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FIG. 3
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FIG. 9

SEQUENTIALLY INPUT INPUT ACTIVATIONS INCLUDED
IN AN INPUT FEATURE MAP INTO A SHIFT REGISTER 910
CIRCUIT ACCORDING TO A PRESET ORDER

RECEIVE AN INPUT ACTIVATION FROM AT LEAST ONE
OF A PLURALITY OF REGISTERS INCLUDED IN THE
SHIFT REGISTER CIRCUIT AND PERFORM A MAC 920

OPERATION ON THE RECEIVED INPUT ACTIVATION
AND WEIGHTS, BY USING A PLURALITY OF CROSSBAR

ARRAY GROUPS

OBTAIN AN OUTPUT ACTIVATION INCLUDED IN AN
OUTPUT FEATURE MAP BY ACCUMULATING AND 030
ADDING AT LEAST SOME OF THE OPERATION
RESULTS OUTPUT FROM THE PLURALITY OF
CROSSBAR ARRAY GROUPS IN UNITS OF A PRESET
NUMBER OF CYCLES

END
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METHOD AND APPARATUS WITH NEURAL
NETWORK PROCESSING

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit under 35 U.S.C. § 119
to Korean Patent Application No. 10-2020-0089166, filed on
Jul. 17, 2020, in the Korean Intellectual Property Oflice, the
entire disclosure of which 1s incorporated herein by refer-
ence for all purposes.

BACKGROUND
1. Field

The present disclosure relates to method and apparatus
with neural network processing.

2. Description of Related Art

A neuromorphic processor may be, or used 1n, a neural
network device that drives various neural networks, such as
a Convolutional Neural Network (CNN), a Recurrent Neural

Network (RNN), and a Feedforward Neural Network

(FNN), and may also be used for data classification, 1mage
recognition, etc.

SUMMARY

This Summary 1s provided to introduce a selection of
concepts 1 a sumplified form that are further described
below 1n the Detailed Description. This Summary 1s not
intended to 1dentily key features or essential features of the
claimed subject matter, nor 1s 1t intended to be used as an aid
in determining the scope of the claimed subject matter.

In one general aspect, a neural network device includes a
shift register circuit, a control circuit, and a processing
circuit. The shift register circuit includes registers config-
ured to, 1n each cycle of cycles, transfer stored data to a next
register and store new data received from a previous register
to a current register. "

The control circuit 1s configured to
sequentially input data of mput activations included 1n an
input feature map into the shift register circuit in a preset
order. The processing circuit, includes crossbar array groups
that receive mput activations from at least one of the
registers and perform a multiply-accumulate (MAC) opera-
tion with respect to the received imput activation and
weights, 1s configured to accumulate and add at least some
operation results output from the crossbar array groups 1n a
preset number of cycles to obtain an output activation 1n an
output feature map.

The control circuit may be further configured to receive a
1-bit zero mark on each of the cycles, and, in response to the
value of the zero mark being 1, control the crossbar array
groups to omit a MAC operation with respect to input
activations corresponding to the zero mark.

Crossbar arrays included 1n one crossbar array group of
the crossbar array groups may share a same input activation.

Each of the crossbar arrays may include row lines, column
lines intersecting the row lines, and memory cells. The
memory cells are disposed at the intersections of the row
lines and the column lines, and configured to store the
weilghts mncluded 1n a weight kernel.

The processing circuit may be further configured to obtain
a first output activation using an operation result output from
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2

one of the crossbar arrays, and obtain a second output
activation using an operation result output from another of
the crossbar arrays.

A number of the crossbar arrays included in the one
crossbar array group may correspond to a width of a weight
kernel.

A number of registers that transier input activation to the
crossbar array groups from the registers may correspond to
a height of a weight kernel.

The processing circuit may be further configured to select
at least some of the operation results output from the
crossbar array groups, convert the selected operation results
into a 2’s complement format, and accumulate and add the
converted operation results to obtain the output activation.

The processing circuit may include an output line through
which the output activation 1s output, and the output line
may correspond to an output of one of a plurality of layers
constituting a neural network, and may be directly con-
nected to an mput line of a next layer.

The next layer may include either one or both of a
convolution layer and a pooling layer.

In another general aspect, an operating method of a neural
network device mncludes sequentially inputting input activa-
tions included 1n an mput feature map into a shift register
circuit 1n a preset order, receiving an input activation of the
input activations from at least one of a plurality of registers
of the shift register circuit from a corresponding crossbar
array group of crossbar array groups and performing a
multiply-accumulate (M AC) operation on the received input
activation and weights, and obtaiming an output activation
included in an output feature map by accumulating and
adding at least some of the calculation results output from
the crossbar array groups in units of a preset number of
cycles.

The operating method may further include receiving a
1-bit zero mark on each cycle of the sequentially mputting
of the mput activations, and 1n response to the value of the
zero mark being 1, controlling the crossbar array groups to
omit the MAC operation with respect to mput activations
corresponding to the zero mark.

Crossbar arrays included in one crossbar array group of
the crossbar array groups may share a same mput activation

Each of the crossbar arrays may include row lines, column
lines intersecting the row lines, and memory cells disposed
at the intersections of the row lines and the column lines, and
configured to store the weights of a weight kernel.

The operating method may further include obtaining a
first output activation using an operation result output from
one of the crossbar arrays, and obtaining a second output
activation using an operation result output from another
crossbar array of the crossbar arrays.

A number of the crossbar arrays included in the one
crossbar array group may correspond to a width of a weight
kernel.

A number of registers that transfer input activation to the
crossbar array groups from the plurality of registers may
correspond to a height of a weight kernel.

The obtaining the output activation may include selecting
at least some operation results output from the crossbar array
groups, converting the selected operation results mto a 2°s
complement format, and accumulating and adding the con-
verted operation results.

The operating method may further include outputting the
output activation via an output line. The output line may
correspond to an output of one of a plurality of layers
constituting a neural network, and may be directly con-
nected to an mput line of a next layer.
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The next layer may include either one or both of a
convolutional layer and a pooling layer.

In another general aspect, a neural network device
includes a shiit register circuit and a processing circuit. The
shift register circuit includes registers configured to sequen-
tially transier input activations of an mput feature map to
registers. The processing circuit, includes crossbar array
groups configured to receive mput activations from a subset
of the registers, perform a multiply-accumulate (MAC)
operation on the received iput activation and weights, and
output activation of an output feature map by accumulating
and adding calculation results output from the crossbar array
groups 1n predetermined number of cycles.

The registers may be further configured to receive a 1-bit
zero mark on each cycle of the sequentially transferring of
the 1input activations, and 1n response to the value of the zero
mark being 1, may control the crossbar array groups to omit
the MAC operation with respect to mput activations corre-
sponding to the zero mark.

Crossbar arrays included in one crossbar array group of
the crossbar array groups may share a same mnput activation

Each of the crossbar arrays may include row lines, column
lines intersecting the row lines, and memory cells, disposed
at the intersections of the row lines and the column lines,
configured to store the weights of a weight kernel.

A number of the crossbar arrays included in the one
crossbar array group may correspond to a width of a weight
kernel.

The outputting of activation may include selecting at least
some operation results output from the crossbar array
groups, converting the selected operation results 1into a 2’s
complement format, and accumulating and adding the con-
verted operation results.

Other features and aspects will be apparent from the
tollowing detailed description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a diagram explaining an architecture of a neural
network according to one or more embodiments.

FIG. 2 15 a diagram explaining an operation performed in
a neural network according to one or more embodiments.

