320 can split user trajectories nto
fixed-length sub-trajectories. The length in time of the
trajectories can be determined experimentally. Each sub-
trajectory can be transformed into a sequence of relative
points 1n an abstract 2D space. The X and Y coordinates of
relative points at time t can be determined based on their
oflsets from the location at previous time step t-1. In this
process, the location of the very first point in a trajectory
session can be excluded. As used herein, a location oflset
determined 1n this manner 1s denoted as AL =(lat-lat _,,
lon~lon,_,). Additionally, an input sequence associated with
a time t that looks back k steps can be denoted as
S=(AL, . ,, AL _, ., ..., AL, ;, AL). In 1ts training, the
meta-location component 310 can consider all possible
k-length sequences, including overlapping sequences.

The occupancy matrix generation component 330 can
extract the historic region occupancy matrices 430 from a
historic occupancy matrix of the entire space (e.g., a city).
The occupancy matrix generation component 330 can divide
the entire space 1nto a grid of fixed-size cells, where each
cell corresponds to an element in the historic occupancy
matrix. Each numerical element shown 1n the cells repre-
sents the number of visits of a given user 1n its correspond-
ing cell. The matrix represents the occupancy of a bounded
region R, with area A, which 1s centered at the physical
location L, at time t. R, 1s divided into MxM fixed-size
orid-cells, where A and M are predefined constants based on
the maximum speed of users and the desired spatial granu-
larity for the prediction. Each historic region occupancy
matrix H, 1s a MxM matrix and 1s extracted by the occu-
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pancy matrix generation component 330 from the historic
occupancy matrix for the entire space. Once extracted, this
matrix 1s a meta-location mput that does not maintain any
relation with the physical locations that 1t represents. A
matrix can implicitly tell if a road exists 1n a given cell (e.g.,
based on a non-zero value for the corresponding matrix
element) and can also tell if adjacent cells form routes taken
frequently by the user.

In some 1nstances, a historic region occupancy matrix 430
as shown 1n diagram 400 can be generated from the numbers
of visits to all grid cells, which could be determined based
on data that 1s different from temporal sequences of physical
locations as described above. Further, it 1s noted that the
sequences of relative points 420 as shown 1n diagram 400 do
not resemble the corresponding physical sequences, which
assists 1n location privacy protection. Overall, different
physical locations can be mapped to the same meta-loca-
tions. This not only helps repeated patterns to be extracted
from different physical locations, but also protects the data
from malicious actors that could attempt to infer the physical
locations.

Generation and use of meta-location as shown i1n FIGS.
3-4 can provide several benefits. First, because different
meta-location sequences have the same magnitude, they are
suitable for use as deep learning data. Deep learning algo-
rithms minimize the distance between two data points as a
loss function. During this minimization, high-magnitude
data weighs more than low-magnitude data, which can lead
to bias. For example, 1f physical location sequences are used
directly, the training can focus on minimizing the loss for
data with high latitude and high longitude values. Addition-
ally, meta-location removes the need to scale location
sequences to the same range, which would remove the
traveling speed from the data and render the data more
difficult to process.

Another benefit 1s the ability to change configuration
parameters 1n a data representation to perform prediction at
different levels of spatial granularity. For example, a grid-
cell size can be 10 mXx10 m for pedestrians, and 40 mx40 m
for bicyclists. Instead of predicting coordinates as arbitrary
numerical values without a target granularity, meta-location
can enable categorical formulation of the model output with
a specified granularity and use accuracy to quantify the
model performance. This can also benefit applications that
utilize specific levels of spatial and temporal granularity
from the model.

An additional benefit 1s location privacy protection. This
can be achieved in conjunction with federated learning (as
will be discussed 1n more detail below with respect to FIGS.
7-9), which shares only the model gradients with the server.
Because learning occurs on the mobile devices, no personal
data 1s transferred from the mobile devices. It 1s noted,
however, that local model gradients can still leak private
location information if the federated learning model uses
physical location data. This problem 1s substantially miti-
gated by the use of meta-location, which can contain the
essential i1nformation for location prediction, including
speed, direction, and user movement preferences, while not
disclosing the physical location of the user.

A further benefit 1s the extraction of repeated patterns
across different physical locations. When learning directly
from different physical locations, deep learning models can
encounter entirely different samples. However, because all
meta-location data uses the same abstract 2D space, different
physical locations could show relative similarities. This can
speed up learning due to the presence of more similar
meta-location samples.
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Referring now to FIG. 5, a block diagram of a system 500
that facilitates location prediction based on meta-location
data 1s illustrated. Repeftitive description of like elements
employed 1n other embodiments described herein 1s omitted
for brevity. System 500 as shown in FIG. 5 represents the
structure of a machine learning model that can be utilized to
generate predicted location data for a given user based on
meta-location data associated with that user, e.g., as
described above with respect to FIGS. 3-4.

System 500 as shown 1n FIG. 5 operates as a multi-step
model, 1n which two sub-models 510, 520 are applied to
sequences of relative points and historic region occupancy
matrices, respectively, to produce intermediate model out-
puts. The intermediate outputs of the sub-models 510, 520
can then be provided to a fusion component 530, which can
determine estimated future position data based on fusing the
intermediate outputs provided by the sub-models 510, 520.
In an implementation, the sub-model 510 that processes the
sequence of relative points can be a neural network and/or
other machine learning model for sequence prediction, while
the sub-model 520 that processes the historic region occu-
pancy matrix can be a neural network and/or other machine
learning model that utilizes visual feature prediction tech-
niques.

