12 United States Patent

Stump et al.

USO011835941B2

US 11,835,941 B2
Dec. 5, 2023

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(1)

(52)

(58)

INDUSTRIAL AUTOMATION SMART
OBJECT PARENT/CHILD DATA
COLLECTION PROPAGATION

Applicant: Rockwell Automation Technologies,
Inc., Mayfield Heights, OH (US)

Inventors: Andrew R. Stump, Mentor, OH (US);
Anthony Carrara, Strongsville, OH
(US); Adam J Gregory, Oak Creek,
WI (US); Lorenzo MajewskKi,
Milwaukee, WI (US); Fabio
Malaspina, Twinsburg, OH (US);
Eashwer Srinivasan, Fremont, OH

(US); Srdjan Josipovic, Beachwood,
OH (US); Christopher Edward

Stanek, Mayfield Heights, OH (US);
Michael J Coan, Mayfield Heights, OH
(US)

Rockwell Automation Technologies,
Inc., Mayfield Heights, OH (US)

Assignee:

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35

U.S.C. 154(b) by O days.
Appl. No.: 17/398,272

Filed: Aug. 10, 2021

Prior Publication Data

US 2023/0046732 Al Feb. 16, 2023

Int. CI.

GO5B 19/418 (2006.01)

U.S. CL

CPC ... GO5B 19/4188 (2013.01); GO5B 19/4183

(2013.01); GOSB 19/41885 (2013.01)

Field of Classification Search
CPC GO5B 19/4188; GO5B 19/4183; GO5SB
19/41885

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
6,094,654 A 7/2000 Van Huben et al.
6,170,081 Bl 1/2001 Fontana et al.
(Continued)
FOREIGN PATENT DOCUMENTS
EP 2 177 986 Al 4/2010
EP 3246 827 Al 11/2017
(Continued)

OTHER PUBLICATTIONS

Notice of Allowance received for U.S. Appl. No. 17/180,201 dated
Dec. 27, 2021, 30 pages.

(Continued)

T 1

Primary Examiner — Christopher E. Everett

(74) Attorney, Agent, or Firm — Amin, Turocy & Watson,
LLP

(57) ABSTRACT

An 1industrial integrated development environment (IDE)
provides a development framework for designing, program-
ming, and configuring multiple aspects of an industrial
automation system using a common design environment and
data model. Projects creating using embodiments of the IDE
system can be built on an object-based model rather than, or
in addition to, a tag-based architecture. To this end, the IDE
system can support the use of automation objects that serve
as building blocks for this object-based development struc-
ture. These automation objects represent corresponding
physical industrial assets and have associated programmatic
attributes relating to those assets, including data logging and
device configuration parameters. Functional relationships
between automation objects can be defined to yield object
hierarchies, and object attributes can be propagated across
objects up and down the hierarchy.

20 Claims, 22 Drawing Sheets

IDE SYSTEM

_‘|

N
lllllllllllllllllllllllllllllllllllllll

262
R ENTON INPUT R AUTOMATION OBIECT LIBRARY |
I '}“2‘\\ |
. DESIGN GUALS “. . ;E; o
. CONTROL PROGRAMMING { }f}:f_,,’},, H;.H :"(':’,] A ‘“h PR
. ASUALIZATION NI N e
' h
| DRAVENGS)
 DSL FROGRAMMNG o
L ARWR INTERACTIONS -
- VIDEG OR IMAGE DATA 1.4 "
5{:‘4_“ E Fold o Yt ta a =* :}\ o -----..:_.I
R | INSTALLATION PARAMETERS S y
' DEEDITOR | 206~ 7 ;
: USIR 1 5 }’gmvcr |]
p——! EMNERATION | i
Hy
I

INTERFACE |

| COMPONENT |

T A A T T COMPONEN] ;] |
(L lmr P G | ;;3{;7’?; ;
' DESIGN FEEDBACK. | ~404 : IR
-314 ECQUPMENT
RECOMENDATIONS 1 - q . -
. ; IMOUSTRY ENOWLLEDGLEBASE
CODE RECOMVENDATIONS -
318~ MSUALIZATION ’ | ’*Uﬁ 2 QUHE S0 g :
S E o~ VISUALIE ; :
RECOMMENDATIONS "GUARDRAIL 11, | CODE - SLM IZATIONS [{PHYSIUS-BASED T
, e | TEMPLATES |} m:::nu& F"a RULES |
FUARDRAL DRIVEN 1 f__ﬁ_ : ! - e R e
PHOGRAMMING FEEDBACK | L‘;mr- ey e Py
| N Sl
e —d

US 11,835,941 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS
8,352,905 B2 1/2013 Chouinard et al.
8,877,134 B2 11/2014 Awaji et al.
8,887,134 B2 11/2014 Weatherhead et al.
9,342,278 B2 5/2016 Petzoldt et al.
10,275,265 Bl 4/2019 Gould et al.
10,372,107 B2 8/2019 Majewski et al.
10,942,710 Bl 3/2021 Dunn et al.
10,943,692 Bl 3/2021 Lynn et al.
11,080,176 B2 8/2021 Stump et al.
11,243,505 B2 2/2022 Strohmenger et al.
11,294,360 B2 4/2022 Miller et al.
11,314,493 Bl 4/2022 Stump et al.
11,429,351 B2 8/2022 Nayak et al.
2003/0045950 A1* 3/2003 Bronikowski GO6F 8/20
700/86
2006/0184571 Al 8/2006 Liu et al.
2006/0259500 A1 11/2006 Hood et al.
2008/0125877 Al* 5/2008 Miuler GOSB 15/02
707/999.107
2009/0083649 Al 3/2009 Baier et al.
2009/0240348 Al 9/2009 Chand et al.
2009/0293005 A1 11/2009 Hooyman
2010/0050097 Al1* 2/2010 McGreevy GOSB 19/409
707/E17.014
2010/0082133 Al 4/2010 Chounard
2013/0275908 A1 10/2013 Reichard
2015/0287318 Al* 10/2015 Nairooooovvvvvinn.n, G06Q 10/10
340/5.6
2015/0341469 A1 11/2015 Lawson et al.
2017/0192414 Al 7/2017 Mukkamala et al.
2017/0323112 A1 11/2017 Tran et al.
2019/0302735 Al 10/2019 Majewskl et al.
2020/0012265 Al1* 1/2020 Thomsen GO6F 3/0481
2020/0103843 Al 4/2020 Stump et al.
2020/0225821 Al 7/2020 Hammack et al.
2020/0319767 Al 10/2020 Hammack et al.
2021/0089278 Al 3/2021 Dunn et al.
2021/0096978 Al 4/2021 Stump et al.
2021/0097216 Al 4/2021 Stump et al.
2021/0141614 Al 5/2021 Dunn et al.
2021/0294734 Al 9/2021 Stump et al.
FOREIGN PATENT DOCUMENTS
EP 3 640 793 A2 4/2020
EP 3 696 622 Al 8/2020

OTHER PUBLICATIONS

Kuhl et al., “A Middleware for Software Evolution of Automation

Software”, IEEE ETFA, 2011, 9 pages.

Non Final Oflice Action received for U.S. Appl. No. 17/204,156
dated Jun. 29, 2022, 66 pages.

Hou et al, “An Empirical Analysis of the Evolution of User-Visible
Features 1n an Integrated Development Environment”, ACM, 2009,
pp. 122-135.

Lorentz et al., “Next Generation Integrated Development Automa-
tion Control Code 1n Torero”, IEEE, 2003, pp. 858-861.

Karsai et al, “Model-Integrated Development of Embedded Soft-
ware”, Proceedings of the IEEE, vol. 91, No. 1, Jan. 2003, pp.
145-164.

Extended European Search Report received for European Patent
Application Serial No. 22156325.7 dated Jul. 15, 2022, 9 pages.
Extended European Search Report received for European Patent
Application Serial No. 22162176.6 dated Aug. 9, 2022, 15 pages.
Esteévez et al., “Automatic Generation of PLC Automation Projects
from Component-Based Models™, International Journal of Advanced
Manufacturing Technology, vol. 35, 2007, pp. 527-540.

Non Final Oflice Action received for U.S. Appl. No. 17/197,258
dated Sep. 27, 2022, 91 pages.

Extended European Search Report received for European Patent
Application Serial No. 22160774.0 dated Jul. 22, 2022, 9 pages.
Communication pursuant to Article 94(3) EPC for European Patent
Application Serial No. 21178010.1 dated Dec. 6, 2022, 5 pages.
Notice of Allowance received for U.S. Appl. No. 17/204,156 dated
Oct. 27, 2022, 88 pages.

Astra et al., “Semantic Extension for Automation Objects”, IEEE,
pp. 892-897 (Year: 2006).

Schroeder et al., “Comining Behavior and Data Modeling in Auto-
mated Test Case Generation”, IEEE, pp. 1-8 (Year: 2003).

