12 United States Patent

Koren et al.

US011836083B2

US 11,836,083 B2
Dec. 5, 2023

(10) Patent No.:
45) Date of Patent:

(54) MEMORY ACCESS TRACKING USING A
PERIPHERAL DEVICE

(71) Applicant: Mellanox Technologies, Ltd., Yokneam
(L)

(72) Inventors: Ran Avraham Koren, Beljing (CN);
Ariel Shahar, Jerusalem (IL); Liran
Liss, Atzmon (IL); Gabi Liron,
Yokneam Illit (IL); Aviad Shaul
Yehezkel, Yokneam Illit (IL)

(73) Assignee: MELLANOX TECHNOLOGIES,
LTD., Yokneam (IL)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 0 days.

(21) Appl. No.: 17/536,141

(22) Filed: Nov. 29, 2021
(65) Prior Publication Data
US 2023/0133439 Al May 4, 2023
(30) Foreign Application Priority Data
Nov. 3, 2021 (CN) .o, 202111296474.1
(51) Imt. CL
GO6F 12/0882 (2016.01)
GO6F 13/16 (2006.01)
GO6F 12/0831 (2016.01)
(52) U.S. CL
CPC ... GO6F 12/0882 (2013.01); GO6F 12/0833

(2013.01); GO6F 12/0835 (2013.01); GO6F
1371673 (2013.01)

(58) Field of Classification Search

None
See application file for complete search history.

20

| COMPUTE NODE
48

iii
(L 4 Jd]
I
t Tawrn
¥] »
3
g:‘ﬂ-‘ll [ir:) }
r

nnnnnnnnnnnnnnnnnnnnnn

SOFTWARE (E.G.,
HYPERVY

DIRTY-PAGE DATA
STRUCTURE (E.G,
2 MAF)

= 7 W E rFrw3lEWIrCETEETEFSEEIETFrYT AW EEFFE TN w7 W R EEETEITEWEAEWTEEIETITEEITEITLETEETEFTETETEFFTE Y ELEEE T AT AETEEE ST I EETLE

ii

(56) References Cited
U.S. PATENT DOCUMENTS

8,255,475 B2 8/2012 Kagan et al.
8,745,276 B2 6/2014 Bloch et al.
8,914,458 B2 12/2014 Raindel et al.
9,298,642 B2 3/2016 Kagan et al.
9,361,145 B1* 6/2016 Wilsonc.c.ccvvvn, GOO6F 13/28
9,552,233 B1* 1/2017 Tsirkin GO6F 9/4856
9,639,464 B2 5/2017 Eran et al.
10,496,595 B2 12/2019 Degani et al.

7/’2020 Menachem et al.
(Continued)

10,708,240 B2

OTHER PUBLICATTONS

Ben-Ishay et al., U.S. Appl. No. 17/372,466, filed Jul. 11, 2021.
(Continued)

Primary Examiner — Yaima Rigol

(74) Attorney, Agent, or Firm — KLIGLER &
ASSOCIATES PATENT ATTORNEYS LTD

(57) ABSTRACT

A compute node includes a memory, a processor and a
peripheral device. The memory 1s to store memory pages.
The processor 1s to run software that accesses the memory,
and to 1dentily one or more first memory pages that are
accessed by the software in the memory. The peripheral
device 1s to directly access one or more second memory
pages 1n the memory of the compute node using Direct
Memory Access (DMA), and to notily the processor of the
second memory pages that are accessed using DMA. The
processor 1s further to maintain a data structure that tracks
both (1) the first memory pages as 1dentified by the processor
and (11) the second memory pages as notified by the periph-
eral device.

21 Claims, 2 Drawing Sheets

28

| MEMORY |

iiiiiiiiiiiiiiiiiiiiiiiiiiiiii

nn

n 4
N
. .
3 o 4 - Y E] [y -
¥ N1
. g M - L
v A . ‘
] .
e
f ™
. . o ; | A
4 1+ o B b
L - + ! | ETETY . -
N - N
a M ' N
e L Tara eyt - . Lmrary . b
. .
. N
i - L]
) b
.
;- : :
.2 § b
. L]
. .
N
) L]
r
’ .
" N
)
- N

SOR, VMs,

= w7 iT7WWITWELEEEEITLTITEEITEMLLEE T RALEEINT EMLEEIEES TE W N IATTEEEEATETEEIFATEETEE LY EEEIIFAETEETEFLEEIENICAETENEFLEETERCEETE

DIRTY-PAGE REPORTING

32~ P

ERIPHERAL DEVICE (£.G,, NIC, 55D,]

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn " b - B I BT Wk Rl R k. bk Rk Bk o277 .kl bk E% okl ko ko2 f ok ko kT .k kb kI SR ko7l R E k8B EEo+ bkd Ed R SRR R R .k

US 11,836,083 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
10,884,790 B1* 1/2021 Saidi GO6F 12/1027
10,956,202 B1* 3/2021 Sicron GOG6F 3/0664
2007/0180161 Al* 82007 Asada GO6F 13/28
710/22
2012/0159101 Al1* 6/2012 Miyoshr GO6F 12/109
711/E12.103
2012/0179855 Al* 7/2012 Tsukin GO6F 9/45558
711/6
2014/0181461 Al* 6/2014 Kegel GO6F 12/0891
711/206
2016/0253197 Al* 9/2016 Bonzini GO6F 12/0893
718/1
2016/0292813 Al* 10/2016 Bittner GO06T 1/60
2016/0350236 Al1* 12/2016 Tsukin GO6F 12/1081
2017/0046185 Al1* 2/2017 Tsukin GO6F 12/1009
2017/0083465 Al1* 3/2017 Jancoooeeeeennn, GOO6F 3/0647
2021/0165675 Al1* 6/2021 Wang GO6F 9/45558
2021/0224210 Al1* 7/2021 Ouyang GO6F 9/4411

OTHER PUBLICATIONS

Oved et al., U.S. Appl. No. 17/503,392, filed Oct. 18, 2021.
Bar-Ilan et al., U.S. Appl. No. 17/234,189, filed Apr. 19, 2021.

* cited by examiner

U.S. Patent Dec. 5, 2023 Sheet 1 of 2 US 11.836,083 B2

44 ' 40

tt

PROCESSOR (E.G., CPU!

iii

DIRTY-PAGE DATA SUFTWARE (E.G.,
STRUCTURE ARG, ¢ HYPERVIGOR, VMs,
2T VAR) APPs, 05,)

ii

32 [PERIPHERAL DEVICE (E.G, NIC SSD,.)