In an implementation, a location to be predicted L., . can
be mapped into the region R, e.g., as discussed above with
respect to FIG. 4. For instance, the fusion component 530
can build a prediction matrix Y, ; as shown in Equation 1
below:

1? if LH—I E Rf,j
Vij+i = 0

(1)

. otherwise

wherey, ;... 1s an elementot Y ;and R, ; (1<1, j<M) 1s a cell
in region R. The meta-location output can be formulated as
a categorical class rather than a numerical value, e.g., so that
the spatial granularity of the prediction can be set as a
constant. Another reason for using categories 1s that the
historic region occupancy matrix does not contain informa-
tion to enable prediction with spatial granularity beyond the
grid-cell size. Overall, the output of the fusion component
530 can be a relative grid cell, which can be converted into
a physical grid cell on a corresponding user device.

Referring next to FIG. 6, and with further reference to
FIG. 5, diagram 600 1s a graphical representation of an
example implementation of system 500 in which the first
sub-model 510 1s a convolutional neural network (CNN) and
the second sub-model 520 1s a bidirectional long short-term
memory (BiLSTM) model. It 1s noted, however, that the
below description 1s merely one example of machine learn-
ing models that can be utilized by system 500 and that other
models could also be used.

In an implementation, system 500 can operate based on
meta-location input and output, e.g., as described above. In
the following description, S, €R** denotes the size-k
sequence of relative points at time t for a given user.
Additionally, H, €Z*  denotes the historic regional occu-
pancy matrix of the same user, which 1s a square matrix of
order M centered at the user location at time t. Based on
these definitions, system 500 can predict the relative loca-
tion of this user, denoted as Y., €Z,*, for the future i-th
fimestamp, which can be done as shown in Equation 2
below:

Y., =F(S; H,), (2)
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where F 1s the deep learning model for location prediction.
The predicted location 1s a cell 1n the MXM grid represen-
tation of the space surrounding the current location of the
USET.

In the specific, non-limiting example shown by diagram
600, the model can fuse BiLLSTM and CNN, where BiLSTM
learns the speed and direction of user mobility from the
sequences of relative points, and CNN learns user move-
ment preferences and likely user routes from the historic
region occupancy matrix. As shown in diagram 600, Bil-
STM and CNN work 1n parallel. A densenet-type connection
can be used to fuse BiLSTM and CNN, and softmax
activation can be adapted to produce an output correspond-
ing to a predicted grid cell in which the user will be. Batch
normalization and dropout layers can be added 1n BiLSTM
and/or CNN to avoid over-fitting, but for simplicity this 1s
not shown 1n diagram 600. The architecture shown 1n
diagram 600 can be designed, e.g., to capture as much
user-level information as possible.

For training, user devices can utilize meta-location input
derived from physical locations, which can be precomputed
(e.g., as described above). For prediction, the sequence input
can be generated 1n substantially real time, e.g., based on the
last k recorded GPS locations. The historic region occu-
pancy matrix, centered at the current location, can also be
extracted in real time from the precomputed historic occu-
pancy matrix for the entire space as described above. Opera-
tion of the BILSTM and CNN components shown 1n dia-
gram 600 will now be described 1n further detail.

BiLSTM. Sequences of relative points, as described
above, can contain information related to travel speed and
direction. The model can use BiLLSTM to learn sequences
with a targeted spatial and temporal granularity. An LSTM
unit can be composed of a cell, an input gate, an output gate,
and a forget gate. In this implementation, the cell remembers
values over arbitrary time intervals, and the three gates
regulate the flow of information into and out of the cell. In
BiLLSTM, one LSTM reads the relative location sequence
forward, while a second LSTM reads 1t backward. The final
two layers of hidden states are then concatenated, and the
concatenation of these layers captures the speed and direc-
tion of respective users.

CNN. While knowing an exact speed and direction can be
used to determine a next location, predicted speed and
direction can be tuned with other information for better
learning. Accordingly, the model as shown 1n diagram 600
uses CNN on the historic region occupancy matrices, asso-
cliated with the sequences fed into BiLSTM, to capture
spatial features such as user movement preferences, relative
likelihoods of routes to be followed by a user between two
points, etc. CNN can learn this type of information because
the historic region occupancy matrices contain information
reflecting both occupancy frequency (explicit) and move-
ment trajectory (implicit). CNN as shown 1n diagram 600
can 1nclude batch normalization, convolution, max pooling,
RELU activation, and dropout. With help from convolution
and pooling, CNN can capture local connectivity and shift
invariance. In the example shown in diagram 600, local
connectivity can be the direction to which a user prefers to
turn at a given intersection. Additionally, 1t 1s noted that the
road characteristics are generally shift-invariant because
road networks in respective cities typically follow similar
urban design and are generally similar in different areas.

Fusion. Although sequences of relative points and historic
region occupancy matrices can be fit into a predicted next
location by BiLSTM and CNN, respectively, fusing the
complementary information generated by them can signifi-
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cantly improve the model performance. In the example
shown by diagram 600, the output layers from BiLLSTM and

CNN are fused by concatenation, which allows for different-
length outputs from BiLLSTM and CNN. Subsequently, the
concatenated output can be fed into fully connected
densenets. The final output can be computed by softmax
activation, as shown 1n Equation 3 below, where k corre-
sponds to the k-th grid-cell, n=MXxM 1s the total number of
orid cells, Y, is the k-th element of the output Y, and @, is
the k-th element of the final hidden layer before activation.
The dense layers can gradually extract features of a desired
length, and softmax can convert the extracted features into
probabilities. The output Y as shown above contains the
predicted probabilities of the future user location 1n each
orid cell.