Zhou et al., “Schema Evolution of an Object-Oriented Real-Time
Database System for Manufacturing Automation”, IEEE, pp. 956-
977 (Year: 1997).

Estevez et al., “Model Driven Design 1n Industrial Automation™,
IEEE, pp. 6262-6267 (Year: 2009).

Communication pursuant to Rule 69 EPC for European Patent
Application Serial No. 22156325.7 dated Aug. 29, 2022, 2 pages.
Chen et al, CN 104866426, “Comprehensive Control Method and
System For Software Testing” (translation), Oct. 17, 2017, 13 pages.
Notice of Allowance received for U.S. Appl. No. 17/701,853 dated
Feb. 22, 2023, 56 pages.

Extended FEuropean Search Report received for European Patent
Application Serial No. 22189178.1 dated Jan. 9, 2023, 8 pages.
Final Office Action received for U.S. Appl. No. 17/197,258 dated
Feb. 21, 2023, 98 pages.

Non-Final Office Action received for U.S. Appl. No. 17/406,498
dated Jul. 6, 2023, 12 pages.

* cited by examiner

I "Old

NT ADIARA 'TADIAA NLIDIAFA |
TVIMLSNAND

TVRALSNANI CTVISISNANI P
SLASSY TVIMLSAANI I S A O 4 C A SRt N oo D I |

ey g e

...............

°
o

B T e e e e St T e e e e R Y

e]

d i
L

US 11,835,941 B2

... N B O N MM -
O e e e AN e e mu.ﬁnhﬁu.ﬁ.ﬂ% (RISt aRate HaRatis ”””.,”””_,”””"”””.,”””_,”””"_”””.,”””_,””””m””.,”””_,”””_,_"nhﬁwﬁnﬁuhﬁ
__________________ NRRARCRANONS SaRaRS NN ﬁ.ﬁ"ﬁﬁmmﬁﬁ R IO SO .”_.._”._,_”_".”_.._”._,_”_".”_.._”._,_”_”“”_.._”._,_”__,”..hhﬁhh)

LY LY

S B O EMDEEME MMMMEY o e T T T T L LT e R
rr or I roar L

. RO e _,_”__,.”_.,_”w_, ,,, o _ FIMIER OIS R St PO SR IS e
‘l‘e“ N w"“mmmmﬁ”“x-“--“-ﬁu-““%-ﬂum& ® &8 ¥ m"""mun--u._-“ﬁ%n"““-ﬁ-

~~_ EEmpaEeamameans e e e S R
lllll EEERETN l'"I"I"I"I"I l- -l"l"l"l"l"lrT"I"I"I"I"l'ﬂ"l"l"l"l"l L."I"I"I"I"I ‘- l- l- l. l- l- l. ll"l"l"l"l"l.ml"l"l"l"l".ﬂH"I"I"I"I"I“.-" I"I"I"I"I __"I"I"I"I"I"'"I"I"I"I"I"lw "I"I"I"I"["I l. l- l- l. l- l-"
: | . - ; ,. : : | SOt SRRE; WA WRRAS. PRI SRR, <22 e

. L e om
o R
mroa . e
LI o -
R, ’
roa]] i
rror - -
; " .
. .
X } - . r)] k | H i 1 - »
. " il i ol ol ol ol ol e e il ol el ol ol ol ol e e el e ol ol e e e e il il i ol ol ol ol ol el el il ol ol ol ol ol e ol kB e e e e e T T =T e = = e A e = +

Sheet 1 of 22

/ . e et T " "u".."n" t.___nxx “an L g n—_ F#. | ﬂ M m D sH\ m Iﬁlw M
[P NN BN . ..U el T Wl T i . . . i .. .__.l-l e xRt RN et L "__.x.x.“ .‘ ‘ .‘ ’ -) . . .
.l ..._... .“1... :) » .-_.-...r._..q.q.1.1..-._-.....1.|1.1.1.1|1|1 .
.._... ...__... nu.”... '] ”..“. = : o s
AL R — e : G_ \ m_ mm\ m _

" LT i .. 2 . = W r A » A
I S 2 LY e - & LT e m"m"m“m”m”m“""“
LN N N ._-‘ i : - - .

-
sl he TP N TN N - yiaaai il LRl s amm
v OANQD i i ﬂ»
R ™~ i L - - . . W .

-~ 28 —

Dec. 5, 2023

S Lol

7 ~N 7 ~. 7 SISATYNV TN /SNOLLVOIIddVN |
_ - PRt : ANV AOV¥OLS) [TEagt)
A N \ ,, - \ _-SsH _
001 —" m ~ - N7 ~ . dnoto - GSsaNIsnd o

— -.l..._..t.\t

S eedeet e L 4

U.S. Patent
&

A |

US 11,835,941 B2

Sheet 2 of 22

Dec. 5, 2023

U.S. Patent

mwm.\

ﬁm\

LNANOdINOOD
ONILSHL LDHIO™d

L

(SIOSSTADOUd

LNANOdWOD
INAWAO1d4d
L0410 dd

N

LINANOdNOS
NOLLVYANTD
L0310 dd

LNANOdNOO
LNAWHDVNVIN
NOILLVHIO8V 110D

.

LNHNOdWOD
HAOVAAALNI dH5(]

O1¢

30C

90¢

d04L1dd 4dl /
PCC

IWALSAS HdUI

\ 07

207

U.S. Patent Dec. 5, 2023 Sheet 3 of 22 US 11,835,941 B2

304
e

i

e

b

1-'.":"1."}'.. E:::::::::::.f

TR 1 AN, q

%.;:':':':':':1)] el

DESIGN AND

L ' Sy
ey

'n.- '''''''''' i

e PROGRAMMING i

L ‘I.
L N B T I B I]
N
V. v -
------- L ol
';. ----------- ‘-r‘"-":-.-.lr‘!
"\:':':':':':':':':;;’
ey
et
SN v

. ,..',-'. ofigliglr Soprlrily. b ——

P
Ly T
—

o

~"DEVICE SIZING AND™™, <~ SYSTEM
_ SELECTION _/ _ CONFIGURATION _/

o i S S e VA
. - o
- —
-

h-‘.
#-' '.-'-,.
1‘_- -_p‘

ey ey, CONTROLLER >
{ : W ¥ | :) £ . e e \
(_HMIPROGRAMMING ' { Lo Ooen s MMING -

.
b —e

"
— el

R

-"'.l-ui'nu-l.l-nlﬂ'll-.‘—'-

p S WD A
: o h Y NG
1 ' - : L 1{:::::::::::." Lo, I
COMMISSIONING 405 G

L N L T R L I
» L T I Y Y W N W i b e i i
L. .- i 8 bR RER
L - LR l-l-l-l-I-I.!
...... - L)
......
s = E = mE ®E ®
......