--

NIC RECEIVES DATA FROM

NETWORK, ANDWRITES |
- DIRECTLY TO MEMORY PAGES |
IN VM MEMORY USING DMA |

54

NIC RECORDS ADDRESSES OF |
| MEMORY PAGES WRITTEN VIA |
DMATO VM MEMORY |

| HYPERVISOR WRITES MEMO

PAGES ON BEHALF OF VM

\IC REPORTS MEMORY-PAGE |

™| ADDRESSES TO HYPERVISOR

66

| HYPERVISOR UPDATES DIRTY-PAGE BITMAP OF VM TO REFLECT DIRTY PAGES |
| (BOTHPAGES WRITTEN BY HYPERVISOR AND PAGES WRITTEN BY NiC)

. Patent Dec. 5, 2023 Sheet 2 of 2 S 11,836,083 B2

/0B

5 W W E REEE AW LT AT NREYTET AYEEAYE AW E AN AN E LYW AW EATEE AW EAYWATEWEFETEAEEESFETE AT ETEWAEWLTEE R = naww eww s adldes s wde resheesilds e aTE B AT ETE SN ETY AT E SN AW AW E ALY ATETE SN AW ATETEEFTWATEESFTYYAEWESFYTW AT ETTEEAWEETYWAETWETTEWAWEETEEAEW AW

source Compute Node Destination Compute Node

L LA - L P I P L R N A AT At AL hh Y E AL dh

1 -
CEE IR BE S SE BE B A BERC S B S B BC N B B B 9 -i‘-l.
1 L1 [X]
[- Y a

i W L "W EWTTYT LYW IYWSE LYWL FYTYALETYT ALY LYY FYTYAYEY ALY FYYELYYAEY NSRS LYY R

b P LB P L N B P L ML UL ML PN

e W A PN 0 ML LA ML PPN L P O B P A

Vit

LI P B PO B PP P DL B DL LA
.
1

- W EWWWFETYTATEEELATYTEAEAErig

o F ekt PP

=% s r3 3 i s s edlis s ris el B FYSAETT ARTSATYTYE AT EATY nlids s s s s s sl le s rFYTET R YRERE N

NN A N R N R A R N NN N I R I TN NN N

. . - , L) . . o]
. » - 4
K . L) ¥
" - K - *
. . K 1, 1
. . . * | » [
- ¥
* ¥ 1 L] L n
o 1, u:]
& " " - - L)
o L " 1
. . 1 - -
i - * ‘II:
" - 'y u;
" . * * - -
d - + ¥, - 4;
L] L] . * L
- 1 K
" E] - *
- w
3 . L -)
u
A
-
-]
3 o
LY =
T 1 1 b
-y .
1
- - 0
L] . 1 .

DMANIC s

w rom

-
e
S
i

L]
ra s ow

L L LA T L - L

ek ke kA kP ek kAl kP e kPRl kY Rkl kAR A Yk hd kA bk Rkl ek Rk Ak P ek kAP d Pkl kP kY

+
-+
-+
w
+
-+
I,
[,
- ;]
ok W OE bk om . " & m A N ok oBom W E B B Rk N B a B R W 4 m R oa mo§ a o om N N N e N N . 4 & . Ak kW omoa R m . w PR " o a g a W R B R ok N Roa R R
LY
u
-
*;
u
+
-+
[,
L)
+
-+
n
w
-
4
-
4
+
u
1
-
-
4
+
[,
+
+.
- N
+ [3
o +
+ -
" < -
+
- -
-
+ *
n
+ +
: . ma e ntam At a el e et E E T E Ena o E 4 m 'H it la et ma'e m e s e ula m T mw e nla w e aeE i m e a m e ua T aa e i'a mua momnamala mim e miaiim'm il ale e iiieleiiiioweia
+
I,
+
I,
i
-
-
4
+
- <
+. ‘\t+hh+l\'+\\+hh1+'|'|+'|'|-I.+'|'|+l'a-r-l-'|-|-I-l'|-I.+'a'a+I'a-I.-I-'a'a-I-l'a-I.-I-'a'a+'|'|-|.+'|'|+'|'|-I.+'|-r+'|'a-I.-l-'l'--l-'a'l+‘|'a\-+\\+‘|\1+\h+*\1+\\++\1+h
- +
+ =
-
< -
L)
- -
+ -
" T
+ *
n
4 1 *
+
- - - s
+ . A "
Eh - .
L L] i‘hq - L] L] .
3 - 1
4 . . 1
4 [l
+ +
I, .
i 1
- 1
= =
+. d
+
w .
+
+ 1
-
-+ 4
" + R T e T T T T T e T T L L .
- + -l lil. L]
< -'l -
K + .
i + o R N N N I) + 4 5 ok hh 4 kA b R 4 kA A k4 b4 kA b bk d A b kA a4 b k4 kAN k4t 4 .
o + ‘_-.- 1 - .
- Lt - -
+ . . K s 1
4 . L A W [l
. - 1 1 . .
- * -i“l * 11- 1
= .
*, - T, ¥ J'l. d
+ 1 +
u - = . - HE s .
+ - - -
+ o = 4+t 1
-+ . - ¥ + 4
-+ -I.. * l‘-I. L]
N + -+ + L
" :l 4+ -i+
.
4 4 ¥ e
1 + e
I, - -
o Al * .
ul - i
+ . K .t
u - ¥ L
4 + - L]
L L
L - 4t
4 - - --I-"
+. -I.. [8
L + -
[- -
L. 4+ -
+ LY h +
. -
-+ - - [8
1 LI L
LS - =k -
1 LN
L) T, L] -
4 LR] L] A +F
< 14 ndmsarisssssrdidsassbmrissssnasdascdasardsrasssasddadasnasdlasndsssdboeasasnsdsrisansdsrisassdswrisasdsrsascasdsrdasbdssrdsasassrise=asd
w? 4 ‘
+ A -
& D I T I N R A NN L R R T T T N T N N T B T e L W N UL N RO RO
¥
[, "
h -
4 -
-+ -
L]
+]
+. -
u A
+ L]
4 L]
4 L]
n -
+ -
4 L]
[, -
=] L]
- L
LY L]
L L]
- L
i L I T T T e L T T B T T T T T T T T e e e e e o e A T o Tl o T A S e T T e T T TP T T I I A T o T T N T T T TP P T L L
w - .
+ L] -
4 . -
4 " i -
n [-
+ ; L] L]
4 - L]
I,] -
Ly - 3 -
- - -
w I -
[F] -
4 - -
+. - []
n; 4 -
+ L] L]
4 L L]
LS 1+ -
L - A -
+: I I I I I N N N R R N N R N L]
L L]
u -
+ -
-+ []
[, -
- Iy
* -
4 -4+ -
- a
+. [8 -
u -
- L]
4 L]
I, -
Lo -
4 E . L]
L L]
L]
u -
.
+ -
-+ -
[, -
<
= - L]
-
- - -
LY. -
-+ + -
+ L]
4 L]
i 4 % 4 & F 44 A8 4 h kb A b4 kA bk ch k4 kA h b4k Ay kA k4 b s E Ay 4k kbt h bk kA b+ kA bk bk h kb kA kAN bk Ak h bk kb4 FAh kb FAh ko Fd kAt kA kT o+ hd kA o+ k4 kA h ok k4 Fhh +h Rk 3
]
L] -
.
4 . L]
L . L]
u N P I S AP NI g B ek ke E ek B M W e W R N . - !
i
+ + & *. - -
L] . * = .
L] -
A + + 1
. -
rY r - A 4 a '
. - - .
£ i : : y
- L] R 1 L] »
L] + 4 L] .
- - ™ 4+ []
- L]
- - - .
[] -
£ * * L]
-
Y L L 1 Ly
I EENELEN RN E N 4 1
] - i = = -
- L] . ., n *
L - - -
] + 1 L]
. -
] - [l]
-
- " .
"
i | + 1
-
- - d
-
] 1 .
-
n L] L]
-
L] - d
L] 4+ -
.
I E T R R R A E E E E A E E E] . L]
[]
L]
.
.
-
b "
L L N N N N N N N N N N N N N e T T I T e T e e e I N e L T O I L L L T I e I N I N L P e |
-
+] .
-
LI []
-
-
+
.
-
-
-
-
L] - -
L] * -
L i L]
- - []
+ - "l
L] + L L]
- i L]
1 - -
- = -
- 4 -
L] r L]
L] = -
L] + -
L i []
+ - -
-
L]
‘-i -