R exXplyy) (3)

yk — 7
ZH exp(e;)

In an 1implementation, system 500 can use cross entropy
loss for optimization. For instance, the model can learn a
parameter w by minimizing the cross entropy loss measure-
ment, e.g., according to Equation 4 below. In Equation 4, vy,
1s the 1-th element of the ground truth Y, where the grid cell
corresponding to the future location of a user 1s set to 1 and
all cells are set to 0.

, . Lxom A (4)
W' = arg min - Ezle yi-log(y;)

Turning now to FIG. 7, a block diagram of a system 700
that facilitates federated learning for a location prediction
model 1s 1llustrated. Repefitive description of like elements
employed in other embodiments described herein 1s omitted
for brevity. System 700 as shown 1n FIG. 7 includes a group
of mobile devices 10A-10N, each of which can communi-
cate with a server 30. While only two mobile devices 10A,
10N are shown 1n FIG. 7 for simplicity of 1illustration, 1t 1s
noted that system 700 could include any number of mobile
devices 10, provided that at least two mobile devices 10 are
present. It 1s further noted that the naming convention
utilized in the labeling of mobile devices 10A and 10N 1s for
1llustrative purposes only and 1s not intended to imply any
particular number of mobile devices.

In an implementation, system 700 can be utilized as a
framework for federated meta-location learning (FMILL),
which can be utilized to facilitate fine-grained (e.g., low-
level and detailed) location prediction. System 700 can
utilize framework software that runs on the server 30 and the
mobile devices 10A-10N 1n order to enable federated learn-
ing (FL) across all users. Each mobile device 10A-10N of
system 700 includes a FMLL controller 710, which can
mediate communication between the server 30 and the
mobile devices 10. The mobile devices 10A-10N of system
700 further include a data processing module 720 that can
process physical location data and generate meta-location
for training, e.g., as described above with respect to FIGS.
3-4. The mobile devices 10A-10N of system 700 further
include an FMLL training and prediction module 730, which
can perform local model training on the respective mobile
devices 10A-10N and submit the resulting model gradients
to the server 30 via the respective FMLL controllers 710.

The server 30 of system 700 includes an FMLL aggre-
gator module 740, which can aggregate the gradients of the
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local models obtained from the mobile devices 10A-10N.
The resulting aggregated model can then be distributed back
to the mobile devices 10A-10N by the FMLL aggregator
module 740. Subsequently, 1n the event that an application
750A-750N on a mobile device 10A-10N desires a location
prediction, the FMLL training and prediction module 730
can be mvoked to obtain a meta-location output. This
meta-location output can then be converted into a physical
location, e.g., via the data processing module 720.

As model training and prediction occurs locally on the
mobile devices 10 A-10N, system 700 enables the transier of
anonymized model features, e.g., by the FMLL controller
710 of the respective mobile devices 10A-10N, without
transferring any raw location data, meta-location data, or
other potentially identifying information to the server 30.
Additionally, by enabling the aggregation of anonymized
model features across multiple distinct devices, the FMLL
aggregator module 740 can facilitate improved model accu-
racy and performance as compared to a wholly local model
implementation.

Referring now to FIG. 8, a block diagram of a system 800
that facilitates device registration for federated learning 1s
illustrated. Repetitive description of like elements employed
in other embodiments described herein 1s omitted for brev-
ity. System 800 as shown 1n FIG. 8 includes a mobile device
10 with a local training component 210, a server interface
component 220, and a position estimation component 230
that can operate as described above, e.g., with respect to
FI1G. 2. As further shown in FIG. 8, the server interface
component 220 of the mobile device 10 1ncludes a registra-
tion component 810, which can facilitate registering the
mobile device 10 with a server 30, ¢.g., to enable federated
learning as described above with respect to FIG. 7. As will
be further discussed with reference to FIG. 9, the server
interface component 220 can be configured to recerve model
configuration parameters, and/or other data, from the server
30 in response to successiul registration via the registration
component 810.

Turning to FIG. 9, a diagram 900 depicting an example
tederated learning process that can be performed 1n accor-
dance with various aspects described herein 1s provided.
More particularly, diagram 900 illustrates actions that can be
performed by a new device 902, two existing devices 904,
906, and a server 908. As used in diagram 900, a “new
device” refers to a user device, e.g., a mobile device 10 as
described above, that has not previously registered with the
server 908. While a total of three devices 902, 904, 906 are
shown 1n diagram 900 for purposes of i1llustration, 1t 1s noted
that any number of devices could perform the operations
shown by diagram 900. Additionally, diagram 900 1llustrates
example operations that can be performed during an 1nitial-
1zation phase followed by one training/prediction round. It 1s
noted that training/prediction rounds can reoccur, €.g., peri-
odically or on demand, with the operations shown 1n dia-
gram 900. It 1s further noted that device 1nmitialization could
occur at the start of, or the close of, any training/prediction
round.