FIG. 3 1s a diagram 1llustrating an in-memory computing,
circuit according to one or more embodiments.

FIG. 4 1s a diagram 1illustrating a configuration of a
processing block included imm a neural network device
according to one or more embodiments.

FIG. 5 1s a diagram 1illustrating a circuit structure of a
neural network device according to one or more embodi-
ments.

FIG. 6 1s a diagram explaining a process of performing a
neural network operation by a neural network device accord-
ing to one or more embodiments.

FIG. 7 1s a diagram explaining a process of performing
pooling and activation function operations by a neural
network device according to one or more embodiments.

FI1G. 8 1s a block diagram 1llustrating a configuration of an
clectronic system according to one or more embodiments.

FIG. 9 15 a flowchart illustrating an operating method of
a neural network device according to one or more embodi-
ments.

Throughout the drawings and the detailed description, the
same reference numerals refer to the same elements. The
drawings may not be to scale, and the relative size, propor-

10

15

20

25

30

35

40

45

50

55

60

65

4

tions, and depiction of elements in the drawings may be
exaggerated for clarnty, 1llustration, and convenience.

DETAILED DESCRIPTION

The following detailed description 1s provided to assist
the reader 1n gaining a comprehensive understanding of the
methods, apparatuses, and/or systems described herein.
However, various changes, modifications, and equivalents
of the methods, apparatuses, and/or systems described
herein will be apparent after an understanding of the dis-
closure of this application. For example, the sequences of
operations described herein are merely examples, and are
not limited to those set forth herein, but may be changed as
will be apparent after an understanding of the disclosure of
this application, with the exception of operations necessarily
occurring in a predetermined order. Also, descriptions of
features that are known after understanding of the disclosure
of this application may be omitted for increased clarity and
CONCISEness.

The features described herein may be embodied 1n dif-
terent forms, and are not to be construed as being limited to
the examples described herein. Rather, the examples
described herein have been provided merely to illustrate
some of the many possible ways of implementing the
methods, apparatuses, and/or systems described herein that
will be apparent after an understanding of the disclosure of
this application.

Throughout the specification, when an element, such as a
layer, region, or substrate, 1s described as being “on,”
“connected 10,” or “coupled to” another element, 1t may be
directly “on,” “connected to,” or “coupled to” the other
clement, or there may be one or more other clements
intervening therebetween. In contrast, when an element 1s
described as being “directly on,” “directly connected to,” or
“directly coupled to” another element, there can be no other
clements intervening therebetween.

As used herein, the term “and/or” includes any one and
any combination of any two or more of the associated listed
items.

Although terms such as “first,” “second,” and “third” may
be used herein to describe various members, components,
regions, layers, or sections, these members, components,
regions, layers, or sections are not to be limited by these
terms. Rather, these terms are only used to distinguish one
member, component, region, layer, or section from another
member, component, region, layer, or section. Thus, a first
member, component, region, layer, or section referred to in
examples described herein may also be referred to as a
second member, component, region, layer, or section with-
out departing from the teachings of the examples.

Spatially relative terms such as “above,” “upper,”
“below,” and “lower” may be used herein for ease of
description to describe one element’s relationship to another
clement as shown 1n the figures. Such spatially relative terms
are 1ntended to encompass different orientations of the
device 1n use or operation in addition to the orientation
depicted 1n the figures. For example, 11 the device in the
figures 1s turned over, an element described as being “above”
or “upper” relative to another element will then be “below™
or “lower” relative to the other element. Thus, the term
“above” encompasses both the above and below orientations
depending on the spatial orientation of the device. The
device may also be oriented in other ways (for example,
rotated 90 degrees or at other orientations), and the spatially
relative terms used herein are to be interpreted accordingly.
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The terminology used herein 1s for describing various
examples only, and 1s not to be used to limit the disclosure.
The articles “a,” “an,” and “the” are intended to include the
plural forms as well, unless the context clearly indicates
otherwise. The terms “comprises,” “includes,” and *“has”
specily the presence of stated features, numbers, operations,
members, elements, and/or combinations thereof, but do not
preclude the presence or addition of one or more other
features, numbers, operations, members, elements, and/or
combinations thereof.

The features of the examples described herein may be
combined 1n various ways as will be apparent after an
understanding of the disclosure of this application. Further,
although the examples described herein have a variety of
configurations, other configurations are possible as will be
apparent alter an understanding of the disclosure of this
application.

Terminologies used herein are selected as commonly used
by those of ordinary skill in the art in consideration of
functions of the current embodiment, but may vary accord-
ing to the technical intention, precedents, or a disclosure of
a new technology. Also, 1n particular cases, some terms are
arbitrarily selected by the applicant, and in this case, the
meanings of the terms will be described 1n detail at corre-
sponding parts of the specification. Accordingly, the terms
used 1n the specification should be defined not by simply the
names of the terms but based on the meaning and contents
of the whole specification.

FIG. 1 1s a diagram explaining an architecture of a neural
network according to one or more embodiments.

In FIG. 1, the neural network 1 may be represented by a
mathematical model by using nodes and edges. The neural
network 1 may include an architecture of a deep neural
network (DNN) or n-layers neural networks. The DNN or
n-layers neural networks may correspond to convolutional
neural networks (CNNs), recurrent neural networks (RNNs),
deep belief networks, restricted Boltzman machines, etc. For
example, the neural network 1 may be implemented as a
CNN, but i1s not limited thereto. The neural network 1 of
FIG. 1 may correspond to some layers of the CNN. Accord-
ingly, the neural network 1 may correspond to a convolu-
tional layer, a pooling layer, or a fully connected layer, eftc.
of a CNN. However, for convenience, in the following
descriptions, 1t 1s assumed that the neural network 1 corre-
sponds to the convolutional layer of the CNN.

In such a convolution layer, a first feature map 1 FM1 may
correspond to an input feature map and a second feature map
FM2 may correspond to an output feature map. The feature
map may denote a data set representing various character-
istics ol mnput data. The first and second feature maps FM1
and FM2 may be a high-dimensional matrix of two or more
dimensions, and have respective activation parameters.
When the first and second feature maps FM1 and FM2
correspond to, for example, three-dimensional feature maps,
the first and second feature maps FM1 and FM2 have a
width W (or column), a height H (or row), and a depth C. At
this point, the depth C may correspond to the number of
channels.

In a convolution layer, a convolution operation with
respect to the first feature map FM1 and a weight map WM
may be performed, and as a result, the second feature map
FM2 may be generated. The weight map WM may filter the
first feature map FM1 and 1s referred to as a weight filter or
welght kernel. In one example, a depth of the weight map
WM, that 1s, the number of channels is the same as the depth
of the first feature map FM1, that 1s, the number of channels.
The weight map WM 1s shifted by traversing the first feature
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map FM1 as a sliding window. In each shift, weights
included 1n the weight map WM may respectively be mul-
tiplied and added to all feature values 1n a region overlap-
ping with the first feature map FM1. As the first feature map
FM1 and the weight map WM are convolved, one channel
of the second feature map FM2 may be generated.

In FIG. 1, although one weight map WM 1s depicted, a
plurality of channels of the second feature map FM2 may be
generated by respectively convolving a plurality of weight
maps with the first feature map FM1. The second feature
map FM2 of the convolution layer may then be used as an
input feature map of the next layer. For example, the second
feature map FM2 may be an mput feature map of a pooling
layer. But the present embodiment 1s not limited thereto.

FIG. 2 1s a diagram explaining an operation performed 1n
a neural network 2 according to one or more embodiments.