L I BN DL P A D L DL R N L BN P B P B T D B P B T I P UL L AN DL B DO L L B DL - DL, DL DL N DL TR B B DL DL LY, B DL P DL L D DL B R I B P LA DL DL L D DN A DL LK TN DL B LA B UL P D R L BN D L N P L DY L DL L I YL DL P L L L N L R LKL N PR LS. B BB L R
i

FIG. 3

US 11,836,083 B2

1

MEMORY ACCESS TRACKING USING A
PERIPHERAL DEVICE

FIELD OF THE INVENTION

The present invention relates generally to computing
systems, and particularly to methods and systems memory
management.

BACKGROUND OF THE INVENTION

Computing systems commonly track access to memory
pages by hardware or software. Depending on the applica-
tion or use-case, a computing system may track only write-
access, 1.e., only memory-access operations that modily
memory pages, or both read- and write-access. Memory-
page tracking 1s useful 1n a wide variety of use-cases, e.g.,
in migration ol Virtual Machines (VMs) between physical
compute nodes, 1n page-swapping between a memory and a
storage device, 1n various caching schemes, to name only a
few examples.

SUMMARY OF THE INVENTION

An embodiment of the present invention that 1s described
herein provides a compute node including a memory, a
processor and a peripheral device. The memory 1s to store
memory pages. The processor 1s to run soiftware that
accesses the memory, and to identily one or more first
memory pages that are accessed by the software in the
memory. The peripheral device 1s to directly access one or
more second memory pages 1n the memory of the compute
node using Direct Memory Access (DMA), and to notify the
processor of the second memory pages that are accessed
using DMA. The processor 1s further to maintain a data
structure that tracks both (1) the first memory pages as
identified by the processor and (11) the second memory pages
as notified by the peripheral device.

In some embodiments, the peripheral device 1s a network
adapter, and the second memory pages include data that 1s
communicated by the network adapter between the proces-
sor and a network.

In some embodiments, the software includes a quest that
1s hosted on the compute node, the guest having a memory
space allocated 1n the memory, and the processor 1s to track,
in the data structure, dirty pages belonging to the memory
space ol the quest, the dirty pages including both (1) first
dirty pages that were written-to by the guest, and (11) second
dirty pages that were written-to by the peripheral device. In
an example embodiment, the processor 1s to carry out a
process that migrates the guest to another compute node, in
cooperation with the other compute node and using the data
structure that tracks the first dirty pages and the second dirty
pages. In an embodiment, the peripheral device 1s to limit a
rate of traflic for the guest being migrated.

In a disclosed embodiment, the processor 1s to carry out
a process that swaps some of the memory pages with a
storage device, using the data structure that tracks the first
memory pages and the second memory pages.

In some embodiments, the peripheral device 1s to coalesce
indications of accesses to the second memory pages, and to
notily the processor by sending the coalesced indications. In
an example embodiment, the peripheral device is to coalesce
the 1indications by buflering the indications 1n a coalescing,
bufler. In another embodiment, the peripheral device 1s to
coalesce the 1indications by setting bits, which represent the
second memory pages, 1n a bitmap.

10

15

20

25

30

35

40

45

50

55

60

65

2

In yet another embodiment, the peripheral device 1s to
notily the processor of the second memory pages by writing
directly 1nto the data structure maintained by the processor.
In still another embodiment, the peripheral device 1s to
notily the processor of the second memory pages by report-
ing respective addresses of the second memory pages.

There 1s additionally provided, in accordance with an
embodiment of the present imnvention, a method including,
using processor, running software that accesses a memory,
and 1dentifying one or more first memory pages that are
accessed by the software 1n the memory. Using a peripheral
device, one or more second memory pages are accessed
directly 1n the memory using Direct Memory Access
(DMA), and the processor 1s notified of the second memory
pages that are accessed using DMA. A data structure, which
tracks both (1) the first memory pages as i1dentified by the
processor and (11) the second memory pages as notified by
the peripheral device, 1s maintained by the processor.