In order to deploy and evolve a global model while
respective users collect location data over time, diagram 900
illustrates an example FMLL learning framework with five
computation and commumnication stages. During these
stages, the devices 902-906 and the server 908 interact with
cach other and jointly contribute to the model. As noted
above, respective stages can be executed periodically, e.g.,
in rounds. In each round, the model can be fine tuned by
retraining from the existing model. In the following, each
stage shown 1n diagram 900 i1s described 1n turmn.
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(1) Immtialization. Newly participating devices, such as the
new device 902, can register with the server 908, e.g., as
described above with respect to FIG. 8, to ensure that the
server 908 knows when model gradients uploaded at ditler-
ent times come from the same user. In some 1mplementa-
tions, registration could further allow the server 908 to
remove potential malicious users who may inject fake data
into the model.

(2) Configuration. A training/prediction round starts with
the configuration stage. In this stage, the server 908 informs
the devices 902-906 of the deadline to participate 1n training

¢.g., the end of stage 3, as described below). The server 908
can select a subset of the connected devices 902-906 based
on the optimal number of participating users 1n each round
and the availability of training data. During this stage, the
server 908 can send configuration parameters to the devices
902-906, c.g., relating to the manner 1n which to generate
meta-location for training. Parameters such as sequence
length, matrix size, grid size, or the like can vary according
to the desired spatial accuracy of the prediction. The server
908 can, 1n this stage, also send the current global model
parameters to each device that did not participate in the
previous training round along with a training plan including,
for example, gradient computation settings.

(3) Meta-location Generation and Training. Based on the
configuration from the server 908, the devices 902-906 can
perform 1nitial meta-location generation. Subsequently, the
devices 902-906 can use the global model received from the
server 908 to compute gradients based on their respective
processed data. Finally, the devices 902-906 can send the
gradients back to the server 908 after finishing the gradient
computation. As noted above, the devices 902-906 can send
the gradients back to the server 908 at this stage without
sending any underlying data used in the computation of the
gradients, thereby protecting user privacy.

(4) Aggregation. Here, the server 908 can wait for the
devices 902-906 to report gradient updates. Once received,
the server 908 can aggregate the updates, e.g., using feder-
ated averaging, and update 1ts global model weights with the
agoregated gradients. The server 908 can then deploy the
model to the devices 902-906 to ensure they have the latest
model.

(5) Prediction. At this stage, the soitware on respective
devices 902-906 can invoke the newly received FMLL
model for predictions. Up to this stage, the devices 902-906
can use an older model, e.g., as obtained during a previous
round. By generating and utilizing a single aggregated
global model among all devices 902-906, model generation
can be simplified, e.g., in contrast to a system i1n which
models are tailored to individual user profiles.

In an implementation, the server 908 shown in diagram
900 can utilize data augmentation to improve the model
performance, e.g., by increasing the extent to which the
training data 1s independent and identically distributed (1ID).
In this implementation, the data from a small percentage of
users (e.g., less than 5% of users) can be allocated as an
augmentation dataset and made available to the server 908,
and the server 908 can subsequently sample and share the
data with other users. This can be done, ¢.g., for a small
amount of users that aflirmatively provide consent to share
their data with the server 908.

Training with data augmentation can include three phases.
First, the model can be trained with the augmentation dataset
at the server 908. This model 1s then distributed to the
devices 902-906 that will participate 1n FL training. Second,
cach device selected in every round can randomly select
subsets of samples from the augmentation dataset and con-
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catenate them with their own datasets. Third, on-device
training can be conducted by mnitializing the model recerved
from the server 908 (trained with the augmentation dataset)
and further traming the model with the augmented local
data. The rest of the FL procedures can proceed 1n a stmilar
manner to that described above.

Referring next to FIG. 10, a block diagram of a system
1000 that facilitates estimation of future network conditions
1s 1llustrated. Repetitive description of like elements

employed 1n other embodiments described herein 1s omitted
for brevity. System 1000 as shown in FIG. 10 includes a
mobile device 10, which 1n turn includes a position estima-
tion component 230 that can determine an estimated future
position of the mobile device 10, e.g., as described above.
The mobile device 10 of system 1000 further includes a
network analysis component 1010 that can predict a future
network condition associated with the estimated future posi-
tion of the mobile device 10 as determined by the position
estimation component 230.

Predicted network conditions determined by the network
analysis component 1010 can be utilized by one or more
applications running on the mobile device 10 to improve
overall device performance and user experience. For
example, the mobile device 10 can use a map showing
location-based quality of wireless network service to adapt
video quality as a function of the predicted user locations. As
another example, augmented reality applications are delay-
sensitive and can benefit from fine-grained location predic-
tion to speed up content rendering. Another example 1s
context-aware applications that desirably adapt 1n advance
based on where a user will move next, such as location-
based gaming or advertising. For instance, location-based
gaming could adapt in real time based on predicted user
locations to be more 1nteresting or challenging.

As an additional example, as further shown by system
1100 1n FIG. 11, the network analysis component 1010 can
provide information regarding predicted network conditions
to a caching component 1110, which can cache data (e.g.,
from one or more networks 20) associated with an applica-
tion executing on the mobile device 10 based on a difference
between network conditions presently observed by the
mobile device 10 and the estimated future network condi-
tions. Thus, for example, 1 a video streaming application or
another suitable application determines that the mobile
device 10 1s predicted to move to a location with lower
network quality, the application can proactively cache video
frames and/or other data in order to maintain a consistent
user experience.