In FIG. 2, the neural network 2 may have a structure that
incudes 1nput layers, hidden layers, and output layers, and
may perform operations based on received mput data (for
example, I, and I,), and may generate output data (for
example, O, and O,) based on a result of the operations.

As described above, the neural network 2 may be a DNN
or an n-layer neural network including two or more hidden
layers. For example, as illustrated in FIG. 2, the neural
network 2 may be a DNN including an input layer (Layer 1),
two hidden layers (Layer 2 and Layer 3), and an output layer
(Layer 4). When the neural network 2 1s implemented as a
DNN architecture, the neural network 2 includes a further
large number of layers capable of processing valid informa-
tion, and thus, the neural network 2 may process a large
number of complex data sets than a neural network having
a single layer. However, although the neural network 2 1s
illustrated as including four layers, but this 1s only an
example, and the neural network 2 may include a lesser or
greater number of layers, or a lesser or greater number of
channels. That 1s, the neural network 2 may include layers
of various structures different from those 1illustrated in FIG.
2.

Each of the layers included in the neural network 2 may
include a plurality of channels. A channel may correspond to
a plurality of artificial nodes, known as neurons, processing
clements (PEs), units, or similar terms. For example, as
illustrated 1n FIG. 2, the Layer 1 may include two channels
(nodes), and each of the Layer 2 and Layer 3 may include
three channels. However, this 1s only an example, and each
of the layers included 1n the neural network 2 may include
various numbers ol channels (nodes).

The channels included in each of the layers of the neural
network 2 may be connected to each other to process data.
For example, one channel may receive data from other
channels for an operation and output the operation result to
other channels.

Each of mputs and outputs of each of the channels may be
referred to as an 1nput activation and an output activation.
That 1s, the activation may be an output of one channel and
may be a parameter corresponding to an input of channels
included 1n the next layer.

Each of the channels may determine 1ts own activation
based on activations received from channels included 1n the
previous layer and appropriate weights. The weights are
parameters used to operate an output activation in each
channel, and may be values assigned to connection relation-
ships between channels.

Each of the channels may be processed by, for example,
a hardware computational unit or processing element that
outputs an output activation by recerving an input, and an
input-output of each of the channels may be mapped. For
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example, when a 1s an activation function, w, 1s a weight

from a k”” channel included in an (i—1)? layer to a i channel

included in an i” layer, b/ is a bias of the j* channel included

in the i”” layer, and a;" is an activation of the j*” channel in the

i layer, the activation a; may be calculated by using
Equation 1 below.

Equation 1

r:zi,- — LT(Z (wi,-k X ai_l) + bi,)
k

As shown 1n FIG. 2, the activation of a first channel CH1
of the second layer Layer 2 may be expressed as a,”. Also,
a,” may have a value of alzzo(wljlzxal1+w1522><azl+b12)
according to the Equation 1. The activation function a may
be a Rectified Linear Unit (RelLU), but the present embodi-
ment 1s not limited thereto. For example, the activation
function o may be sigmoid, hyperbolic tangent, Maxout, etc.

As described above, in the neural network 2, a large
number of data sets are exchanged between a plurality of
interconnected channels, and a number of computational
processes are performed through layers. In this operation, a
large number of MAC (multiply-accumulate) operations are
performed, and a large number of memory access operations
must be typically performed to load activations and weights,
which are operands of MAC operations, at an appropriate
time.

On the other hand, a typical digital computer uses a Von
Neumann structure i which a computation unit and a
memory are separated and includes a common data bus for
data transmission between two separated blocks. Accord-
ingly, i the process of performing the neural network 2 1n
which data movement and operation are continuously
repeated, typically, a lot of time to transmuit data 1s required
and excessive power may be consumed.

In one or more embodiments, an 1n-memory computing,
circuit may be desired as an architecture for integrating
memory and a computation unit performing MAC opera-
tions 1nto one, for example.

FIG. 3 1s a diagram 1illustrating an in-memory computing,
circuit 3 according to one or more embodiments.

In FIG. 3, the in-memory computing circuit 3 may include
an analog crossbar array 30 and an analog to digital con-
verter (ADC) 40. However, only components related to the
present embodiments are depicted 1n the in-memory com-
puting circuit 3 illustrated 1n FIG. 3. Accordingly, 1t will be
apparent after an understanding of the disclosure of this
application that other components other than, or 1n addition
to, the components shown in FIG. 3 may further be included
in the m-memory computing circuit 3.

The analog crossbar array 30 may include a plurality of
row lines 310, a plurality of column lines 320, and a plurality
of memory cells 330. The plurality of row lines 310 may be
used to receive mput data. For example, when the plurality
of row lines 310 1s N (N 1s a natural number) row lines,
voltages V,, V,, ..., V corresponding to input activations
may be applied to the N row lines. The plurality of column
lines 320 may cross the plurality of row lines 310. For
example, when the plurality of column lines 320 are M (M
1s a natural number) column lines, the plurality of column
lines 320 and the plurality of row lines 310 may cross at
NxM 1ntersections.

In this example, a plurality of memory cells 330 may be
disposed at intersections of the plurality of row lines 310 and
the plurality of column lines 320. Each of the plurality of
memory cells 330 may be implemented as a nonvolatile
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memory, such as ReRAM (Resistive RAM), MRAM (Mag-
netic RAM), or eFlash to store weights, but 1s not limited
thereto. Each of the plurality of memory cells 330 may be a
volatile memory, such as static random access memory
(SRAM).

In the analog crossbar array 30 illustrated in FIG. 3, the
plurality of memory cells 330 may include conductance
Gy, - . ., Gy corresponding to weights. When a voltage
corresponding to an mput activation 1s applied to each of the
plurality of row lines 310, according to Ohm’s law, a current
having a size of I=VxG may be output through each memory
cell 330. Since currents output from the memory cells
arranged 1n a column line are summed together, the current
sums I,, . .., I,,may be output along the plurality of column
lines 320. The current sums I, . . ., I,, may correspond to
the result of a MAC operation performed in an analog
method.

The ADC 40 may convert the result of an analog MAC
operation output from the analog crossbar array 30 (that 1s,
the current sum I,, . . ., I, into a digital signal. The result
of the MAC operation converted to a digital signal 1s output
from the ADC 40 and may be used in a subsequent neural
network operation process.

On the other hand, the mn-memory computing circuit 3, as
shown 1n FIG. 3, has the advantages of lower complexity of
the core operation unit, less power consumption, and smaller
circuit size than a digital computer. However, 1n a process of
mapping a synaptic weight to which thousands or tens of
thousands of neurons of the neural network model are
connected to the m-memory computing circuit 3, a limita-
tion on a physical size may occur. According to the present
disclosure, a neural network device capable of operating a
neural network at low power by using the m-memory
computing circuit 3 having various advantages while satis-
tying the constraint on the physical size may be provided.
Hereinafter, an eflicient structure and operation method of a
neural network device according to the present embodiment
will be described 1n detail with reference to the drawings.

FIG. 4 1s a diagram 1illustrating a configuration of a
processing block included in a neural network device
according to one or more embodiments.

In FIG. 4, the neural network device may include a
processing block 4. In FIG. 4, although only one processing
block 4 1s shown, the neural network device may include a
plurality of processing blocks 4. Therefore, 1t will be appar-
ent alter an understanding of the disclosure of this applica-
tion that other components other than, or in addition to, the
components shown in FIG. 4 may further be included 1n the
neural network device. For example, the neural network
device may further include at least one control circuit 520.