There 1s also provided, in accordance with an embodi-
ment of the present invention, a method for joint tracking of
(1) memory pages that are accessed by software of a pro-
cessor and (1) memory pages that are accessed by a periph-
cral device independently of the processor. The method
includes running on the processor software that accesses a
memory, and 1dentifying one or more memory pages that are
accessed by the software. One or more memory pages are
accessed directly, the peripheral device using Direct
Memory Access (DMA), and the processor 1s notified of the
memory pages that are accessed using DMA. A data struc-
ture, which tracks both (1) the memory pages accessed by the
soltware, as 1dentified by the processor, and (11) the memory
pages accessed by the peripheral device, as notified by the
peripheral device, 1s maintained by the processor.

The present mnvention will be more tully understood from
the following detailled description of the embodiments
thereol, taken together with the drawings 1n which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram that schematically illustrates a
compute node that carries out memory-page tracking
assisted by a peripheral device, 1n accordance with an
embodiment of the present invention;

FIG. 2 1s a flow chart that schematically illustrates a
method for tracking memory pages, in accordance with an
embodiment of the present invention; and

FIG. 3 1s a block diagram that schematically illustrates
migration of a Virtual Machine (VM) between compute
nodes, 1 accordance with an embodiment of the present
ivention.

DETAILED DESCRIPTION OF EMBODIMENTS

Overview

Embodiments of the present invention that are described
herein provide improved methods and systems for tracking
memory-page access i a compute node. In the present
context, memory pages that have been accessed are also
referred to as “dirty pages,” and the two terms are used
interchangeably herein. The exact definition of a “dirty
page,” and the defimtion of when a page 1s no longer
considered dirty, may differ depending on the application.

In some applications a page becomes dirty when it 1s
modified, and 1s considered dirty until some consistency has
been achieved, e.g., when the modified page has been
committed to storage. In other applications, e.g., applica-
tions that track least-recently-used (LRU) or most-recently-

US 11,836,083 B2

3

used. (MRU) pages, reading a page 1s sullicient to render the
page dirty. Generally, the disclosed techniques can be used
in any suitable application that involves tracking of access to
memory pages. Example use-cases relating to Virtual
Machine (VM) migration and page-swapping are described
herein.

In some embodiments, a compute node comprises a
memory and a processor. The processor runs soiftware that,
among other tasks, accesses (e.g., reads and/or writes)
memory pages 1n the memory. The soltware may comprise,
for example, a hypervisor or an Operating System (OS). In
addition, the compute node comprises a peripheral device

that accesses the memory using Direct Memory Access
(DMA).

In one example, the peripheral device 1s a network adapter
that recerves data from a network and writes the data directly
into the compute nodes memory. In another example, the
peripheral device 1s a storage device such as a Solid-State
Drive (SSD) that stores data for a CPU of the compute node.
When performing read operations for the CPU, data 1s pulled
from the storage device and written using DMA 1nto the
CPU memory. These DMA operations may transfer large
amounts of data to the CPU memory, without CPU inter-
vention.

In some implementations, the processor (including the
soltware running thereon) 1s unaware of the memory-access
operations performed by the peripheral device, because
these operations are performed using DMA. The processor
can therefore 1identify and track the memory pages accessed
(“dirtied”) by the software, but not the memory pages
accessed by the peripheral device. Such partial tracking of
dirty pages 1s problematic and may lead to data inconsis-
tency and suboptimal performance.

To address this challenge, 1n some embodiments of the
present invention, the peripheral device notifies the proces-
sor which memory pages have been accessed by the periph-
eral device using DMA. The processor maintains a data
structure that tracks both (1) memory pages accessed by the
software (as i1dentified by the processor) and (11) memory
pages accessed by the peripheral device (as notified by the
peripheral device). In this manner, the processor 1s able to
tully track all dirty pages 1in the memory, regardless of the
entity that rendered these pages dirty.

In some embodiments, the above-described memory-page
tracking scheme 1s implemented entirely 1n hardware. The
peripheral device may use various protocols and formats for
reporting the memory pages 1t accesses. Several examples
are described herein.

System Description

FIG. 1 1s a block diagram that schematically illustrates a
compute node 20 that tracks dirty pages 1n accordance with
an embodiment of the present invention. FIG. 1 1s relatively
generic, 1n the sense that it 1s not application-specific and 1s
applicable to various types of compute nodes and peripheral
devices. Several concrete examples are described further
below.

Compute node 20 may comprise, for example, a server in
a data center, a workstation, or any other suitable type of
compute node. Node 20 comprises a processor 24 and a
memory 28. In the present example processor 24 comprises
a Central Processing Unit (CPU), but the processor may
alternatively comprise a Graphics Processing Unit (GPU)
any other suitable type of processor. Memory 28 comprises
a Random-Access Memory (RAM) in the present example,
but may alternatively comprise any other suitable type of
memory.

10

15

20

25

30

35

40

45

50

55

60

65

4

Node 20 further comprises a peripheral device 32 that
communicates with processor 24 and with memory 28 over
a peripheral interface 36. Peripheral device 32 may com-
prise, for example, a network adapter such as an Ethernet
Network Interface Controller (NIC), an InfiniBand Host
Channel Adapter (HCA), a Smart-NIC, a Data Processing
Unit (DPU), a network-enabled GPU, or any other suitable
type ol network adapter. As another example, peripheral
device 32 may comprise a storage device, such as a Solid-
State Drive (SSD) or a Small Computer System Interface
(SCSI) disk. Further alternatively, peripheral device 32 may
comprise an accelerator implemented 1n a GPU or Field-
Programmable Gate Array (FPGA), any other suitable type
of peripheral device. Peripheral interface 36 may comprise,
for example, a Peripheral Component Interconnect express
(PCle) bus.

In some embodiments, processor 24 runs soitware 40 that,
among other tasks, accesses memory pages 44 1n memory
28. Software 40 may comprise, for example, a hypervisor,
one or more VMs, one or more applications (“apps™), an OS,
and/or any other suitable type of software. Software 40 may
read and/or write memory pages 44, as appropriate. In the
description that follows, memory pages 44 are also referred
to simply as “pages,” for brevity.