In general, while the above implementations have been
described in the use case of mobile devices 10 such as
smartphones, the meta-location generation and prediction
model described above could also be used 1n data centers by
network and service providers that already have user loca-
tion data (e.g., from triangulation or the like). For example,
cellular network providers could employ a model as
described above to optimize handover in 5G. Similarly,
network operators could use location prediction as described
above to perform massive multiple-input multiple-output
(MIMO antenna adjustment, e.g., by dynamically optimiz-
ing the weights of antenna elements 1n 5G for optimal signal
coverage while mcurring minimal interference from other
users. Other use cases for the above model framework that
could be employed by a network operator can include, but
are not limited to, load balancing, scheduling, synchroniza-
tion, topology, power control, resource allocation, handover,
or the like.
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Additionally, FMLL as described above could be incor-
porated directly into the operating system of a smartphone or
other mobile device, e.g., to improve system and/or appli-
cation performance using location prediction. In addition,
location prediction from multiple systems could be fused
based on the model framework described above. For
example, GPS-based location prediction could be fused with
location prediction performed by wireless network provid-
ers, €.g., based on 5G signal fingerprinting techniques. This
can, 1n turn, further improve user experience in real-world
applications such as augmented reality, mobile gaming,
video streaming, or the like.

With reference now to FIG. 12, a flow diagram of a
method 1200 that facilitates Al automation to improve
network quality based on predicted locations 1s presented. At
1202, a first device comprising a processor (€.g., a mobile
device 10 comprising a processor 14, and/or a system
including such a device) can train (e.g., by a local training
component 210 and/or other components implemented by
the processor 14), according to model configuration param-
eters recerved from a second device (e.g., a server 30) that
1s not the first device, a machine learning model with
training data (e.g., meta-location data) derived from first
location data collected by the first device.

At 1204, the first device can transmit (e.g., by a server
interface component 220 and/or other components 1mple-
mented by the processor 14) anonymized model features
associated with the local machine learning model trained at
1202 to the second device.

At 1206, 1n response to the transmitting of the anony-
mized model features at 1204, the first device can receive
(e.g., by the server interface component 220) an aggregated
machine learning model from the second device.

At 1208, the first device can estimate (e.g., by a position
estimation component 230 and/or other components 1mple-
mented by the processor 14) a future position of the first
device by applying the aggregated machine learning model
received at 1206 to second location data collected by the first
device.

FIG. 12 illustrates a method 1n accordance with certain
aspects of this disclosure. While, for purposes of simplicity
of explanation, the method 1s shown and described as a
series of acts, 1t 1s noted that this disclosure 1s not limited by
the order of acts, as some acts may occur 1n diflerent orders
and/or concurrently with other acts from that shown and
described herein. For example, those skilled 1n the art will
understand and appreciate that methods can alternatively be
represented as a series ol interrelated states or events, such
as 1n a state diagram. Moreover, not all 1llustrated acts may
be required to implement methods in accordance with cer-
tain aspects of this disclosure.

In order to provide additional context for various embodi-
ments described herein, FIG. 13 and the following discus-
s1on are intended to provide a brief, general description of a
suitable computing environment 1300 1n which the various
embodiments of the embodiment described herein can be
implemented. While the embodiments have been described
above 1n the general context of computer-executable instruc-
tions that can run on one or more computers, those skilled
in the art will recognize that the embodiments can be also
implemented in combination with other program modules
and/or as a combination of hardware and software.

Generally, program modules include routines, programs,
components, data structures, etc., that perform particular
tasks or implement particular abstract data types. Moreover,
those skilled in the art will appreciate that the immventive
methods can be practiced with other computer system con-
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figurations, including single-processor or multiprocessor
computer systems, minicomputers, mainframe computers,
as well as personal computers, hand-held computing
devices, microprocessor-based or programmable consumer
clectronics, and the like, each of which can be operatively
coupled to one or more associated devices.

The 1llustrated embodiments of the embodiments herein
can be also practiced 1n distributed computing environments
where certain tasks are performed by remote processing
devices that are linked through a communications network.
In a distributed computing environment, program modules
can be located in both local and remote memory storage
devices.

Computing devices typically include a variety of media,
which can include computer-readable storage media and/or
communications media, which two terms are used herein
differently from one another as follows. Computer-readable
storage media can be any available storage media that can be
accessed by the computer and includes both volatile and
nonvolatile media, removable and non-removable media. By
way ol example, and not limitation, computer-readable
storage media can be implemented 1n connection with any
method or technology for storage of information such as
computer-readable instructions, program modules, struc-
tured data or unstructured data.

Computer-readable storage media can include, but are not
limited to, random access memory (RAM), read only
memory (ROM), electrically erasable programmable read
only memory (EEPROM), flash memory or other memory
technology, compact disk read only memory (CD-ROM),
digital versatile disk (DVD), Blu-ray disc (BD) or other
optical disk storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices,
solid state drives or other solid state storage devices, or other
tangible and/or non-transitory media which can be used to
store desired information. In this regard, the terms “tan-
gible” or “non-transitory” herein as applied to storage,
memory or computer-readable media, are to be understood
to exclude only propagating transitory signals per se as
modifiers and do not relinquish rights to all standard storage,
memory or computer-readable media that are not only
propagating transitory signals per se.

Computer-readable storage media can be accessed by one
or more local or remote computing devices, €.g., via access
requests, queries or other data retrieval protocols, for a
variety of operations with respect to the information stored
by the medium.