At least one control circuit 520 may perform the overall
function for controlling the neural network device. For
example, the at least one control circuit 520 may control the
operation of the processing block 4. In this example, the at
least one control circuit 520 may be implemented as an array
of a plurality of logic gates, and may be implemented as a
combination of a general-purpose microprocessor and a
memory 1in which a program executable 1n a microprocessor
1s stored.

The processing block 4 may perform a MAC operation
alter receiving data from an external memory or an internal
memory of a neural network device, and may store a result
of the MAC operation 1n a memory again. The processing
block 4 may perform a pooling or activation function
operation after completing a MAC operation with respect to
one layer.
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The processing block 4 may include a plurality of pro-
cessing elements (Processing FElement 0, . . . , Processing
Element K). K represents an arbitrary natural number. Fach
of the K processing elements (Processing Element O, . . .,
Processing Flement K) may include a plurality of sub-
processing clements. For example, as shown i FIG. 4,
Processing Flement 0 may include three sub-processing
clements (Sub PE 0, Sub PE 1 and Sub PE 2).

Each of the plurality of sub-processing elements may
include a plurality of crossbar arrays. For example, 1n a
non-limiting example, the Sub PE 0 may include 3 crossbar
arrays (Crossbar Array 0, Crossbar Array 1 and Crossbar
Array 2), and the Sub PE 1 may also include 3 crossbar
arrays (Crossbar Array 3, Crossbar Array 4 and Crossbar
Array 5), and the Sub PE 2 may also include three crossbar
arrays (Crossbar Array 6, Crossbar Array 7 and Crossbar
Array 8). In this way, a preset number of crossbar arrays may
form one group, and one crossbar array group may corre-
spond to a sub-processing element. In this example, since
cach of the plurality of crossbar arrays corresponds to the
analog crossbar array 30 of FIG. 3, the descriptions thereof
will be omuitted.

Nine crossbar arrays included in one processing element
may be used for a 3x3 convolution operation, for example.
Herematter, a detailed process of performing a 3x3 convo-
lution operation by a neural network device will be
described in detail with reference to FIGS. 5 and 6.

For convenience of explanation of FIG. 4, an example in
which one processing element includes three sub-processing
clements and one sub-processing element includes three
crossbar arrays have been described, as a non-limiting
example. One processing element may include less than or
greater than three sub-processing elements, and one sub-
processing clement may include less than or greater than
three crossbar arrays. According to the configuration of the
processing block 4 included i1n a neural network, neural
network operations (e.g., convolution operations) of various
s1zes may be performed.

FIG. 5 1s a diagram illustrating a circuit structure of a
neural network device according to one or more embodi-
ments.

In FIG. §, the neural network device may include a shift
register circuit 510, a control circuit 520, and a processing
circuit 530. In the neural network device 1llustrated in FIG.
5, only components related to the present embodiments are
shown. Therefore, 1t will be apparent after an understanding
of the disclosure of this application that other components
other than, or in addition to, the components shown in FIG.
5 may further be included in the neural network device.

The shift register circuit 510 may include a plurality of
registers that transier stored data to the next register on every
cycle and store new data receirved from the previous register.
At least some of the plurality of registers included in the
shift register circuit 510 may be connected to a crossbar
array group (sub-processing element) included in the pro-
cessing circuit 530, and may transier input data (for
example, input activation) to a plurality of crossbar arrays
included 1n the connected crossbar array group.

From among a plurality of registers included 1n the shift
register circuit 510, the number of registers that transier
input activation to a plurality of crossbar array groups (Sub
PE 0, Sub PE 1, and Sub PE 2) may correspond to a height
of a weight kernel. In an example, when a 3x3 convolution,
in which a height KH of a weight kernel 1s 3 and a width KW
of the weight kernel 1s 3, 1s performed, the number of
registers that transfer input activation to a plurality of
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included in one processing element PE 0 may be KH.
Accordingly, when K input lines are processed by K pro-
cessing elements, the total number of registers that transfer
input activation to the processing circuit 530 may be KH*K.
In this example, when a 3x3 convolution 1s performed with
respect to an input activation mput through K 1nput lines, the
number of output lines through which the output activation
1s output may correspond to K-2.

The control circuit 520 may sequentially mput input
activations included 1in an mput feature map to the shait
register circuit 310 according to a preset order. For example,
the control circuit 520 may sequentially mput mput activa-
tions to the shift register circuit 510 1n a row direction of the
input feature map. Input activations input to the shift register
circuit 510 may be sequentially shifted from the first register
to the last register of the shift register circuit 510.

Also, the control circuit 520 may receive a 1-bit zero mark
on every cycle, and, when the value of the zero mark 1s 1,
may control a plurality of crossbar array groups (Sub PE 0,
Sub PE 1, and Sub PE 2) so as to omit a MAC operation with
respect to 1nput activations corresponding to the zero mark.
The zero mark may be mput together with input feature map
data of a row size, and may be used for at least one of zero
padding and zero skip. In an example, as the MAC operation
of crossbar arrays (when a 3x3 convolution operation 1s
performed, 3 crossbar arrays) included in a crossbar array
group corresponding to a zero mark having a value of 1
among a plurality of crossbar array groups (Sub PE 0, Sub
PE 1 and Sub PE 2), 1s omitted, power consumption may
further be reduced.

The processing circuit 530 may receive mput activations
from at least one of a plurality of registers, and may include
a plurality of crossbar array groups (Sub PE 0, Sub PE 1 and
Sub PE 2) that perform a MAC operation with respect to the
received input activation and weights. A plurality of crossbar
arrays (for example, Crossbar array 0, Crossbar array 1, and
Crossbar array 2) included in one crossbar array group (for
example, Sub PE 0) among a plurality of crossbar array
groups (Sub PE 0, Sub PE 1, and Sub PE 2) may share the
same 1nput activation.

Since the number of crossbar arrays included in one
crossbar array group corresponds to a width of a weight
kernel, the mput activation may be shared among KW
crossbar arrays. In one example, when a 3x3 convolution
operation 1s performed, three crossbar arrays may receive
the same mnput activation and calculate an output for three
welght spaces (that 1s, a weight row having a size of 1x3).
The output for each weight space may be used to calculate
different output activations from each other.

In this way, since the same mput activation 1s shared
among a plurality of crossbar arrays, the mput reuse etli-
ciency may be significantly increased and a multiplexer
(MUX) for processing mput data 1s not required when
compared to typical hardware devices, and thus, a hardware
structure may be significantly simplified. Also, since a
digital decoder and a control logic required to operate a
crossbar array are shared among the plurality of crossbar
arrays, an area ol hardware may also be reduced.

The processing circuit 530 accumulates and adds at least
some of the operation results output from the plurality of
crossbar array groups (Sub PE 0, Sub PE 1, and Sub PE 2)
in units of a preset number of cycles, and thus, may obtain
an output activation included 1n an output feature map. For
example, the processing circuit 330 selects at least some of
the operation results output from the plurality of crossbar
array groups (Sub PE 0, Sub PE 1, and Sub PE 2), converts

the selected operation results 1nto a 2°s complement format,
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and accumulates and adds the converted operation results,
and thus, may obtain an output activation.

The processing circuit 530 may calculate a first output
activation (e.g., Output data 0) by using an operation result
output from one crossbar array among a plurality of crossbar
arrays (e.g., Crossbar array 0, Crossbar array 1, and Crossbar

[ 1

array 2) included in one crossbar array group (e.g., Sub PE
0), and may calculate a second output activation (e.g.,
Output data 1) by using an operation result output from
another one crossbar array among the plurality of crossbar
arrays (e.g., Crossbar array 0, Crossbar array 1, and Crossbar
array 2). Fach of the operation results output from the
plurality of crossbar arrays may correspond to a partial sum
for calculating an output activation.