[]
----- LN uL
----- L I I
3 I N
----- L
UL BN .“ L b |.'|r|.|.
............ § »
----- " "= omomomom W PN N))
I = s = s = [] \\.'. L el e e)
Foronowmomom O e e e e w my g a e e e e m e]
h
A i R ! S, >
-".'.'.'.'.'.'.:r" . ||il L L i e r _‘.l"‘: e \-‘-\-*t"- "."'-
------- LI J LR | " s o= omoEom o . [Y - [
A s 0w AaomEomom m-" T T -] I " u
‘.ﬁ ------ 'ii'r lur ------ L] 1= = & onom e Y e e e o v- =y P) [) L) »
------ n o= omomomom == omomom- " s o= omomom P P) [] -
------------ -..r = = o= oEom -J = " o= omoEoE "I | ."---| [[-
l", ------- T T L T T T T T o T T T T R R TR R R Wmiliiiiiiiilili'
------- - Fe s momomom = = o= o=om o '----------F EEE N & 2 B B E R R
------- ‘I -------r‘]-----'_I " = s = omoEoEE RN r o= m T e el el e el e e e
'-‘r ---------------------------- + EE T 25 5 25 b EErEER
LT R f" ------- I = s n a & e y e e e e oo 4 - A P E B E R R
e n e nm l‘ﬂr 'I"' r e e e e e e e)
------------ LEENENE NI | m o omnmnomow | X 2 2 R EEE
4 s 5 = smos jﬁ' ------------ T s = s mmomom O N Y Tl Nl Nl Yl Nl Nl Nl il g
‘.l. ------ ‘_!" Wouomomomomow L] [P N] [] I NN NN NN N]
------ . " xomomomom " xoEoEomom oo omomomomomomom N N N N e e e
Iu.h ------- b === 1 ----- i s amEmmEEoma T T R R R b R R R
bl T N ' Far g e e e d..r"' 1 ik F XXX RE R RN
., = A =m=smmmoanm - Fu " ommomom 4 1I'- ----- 5 I N O O NN N N N N
= wt., e om o= omomomom .i" ------ X T e m_ g 1 m o oEon [U U R N T R R
| R AT i R R R I I | A s o= oxom T 1. ----- 4 B M g = = o oEoE o PO T R Y R)
" omom Ja s n n s a N T T T T2 R TR oa [] b bk ok X R LN
i---""-u.h_i ------- r’ ------ -ﬁ e . [Syt [i e
e A l'_;.- [rh k b b b X i ¥ &
Ill.-.-.-.-.-.-.-.-.-.r_.- '.1'.: ----------- LI *q-*q-tq-*q-*q-*q-*q-*q-*q-*q-l
....................... - b ik b bk b dr droir o K
L --------- ', . S omomomomom | R 1 F k ki ki F
l:':':':':':':':':-’ i':':':':':':';-" 1:.:.:.:-:.:1 b:b:t:b:\-:t:r:::;::-:n_
T e LR T. e, ' :b:b:b:b"r;d:\- lr:-:'b:
L RO e 1. L e Ty S Sy
r -------------------- h.h ."l ----------- f I| '''' -!- - i:l*l¥{*“.“ -, ‘:j .l h:l-‘;.*:i'rb :‘I.bbl
T T T N T S I ST o i . i
¥ ':'.'4..'—'-:-‘_"."'*- _|I|' ----------- -,-'I PR 1" . * Pl .-.“ - . .blii-.'i- W *'Iilbi-'rnb
[.-.-.-.-.-.;’ e . g -, . l-llr_n.'--.-.l..l.IF TR BB RN + L .l.bil .Irl'.‘.l-
LY . .- - -
.‘j ----------- 'y LN : T T :-:l:b . -' : ", -.-.-:.-.lu -II .
A ;; L T LT, e e T et -"':_q-'...
----- = xxm) - - = = 2w kKR L] 1 == omomon
Fomomomomowonl Tt e e e .o = = " x k k kF * LEE K] 1.-.
L lj : -I ----------- b ..:_-- " N .I.llb T
A omosomomon % '\q:l'lu'-"- R T - 4 4 k .' .'.‘-.
-------------------- [} .
]] 1 'r ------ L e T T T T T T e rh kRN - .
i T AP S, ariearts ey Y e L et r.
y e s s ol a s sl 2 5 a8 2 2 a2 @ e w e ™y e e e e e e R oo re W RERER
.. '.l-I-l-l‘I-l-l-I H .lt ------------------------------- i '|-.
T L, Il,i '''''''''''''' "i '.'.'.'.'.'.'.:," LM -
H)]
LA E N EE NN AN TN AN ; A A A ;.' h‘n‘_ X] ¥
- | | » .
i et it v L e e ek ¥
n"h-,l_ ------ aoEon 1-; N F u-q.-.- Ll .
3" b T L ?’I R T .‘%l"l .-'Il o
A e T ety ot et e e e e
[] - LI L
Rt el
'l.' -------- T .. e e et e et e e et et et
--------- 3 i » % k5 b+ R EEE
E O et e N N e e e
‘;'.:..'.:.':.‘:'-l\‘ LI I M M M N
R e :_:_;:" 4 - P L L 1 e N N
" = = = == =Eom I.l | L R b e e e e e e o e Jr*#*k*#*#*l'*i*#*ﬁ*#*#*ﬁ*#*
l.; :'*-.'r- 7 it 5 b'rr r ‘Lb F bk rrrrrrrrrrrrr ks Fm b Fy ¥y X X X X kB X RN *“
R ..::l!:l:il: e TR T N T S U NI T S U BRI TN RO Jr:k:#:#:#:&:&:&:&:&:&:&:&
T . SRR R R R, - '
e .hl:i!:?!:?!:l:l RN '-: CRRE SR, :'r:\-:'r:'r:k:'r:#:k:lr:#:k:#:
d - = = - - o
M X XN 4 = = === L r - a L ok kb koo
W o x A E AT L] ' L] - F kb ek ik bR
A M X A A M M O T R R] L] " e L] F ke ir i ir§ -
| .., - - =2 o0 - L I L L N L L |
'-pxxxxnll.- & ‘l - R r r‘- -N b. bbbbbbbbbbbb N :’. *"'\-.1
AN X AN NN L] - L} LR r)
My N A E Al L] » = v ||r|r|r|r.i"|r|r F s
AN AAMANN [] LI r LI I lﬁ [] L]
A A A AN A - n - LI *.'l 'r- L
'l“?:"ﬂ"l-l-l- A koroe bk JELE LN n'g.'n."
i i il e b s nomow o e . PR . 'n.'n.'n.'n."-"?" "-l-"':-"n.-""'-"
F | |, M, | LI l*l L BN R N B B) l"-*_i L | N T o~ = oo N N N N .f. - ."l- -
A A AN | | Jr bk r b gk r ks oy = o i F F § o - = b § LI
o N T T AL T T T g ht o v - o/ S a2, L DI - "ir'.-.‘
i T e e e e e e e e e e L] 1_-1-_1.;-!:*-
HHIIHI 4 1 v BB o d o r iR | """._'
!:!:":':-I-:- :. :b". 'lb"‘. ".:‘ 'l.:‘. :b". "‘b :l:': v : LM !*J -I-:'l .1.1;-.'..‘
W R R LR R il:il:il -il: » :n: » -il:il:il:ilx L
) A oRh e onh i A X A .H-'?llﬂ'l-
i W e i
el ol MM | e e e e e dr ke ;n;:::x i H:::x x:n:x:r:r
o e e e B i]
e e
......................

+
[

US 11,835,941 B2

ALARM

{

Sheet 4 of 22

HMI

Dec. 5, 2023

{ ANALYTICS)

U.S. Patent

\f)....

OBJEC

T
{ SECURITY \
r1|
Rl
A
e e :
WA AAN AN Jﬂfﬁf - 1;\’; ﬁ?ﬁf . .
4"4"4"4"4"4"4"4 ;lx:.:::...........":-?l
ll‘l-*l-*l-*l-*l-*lr*l-*#' ?l" .l il'-l
t‘#*#*a-*#*#*q-ﬂrﬂ-' "?: | npx-
R R N N)]
B
::-

AUTOMATION
TESNTING

F
b"r‘bbb-

|]
I‘bl'
b*b~ b*

 F

LOGI

/ INFORMATION

[Sl S

e

1
L)
AL
-
i

o

.q......H...H&H.q”...H.. __1 Lﬁ.
Pl

el e eI
P
e T e
" i

a & & a & h a &

5

INDUSTRIAL

KI1G. 4

ASSET

US 11,835,941 B2

Sheet 5 of 22

Dec. 5, 2023

U.S. Patent

A] I |

MOVEGIT ONINNVEOOU
NIAING-TIVHANYOD

SATNY a0 e
Qasva-sors At H SNoLLvzrvasia | 4] saoo | Y. SNOLLYONINNOO3 |
/rmﬁm 01§ J 906 | | e
: m SNOLLYANIWNOO Y 3000

m SNOLLYANASWNQOHH
INIAGIND3

SR S — PZMM_MU

i
L1
C
.. L
. . .-it
- .
e Lo "
- Ll R =
. . -
- " - -
MLt - 2
- -

m B1¢ ;/
HOT~ | IDVEaEad NOISAd L

INANOJNOD INHNOJWNOD

C o | NOLLVYANTD je——ef SIVAREIND o
LYo MAS

T N N

Pt]| Su3LIAVHYY NOILYTIVLSN %
NN 7T V.LYG IOVIN ¥O OIAIA A
g/ WOV SNOLLOVYILNI YAHY
ONINWYNDOHd TSG
SONIMYHG
P SN NOILYZITWNSIA
_ AN PRGN INIWAYHEO0Ed TOHLINOD
S SIVOD NOISAC
- 05 .