In addition to the memory accesses (read and/or write) by
soltware 40, memory pages 44 are also accessed (read
and/or written) by peripheral device 32 using DMA. Periph-
eral device 32 may access the same memory pages as
soltware 40, partially overlapping memory pages, or difler-
ent memory pages. Typically, accesses to memory pages 44
by software 40 and by peripheral device 32 are not coordi-
nated with one another. In particular, processor 24 1s typi-
cally unaware of which memory pages 44 have been
accessed (“dirtied”) by peripheral device 32.

In order to enable full, 1.e., impartial tracking of dirty
pages, peripheral device 32 reports the pages 1t 1s accessing
to processor 24. Peripheral device 32 typically sends such
report messages over intertace 36, e.g., periodically. Several
examples of eflicient reporting formats are described below.

Based on the reports from peripheral device 32, processor
24 maintains a dirty-page data structure 48 that tracks both
(1) memory pages accessed by software 40 (as 1dentified by
processor 24) and (1) memory pages accessed by peripheral
device 32 (as reported by the peripheral device). In some
embodiments, dirty-page data structure 48 comprises a bit-
map 1n which each bit corresponds to a respective memory
page. A set bit in the bitmap means that the corresponding
page 1s dirty, and vice versa.

Processor 24 may 1dentily the pages that are accessed
(“dirtied”) by software 40 1n various ways. For example, the
processor may maintain a page table having multiple Page-
Table Entries (PTEs). When software 40 dirties a certain
memory page, processor 24 may set a respective bit 1n the
corresponding PIE to indicate that the page 1s dirty.

FIG. 2 1s a flow chart that schematically illustrates a
method for tracking memory pages 1in compute node 20, in
accordance with an embodiment of the present invention. In
the present example, software 40 1s a hypervisor that hosts
VMs, (11) peripheral device 32 1s a NIC, (111) peripheral
interface 36 1s a PCle bus, and (1v) dirty pages are defined
as pages that are written-to, 1.e., modified.

As seen 1n the figure, memory 28 1s written-to both by the
hypervisor and by the NIC, typically without mutual coor-
dination or awareness. At a hypervisor access operation 50,
the hypervisor writes to some of memory pages 44 on behalf

US 11,836,083 B2

S

of the VMs. At a MID access operation 54, the NIC receives
data from the network and writes the data using DMA to
some of memory pages 44.

In the present example, the NIC operates in a pass-
through mode, using Single Root Input/Output virtualization
(SR-IOV). In this mode, the NIC exposes a respective
virtual NIC (vINIC) for each VM. Each vNIC 1s configured
to write data directly into the memory space of the corre-
sponding VM, using DMA. The hypervisor 1s unaware of
these DMA operations, and cannot track pages that are
written by the NIC.

To enable impartial dirty-page tracking, the NIC records
the addresses of the memory pages that were written-to, at
a recording operation 58. Typically, the NIC tracks and
records the addresses in accordance with the physical

memory space defined for the VM (1.e., Guest Physical
Addresses—GPAs).

At a reporting operation 62, the NIC reports the recorded
addresses to the hypervisor. At an updating operation 66, the
hypervisor updates dirty-page bitmap 48 to reflect both the
pages dirtied by the hypervisor (at operation 30) and the
pages dirtied by the NIC (at operation 54). In the present
example, the hypervisor maintains a separate bitmap 48 per
M. In a given bitmap 48, the addresses of the memory pages
are GPAs 1n the guest physical address space of that VM.

The method of FIG. 2 1s an example method that 1s
depicted purely for the sake of conceptual clarty. In alter-
native embodiments, any other suitable method can be used.

Typically, peripheral device 32 (NIC in the present
example) recerves a request from software 40 (hypervisor 1n
the present example) to start tracking dirty pages for a
specified guest (e.g., VM). In response, device 32 starts
tracking writes (and/or other accesses as approprate) to the
memory of the specified guest. Tracking of dirty pages 1s
performed according to GPA. In some embodiments, dirty-
page tracking 1s performed according to GPA even 1if the
writes are actually 1ssued to Machine Addresses (MA) e.g.,
when peripheral device 32 supports Address Translation
Services (ATS). Tracking of dirty pages 1s typically per-
formed per packet. Processing a given packet may require
marking multiple pages as dirty. Peripheral device 32 typi-
cally writes the addresses of dirty pages (e.g., of writes) to
an internal database. If multiple packets are written to the
same physical memory page, device 32 may reduce the
reports to software 40 by reporting the page as dirty only
once. This improvement may be done exhaustively, or 1n a
best-eflort manner. Software 40 then updates dirty-page data
structure 48 according to the addresses reported by device
32.

Live Migration Use-Case

One possible use-case for the disclosed dirty-page track-
ing technique 1s migration of a VM from one compute node
to another. In a typical live migration process, both the VM
image (including, for example, memory used by the kernel
and various dnivers, including I/O drivers) and the VMs
memory space are transierred from a source compute node
to a destination compute node.

Some migration processes (referred to as “pre-copy”
migration) transier the VMs memory space {irst, then sus-
pend the VM temporarnly, transfer the VM 1mage, and then
resume the VM on the destination compute node. Other
migration processes (referred to as “post-copy” migration)
start with suspending the VM and transierring the VM 1mage
to the destination compute node, and only then transier the
VM memory space. Hybrid schemes are also possible. For
most practical applications, the simple solution of freezing

5

10

15

20

25

30

35

40

45

50

55

60

65

6

the VM and then copying its entire memory to the destina-
tion compute node 1s not feasible, since 1t causes an unac-
ceptably long ofi-line period.

In any migration process, memory pages of the VM may
become dirty after migration has started. Thus, a migration
process typically involves tracking of dirty pages in the VM
address space. Any such tracking can be performed using the
disclosed techniques.

FIG. 3 1s a block diagram that schematically illustrates
migration of a VM between compute nodes, in accordance
with an embodiment of the present invention. The top of the
figure shows two compute nodes denoted 70A and 70B that
host multiple VMs. Each compute node comprises one or
more CPUs 74 and a hypervisor (HV) 78. The compute
nodes are connected by respective DMA NICs 82 to a
network 86. The system 1s assumed to operate using SR-

IOV.

Initially, node 70A hosts two VMs denoted VM-A and
VM-B, and node 70B hosts two other VMs denoted VM-C
and VM-D. At a certain point 1n time, a decision 1s made to
migrate VM-B from node 70A to node 70B. In this migration
process, compute node 70A acts as the source compute node,
and compute node 70B acts as the destination compute node.