Communications media typically embody computer-read-
able structions, data structures, program modules or other
structured or unstructured data 1n a data signal such as a
modulated data signal, e.g., a carrier wave or other transport
mechanism, and includes any information delivery or trans-
port media. The term “modulated data signal” or signals
refers to a signal that has one or more of its characteristics
set or changed 1n such a manner as to encode information 1n
one or more signals. By way of example, and not limitation,
communication media include wired media, such as a wired
network or direct-wired connection, and wireless media
such as acoustic, RF, infrared and other wireless media.

With reference again to FIG. 13, the example environment
1300 for implementing various embodiments of the aspects
described herein includes a computer 1302, the computer
1302 including a processing unit 1304, a system memory
1306 and a system bus 1308. The system bus 1308 couples
system components including, but not limited to, the system
memory 1306 to the processing unit 1304. The processing,
unit 1304 can be any of various commercially available
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processors. Dual microprocessors and other multi-processor
architectures can also be employed as the processing unit
1304.

The system bus 1308 can be any of several types of bus
structure that can further interconnect to a memory bus (with
or without a memory controller), a peripheral bus, and a
local bus using any of a variety of commercially available
bus architectures. The system memory 1306 includes ROM
1310 and RAM 1312. A basic input/output system (BIOS)
can be stored in a non-volatile memory such as ROM,
crasable programmable read only memory (EPROM),
EEPROM, which BIOS contains the basic routines that help
to transier information between elements within the com-
puter 1302, such as during startup. The RAM 1312 can also
include a high-speed RAM such as static RAM {for caching
data.

The computer 1302 further includes an mternal hard disk
drive (HDD) 1314 and an optical disk drive 1320, (e.g.,
which can read or write from a CD-ROM disc, a DVD, a
BD, etc.). While the internal HDD 1314 1s 1llustrated as
located within the computer 1302, the internal HDD 1314
can also be configured for external use in a suitable chassis
(not shown). Additionally, while not shown 1n environment

1300, a solid state drive (SSD) could be used 1n addition to,
or in place of, an HDD 1314. The HDD 1314 and optical
disk drive 1320 can be connected to the system bus 1308 by
an HDD mterface 1324 and an optical drive interface 1328,
respectively. The HDD interface 1324 can additionally sup-
port external drive implementations via Universal Serial Bus
(USB), Institute of Electrical and Electronics Engineers
(IEEE) 1394, and/or other interface technologies. Other
external drive connection technologies are within contem-
plation of the embodiments described herein.

The drives and their associated computer-readable storage
media provide nonvolatile storage of data, data structures,
computer-executable 1nstructions, and so forth. For the
computer 1302, the drives and storage media accommodate
the storage of any data in a suitable digital format. Although
the description of computer-readable storage media above
refers to respective types of storage devices, 1t 1s noted by
those skilled in the art that other types of storage media
which are readable by a computer, whether presently exist-
ing or developed in the future, could also be used in the
example operating environment, and further, that any such
storage media can contain computer-executable instructions
for performing the methods described herein.

A number of program modules can be stored in the drives
and RAM 1312, including an operating system 1330, one or
more application programs 1332, other program modules
1334 and program data 1336. All or portions of the operating
system, applications, modules, and/or data can also be
cached in the RAM 1312. The systems and methods
described herein can be implemented utilizing various com-
mercially available operating systems or combinations of
operating systems.

A user can enter commands and information into the
computer 1302 through one or more wired/wireless 1nput
devices, e.g., a keyboard 1338 and a pointing device, such
as a mouse 1340. Other mput devices (not shown) can
include a microphone, an infrared (IR) remote control, a
joystick, a game pad, a stylus pen, touch screen or the like.
These and other mput devices are often connected to the
processing unit 1304 through an input device interface 1342
that can be coupled to the system bus 1308, but can be
connected by other interfaces, such as a parallel port, an
IEEE 1394 senial port, a game port, a USB port, an IR
interface, a BLUETOOTH® interface, etc.
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A monitor 1344 or other type of display device can be also
connected to the system bus 1308 via an interface, such as
a video adapter 1346. In addition to the monitor 1344, a
computer typically includes other peripheral output devices
(not shown), such as speakers, printers, etc.

The computer 1302 can operate in a networked environ-
ment using logical connections via wired and/or wireless
communications to one or more remote computers, such as
a remote computer(s) 1348. The remote computer(s) 1348
can be a workstation, a server computer, a router, a personal
computer, portable computer, microprocessor-based enter-
tainment appliance, a peer device or other common network
node, and typically includes many or all of the elements
described relative to the computer 1302, although, for pur-
poses of brevity, only a memory/storage device 1350 1s
illustrated. The logical connections depicted include wired/
wireless connectivity to a local area network (LAN) 1352
and/or larger networks, e.g., a wide area network (WAN)
1354. Such LAN and WAN networking environments are
commonplace 1n oflices and companies, and facilitate enter-
prise-wide computer networks, such as intranets, all of
which can connect to a global communications network,
¢.g., the Internet.

When used in a LAN networking environment, the com-
puter 1302 can be connected to the local network 13352
through a wired and/or wireless communication network
interface or adapter 1356. The adapter 1356 can facilitate
wired or wireless communication to the LAN 1352, which
can also include a wireless access point (AP) disposed
thereon for communicating with the wireless adapter 1356.