LOAININDISHA
7S

- C0C
WILLSAS Hd1

US 11,835,941 B2

Sheet 6 of 22

Dec. 5, 2023

U.S. Patent

SYSTEM PROJECT

NS R O SRERA 0 T . WL T 0 DA T WL G A 0 T A AT G B . AL T B T s ol

e SexEmm 0 e 0 WESEmEEm 0 W SEE——

e

PROCESS™

\
/
7

o

A0

e
haN

/
\

N
\
/
e

FIG. 6

B - - S te e
[~ - - 0
L] - o ‘I #
- - - . .
= - - - !
.. " I N
1 - » o
. -
] .r R-.l.u.-r.- - .-.-.-...._
1 - - ’ .
;] - . -~ r
. - - a a lr . F] " - b I~ - | |
i . . . ; ...__.._-. N Y i : L, -
. . . . ' - — N] LI - a
] . ' . - H L o
. . - . . . & [] ™ = e o - m =T L] ...F...._I-.-.l.- .
. *] b L]
] ...r.r.r e ek e e e e e e e e e e e e e ke e e e m H b u
‘.....r 1 .-..r .rH.r .r”.r .r”.r .rH.r .r”.r .rH.r .rH.r .r”.r .r”.r .r”.r .r”.r .r”.r . L .q ﬂ
. ..1”..1 .r”.r .t”.t ..1”..1 .r”.v .r”.t .r”.t .r”.v .r”.t ..1”..1 .r”.v .r”.t ar ' atata et ar ' .
. i . L r, .rH.r .rH.r .r”.r .rH.r .rH.r .rH.r .rH.r .rH.r .r”.r .rH.r .rH.r .r”.r H rrar o
i))) R P T e o P P i Mot it h b a
M)1.r.r......1.r.r._....1.r.r....._1.r.r......1.r..1.....r.r.r._...r.r.r....t.r.v....r.r.t.__..v.r.r._...t.r.v....r.r.t._..k ' . -
. . . . B I R S S N I T LI Y S L) [] k []
...Iﬁ . - .r.r.r.....r.r.r.._..r.r.r.._..r..1.r.....r.r.r.._..r..1.r.._..r.t.r....r.r.r....r.t.r.._..r.t.r.....r.r.r....r.t.r....r H b i
[) M.r .r.r.r .r.r.r .r.r.r .r.r.r .r.r.r .r.r.r .r.r.r .r.r.r .r.r.r .r.r.r .r.r.r .r.r.r m " ' b "
.....1”..1 .r”.r .t”.t ._1”..1 .r”.v .r”.t .r”.t .r”.v .r”.t ._1”..1 .r”.v .r”.t ar)))) - .- q
mRAeEmEs AmAsESseSmAs =S .n_..h_“..l eEmEemmAsmE - .r.“.r......r”.r}.r..”..r.i..r”.r._...r.r.r .rH.r .rH.r .r”.r .rH.r .rH.r .rH.r .rH.r .rH.r .r”.r .r”.r .rH.r .r”.r ! . 3 ' .
.a...a_..r.r .._...“... > .rH.r .r”.r .rH.r .rH.r .r”.r .r”.r .r”.r .r”.r .r”.r .rH.r .r”.r .r”.r .rH.r .r”.r .rH.r .rH.r > ' st b) - . -
.u...n_..r.t .r”.t - ..1”..1 .r”.v .r”.t .r”.r .r”.v .r”.t .r”.t .r”.v .r”.t ..1”..1 .r”.r .t”.t ..1”..1 .r”.v .r”.t ..1”..1 .r”.v : -) -
..__..a...r.r.r.rH.r .rH.r.r._... " a .rH.r .rH.r .rH.r .rH.r .rH.r .r”.r .rH.r .rH.r .r”.r .rH.r .rH.r .r”.r .rH.r .rH.r .rH.r .rH.r a P R P e e e e e rre e ot ll “
..l..l..l..r.r”.r.-.l..l.l._ .rH.r.rH.r.rH.r.rH.r.rH.r.rH.r.rH.r.rH.r.rH.r.rH.r.rH.r.rH.r.rH.r.rH.r.rH.r.rH.r.r”.r Pl = R L L TS R P L .1...1...1.1.1...1...1...1.._l.h% N
. b1 ...r”.r e ..1..1”..1 ..1”..1 .r”.r .r”.t ..1”..1 .r”.r .t”.t ..1”..1 .r”.v .r”.t .r”.t .r”.v .r”.t ..1”..1 .r”.v .r”.r.t '.1.1.1. R 1.1.7.1.1.1.1.1. .1.1.1.1.1.1.1.1.1.1.1.1.1.__lll .
05K B R N R R R R R KR R N KA N e Bl SR AN RN TN e .
-..r”.r e .r.rH.r .rH.r .rH.r .rH.r .rH.r .r”.r .r”.r .rH.r .r”.r .rH.r .rH.r .r”.r .rH.r .rH.r .rH.r .rH.r.r .rH.r .r”.r v 2 aa w oaa bLromm, TS P L .1.1.1.1.1.1.1.1.1.1.1.1.1. Ly
...t.r.....r P Rt Pt Pt P iy it it erl....._.r._....v.-_t 3 '...1... SN N 1...T...1...1... .1...1...1.1.1...1...1...1..lluﬂx I
t oo ok R S S I L T O o g L S g g [y - prrer rror rrorr rr prrroror 1111111111111~lllllll [N N "
-..r.t.r.._..r.- .r.._..r._1.r.._..r.r.r.....r.r.r.._..r._1.r.._..r.r.r.._..r.r.r.._..r.r.r.._..r.r.r.._..r.r.r.._..r..1.r.._..r.r.r....r.r.r....r.t.r.._..r.r.r.....r.r.r....r.t.r.._..r i *] AR R TR RN R R R s A a e s
 de e S de e de e de e de e de dr de dr e de de de de e de e de dede dede de e deodr deodr e e R 'l § " I R) IO BN RO |
LI | FLN N o oJr b b N LN rroroa a prorer rror rrrrrrrgrrrrrrr prrerorr 1111111111111.llllllllllllllllllllllllllllll..
dr dr oA d A L A A A a - P N N N N RN B R R R
[N | P Y . dr by W X i a4 - Foora raor rar o r o rmr s e e poor e 1.1.111.1.1.1xﬁﬁ%ﬁﬁﬁﬁ.
A e il b A e . oA de A e W naa s T] RN B R R R
L | oy ooi d & oA o 4 " & a4 & & & & & & &8 & & & &8 &8 & x4 4 4 84§ a prorer rror rrrrrrrgrrrrrrr prrerorr 11111111111111Illllllllllllll.‘.
de e i g de A e i de de A e bod o deoa ko ok om koa kom Ak om A A e e e e s R N R Ve R DR R R
o d i b b N b ki i 4 oo ' oo o Foors roaor raor ok oror e ok pooe e 1.1.111.1.1.1hllllllllllllllll. 1 r i
o o w o N R e i Ve RN B R R R el ll‘ P
#.r”.r .r.- .r.rH.r .rH.r .rH.r .rH.r.r H+ beomn, PR B LS L L L AL L .1.1.1.1.1.1.1.1.1.1.1.1.1.._lll ll ll ll ll ll ll [.-.r”.r .._4
L Pyt o Pl iyt s vt L T L T L .1...1...1.1.1...1...1...1..llxxxlxxxl o Pty
Feor rror F e rrrr e e e Frroror F e rrr PR P r o .
b x) ¥ i kX X ki & * a4]] .llllllllllllll . i x>
o o v CA P N N N N RN B R R R R R R Ea
A e il b A e oA de A e A e e P P T RN B u u k kh
ety Pl Pl P} b b jon - e - P
b e Pl iyt e vt bLromm, TS P L .1.1.1.1.1.1.1.1.1.1.1.1.1..ll 'y A e w b
. o d i b b N b ki i 4 Foors roaor ror o LT I 1.1.111.1.1.1hllllllllllllllll. 1 r i
o o w o CA R N N RN B R R R el ll‘ P
LIS Pl iaf ity it Pt i vt beomn, R P L .1.1.1.1.1.1.1.1.1.1.1.1.1.._lll ll ll ll ll ll ll [Pyl
 de e il b de e b odede A e o a e s N Vo] Ve » » Ak
LI | o i b N dr o X i 4 Foora roaor roor L I | 1.1.111.1.1.1sllll llll ll 4 r xi
...r.....r.r.r.- Pl PRt o r.r.r.....r.‘. '.1.1.1. Vo R o .1.1.7.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 1.1.1.1.1.1.1.“ .-.l.-.l. .-.r.....t.r.._-.
L Pty i g e tafie vt R R E N NN RN R EE N RN R KN NF MR NEEEEEEEE u:lu:l._-..-.l-..tl-..-.-..-.lt.tltlt- - et
Faes ey P Pl o e e el S 0 e el
i s e s O A SRE e 2 = e e
A dr ade b A dr b oA d A dr A g
foad e T ot "“ T l-l-..“n on l-l- l-l- l-l- l-l- l-l- l-l- l-ll. . A
-..r.v.r”.r“ .rH.r.T.rH.r.r.r.r.r e e e e e e e e e e e e e e dr e e U e e U .r.r.r.r.r”.r.t.r”.r rH.r.r.r# ™ F 2 L %%h h % h h “.r.r.rH.._"
...r”.r e ar .r”.t ..1”..1 .r”.r .r”.t ..1”..1 .r”.r .t”.t ..1”..1 .r”.v .r”.t .r”.t .r”.v .r”.t ..1”..1 .r”.v .r”.t ar " .r”.r.-. -H i e __l R R R : .-.t”.t .
AR B A o erved , RO MaOOOGG: A o
L | dr dr O Jp b Jr Or Jr Jr o Jr Or Or O Jp O Jr Jr O 0r Jr Or O 0 O 0 O O 0 e Jor b 0 0 o 4 = ol = r = 4 x x i
e e e e e e e e ke e ke ke e e e e e e e A ke de e e e e e e de b de A de e e LY o o o ot o et e Y o et e o o e Y o o e e e Yot ot e e e o ot ot iy
| dr e A de by e dpode A de by e dp dr g e dp e dp de dp de dp dr dr de dp e dp dr dr e dp ¥ x4 [By BRY, PG PN, PR PR3, PR, PR PRy PR B PR, PRy PR, BRg PR, PR, PRA, PR, PRA, P PR, BRSy PR PR PR PRy PR PR PES PR PR B ' PR, BRS, BV, PR, PR3 PRy PR PSS PR, PRI PRY, PR BRX, P, PR, PRy PR Py PR P e x b
o e i v + P
#.r”.r.r.- S e de de de de dede doode dede dr de de de dede de de dede deode de o de de e de de B 0 LA .-.r.r.r.._m
H.r.....t”.r 1 rH.r._...rH . i .r.....r”.._ '
dr dr s o
b rox x4 EEE N
A e A e k kh
b x o] A o x kb
de e P o
¥ xd X x4 e x bk
A dr dr A g
H.r”.r“.r“ rH.rH.rH ! “ .r”.r“.._ "
 de e o a e Ak
¥ xd > x4 x x b
dr dr s o
b rox x4 EEE N
A e A e k kh
F o« d x4 i x b
de e P o
b rx iy w4 i > x5
A dr dr A g
Fxxrd x4 i b
A e o P
F o xd x a4 §xx b
 de e o a e Ak
i a i
...r.....r .r.- " .r.....r.-. .-..1......1 .._—.
b d vt Pl
g ik r Ly g m @ = ®m m @ ®E @ ®m ®mE N S S E S W N ®E N E N N ® E ®E § E N E S E S ®E ® N E S E ¥ N ®E E N E EEEEEEEE " = = m ®m ® ®E N ®E ®N E ®E E ®E E N N ®E E ®E S ® E S S =S ®EEEEswwwnwuy k>p
t, !
Hap-inl-ie-nl e e el e A S b dom o om o moEoEoEom kb d'n omomomomomomom " = m o mom o moEomoEoE E EEEEEEEEEEEEEEE=SEEEEEEEEEEEEEEEEEEEEEEEEoEE " = momoEomoEoE o E N E E EE EEEEEEEEEE=SEEEEEEEEEEEEoE oE A
" = = m m ®m = ®m E ®E = E ®EE ®EE®=E®E®®= N R R N] m = = m m ®m ®m = o ®m E E E E E ®E E ®=E ®E®E§®E®@® " s o= oEoEomom 4 F 5k
b drd m o mwomomoEoEoEE kb h'n nomomom " m omomoEoEoEoEEEEEEEEEEEEEEEE R P
F o rd = s s =2 2 = 5 & L R R] " = ®m m m ®m m N E E N E N N E N S N N E NN E® " omoEoEomom 4 x>
g b " monomomem kb odela " = momomomoEoEoEEE EEEEEEEEEEEHE] S
F o xd = " o= omoEoE i i 4 " = = ®m ®E ® E ® E ®N E E E S E ®E N E®EEEEE®E "o oEoEoEoE 4 >y
g b e onomomem ke dela R - nonomomomew - nonomomomew e el
| TN | = = o= o= omom PN = = = o= omomoEoEEm "= o= omomomom " s o= oEoEomom P]
R R ko kln R R R e
-..r.r.r.....r.- LR N N r.....r.r.r.‘_- " = " omomomomoEoEm LN B L CFLEL NN -.-.r.r.r.....__‘
[I | = " o= omoEoE o 4 " "o oEoEoE "o oEoEoEoE 4 x xr b
e dr b e onomomem e - nonomomomew - nonomomomew S
-..r.r.r.._..r.- = = o= o= omom r.....r.r.r.+ "= o= omomomom " s o= oEoEomom 4 .r.r.v......_ '
-..r.....r.r.r.-. CIERCRC I r.r.r.....r.+- CREICRE I RN -.-.r.....r.r.._'
el R P R R et e x X b
.r.r.r.r.—.- et e e e S T T e e e T T T T e o ol kol ol ok ol ol ale sl e aleale sl alea Wi et
-..t”.r.....r r.....r.r.r._..‘r r——— e e o 0 Pl
i A ik
F ooy a4 i x b
de e P o
f te LA A
i drd dr A g
Bx o i g i b
i A e o P
ko) [N | oxx
 de e o a e Ak
by Py | '
& i) e e
F oo o i e e ol ol el ol ol ol el e de e b e b b he e e e de i e ke e e ol i e e e e e e e e e e e e e e e de ke e el e e e e e e e e e el ol ol ol il R i i ol ol ol o ol ol ol ol ol ol i ol ol ol ol ol ol ol Bl i ol ol ol i e ol i de e e ol ol i e e e e e ke e e e de e e el e e ke e el e e e e e e ke e e e e e ke e e e e e e el e e e e e e e e e e e e ke e e e ke ke e el e ke ke e e e e e e e e e ke e e e e e e el e e ke e e e e e e e e e ke e e e e e e e e e ke ke e el e e e e e e e e e e el ikl i)
A e i e b o e o e e e e s
L .r”.r e U e e e e e e e e e e e e e de de U e U e i e e i e b
-..r.....r D e et et e e it P ity Mty Pt
L S A S O S S N O O O O e ey k#?EEELLLLLLLLLLLLLLLLLLLLLLIPIrLIPIP|PIPIrlrlrlr|PIrlrlrIPIrLIPIP|PIPIrlrlrIr|PIrlrlrIPIrlrlrlr|PIPIrlrlrIrLlrlrlrIPIrlrlrlr|PIrlrlrIPIrLIPIP|PIPIrlrlrIr|PIrlrlrIPIrlrlrlr|PIPIrlrlrLLLLLLLLLLLLLLLLLLLLLLLE
LN |
i Ak
X &y
kA &
o |
Ak
X
P
~ oty
O Lo
LN |
i Ak
. LN |
NS
e e
Ak
wr d b
ik a
LN |
ik
1 |
NS
LN |
 dr 'k
h .l..r.-...r.r.r.-
LN |
v
._.....r.....T .r.-
LN |
v
s)
LN |
v
s)
L |
v
._l..r.._..v .r_-
LN |
v
s)
LN |
v
s)
LN |
v
._.....r.....r)
EE N |
o
.......r”.r)
i ..1”.._.-
i .r”.r i
s .rH.._
._.....r”k ar
i .rH.._
it
¥