In the description that follows, HV 78 of node 70A 1is
referred to as the “source HP” and HV 78 of node 70B 1s
referred to as the “destination HV.”

In the present example, VM-B 1s being migrated in a
pre-copy migration process that 1s performed jointly by, the
source hypervisor and the destination hypervisor. Generally,
the pre-copy migration process comprises the following
sequence ol operations:

The source HV begins tracking the memory pages

accessed by the VM.

The source HV copies the entire memory space of the VM
(dirty pages or otherwise) to the destination node.

From this point, the source HV copies only pages that
become dirty (relative to the version that was already
transierred).

Once a stopping condition 1s reached (e.g., the number of
dirty pages drops below some small threshold, or the
number of dirty pages does not decrease rapidly enough
due to a high rate of accesses, or other condition), the
source HV suspends the VM temporarily.

At this point the source HV transters the VM 1mage to the
destination node.

The network 1s reconfigured to transfer subsequent traflic
destined for the VM to the destination node.

The destination HV resumes the VM from the same state
at which the VM was suspended by the source HV.

As explained above, when using SR-10V, HV 78 on the
source node 1s unaware of pages that are dirtied by NIC 82
in the VM memory space. Unless these pages are accounted
for using the disclosed techniques, the source HV 1s likely to
fail tracking all the dirty pages, leading to data corruption 1n
the migration process.

Two 1nsets 1n the middle and at the bottom of FIG. 3 show
the mternal structure of HV 78 and NIC 82 of the source
node 1n accordance with an example embodiment. The insets
focus on NIC and HV elements relating to dirty-page
tracking. In the present example, NIC 82 and HV 78 track
the dirty pages of both VM-A and

As seen at the bottom inset, NIC 82 comprises packet
processing hardware 90 that transmits and receives packets
to and from network 86. The NIC further comprises a
Translation and Protection Table (TPT) 94, a NIC memory
98 and scattering hardware 110. TPT 94 holds address

translations between virtual addresses specified 1n the pack-

US 11,836,083 B2

7

ets and GPAs 1n the VM memories. In some embodiments,
TPT 94 further comprises a dirty-page database 102. In
response to identifying that an incoming packet from the
network warrants a write to the memory space of VM-A or
VM-B (marked 1in the figure as “guest0” and “guestl”), the
NIC writes the GPA of this write operation to dirty-page
database 102 in TPT 94. Note that dirty-page tracking using
TPT 1s only one example. In alternative embodiments, NIC
32 may track the memory pages 1t dirties 1n any other
suitable way.

The GPAs of the dirty-pages are copied to a dirty-page
address bufler 106 in NIC memory 98. Scattering hardware
110 then separates between the GPAs of the dirty pages of
VM-A, and the GPAs of the dirty pages of VM-B, and

delivers them separately to HV 78. In an embodiment,
scattering hardware 110 delivers the GPAs of the dirty pages
on-demand, e.g., in response to a request from HV 78 for the

currently-buflered dirty pages of a given VM.
HV 78 (seen in the mset in the middle of FIG. 3)

comprises a dirty-page memory 114 that stores separate
dirty-page address bullers for different VMs. In the present
example, dirty-page address buflers 118A and 118B builler
the GPAs of the dirty pages of VM-A and VM-B, respec-
tively, as provided by scattering hardware 110 of NIC 82.

Based on the GPAs buflered in bufler 118A, HAT 78
updates a dirty-page bitmap 122A for VM-A. Dirty-page
bitmap 122A thus tracks both the dirty pages of VM-A that
are dirtied by the HV itself, and the dirty pages of VM-A that
are dirtied by NIC 82. Similarly, HV 78 updates a dirty-page
bitmap 122B for VM-B based on the GPAs buflered in bufler
118B. Dirty-page bitmap 122B tracks both the dirty pages of
VM-B that are dirtied by HV 78, and the dirty pages of
VM-B that are dirtied by NIC 82.

In some embodiments, source By 78 performs the above-
described migration process while tracking the dirty pages
of VM-B 1n bitmap 122B. In this manner, no dirty pages are
missed despite the use of pass-through virtualization (e.g.,
SR-IOV).

The migration process described above 1s an example
process that 1s depicted purely for the sake of clarity. In
alternative embodiments, any other suitable process can be
used. For example, the disclosed techniques are not limited
to pre-copy migration, and may be used 1n other migration
processes, as well. As another example, the description
above referred to migration of VMs, but the disclosed
techniques can be used 1n migration of other types of guests,
¢.g., containers or processes.

An alternative solution, instead of using the disclosed
page-tracking technique, 1s to replace the pass-through
peripheral device (e.g., SR-IOV NIC) prior to migration
with a device that i1s fully virtualized 1n software. This
solution, however, 1s costly 1n terms of performance. More
importantly, this solution exposes the migration process to
the VM 1itself, which 1s usually unacceptable.

In some embodiments, NIC 82 in source compute node
70A may assist in speeding-up the migration process, by
limiting the rate of traflic for the VM (or other guest) being
migrated. Limiting the rate of trathic for a VM will 1n turn
reduce the rate of page-dirtying for the VM, and will
therefore reduce the overall migration time. In example
embodiments, NIC 82 may limit the inbound packet rate of
a migrating VM by applying policers for lossy traflic (e.g.,
TCP) or by changing the parameters or congestion control
tor lossless traflic (e.g., InfiniBand or lossless RoCE). Polic-
ing of this sort may be static (enforcing a static maximum
rate) or dynamic.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

In a dynamic policing process, NIC 82 may change the
allowed imnbound rate of a guest based on one or both of the
following parameters:

1. Dirty page rate. The NIC may monitor the rate of dirty
pages marked per guest. If the rate exceeds a defined
threshold, the NIC may change the mbound packet rate
policy 1n order to further reduce the dirtying rate.

2. Number of pre copy iterations. The NIC may, monitor
the number of pre copy iterations performed by the hype
visor (e.g., through a software API that alerts the NIC of
cach pre-copy iteration). The NIC may reduce the inbound
tratlic rate 1n order to reduce the dirtying rate i1t too many
iterations occur (e.g., when the number of pre-copy itera-
tions exceed a defined number).