An example process ol obtaining an output activation
included 1n an output feature map by the processing circuit
530 by accumulating and adding at least some of the

calculation results output from a plurality of crossbar array
groups (Sub PE 0, Sub PE 1, and Sub PE 2) 1n units of a
preset number of cycles will be described 1n detail below 1n
the discussion of FIG. 6.

FIG. 6 1s a diagram for explaining a process of performing,
a neural network operation by a neural network device
according to one or more embodiments.

In FIG. 6, an example 1n which the neural network device
described with reference to FIG. S 1s configured to perform
a 3x3 convolution operation with respect to an input feature
map having a size of 4x4, including mput activations of X,
to X, 1s shown. In one example, each of 9 crossbar arrays
(Xbar 0 to Xbar 8) used to perform a 3x3 convolution
operation may include 128 column lines and 128 row lines,
and the mput activation may be data of 128 bits. However,
this 1s only an example, and 1s not limited to the example.

Further, input activations included 1n an input feature map
may be sequentially mput to a shiit register circuit 310 on
every cycle 1 a row direction. For example, mput activa-
tions may be 1mput to a shift register circuit 510 in the order
of X550, X0, Xop, and X,,, and after X, 1s 1nput, mput
activations may be input to the shift register circuit 510 1n
the order of X,,, X,;, X,,, and X;,. Also, even afterwards,
input activations up to X,, may be sequentially input to the
shift register circuit 510 in the same manner.

Since the first register of the shift register circuit 510 1s
connected to the first crossbar array group (Xbar 0, Xbar 1,
and Xbar 2), when X, 1s input to the first register of the shait
register circuit 510 1n the first cycle (cycle 0), X, may be
transierred to the first crossbar array group (Xbar 0, Xbar 1,
and Xbar 2). Accordingly, the first crossbar array group
(Xbar 0, Xbar 1, and Xbar 2) may perform a MAC operation
using X, as an operand. Afterwards, X, may be transierred
to the next register 1n each cycle. In the fifth cycle (cycle 4),
X oo may be transierred to a register connected to the second
crossbar array group (Xbar 3, Xbar 4, and Xbar 5). Accord-
ingly, the second crossbar array group (Xbar 3, Xbar 4, and
Xbar 5) may perform a MAC operation using X,, as an
operand.

Further, FIG. 6 illustrates an operation process corre-
sponding to a period from a ninth cycle (cycle 8) to a twelith
cycle (cycle 11) after the first cycle (cycle 0) 1n which X,
1s mnput to the shift register circuit 510.

In the minth cycle (cycle 8), the third crossbar array group
(Xbar 6, Xbar 7 and Xbar 8) may perform a MAC operation
on X, the second crossbar array group (Xbar 3, Xbar 4 and
Xbar 5) may perform a MAC operation on X, and the first
crossbar array group (Xbar 0, Xbar 1, and Xbar 2) may
perform a MAC operation on X,,. The MAC operations on
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Xoos Xg1, and X, may correspond to the MAC operation
with respect to the first row of the input feature map.

In the 10th cycle (cycle 9), the third crossbar array group
(Xbar 6, Xbar 7 and Xbar 8) may perform a MAC operation
on X, ,, the second crossbar array group (Xbar 3, Xbar 4 and
Xbar 5) may perform a MAC operation on X, and the first
crossbar array group (Xbar 0, Xbar 1, and Xbar 2) may
perform a MAC operation on X, ,. The MAC operations on
X0 Xy, and X,, may correspond to the MAC operation
with respect to the second row of the mput feature map.

In the 11th cycle (cycle 10), the third crossbar array group
(Xbar 6, Xbar 7 and Xbar 8) may perform a MAC operation
on X,,, the second crossbar array group (Xbar 3, Xbar 4 and
Xbar 5) may perform a MAC operation on X, ,, and the first
crossbar array group (Xbar 0, Xbar 1, and Xbar 2) may
perform a MAC operation on X,,. The MAC operations on
X,0, X,7, and X,, may correspond to the MAC operation
with respect to the third row of the mput feature map.

In the 12th cycle (cycle 11), the third crossbar array group
(Xbar 6, Xbar 7 and Xbar 8) may perform a MAC operation
on X,,, and the second crossbar array group (Xbar 3, Xbar
4 and Xbar 35) may perform a MAC operation on X;,, and
the first crossbar array group (Xbar 0, Xbar 1, and Xbar 2)
may perform a MAC operation on X, ,. The MAC operations
on X;,, X5, and X, may correspond to the MAC operation
with respect to the fourth row of the input feature map.

Further, 1n the minth cycle (cycle 8), operation results by
Xbar 0, Xbar 3, and Xbar 6 may be selected among
operation results output from the crossbar array groups, 1n
the tenth cycle (cycle 9), operation results by Xbar 1, Xbar
4 and Xbar 7 may be selected, and 1n the 11th cycle (cycle
10), operation results by Xbar 2, Xbar 5 and Xbar 8 may be
selected. The selected operation results may be converted
into a 2’s complement format, and then, accumulated and
added by a first accumulator (ACCUM 0), and accordingly,
a final result (that 1s, a first output activation) of a 3x3
convolution operation corresponding to a {first region 610
may be output.

Also, 1 the 10th cycle (cycle 9), operation results by Xbar
0, Xbar 3, and Xbar 6 may be selected among operation
results output from the crossbar array groups, 1n the 11th
cycle (cycle 10), operation results by Xbar 1, Xbar 4 and
Xbar 7 may be selected, and 1n the 12th cycle (cycle 11),
operation results by Xbar 2, Xbar 5 and Xbar 8 may be
selected. The selected operation results may be converted
into a 2’s complement format, and then, accumulated and
added by a second accumulator (ACCUM 1), and accord-
ingly, a final result (that 1s, a second output activation) of a
3x3 convolution operation corresponding to a second region
620 may be output.

In this manner, two output activations may be output
through two output lines during four cycles. Accordingly,
compared to a neural network device of the related art 1n
which two output activations are output during two cycles,
an output bandwidth may be reduced. Also, a neural network
device of the related art uses a bandwidth of 4x128 bits for
two cycles. However, the neural network device according
to the present embodiment uses only a bandwidth of 128 bits
for one cycle, thus, an input bandwidth may be reduced to
half. In this way, as the output bandwidth and the input
bandwidth are reduced, power consumption may be reduced.

In FIG. 6, an example 1n which the number of processing
clements 1s 4, the number of sub-processing elements 1s 3,
and the number of crossbar arrays 1s 9 1s described, but this
1s only an example. The number of output lines may be
adjusted as the number of crossbar arrays included in one
sub-processing element 1s adjusted, and neural network
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operations with respect to iput feature maps or weight
kernels of various sizes may be performed as the number of
processing elements or the number of sub-processing ele-
ments 1s adjusted.

In one example, a first processing element that outputs an
output activation through four output lines during six cycles
may be implemented by adjusting the size or depth of the
shift register circuit 510. In this case, the first processing
clement may be directly connected to the second processing
clement that outputs output activations through two output
lines during four cycles, as described with reference to FIG.
6. The output lines of the first processing element corre-
spond to an output of one of the plurality of layers consti-
tuting a neural network, and may be directly connected to
the 1input lines of the second processing element correspond-
ing to the next layer. As described above, according to the
present embodiment, connections between layers may be
implemented without additional memory or additional digi-
tal logic. Also, since an operation of reading/writing the
input/output to the memory 1s omitted, power consumption
may be greatly reduced.