¥
K
i'b#

NN

o
L)
L b*

i d

L

._l..r.r.r

ar o dr &

l..T.T.'

LA
ki

1:_‘4‘
bk
LA

i N
F
._l..r.r.r
i &

._.....r.r.r

DHIrOAd
INHLSAS

L L N
Lo L

&
b
._l...r.r.r
o b

._.....r.r.r

w2
e
LALLM)

i d
ik h

._l...r.r.r

L}
L]

¥
K
i'b#

NN

L]
*'r
'rblr

by

1
)
1
)
1
)
1
)
1
)
1
)
1
)
1
)
1
)
1
)
1
1
1
)
1
)
1
1
1
)
1
)

Dec. 5, 2023

e

L]

:Jr
LN

iy

n_.T.T.T
1.1..'.T
o N e

" . m - . .
] d ’
. .

e e e e e de e e e ke e e de e A A ke Ak
- b -T.....r“.r”.r s .r”.rH.rH.rH.rH.rH.r”.r“.r”.r”.r”.r“.r”.r“.r”.r”.r”.r“.rb

)]) .) ..T...__.._T.r.....r e e b e e e b e e

A e A de ol ol

- L] 1 o . . ! \—_...T r >}

r
.T.T .T.T.T .T.T.T .T.T.T .T.T.T .T.T.T .T.T.T .T.T.T .T.T.T

.T”.T .TH.T .TH.T .T”.T .TH.T .TH.T .T”.T .TH.T .T.‘. _
F .TH.T .T”.T .TH.T .TH.T .T”.T .TH.T .TH.T .T”.T.‘. H —)
.r”.r.....rH.r.-...rH.r.....r”.r.:..r”.r....r”.r#.r”.r#.r”.r#.r“ r 4 3 .