Other Example Use-Cases

Another possible use-case for the disclosed dirty-page
tracking technique 1s a page-swapping application. In an
example page-swapping application, processor 24 (FIG. 1)
runs page-swapping soitware (e.g., as part ol an OS) that
swaps memory pages between memory 28 and a storage
device (e.g., SSD). Typically, the page-swapping soltware
aims to retain frequently-accessed pages (or recently-used
pages) 1n the memory, and to export rarely-used pages (or
pages accessed a long time ago) to the storage device. If,
however, some of the memory-page accesses are performed
by peripheral device 32 (e.g., NIC) transparently to proces-
sor 24, the page-swapping performance will not be optimal.

Thus, 1n some embodiments, processor 24 may track dirty
pages using the disclosed techniques, so as to also account
for pages that are dirtied by peripheral device 32. Page-
swapping that 1s based on this sort of dirty-page tracking waill
perform well, even when some page accesses are transparent
to processor 24.

Yet another possible use-case 1s 1n tracking re-ordering
accesses to Dynamic Random-Access Memory (DRAM) to
save power. An additional use-case 1s 1n statistics gathering
ol memory-access operations. Further alternatively, the dis-
closed techniques can be used for tracking of access to
memory pages 1n any other suitable use-case.

Tracking and Coalescing 1n Peripheral Device

In some embodiments, before writing to the memory of a
guest (e.g., VM), peripheral device 32 checks the function
whose writes should be tracked, e.g., the Bus:Device.Func-
tion (BDF) or the BDF 1n combination with Process Address
Space 1D (PASID). If device 32 recognizes the function as
one that re quires dirty-page tracking (e.g., a guest 1n the
process of migration), device 32 records the GPA[64:12] and
function being accessed.

In order to reduce solftware processing, device 32 may
perform coalescing 1n tracking and recording of dirty pages.
In an example embodiment device 32 maintains an inter-
mediate coalescing bufler of a certain size (e.g., 32, 64 or
128 entries) Each entry of the coalescing bufler comprises
a pair of {function, GPA}. On each insertion of {function,
GPA} to the coalescing buffer, device 32 checks whether the
detected combination of {function, GPA} already exists in
the coalescing bufler.

I so, no further action 1s needed. If not, the device 1nserts
the new {function, GPA} into the coalescing buffer. When
the coalescing bufller becomes full, or upon end of a pre-
copy migration iteration, device 32 pops the coalescing
bufler and reports all entries to software 40.

In an alternative embodiment, peripheral device 32 per-
forms coalescing by maintaining a dirty-page bitmap per
guest (as, for example, in the example of FIG. 3). The bitmap
represents the Guest Physical Address (GPA) space of the
guest, with each bit corresponding to a respective memory

US 11,836,083 B2

9

page. A set bit 1n the bitmap means that the corresponding
page 1s dirty, and vice versa. Upon detecting a page becom-
ing dirty, device 32 sets the corresponding bit. Multiple
writes to the same page will set the same bit, and therefore
device 32 will report this page as dirty to the soitware 40
only once.

In practice, the bitmap per guest may be very large. For
example, for one bit per 4 KB page, and a 64-bit address
range, the bitmap will require 2*° Bytes of memory. In such
cases, an additional optimization can be implemented, 1n
which the software (e.g., device driver) notifies device 32 of
selected regions in the quest memory for which dirty-page
tracking 1s required. With this improvement device 32 can
maintain only a fraction (or multiple fractions) of the bitmap
required for the total memory space of each guest. Device 32
may report the dirty hits at any suitable interval or upon any
suitable event, e.g., once every pre-copy iteration (in the
pre-copy migration use-case) and/or on request by software
40.

In an example embodiment, a quest RAM space of 128 G
bytes will require a total of 4 MB for a compressed bitmap.
Device 32 may allocate memory in memory 28 (the host
memory) in order to maintain multiple bitmaps. In such an
embodiment, writing to a bitmap by device 32 may require
fetching an entry from the host memory (in order to modity
it and write 1t back). In severe cases, e.g., of multiple fetches
and high latency on interface 36, backpressure may be
caused to the device. Care should be taken so that fetches
from the host memory will be free of risk of backpressure,
in order to avoid deadlock.

Dirty-page Reporting Schemes

In various embodiments, peripheral device 32 may use
various schemes and formats for reporting the dirty pages 1t
tracks to software 40.

In some embodiments, peripheral device 32 writes
directly to dirty-page data structure 48 of processor 24 (e.g.,
to the dirty-page bitmap maintained by the hypervisor).
When using PCle, this technique may require performing
read-modify-write operations over the PCle bus, since PCle
writes are performed in Byte granularity.

In one embodiment, to reduce the overhead of read-
modify-write operations over the PCle bus, pernipheral
device 32 uses PCle TIP byte-enable 1n order to write single
bytes rather than DWORDs. This mode allows writing
directly to the dirty-page data structure without read-
modity-write. For byte-map based tracking (in which entire
bytes 1n data structure 48 represent respective memory
pages), this technique provides optimal performance. For
bitmap-based tracking, this technique introduces some false
positives (1.e., marks some pages, which were not written-to,
as dirty).

In alternative embodiments, peripheral device 32 reports
the addresses and functions it accesses, and allows software
40 (e.g., a device driver) to update dirty-page data structure
48 accordingly. This technique allows a more tlexible inter-
face between device 32 and software 40, but on the other
hand may consume more PCle bandwidth than direct writing
into data structure 48.

Further alternatively, peripheral device 32 may use any
other suitable reporting scheme for reporting dirty pages to
software 40.

The configurations shown 1 FIGS. 1 and 3, e.g., system
configurations, compute-node configurations, NIC configu-
rations and HV configurations, are example configurations
that are depicted purely for the sake of conceptual clarity.
Any other suitable configurations can be used in alternative
embodiments. The various system and compute-node ele-