Further, the next layer including mnput lines directly
connected to the plurality of output lines of one layer may
include at least one of a convolution layer and a pooling
layer. The operation process corresponding to the convolu-
tional layer has already been described with reference to
FIG. 6, and thus, hereinafter, an example operation process
corresponding to the pooling layer will be described in
greater detail with reference to FIG. 7.

FIG. 7 1s a diagram explaining a process of performing
pooling and activation function operations by a neural
network device according to one or more embodiments.

In FIG. 7, a process of performing pooling and activation
function operations with reference to an output feature map
70 output by a neural network operation described with
retference to FIG. 6 1s illustrated as an example. A first row
710 of the output feature map 70 may correspond to output
activations output through a first output line, and a second
row 720 may correspond to output activations output
through a second output line.

Output activations included in the first row 710 and output
activations included in the second row 720 may be input to
one of the plurality of pooling registers 730a to 7304d. As an
example, 1n the case when the neural network operation
described above with reference to FIG. 6, two output acti-
vations are output through two output lines during four
cycles. Accordingly, after x,, and x,, output 1n cycle 0 are
respectively input to the pooling register 730a and the
pooling register 730c¢, x,,, and x,, outputted after four cycles
(that 1s, 1n cycle 4) may be respectively input to the pooling
register 730a and the pooing register 730c.

As X5, and X, are newly iput to the pooling register 730a
and the pooling register 730c¢, respectively, x,, and X,
stored 1n the pooling register 730a and the pooling register
730c may be transierred to a pooling register 7305 and a
pooling register 7304, respectively. Accordingly, the pooling
register 730a may store X,,, the pooling register 73056 may
store X,,, the pooling register 730¢ may store x,,, and the
pooling register 7304 may store x,,.

A pooling operator 740 may perform a 2x2 pooling
operation after receiving output activations from the plural-
ity of pooling registers 730a to 730d. Accordingly, the result
of the pooling operation for X,,, X4, Xn;, and X;; may be
output in cycle 5. The pooling operation may be max
pooling, average pooling, L.2-norm pooling, etc., but 1s not
limited thereto. In an example, when the pooling operation
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corresponds to max pooling, a maximum value among X,
X0y Xo1, and X,, may be output from the pooling operator
740.

An activation function 750 may apply an activation
function to the result of the pooling operation received from
the pooling operator 740. Accordingly, 1n cycle 6, a final
output to which the activation function 1s applied may be
output. Afterwards, in cycle 8, new output activations are
output through the output lines, and the process described
above may be repeated. An overall timing diagram of a
process 1n which the neural network device 1s configured to
perform pooling and activation function operations 1s shown
in table 760.

In this way, the neural network device according to the
present embodiment may directly connect output lines of a
convolution layer to the pooling layer without an additional
bufler. In FIG. 7, for convenience of explanation, a 2x2
pooling with a stride of 2 has been shown, but 1s not limited
thereto. Pooling operations of various sizes may be per-
formed according to the structure of a pooling layer.

FIG. 8 1s a block diagram illustrating a configuration of an
clectronic system according to one or more embodiments.

In FIG. 8, the electronic system 80 may extract valid
information by analyzing input data in real time based on a
neural network and determine a situation or control the
configuration of a device including the electronic system 80
based on the extracted information, noting the electronic
device and the discussed neural network are also represen-
tative of another one of such a device. For example, the
clectronic system 80 may be applied to, or representative of,
a robotic device, such as a drone or an advanced driver
assistance system (ADAS), a smart TV, a smart phone, a
medical device, a mobile device, an 1image display device, a
measurement device, an Io'T device and various other types
of electronic devices, as non-limiting examples.

The electronic system 80 may include a processor 810, a
RAM 820, a neural network device 830, a memory 840, a
sensor module 850, and a communication module 860. The
clectronic system 80 may further include an input/output
module, a security module, and a power control device.
Some of hardware components of the electronic system 80
may be mounted on at least one semiconductor chip.

The processor 810 controls an overall operation of the
clectronic system 80. The processor 810 may include a
single processor core (Single Core) or a plurality of proces-
sor cores (Multi-Core). The processor 810 may process or
execute mstructions and/or data stored in the memory 840.
In one or more embodiments, the processor 810 may control
functions of the neural network device 830 by executing
instructions stored in the memory 840. The processor 810
may be implemented by a central processing umt (CPU), a
graphics processing unit (GPU), an application processor
(AP), etc.

The RAM 820 may temporarily store instructions, data, or
instructions. For example, instructions and/or data stored 1n
the memory 840 may be temporarily stored in the RAM 820
according to the control or booting code of the processor
810. The RAM 820 may be implemented as a memory, such
as dynamic RAM (DRAM), static RAM (SRAM), eftc.

The neural network device 830 may perform an operation
of the neural network based on received mput data and
generate an information signal based on the execution result.
Neural networks may include convolution neural networks
(CNN), recurrent neural networks (RNN), deep belief net-
works, restricted Boltzmann machines, etc., but are not
limited thereto. The neural network device 830 may be a
hardware accelerator dedicated to the neural network or a
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device including the same, and may correspond to the neural
network device described above with reference to FIGS. 4 to
7.

The neural network device 830 may control a plurality of
crossbar arrays so that the plurality of crossbar arrays share
and process the same input data by using a shift register
circuit 510, and select at least some of operation results
output from the plurality of crossbar arrays. Also, the neural
network device 830 may acquire a final output by accumu-
lating and adding the selected operation results 1n units of a
preset number of cycles. Accordingly, mput reuse 1is
increased and the number of memory access 1s decreased
when compared to typical hardware devices, and thus,
power consumption for driving the neural network device
830 may be reduced.

An miformation signal may include one of various types of
recognition signals, such as a voice recognmition signal, an
object recognition signal, an 1mage recognition signal, and a
biometric mformation recognition signal. For example, the
neural network device 830 may receive frame data included
in a video stream as mput data and generate, on the basis of
the frame data, a recognition signal with respect to an object
included 1n an 1mage displayed by the frame data. However,
examples are not limited thereto, and the neural network
device 830 may receive various types of mput data accord-
ing to the type or function of an electronic device on which
the electronic system 80 1s mounted, and alternatively also
representative of, and generate a recognition signal accord-
ing to the mnput data.

The memory 840 i1s a storage for storing data and may
store an operating system (OS), various instructions, pro-
grams, and various data. In an embodiment, the memory 840
may store intermediate results generated i a process of
performing an operation of the neural network device 830.

The memory 840 may be DRAM, but 1s not limited
thereto. The memory 840 may include at least one of volatile

memory and nonvolatile memory. The non-volatile memory
includes ROM, PROM, EPROM, EEPROM, flash memory,

PRAM, MRAM, RRAM, FRAM, etc. The volatile memory
includes DRAM, SRAM, SDRAM, PRAM, MRAM,
RRAM, FeRAM, etc. In an embodiment, the memory 840
may include at least one of HDD, SSD, CF, SD, Micro-SD,
Mim-SD, xD and Memory Stick.

The sensor module 850 may collect information around
an electronic device on which the electronic system 80 is
mounted. The sensor module 850 may sense or receive a
signal (e.g., an 1mage signal, a voice signal, a magnetic
signal, a bio signal, a touch signal, etc.) from the outside of
the electronic device and convert the sensed or received
signal 1nto data. To this end, the sensor module 850 may
include at least one of various types of sensing devices, for
example, a microphone, an 1imaging device, an image sensot,
a light detection and ranging (LL1IDAR) sensor, an ultrasonic
sensor, an infrared sensor, a bio sensor, and a touch sensor.