L A A i A i g il i A g i iy, T 3) 3 -

- - .))
: L : -

b e e s e e e e e s e e e b e s e b e i e b e b e e ol ol e b e s o e e ol e b e i i s

907

‘-##ta-u-a-r:k
.1_-##&#&#&#‘_&
P PEE D b DN M L
i r
]

L]

e e

e e e i o i e ol o i sl o i i ol s i i o i ol ol

FORE W DU VELF DL UI VUL VN DU SIL VINF NI DUL SEL W DU DUL DUNN DU DU SUN DU NE DU SR SR DU VI 0

\-70¢

IWALSAS HdI

U.S. Patent

US 11,835,941 B2

Sheet 8 of 22

Dec. 5, 2023

U.S. Patent

304

CLIENT DEVICES

3

USER LOCATION

L. —

802, 202
CLOUD PLATFOR

H

o
=
.
!
-
2
m
R

g

ROUTER

PLANT FACILITY

I.
-
r J '
' .
' - 1. [|
L] : F
1 ’ r
. | H
-
' t
n
1 S '
' 3
- . b
1 ! t
1
['
”n"l-. i m \ m ﬂ
. " .
v " k
- A k
L " |
» '
» N]
» Tt at r
» ”.___”._..”4 3 1
» ._...4.4.__......_.]
N il t
i .r.r.-.v.r_- 1
» a [] '
-
> a 4
4
ol e —.
» Futy
sy ! 1
r .__.__.r L
] "u I 1
.
. P |]
- . ' ' r
H
T [}
] .
! 0y
! []
I]
I 1
i il
B e O S L O, 0 Al
dhatae . o
+- " omom . r = Iﬂﬂﬂﬂﬂ!ﬂxx
- am - . .
HEN ' L 1..“.. NS _ﬂ-.q.w”.._...hili e
L . PP "t “.r....r.__.n T
. " on ron a £
] = - a - om P -
.. a's ko ah doaa 2
. * o
.“. “ Xy
. . .
e P L
. R ¥, |
et e a'm u__ﬂ
R » x
R s PR X
" " o= o= oEoEoEoE N . L ¥ I
= = " m o= EoEE RN 4 . .
" " om oo oEoEoEoE N L] & I
= = " m o= EoEE RN] E o]
" = moE o omoEoEEmE LI LA
" = = om o= oEomoEoEom =] <
" " m oE N R RN RN . e . ke H
= = o omoEoEomoEoEowm R E
IIIIII 'L-I -,
Satt I xn
e b ._..- - L
e ok 4k w e s ‘2 a o
. - ”. o " aa S
e s PR e o
T L. L - X N
" nm ok &a w1 s a . a
llllll p_J 'L & ...—. " - - .'.l.'
e b .”...._ 1.._... N i o
e] ._._...__ e e o
. o PR e VS
- am . . . Ta '
" nm o RN X)
et e] *s Xx -
L,) - i X
R
= = o omoEoEomoEoEowm - A,E %
" = = = oEomoEoEoEE " =
R - A E.
" "= omomomoEoEoEoE]
llllll - = " = =2 = = ‘-ﬁx
S)
. Sty
e e

> 5 F FFFEFSF

'y

dre dr b b b A b b S b de e A

& L o & L o .

I d d A b b kA

L}

Jr

L
)
o

r
]

i
¥

X
L4
X

o

i I
L g
r
i
L
'

1.

=

=

-
LI

|
]
|]
|
|
.

= o

A

lhI
2

1

D g gy .

.._..r.r..1....._1.r.r......1.r..1.....r.r.v.....v.r.r....r.r.v....r.r.t.....v.r.rﬂ.r.”h“...r
.1.r
ol

L4

X
i

e
.
T e e
e

A, A

DEVICE
CONFIG.

L
)
r
L

o &
.TH.T.r

s
._-._-
u
W
"n
s

M e

s

e

e

T

&

)
a

L

o o E o o E o o E
.T.T.T.T.T.T.T.T.T.:..T.T.'..T.T.T.T.T.:..T.T.'..T.T.T.T.T.:..T.T.'..T.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T.r

b b e Jp o dr de o O dp de Jp Je Jr de Jp dr B b Jp O Jr A b O dr A b O dr A b O A
ok .rH.r ..1”..1 .r”.t .rH.r ..1”..1 .r”.t .rH.r ..1”..1 .r”.t .rH.r ..1”..1 .r”.t .rH.r ..1”..1 .r”.t .rH.r ..1”..1 .r”.t -
F et e i P P P P it e
drode d de dr b d e i de d b b de dp b by d b de d b b b dr A b b i b dr A kb A b b g A X

LR I T R T R TR R T BT R T R R
L o B oK R B R o o R o R R o R R o)
s r r FFrrFrrFrrrcrr rrroror

"
n
"
"

)

ey

e

i ok b A &

X

r
i i
L
'
r
¥
r
i
L
'
L
L
L
i i
L
i
L
L
L
i i

dr odr o dr dr B o dr br dr Jr b o dr b o Jr 0 0 o dr b 0 i B
de b b o dr b b e b b A b b A b A S b

X
L
LA
L}
X
L4
X
L
X
L}
X
L4
X
L
X
L}
X
L4
X
L

r :Jr
o
o

r :Jr

[
o
o
r :Jr
[
o
o
r :Jr

¥
r
i
L
'
¥
r
i
L
'
¥
r
i
L
'

dr o dr o dr Jr B dr e Or dr b dr 0 o dr B 0 0 0 0 e B
e dr b b b b b S b A b b S b S b

X
L4
X
L
X
L}
X
L4
X
L
X
L}
X
L4
X
L
X
L}
X

L]
L)
L]
L)
L]
L]
L]
L)
L]
L)
L]
L]
L]
L)
L]
L)
L]
L]
L]
Ir

o
L}
L
L 4
¥ K
L
o
L}
L
L 4
¥ K
L
o
L}
L
L 4
¥ K
L
o

dr odr o dr dr B o dr br dr Jr b o dr b o Jr 0 0 o dr b 0 i B
de b b o dr b b e b b A b b A b A S b

L
X
L}
X
L4
X
L
X
L}
X
L4
X
L
X
L}
X
L4
X
L

'r:lr
Jl"‘_'l'
L
Jr:'r
'r'rlr
L
'r:lr
Jl"‘_'l'
L
Jr:'r
'r'rlr
L
'r:lr
Jl"‘_'l'
L
Jr:'r
'r'rlr
#'r\'
'rblr

dr o dr o dr Jr B dr e Or dr b dr 0 o dr B 0 0 0 0 e B
e dr b b b b b S b A b b S b S b

X
L4
X
L
X
L}
X
L4
X
L
X
L}
X
L4
X
L
X
L}
X

"
\'tﬁ'
v
v
[]
'r:Jr
v
v
[]
\':ﬁ'
v
v
b!’

i
i
i
i
i
i
i
i
i

dr odr o dr dr B o dr br dr Jr b o dr b o Jr 0 0 o dr b 0 i B
de b b o dr b b e b b A b b A b A S b

L
X
ki
X
L4
X
L
X
L}
X
L4
X
L
X
L}
X
L4
X
L

L]
L]
L]
L)
L]
L)
L]
L]
L]
L)
L]
L)
L]
L]
L]
L)
L]
L)
Ir

L 4
¥ K
L
o
L}
L
L 4
¥ K
L
o
L}
L
L 4
¥ K
L
o
L}
L
L 4

dr o dr o dr Jr B dr e Or dr b dr 0 o dr B 0 0 0 0 e B
e dr b b b b b S b A b b S b S b

s
L4
LA
L
¥
L}
s
L4
i
L
¥
L}
s
L4
i
L
¥
L}
s

i b b Jr de Jp 0 o J Jp O 0r 0 X K
ar .rH.r .rH.r .r”.r .rH.r .rH.r .r”.r .rH.r .rH.r .r”.r -
e e
b U de Jp de dp b Jr O b do Jp B Jr M Jr dr Jp dr

de b b o dr b b e b b A b b A b A S b

L]
L]
L]
L)
L]
L)
L]
L]
L]
L)
L]
L)
L]
L]
L]
L)
L]
L)
Ir

L 4
¥ K
L
o
L}
L
L 4
¥ K
L
o
L}
L
L 4
¥ K
L
o
L}
L
L 4

dr o dr o dr Jr B dr e Or dr b dr 0 o dr B 0 0 0 0 e B
e dr b b b b b S b A b b S b S b

s
L4
LA
L
¥
L}
s
L4
i
L
¥
L}
s
L4
i
L
¥
L}
s

¥
'r:lr
¥
¥
o
[
¥
o
¥
r
[
¥
¥
¥
¥
¥
r
[
¥
¥
¥
r

L
¥
r
X
r

i
L}

i
i
i
r
i
L
i
i
r
i
L
i
L
L)
P

dr odr o dr dr B o dr br dr Jr b o dr b o Jr 0 0 o dr b 0 i B

L
X
L}
X
L4
X
L
X
L}
X
L4
X
L
X
L}
X
L4
X
L

¥
r
X
r
¥
L
¥
r
X
r
¥
L
¥
r
X
r
¥
L
¥
r
X
r
¥
L
¥
r
X
r
¥
L
¥
r
X
r
¥
L
¥
r
r
r
L}
b*