When used 1n a WAN networking environment, the com-
puter 1302 can include a modem 1358 or can be connected
to a communications server on the WAN 1354 or has other

means for establishing communications over the WAN
1354, such as by way of the Internet. The modem 1338,
which can be internal or external and a wired or wireless
device, can be connected to the system bus 1308 via the
input device interface 1342. In a networked environment,
program modules depicted relative to the computer 1302 or
portions thereof, can be stored in the remote memory/
storage device 1350. It will be appreciated that the network
connections shown are example and other means of estab-
lishing a communications link between the computers can be
used.

The computer 1302 can be operable to communicate with
any wireless devices or entities operatively disposed 1n
wireless communication, €.g., a printer, scanner, desktop
and/or portable computer, portable data assistant, commu-
nications satellite, any piece of equipment or location asso-
ciated with a wirelessly detectable tag (e.g., a kiosk, news
stand, restroom), and telephone. This can include Wireless
Fidelity (Wi1-F1) and BLUETOOTH® wireless technologies.
Thus, the communication can be a predefined structure as
with a conventional network or simply an ad hoc commu-
nication between at least two devices.

The above description includes non-limiting examples of
the various embodiments. It 1s, of course, not possible to
describe every conceivable combination of components or
methodologies for purposes of describing the disclosed
subject matter, and one skilled 1n the art may recognize that
further combinations and permutations of the wvarious
embodiments are possible. The disclosed subject matter 1s
intended to embrace all such alterations, modifications, and
variations that fall within the spirit and scope of the
appended claims.

With regard to the various functions performed by the
above described components, devices, circuits, systems,
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etc., the terms (including a reference to a “means™) used to
describe such components are intended to also include,
unless otherwise indicated, any structure(s) which performs
the specified function of the described component (e.g., a
functional equivalent), even 1f not structurally equivalent to
the disclosed structure. In addition, while a particular feature
of the disclosed subject matter may have been disclosed with
respect to only one of several implementations, such feature
may be combined with one or more other features of the
other implementations as may be desired and advantageous
for any given or particular application.

The terms “exemplary” and/or “demonstrative” as used
herein are mtended to mean serving as an example, 1nstance,
or illustration. For the avoidance of doubt, the subject matter
disclosed herein 1s not limited by such examples. In addi-
tion, any aspect or design described herein as “exemplary”
and/or “demonstrative” 1s not necessarily to be construed as
preferred or advantageous over other aspects or designs, nor
1s 1t meant to preclude equivalent structures and techniques
known to one skilled in the art. Furthermore, to the extent
that the terms “includes,” ‘“has,” “contains,” and other
similar words are used 1n either the detailed description or
the claims, such terms are intended to be inclusive—in a
manner similar to the term “comprising” as an open transi-
tion word—without precluding any additional or other ele-
ments.

The term “or” as used herein 1s intended to mean an
inclusive “or” rather than an exclusive “or.” For example,
the phrase “A or B” 1s intended to 1nclude instances of A, B,
and both A and B. Additionally, the articles “a” and “an™ as
used i this application and the appended claims should
generally be construed to mean “one or more” unless either
otherwise specified or clear from the context to be directed
to a singular form.

The term “set” as employed herein excludes the empty
set, 1.e., the set with no elements therein. Thus, a “set” 1n the
subject disclosure includes one or more elements or entities.
Likewise, the term “group” as utilized herein refers to a
collection of one or more entities.

The terms “first,” “second,” “third,” and so forth, as used
in the claims, unless otherwise clear by context, 1s for clarity
only and doesn’t otherwise indicate or imply any order 1n
time. For instance, “a first determination,” “a second deter-
mination,” and “a third determination,” does not indicate or
imply that the first determination 1s to be made before the
second determination, or vice versa, etc.

The description of 1llustrated embodiments of the subject
disclosure as provided herein, including what i1s described 1n
the Abstract, 1s not intended to be exhaustive or to limit the
disclosed embodiments to the precise forms disclosed.
While specific embodiments and examples are described
herein for illustrative purposes, various modifications are
possible that are considered within the scope of such
embodiments and examples, as one skilled in the art can
recognize. In this regard, while the subject matter has been
described herein in connection with various embodiments
and corresponding drawings, where applicable, 1t 1s to be
understood that other similar embodiments can be used or
modifications and additions can be made to the described
embodiments for performing the same, similar, alternative,
or substitute function of the disclosed subject matter without
deviating thereirom. Therefore, the disclosed subject matter
should not be limited to any single embodiment described
herein, but rather should be construed 1n breadth and scope
in accordance with the appended claims below.
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What 1s claimed 1s:
1. A method, comprising:
training, by a first device comprising a processor and
according to model configuration parameters received
from a second device that 1s not the first device, a local
machine learning model with tramning data derived
from first location data collected by the first device;

transmitting, by the first device to the second device,
anonymized model features associated with the local
machine learning model;
in response to the transmitting of the anonymized model
features, receiving, by the first device from the second
device, an aggregated machine learning model; and

estimating, by the first device, a future position of the first
device by applying the aggregated machine learning
model to second location data collected by the first
device.

2. The method of claim 1, wherein the first location data
comprises a first data sequence representative ol physical
locations of the first device, collected at intervals of a period,
within an area, and wherein the method further comprises:

determining, by the first device, a second data sequence

representative of amounts of relative displacement of
the first device between the physical locations repre-
sented 1n the first data sequence; and

determining, by the first device, an occupancy matrix

representative of frequencies at which the physical
locations represented in the first data sequence are
located within respective defined sub-areas of the area,
wherein the training data comprises the second data
sequence and the occupancy matrix.