The sensor module 850 may provide converted data as
input data to the neural network device 830. For example,
the sensor module 850 may include an 1mage sensor, gen-
erate a video stream by photographing an external environ-
ment of the electronic device, and sequentially provide
successive data frames of the video stream to the neural
network device 830 as mnput data. However, the present
embodiment 1s not limited thereto, and the sensor module
850 may provide various types of data to the neural network
device 830.

The communication module 860 may include various
wired or wireless interfaces capable of communicating with
external devices. For example, the communication module
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860 may include a local area network (LAN), a wireless
local area network (WLAN), such as Wi-F1, a wireless
personal area network (WPAN), such as Bluetooth, a wire-
less universal sernial bus (USB), ZigBee, near-field commu-
nication (NFC), radio-frequency identification (RFID),
power-line commumcation (PLC), or a commumnication
interface capable of connecting to a mobile cellular network,
such as 3rd generation (3G), 4th generation (4G), long-term
evolution (LTE), or 5th generation (5G).

FIG. 9 1s a flowchart 1llustrating an operating method of
a neural network device according to one or more embodi-
ments.

In FIG. 9, a method of operating a neural network device
includes operations processed 1n a time series in the neural
network device illustrated in FIGS. 4 to 7. Accordingly, 1t
may be seen that even though omitted below, the descrip-
tions given with respect to FIGS. 4 to 7 may also be applied
to the operating method of the neural network device of FIG.
9.

In operation 910, a neural network device may sequen-
tially input mput activations included in an input feature
map nto a shift register circuit 310 according to a preset
order. The shift register circuit 510 may include a plurality
of registers that transfer stored data to the next register 1n
every cycle and store new data receirved from the previous
register.

In an example, the neural network device may sequen-
tially input input activations to the shift register circuit 510
in a row direction of the mput feature map. The input
activations 1put to the shift register circuit 510 may be
sequentially shifted from the first register to the last register
of the shift register circuit 510.

On the other hand, the neural network device may receive
a 1-bit zero mark 1n every cycle and, when the value of the
zero mark 1s 1, may control a plurality of crossbar array
groups to omit a MAC operation with respect to the mput
activations corresponding to the zero mark. The zero mark
may be input to the shift register circuit 310 together with
row-sized input activations, or may be separately stored.
However, the present embodiment 1s not limited thereto.

In operation 920, the neural network device may receive
an input activation from at least one of a plurality of registers
included 1n the shiit register circuit 510 and perform a MAC
operation on the received 1nput activation and weights, by
using a plurality of crossbar array groups. A plurality of
crossbar arrays included in one crossbar array group among
a plurality of crossbar array groups may share the same 1mput
activation. Accordingly, the mput reuse efliciency may be
significantly increased and a MUX {for processing input data
1s not required, and thus, a hardware structure may be
significantly simplified. Also, since a digital decoder and
control logic required to operate the crossbar array are
shared among the plurality of crossbar arrays, an area of
hardware may be reduced when compared to typical hard-
ware devices.

In this example, the number of crossbar arrays included 1n
one crossbar array group corresponds to a width of a weight
kernel, and the number of registers that transfer an input
activation to the plurality of crossbar array groups among
the plurality of registers may correspond to a height of the
weight kernel. The circuit structure of a neural network may
be adjusted to perform a neural network operation corre-
sponding to the size of the weight kernel.

In operation 930, the neural network device may obtain an
output activation included in an output feature map by
accumulating and adding at least some of the operation
results output from the plurality of crossbar array groups in
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units of a preset number of cycles. For example, the neural
network device selects at least some of the operation results
output from the plurality of crossbar array groups, converts
the selected operation results into a 2’s complement format,
and accumulates and adds the converted operation results,
and thus, may obtain an output activation.

The neural network device may calculate a first output
activation by using an operation result output from one
crossbar array among a plurality of crossbar arrays, and
calculate a second output activation by using an operation
result output from another crossbar array among the plural-
ity ol crossbar arrays.

The processing block, processing block 4, control circuit,
processing elements, sub-processing elements, crossbar
arrays, pooling registers, pooling operator, activation func-
tion, shift register circuit 510, control circuit 520, processing,
circuit 330, electronic system 80, processor 810, RAM 820,
neural network device 830, memory 840, sensor module
850, and a communication module 860 in FIGS. 1-9 that
perform the operations described in this application are
implemented by hardware components configured to per-
form the operations described 1n this application that are
performed by the hardware components. Examples of hard-
ware components that may be used to perform the operations
described in this application where appropriate include
controllers, sensors, generators, drivers, memories, Com-
parators, arithmetic logic units, adders, subtractors, multi-
pliers, dividers, integrators, and any other electronic com-
ponents configured to perform the operations described in
this application. In other examples, one or more of the
hardware components that perform the operations described
in this application are implemented by computing hardware,
for example, by one or more processors or computers. A

processor or computer may be implemented by one or more
processing elements, such as an array of logic gates, a
controller and an arithmetic logic unit, a digital signal
processor, a microcomputer, a programmable logic control-
ler, a field-programmable gate array, a programmable logic
array, a microprocessor, or any other device or combination
of devices that 1s configured to respond to and execute
instructions 1n a defined manner to achieve a desired result.
In one example, a processor or computer includes, or 1s
connected to, one or more memories storing instructions or
software that are executed by the processor or computer.
Hardware components implemented by a processor or com-
puter may execute instructions or software, such as an
operating system (OS) and one or more soltware applica-
tions that run on the OS, to perform the operations described
in this application. The hardware components may also
access, manipulate, process, create, and store data 1n
response to execution of the instructions or software. For
simplicity, the singular term “processor” or “computer” may
be used 1n the description of the examples described 1n this
application, but 1 other examples multiple processors or
computers may be used, or a processor or computer may
include multiple processing elements, or multiple types of
processing elements, or both. For example, a single hard-
ware component or two or more hardware components may
be mmplemented by a single processor, or two or more
processors, or a processor and a controller. One or more
hardware components may be implemented by one or more
processors, or a processor and a controller, and one or more
other hardware components may be implemented by one or
more other processors, or another processor and another
controller. One or more processors, or a processor and a
controller, may implement a single hardware component, or
two or more hardware components. A hardware component
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may have any one or more of different processing configu-
rations, examples of which include a single processor,
independent processors, parallel processors, single-instruc-
tion single-data (SISD) multiprocessing, single-instruction
multiple-data (SIMD) multiprocessing, multiple-instruction
single-data (MISD) multiprocessing, and multiple-instruc-
tion multiple-data (MIMD) multiprocessing.

The methods illustrated 1n FIGS. 1-9 that perform the
operations described in this application are performed by
computing hardware, for example, by one or more proces-
sors or computers, implemented as described above execut-
ing 1nstructions or software to perform the operations
described in this application that are performed by the
methods. For example, a single operation or two or more
operations may be performed by a single processor, or two
Or more processors, or a processor and a controller. One or
more operations may be performed by one or more proces-
sors, or a processor and a controller, and one or more other
operations may be performed by one or more other proces-
sors, or another processor and another controller. One or
more processors, or a processor and a controller, may
perform a single operation, or two or more operations.