E I I B O

L

-

R

e e e e

S

o

-

6 "Dl

US 11,835,941 B2

,_..J
| _ N
(ALIMNDES O oot
| Woes st
-~
&
&N
D
L
e
p
M =7 . T LA 0 .
% ’Z,,Oahdxzorwbﬁ
0 .
g |
7o)
S
= /TN
r SHLLATTYNY }
. — I P

U.S. Patent

- PO D R D D B DI N DI DI I W DI DI D DI DI DI D DU S S DI DI ST D DI DT S DI DI D DI DI DI ST DI DI S G DI DI S S DI S D DI ST S DI DI S DR SR S) JERg g

e\
s e
o - TN
-+ / h ‘
a (SNOLLVANANNOOTYE \ INANOINOD
£ . B
% 01 "O1A4 . NDISAd L ONLLSEL LDA0¥d _ 17
- e -
— i 2 ——— . e el
o n\\ - o ORON e, -~
Z 5001 /SLNdNI LSALN
\ Qﬁ.ﬁuza
L iy \/m::
-~ . /
. 7 S1ASTd N f zoﬂ:omxmu
” \ 1S9L \\ ﬁ..ﬁammfum HMMW\
— e s S
= 9001 v
o
D
= At - |
z - 1DJArOdd WHLSAS
“
CcCC _
S / N\ M
. LOArdO
M ?92205«

N N

\.

mOEZmuw /

,, ,,mEEom LSAL ;
_lsdl P

~
/wooﬂ c001 \

\ \-zo¢
209

U.S. Patent

US 11,835,941 B2

Sheet 11 of 22

,2023

Dec. 5

U.S. Patent

| LYAFOYd
| INALSAS

Lraue

INANOdNOD
AOVAELLNI
AAS[

LINFANOdINOD
NOLLVYANGD |t
LOHAIOYUd

MM TN I UEDEE IS TN MUUUS WS MU SRS I SRS W IS S MU WIS MU ST W SN T M

-~

.1-.l--l-+

.1-.--1-+

ettt

.1-.l--l-+

| pienend

, - ™S g
. v 1 o
s SLIAE v
.111--1-+

\ o yo S
~LLOHAHO
it -~ _”"””””””“”
Fi

i

l-_I-I.T. . P :l.___ltr

..

ALY
' OV

ans
N\-7TT

AdVddl'T L0380 NOLLVINOLOY 0%

WALSAS a1

ONIODOT V.LVE
NOLLVHENOIEINOD J0IA30
STLLATYNY
AHD0TT0HINOD
SLdIOS ONILSAL
SNOILIGNOD WYY
NOLLVZIVISIA TAH

NOLLVINOLAOY

7011

20T

US 11,835,941 B2

Sheet 12 of 22

,2023

Dec. 5

U.S. Patent

¢l 'O

[o

m LA OUd

|
. WAISAS |
|

L]
" = = e kel o ke e e e e e e e e e ol aie e aie e e e e e e e e e e e e e g

111111111111111111111

L e

-

%mm v

EEEEEE NOILILVYMANTLD) |-t -

adny ,,,w
\ OV Y,

4414

LNANOJNOD

- L0 dd

LNHNOdWOO
HOVAAHLNI
dH50)

JOLKTH HA

aaLyadn)s

N OV ,\h/; 7T

ALV AL LOHMHO NOLLYINOLYVY

Np7T

0%

IWALSAS H1 |

c0C

Em/

r -
. o']
! R b
' k
[1
i k
1 . '
i - LY "]
] . (W, N f.l b
1]
]]
i k
1 -]
1 '
i + k
IR e e e e e S
. - -t E
n T N :
- L A ™ LA A
-’ e, w - .

arwom

U.S. Patent Dec. 5, 2023 Sheet 13 of 22 US 11,835,941 B2

IDE SYSTEM

202 -————

|
| SYSTEM
I PROJECT

224
\‘ iDE EDITOR

204\ USER
INTERFACE

COMPONENT

CLOUD IDE SERVICES

DEVELOPER LOCATION

e

| SYSTEM | ~302,
| PROJECT

-

lllllll

lllllllllllll

.........1_'.:.'&,

''''''''''''''''''''

A e

LS
"o uoa .
- . - = ‘_"_i 1‘_. 1;
- - I._r . at |“ - & kel . M e ot = s cmm. m o m ome oo -.-I
'n "d . - L] ll q.‘m' I
LY L -, - 4 * [
- . . . - . .- -FJ |
Y o ") - | I B
it - Y
. v I
‘_\.'r l‘."_-l
L] ._,'
: | I
i
|
| LT T e
i -
= -

FIG. 13

280 L !

.........
==

.....
.....

NOLLYDO'] NOLLVDO'1
HAHA4O THAHAA - dHdOTHANAA
ANODAS LSHlA

|IJ.-_T.-...I.
=

T N |

..........
...........

n.-...| 3 .l-.l.! I”.-...n - .
.- i oo 2 e I JLI i
] . = . r ._ .
’ . - ._..I.- .-...._-_.r- .r...-.l. K
LA N Tan a 4 L e I ™ O e
; g LT T A
.

* e, - = F

.
4

\ d
i

L]

1

i

L]

d

i

4

1111111111111111111
1111111111111111111111111

.....................
.........................
......................

mm_ g R Tt B At
. oo oo f o fmimn b

i
h e O i e eoend
E i S e RNty B e e
o R, P R P
D NN | Ty
- - 111111111 . P“.Il.lll.llll.l..".llll.ll‘.l.lll“‘.‘
b q.”.q) .n......_...._......,..r
@.mwu._”m esd § Ay

| (TVDOD) |
| LOAFOYU |

lllllll

US 11,835,941 B2

aric \

SLIAE 104190 | |

VT T S
W vorvworny |

SADIAYAS AAI ANOTD 70T

......
SRR N N R R R R
.................
................
..............
..............
............
............
.........
...

nnnnnnnn

Sheet 14 of 22

INANOdAINOD N o
INFNIADVNVIA e INHANOJNOD FOVAIHINI 4480

NOLLVHO8VTI0D |
Nzt

Dec. 5, 2023

L — T A,

_ﬁmmmmmwwwmmmmm.“mm._mﬂ._mmmm._mm._mm._mm._mﬁmmmmmmmmmm._mm._mm._mm.“mm.“mmﬂmmﬂ ﬁ.\ ..xA QNPJ&Q&DW ...“.

e N o< y

WHLSAS AAT = ;

U.S. Patent

S1"OId

US 11,835,941 B2

Sheet 15 of 22

Dec. 5, 2023

pSyez0l G4

S (e

9061

U.S. Patent

JA[BA 19]U] JUB L. 001 AquE],

U.S. Patent Dec. 5, 2023 Sheet 16 of 22 US 11,835,941 B2

Tank 100

U.S. Patent Dec. 5, 2023 Sheet 17 of 22 US 11,835,941 B2

1700
P

4
RECEIVE DESIGN INPUT FOR AN INDUSTRIAL
AUTOMATION SYSTEM PROJECT VIA INTERACTION
WITH AN INDUSTRIAL IDE SYSTEM, THE
INDUSTRIAL DESIGN INPUT INCLUDING SELECTION
OF AUTOMATION OBJECTS FROM A LIBRARY OF | _ {701
AVAILABLE AUTOMATION OBJECTS FOR /-
INCLUSION IN THE SYSTEM PROJECT, THE
AUTOMATION OBJECTS REPRESENTING
INDUSTRIAL ASSETS AND COMPRISING
PROGRAMMATIC ATTRIBUTES OF THE INDUSTRIAL
ASSETS

y
RECEIVE FURTHER DESIGN INPUT THAT DEFINES
HIERARCHICAL RELATIONSHIPS BETWEEN |~ 1704
SELECTED AUTOMATION OBJECTS TO YIELD A
HIERARCHY OF AUTOMATION OBJECTS

-~
-~ - -H‘---\""

ke
et

o
-"‘-f.
- -'\.-_
__..-l'"-' T
""'\-.__
.
- = -'\.‘
'H_.-" T
T

NO . RECEIVE INSTRUCTION TO ™.
< ENCAPSULATE THE HIERARCHY OF -
.. AUTOMATION OBJECTS?