3. The method of claim 2, wheremn the aggregated
machine learning model comprises a first sub-model and a
second sub-model, and wherein the estimating comprises:

applying the second data sequence to the first sub-model,

resulting in a first mtermediate output;
applying the occupancy matrix to the second sub-model,
resulting in a second intermediate output; and

estimating the future position of the first device based on
a result of fusing the first intermediate output and the
second 1ntermediate output.

4. The method of claim 3, wherein the first sub-model 1s
a sequence prediction neural network, and wherein the
second sub-model 1s a visual feature prediction neural
network.

5. The method of claim 1, wherein the transmitting of the
anonymized model features comprises transmitting the ano-
nymized model features to the second device without trans-
mitting any of the first location data to the second device and
without transmitting any of the training data to the second
device.

6. The method of claim 1, wherein the estimating com-
prises determining an estimated future position of the first
device, and wherein the method further comprises:

predicting, by the first device, a future network condition

associated with the estimated future position of the first
device.

7. The method of claim 6, further comprising:

based on a diflerence between a network condition

observed by the first device and the future network
condition associated with the estimated future position
of the first device, caching, by the first device, data
associated with an application executing on the {first
device.

8. The method of claim 1, wherein the anonymized model
features are first anonymized model features, and wherein
the aggregated machine learning model 1s based on the first
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anonymized model features and second anonymized model
features associated with a third device that 1s distinct from
the first device and the second device.

9. The method of claim 1, further comprising;:

registering, by the first device, with the second device;

and

recerving, by the first device 1n response to the registering,

the model configuration parameters from the second
device.

10. A system, comprising:

a processor; and

a memory that stores executable instructions that, when

executed by the processor, facilitate performance of

operations, comprising:

training, based on configuration parameters received
from network equipment that i1s distinct from the
system, a local machine learning model with training
data based on first location data associated with the
system;

sending, to the network equipment, anonymized model
data associated with the local machine learning
model;

in response to the sending of the anonymized model
data, receiving, from the network equipment, a
global machine learning model; and

estimating a future position associated with the system
by applying the global machine learning model to
second location data associated with the system.

11. The system of claim 10, wherein the first location data
comprises a lirst sequence representative of physical loca-
tions, within an area and associated with the system, as
collected at intervals of a period, and wherein the operations
turther comprise:

determining a second sequence representative ol amounts

of relative displacement between the physical locations
represented in the first sequence; and

determining a matrix representative ol Irequencies at

which the physical locations represented in the first
sequence are located within respective defined sub-
arcas ol the area, wherein the training data comprises
the second sequence and the matrix.

12. The system of claim 11, wherein the global machine
learning model comprises a first sub-model and a second
sub-model, and wherein the estimating comprises:

applying the second sequence to the first sub-model,

resulting in a first intermediate output;
applying the matrix to the second sub-model, resulting 1n
a second intermediate output; and

estimating the future position associated with the system
based on a result of fusing the first intermediate output
and the second intermediate output.

13. The system of claim 10, wherein the operations further
comprise:

predicting a future network condition corresponding to

the future position associated with the system, resulting
in a predicted future network condition.

14. The system of claim 13, wherein the operations further
comprise:

based on a difference between a present network condi-

tion associated with the system and the predicted future
network condition, caching data associated with an
application associated with the system.

15. The system of claim 10, wherein the operations further
comprise:

registering the system with the network equipment; and

recerving the configuration parameters from the network

equipment 1n response to the registering.
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16. A non-transitory machine-readable medium, compris-
ing executable instructions that, when executed by a pro-
cessor of first network equipment, facilitate performance of
operations, comprising:

based on model configuration data received from second

network equipment that 1s distinct from the {first net-
work equipment, tramning a local data model with
training data derived from first location data collected
by the first network equipment;

transmitting, to the second network equipment, anony-

mized model parameter data associated with the local
data model; and

determining an estimated future position of the first

network equipment by applying a global data model,
received from the second network equipment 1n
response to the transmitting, to second location data
collected by the first network equipment.

17. The non-transitory machine-readable medium of
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claim 16, wherein the first location data comprises a first »g

data sequence representative of locations of the first network
equipment, within an area and as determined at intervals of
a period, and wherein the operations further comprise:
determining a second data sequence representative of
relative displacement of the first network equipment
between the locations represented in the first data
sequence; and
determining a histogram matrix representative of frequen-
cies at which the locations represented 1n the first data
sequence are within respective defined sub-areas of the
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area, wherein the traiming data comprises the second
data sequence and the histogram matrix.

18. The non-transitory machine-readable medium of
claim 17, wherein the global data model comprises a {first
neural network and a second neural network, and wherein
the determining of the estimated future position comprises:

applying the second data sequence to the first neural

network, resulting in a first output;

applying the histogram matrix to the second neural net-

work, resulting 1n a second output; and

determining the estimated future position of the first

network equipment based on the first output and the
second output.

19. The non-transitory machine-readable medium of
claim 16, wherein the operations further comprise:

determining predicted future network conditions associ-

ated with the estimated future position of the first
network equipment; and

based on a difference between present network conditions

observed by the first network equipment and the pre-
dicted future network conditions, caching data associ-
ated with an application associated with the first net-
work equipment.

20. The non-transitory machine-readable medium of
claim 16, wherein the operations further comprise:

registering the first network equipment with the second

network equipment; and

recerving the model configuration data from the second

network equipment in response to the registering.
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