Instructions or software to control computing hardware,
for example, one or more processors or computers, to
implement the hardware components and perform the meth-
ods as described above may be written as computer pro-
grams, code segments, instructions or any combination
thereof, for individually or collectively instructing or con-
figuring the one or more processors or computers to operate
as a machine or special-purpose computer to perform the
operations that are performed by the hardware components
and the methods as described above. In one example, the
instructions or soitware include machine code that 1s directly
executed by the one or more processors or computers, such
as machine code produced by a compiler. In another
example, the instructions or software includes higher-level
code that 1s executed by the one or more processors or
computer using an interpreter. The nstructions or software
may be written using any programming language based on
the block diagrams and the flow charts illustrated in the
drawings and the corresponding descriptions in the specifi-
cation, which disclose algorithms for performing the opera-
tions that are performed by the hardware components and
the methods as described above.

The structions or soitware to control computing hard-
ware, for example, one or more processors or computers, o
implement the hardware components and perform the meth-
ods as described above, and any associated data, data files,
and data structures, may be recorded, stored, or fixed 1n or
on one or more non-transitory computer-readable storage
media. Examples of a non-transitory computer-readable
storage medium 1nclude read-only memory (ROM), ran-

dom-access memory (RAM), flash memory, CD-ROMs,
CD-Rs, CD+Rs, CD-RWs, CD+RWs, DVD-ROMs, DVD-

Rs, DVD+Rs, DVD-RWs, DVD+RWs, DVD-RAMs, BD-
ROMs, BD-Rs, BD-R LTHs, BD-REs, magnetic tapes,
floppy disks, magneto-optical data storage devices, optical
data storage devices, hard disks, solid-state disks, and any
other device that 1s configured to store the instructions or
soltware and any associated data, data files, and data struc-
tures 1n a non-transitory manner and provide the instructions
or software and any associated data, data files, and data
structures to one or more processors or computers so that the
one or more processors or computers can execute the
instructions. In one example, the instructions or software
and any associated data, data files, and data structures are
distributed over network-coupled computer systems so that
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the 1nstructions and software and any associated data, data
files, and data structures are stored, accessed, and executed
in a distributed fashion by the one or more processors or
computers.

While this disclosure includes specific examples, 1t waill
be apparent after an understanding of the disclosure of this
application that various changes 1n form and details may be
made 1n these examples without departing from the spirit
and scope of the claims and their equivalents. The examples
described herein are to be considered 1n a descriptive sense
only, and not for purposes of limitation. Descriptions of
features or aspects 1n each example are to be considered as
being applicable to similar features or aspects in other
examples. Suitable results may be achieved 1t the described
techniques are performed i1n a different order, and/or 1t
components in a described system, architecture, device, or
circuit are combined 1n a different manner, and/or replaced
or supplemented by other components or their equivalents.
Theretore, the scope of the disclosure 1s defined not by the
detailed description, but by the claims and their equivalents,
and all variations within the scope of the claims and their
equivalents are to be construed as being included in the
disclosure.

What 1s claimed 1s:

1. A neural network device comprising;:

a shiit register circuit comprising registers configured to,
in each cycle of plural cycles, transfer stored data to a
next register and store new data received from a
previous register;

a control circuit configured to sequentially input data of
input activations included 1n an mput feature map into
the shift register circuit 1n a preset order; and

a processing circult, comprising crossbar array groups
that recerve the input activations from at least one of the
registers and perform a multiply-accumulate (MAC)
operation with respect to the recerved mput activation
and weights, configured to select at least some of
operation results output from the crossbar array groups
at a preset number of cycles to be converted and
accumulate and add the at least some operation results
using a result of the converted to obtain an output
activation 1n an output feature map.

2. The neural network device of claim 1, wherein the
control circuit 1s further configured to receirve a 1-bit zero
mark on each of the plural cycles, and 1n response to a value
of the zero mark being 1, to control the crossbar array groups
to omit a MAC operation with respect to mput activations
corresponding to the zero mark.

3. The neural network device of claim 1, wherein crossbar
arrays included 1n one crossbar array group of the crossbar
array groups share a same 1nput activation.

4. The neural network device of claim 3, wherein each of
the crossbar arrays comprises:

a plurality of row lines;

a plurality of column lines intersecting the plurality of

row lines; and

memory cells respectively disposed at the intersections of
the plurality of row lines and the plurality of column
lines, and configured to store the weights included 1n a
weight kernel.

5. The neural network device of claim 3, wherein the
processing circuit 1s further configured to obtain a first
output activation using an operation result output from one
of the crossbar arrays, and obtain a second output activation
using an operation result output from another of the crossbar
arrays.
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6. The neural network device of claim 3, wherein a
number of the crossbar arrays included in the one crossbar
array group corresponds to a width of a weight kernel.

7. The neural network device of claim 1, wherein a
number of registers that transfer input activation to the
crossbar array groups from the registers corresponds to a

height of a weight kernel.

8. The neural network device of claim 1, wherein the
processing circuit 1s further configured to convert the
selected operation results into a 2's complement format, and
accumulate and add the converted operation results to obtain
the output activation.

9. The neural network device of claim 1, wherein

the processing circuit comprises an output line through

which the output activation 1s output, and

the output line corresponds to an output of one of a

plurality of layers constituting a neural network, and 1s
directly connected to an mnput line of a next layer.

10. The neural network device of claim 9, wherein the
next layer comprises either one or both of a convolution
layer and a pooling layer.

11. A method of a neural network device, the method
comprising;

sequentially mputting mmput activations included i an

input feature map 1nto a shift register circuit 1n a preset
order;
receiving an input activation of the input activations from
at least one of a plurality of registers, of the shift
register circuit, corresponding to a corresponding
crossbar array group of crossbar array groups and
performing a multiply-accumulate (MAC) operation on
the received input activation and weights; and

obtaining an output activation included i an output
feature map by selecting at least some of operation
results output from the crossbar array groups at a preset
number of cycles to be converted and accumulating and
adding the at least some of operation results based on
a result of the converted.

12. The method of claim 11, further comprising:

recetving a 1-bit zero mark on each cycle of the sequen-

tially inputting of the input activations; and

in response to the a value of the zero mark being 1,

controlling the crossbar array groups to omit the MAC
operation with respect to mput activations correspond-
ing to the zero mark.

13. The method of claim 11, wherein crossbar arrays
included 1n one crossbar array group of the crossbar array
groups share a same input activation.

14. The method of claim 13, wherein each ot the crossbar
arrays comprises:

a plurality of row lines;

a plurality of column lines intersecting the plurality of

row lines; and

memory cells respectively disposed at the intersections of

the plurality of row lines and the plurality of column
lines, and configured to store the weights of a weight
kernel.

15. The method of claim 13, further comprising:

obtaining a first output activation using an operation result

output from one of the crossbar arrays; and

obtaining a second output activation using an operation

result output from another crossbar array of the cross-
bar arrays.

16. The method of claim 13, wherein a number of the
crossbar arrays included in the one crossbar array group
corresponds to a width of a weight kernel.
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17. The method of claim 11, wherein a number of registers
that transier input activation to the crossbar array groups
from the plurality of registers corresponds to a height of a
weight kernel.

18. The method of claim 11, wherein the obtaining the
output activation comprises:

converting the selected operation results mto a 2's

complement format; and

accumulating and adding the converted operation results.

19. The method of claim 11, further comprising outputting
the output activation via an output line, wherein the output
line corresponds to an output of one of a plurality of layers
constituting a neural network, and 1s directly connected to an
input line of a next layer.

20. The method of claim 19, wherein the next layer
comprises either one or both of a convolutional layer and a
pooling layer.
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