10

15

20

25

30

35

40

45

50

55

60

65

10

ments described herein may be implemented using software,
using suitable hardware such as 1n one or more Application-
Specific Integrated Circuits (ASIC) or Field-Programmable
Gate Arrays (FPGA), or using a combination of soitware and
hardware elements.
Certain system elements, ¢.g., CPUs 24 and 74, and/or
processors 1n NICs 82, may comprise general-purpose pro-
cessors, which are programmed 1n software to carry out the
functions described herein. The soiftware may be down-
loaded to the computer in electronic form, over a network,
for example, or 1t may, alternatively or additionally, be
provided and/or stored on non-transitory tangible media,
such as magnetic, optical, or electronic memory.
Although the embodiments described herein mainly
address tracking of dirty pages in compute nodes, the
methods and systems described herein can also be used 1n
various other applications.
It will thus be appreciated that the embodiments described
above are cited by way of example, and that the present
invention 1s not limited to what has been particularly shown
and described heremnabove. Rather, the scope of the present
invention icludes both combinations and sub-combinations
of the various features described hereinabove, as well as
variations and modifications thereof which would occur to
persons skilled in the art upon reading the foregoing descrip-
tion and which are not disclosed 1n the prior art. Documents
incorporated by reference in the present patent application
are to be considered an integral part of the application except
that to the extent any terms are defined 1n these incorporated
documents 1n a manner that contlicts with the definitions
made explicitly or implicitly 1n the present specification,
only the definitions in the present specification should be
considered.
The mvention claimed 1s:
1. A compute node, comprising:
a memory, to store memory pages;
a peripheral bus;
a processor, which 1s to run software that accesses the
memory, and to identily one or more first memory
pages that are accessed by the soitware in the memory;
and
a peripheral device, which 1s to:
directly access one or more second memory pages in
the memory of the compute node using Direct
Memory Access (DMA); and

notily the processor of the second memory pages that
were accessed using DMA,

wherein the processor 1s further to maintain a data struc-
ture that tracks both (1) the first memory pages as
identified by the processor and (11) the second memory
pages as notified by the peripheral device, and wherein
the peripheral device 1s to notity the processor of the
second memory pages by writing over the peripheral
bus directly into the data structure.

2. The compute node according to claim 1, wherein the
peripheral device 1s a network adapter, and wherein the
second memory pages comprise data that 1s communicated
by the network adapter between the processor and a net-
work.

3. The compute node according to claim 1, wherein the
soltware comprises a guest that 1s hosted on the compute
node, the guest having a memory space allocated in the
memory, and wherein the processor 1s to track, in the data
structure, dirty pages belonging to the memory space of the
guest, the dirty pages comprising both (1) first dirty pages
that were written-to by the guest, and (11) second dirty pages
that were written-to by the peripheral device.

US 11,836,083 B2

11

4. The compute node according to claim 3, wherein the
processor 1s to carry out a process that migrates the guest to
another compute node, 1n cooperation with the other com-
pute node and using the data structure that tracks the first
dirty pages and the second dirty pages.

5. The compute node according to claim 4, wherein the
peripheral device 1s to limit a rate of traflic for the guest
being migrated.

6. The compute node according to claim 1, wherein the
processor 1s to carry out a process that swaps some of the
memory pages with a storage device, using the data structure
that tracks the first memory pages and the second memory
pages.

7. The compute node according to claim 1, wherein the
peripheral device 1s to notily the processor of the second
memory pages by reporting respective addresses of the
second memory pages.

8. The compute node according to claim 1, wherein the
peripheral device 1s to coalesce indications of accesses to the
second memory pages, and to notity the processor of the
second memory pages by sending the coalesced indications.

9. The compute node according to claim 8, wherein the
peripheral device 1s to coalesce the indications by bullering
the indications 1n a coalescing bufler residing in the periph-
eral device.

10. The compute node according to claim 8, wherein the
peripheral device 1s to coalesce the indications by setting
bits, which represent the second memory pages, 1n a bitmap
residing 1n the peripheral device.

11. A method, comprising:

using a processor, running software that accesses a

memory, and identifying one or more first memory
pages that are accessed by the soitware in the memory;
using a peripheral device that communicates with the
processor over a peripheral bus:
directly accessing one or more second memory pages 1n
the memory using Direct Memory Access (DMA);
notifying the processor of the second memory pages
that were accessed using DMA; and
maintaiming, by the processor, a data structure that tracks
both (1) the first memory pages as identified by the
processor and (11) the second memory pages as notified
by the peripheral device,

wherein notifying the processor of the second memory

pages comprises writing over the peripheral bus
directly into the data structure.

12. The method according to claim 11, wherein the
peripheral device 1s a network adapter, and wherein the
second memory pages comprise data that 1s communicated
by the network adapter between the processor and a net-
work.

13. The method according to claim 11, wherein the
soltware comprises a guest that 1s hosted on a compute node,
the guest having a memory space allocated in the memory,

10

15

20

25

30

35

40

45

50

12

and wherein maintaining the data structure comprises track-
ing, 1 the data structure, dirty pages belonging to the
memory space of the guest, the dirty pages comprising both
(1) first dirty pages that were written-to by the guest, and (11)
second dirty pages that were written-to by the peripheral
device.

14. The method according to claim 13, and comprising
carrying out, by the processor, a process that migrates the
guest to another compute node, in cooperation with the other
compute node and using the data structure that tracks the
first dirty pages and the second dirty pages.

15. The method according to claim 14, and comprising,
using the peripheral device, limiting a rate of traflic for the
guest being migrated.

16. The method according to claim 11, and comprising
carrying out, by the processor, a process that swaps some of
the memory pages with a storage device, using the data
structure that tracks the first memory pages and the second
memory pages.

17. The method according to claim 11, wherein notifying
the processor of the second memory pages comprises report-
ing respective addresses of the second memory pages.

18. The method according to claim 11, wherein notifying
the processor of the second memory pages comprises
coalescing indications of accesses to the second memory
pages, and notifying the processor by sending the coalesced
indications.

19. The method according to claim 18, wherein coalesc-
ing the indications comprises buflering the indications in a
coalescing bufler residing in the peripheral device.

20. The method according to claim 18, wherein coalesc-
ing the indications comprises setting bits, which represent
the second memory pages, mn a bitmap residing in the
peripheral device.

21. A method for joint tracking of (1) memory pages that
are accessed by soltware ol a processor and (1) memory
pages that are accessed by a peripheral device independently
of the processor, the method comprising:

running on the processor software that accesses a

memory, and 1dentifying one or more memory pages
that are accessed by the software;
directly accessing, by the peripheral device, one or more
memory pages using Direct Memory Access (DMA);

notitying the processor of the memory pages that were
accessed directly by the peripheral device; and

maintaining, by the processor, a data structure that tracks
both (1) the memory pages accessed by the software, as
identified by the processor, and (11) the memory pages
accessed by the peripheral device, as notified by the
peripheral device,

wherein notifying the processor of the second memory

pages comprises writing over the peripheral bus
directly into the data structure.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