CREATE A SINGLE ENCAPSULATED OBJECT
REPRESENTING THE HIERARCHY OF AUTOMATION |~ 1708
OBJECTS, WHEREIN THE ENCAPSULATED OBJECT IS

SCALABLE ACROSS THE SYSTEM PROJECT

FI1G. 17

U.S. Patent Dec. 5, 2023 Sheet 18 of 22 US 11,835,941 B2

I 5 1800a
RECEIVE DESIGN INPUT FOR AN INDUSTRIAL
AUTOMATION SYSTEM PROJECT VIA INTERACTION
WITH AN INDUSTRIAL IDE SYSTEM, THE INDUSTRIAL
DESIGN INPUT INCLUDING SELECTION OF

AUTOMATION OBJECTS FROM A LIBRARY OF 1802
AVAILABLE AUTOMATION OBJECTS FOR INCLUSION
IN THE SYSTEM PROJECT, THE AUTOMATION OBJECTS
REPRESENTING INDUSTRIAL ASSETS AND
COMPRISING PROGRAMMATIC ATTRIBUTES OF THE
INDUSTRIAL ASSETS

HU:RARCHICAL RhLATIO\ISHlPS Bb"m EtN SELECTED |/~ 1804

AUTO_MAT.ION OBJECTS

' ATTRIBUTES OF A FIRST AUTOMATION OBJECT 1206

REPRESENTING AN INDUSTRIAL ASSET, DATA [

LOGGING CONFIGURATION SETTINGS FOR THE
INDUSTRIAL ASSET

i

AS‘S‘OCIATF‘ THE DATA LOGGING ("ONHGURATION 1808

-’!
_.-J'"
o

PIRST 1810
~AUTOMATION OBJECT

NO HAVE A PARENT-CHILD 1

............ u\..__‘_“-

......................

"~ RELATIONSHIP WITH A SECOND _
“._ AUTOMATION
T OBIECT? .~

-

rrr

SECOND AUTOMATION OBJECT BASED ON THE 1812
RELATIONSHIP AND THE DATA LOGGING
CONFIGURATION OF THE FIRST AUTOMATION OBJECT

U.S. Patent Dec. 5, 2023 Sheet 19 of 22 US 11,835,941 B2

A

4

.
L e
e ™

_o-""'d-.'f

“‘"\-_‘1—
— < 1814
" T /-
E“'\-‘.
T

e

e

7 RECEIVE T

F-.-F-r

" INSTRUCTION TO DEPLOY

THE SYSTEM PROJECT?~

--_,-"

L

COMPILE THE SYSTEM PROJECT INTO ONE OR MORE
EXECUTABLE FILES THAT CAN BE DEPLOYED AND
EXECUTED ON INDUSTRIAL DEVICES OF AN

AUTOMATION SYSTEM, THE EXECUTABLE FILES Ya 1816
INCLUDING A HISTORIAN CONFIGURATION FILE THAT
CONFIGURES ONE OR MORE DATA HISTORIANS IN
ACCORDANCE WITH THE DATA LOGGING
CONFIGURATIONS DEFINED IN THE FIRST AND
SECOND AUTOMATION OBIECTS

FI1G. 18b

U.S. Patent Dec. 5, 2023 Sheet 20 of 22 US 11,835,941 B2

¢ P 1900

RECEIVE DESIGN INPUT FOR AN INDUSTRIAL
AUTOMATION SYSTEM PROJECT VIA INTERACTION
WITH AN INDUSTRIAL IDE SYSTEM, THE INDUSTRIAL

DESIGN INPUT INCLUDING SELECTION OF ;
AUTOMATION OBJECTS FROM A LIBRARY OF 1902
AVAILABLE AUTOMATION OBJECTS FOR INCLUSION |

REPRESENTING INDUSTRIAL ASSETS AND
COMPRISING PROGRAMMATIC ATTRIBUTES OF THE
INDUSTRIAL ASSETS

______________________________________ |

RECEIVE FURTHER DESIGN INPUT THAT DEFINES -
HIERARCHICAL RELATIONSHIPS BETWEEN SELECTED |/~ 1904

AUTOMATION OBJECTS TO YIELD A HIERARCHY OF
AUTOMATION OBIECTS

ATTRIBUTES OF AN AUTOMATION OBJECT 1906

REPRESENTING AN INDUSTRIAL DEVICE. DEVICE [
CONFIGURATION PARAMETERS FOR THE INDUSTRIAL |
DEVICE :

'

ASSOCIATE THE DEVICE CONFIGURATION 1908
PARAMETFRS WITH THE AUTOMATION OBJECT |

- Y

. P Hh;‘h-..“ .

e F“"-«.L e - n
- . . .

- H""H / | 1

l“-_
-,-"‘f “u -
- .
."".\‘-H-‘

".f

....... Tmy

NO T RECEIVE e
<" INSTRUCTION TO DEPLOY >
“~THE SYSTEM PROJECT?--"

;_,.-r"

™

COMPILE THE SYSTEM PROJECT INTO ONE OR MORE
EXECUTABLE FILES THAT CAN BE DEPLOYED AND
EXECUTED ON INDUSTRIAL DEVICES OF AN ;
AUTOMATION SYSTEM, THE EXECUTABLE FILES |~ 191 2
INCLUDING A DEVICE CONFIGURATION FILE THAT |
CONFIGURES THE INDUSTRIAL DEVICE IN
ACCORDANCE WITH THE DEVICE CONFIGURATION |
PARAMETERS DEFINED IN THE AUTOMATION OBJECT |

U.S. Patent Dec. 5, 2023 Sheet 21 of 22 US 11,835,941 B2
2602
1 S Yk
PROCESSING 2004 | OPERATING SYSTEM !
UNIT o TTTmmmm e 5032
I [_ZT0C
2006 | APPLICATIONS
T S s
SYSTEM I (203
MEMORY 2012 ' E i MODULES :
’ , R i ittt e I
S [256
N DATA :
: ################## I
»| INTERFACE EAIERNAL
- STORAGE
""" INTERFACE l€—me ———
’ 2020 — 2040
- .- OPTICAL TOUCH
»| INTERFACE €3 DRIVE 2077 SCREEN

VIDEO
ADAPTER

INPUT
DEVICE
INTERFACE

| NETWORK |
"| ADAPTOR |

(WIRED/WIRELESS)

| KEYBOARD
2042

2054

REMOTE |
COMPUTER(S) |

2050 |

MEMORY/
 STORAGE

FI1G. 20

U.S. Patent Dec. 5, 2023 Sheet 22 of 22 US 11,835,941 B2

2104
CLIENT(S) _. o SERVER(S)
' COMMUNICATION
FRAMEWORK
208 2110
2106
CLIENT DATA STORE(S) SERVER DATA STORE(S)

FIG. 21

US 11,835,941 B2

1

INDUSTRIAL AUTOMATION SMART
OBJECT PARENT/CHILD DATA
COLLECTION PROPAGATION

BACKGROUND

The subject matter disclosed herein relates generally to
industrial automation systems, and, for example, to mdus-
trial programming development platiorms.

BRIEF DESCRIPTION

The following presents a simplified summary in order to
provide a basic understanding of some aspects described
herein. This summary 1s not an extensive overview nor 1s
intended to 1dentily key/critical elements or to delineate the
scope ol the various aspects described herein. Its sole
purpose 1s to present some concepts 1n a simplified form as
a prelude to the more detailed description that 1s presented
later.

In one or more embodiments, a system for developing
industrial applications 1s provided, comprising a memory
that stores executable components and a library of automa-
tion objects representing respective industrial assets, the
automation objects having respective programmatic attri-
butes associated with the industrial assets; a user interface
component configured to render integrated development
environment (IDE) interfaces and to receive, via interaction
with the IDE interfaces, design input that defines aspects of
an industrial automation project; and a project generation
component configured to generate system project data based
on the design input, wherein the system project data defines
a system project comprising at least one of an executable
industrial control program, an industrial visualization appli-
cation, or industrial device configuration data, the system
project data further comprises an instance of an automation
object selected from the automation objects stored in the
library, and the 1nstance of the automation object comprises,
as one or more of the programmatic attributes, data logging
configuration parameters that, in response to deployment to
a data collection system, configure the data collection sys-
tem to collect data generated by an industrial asset repre-
sented by the instance of the automation object.

Also, one or more embodiments provide a method for
developing industrial applications, comprising rendering, by
a system comprising a processor, mtegrated development
environment (IDE) iterfaces on a client device; receiving,
by the system via interaction with the IDE interfaces, design
input that defines aspects of an industrial control and moni-
toring project; and generating, by the system, system project
data based on the design mput, the system project data
comprising at least an instance of an automation object
selected from a library of automation objects representing
respective industrial assets and having respective program-
matic attributes relating to the industrial assets, wherein the
generating comprises generating at least one of an execut-
able industrial control program, an industrial visualization
application, or industrial device configuration data, and the
instance of the automation object comprises, as one or more
of the programmatic attributes, data logging configuration
parameters that, in response to deployment to a data histo-
rian system, configure the data historian system to collect
data generated by an industrial asset represented by the
instance of the automation object.

Also, according to one or more embodiments, a non-
transitory computer-readable medium 1s provided having
stored thereon instructions that, 1n response to execution,

10

15

20

25

30

35

40

45

50

55

60

65

2

cause a system to perform operations, the operations com-
prising rendering integrated development environment
(IDE) interfaces on a client device; recerving, from the client
device via interaction with the IDE interfaces, design input
that defines control design aspects of an industrial automa-
tion project; and generating system project data based on the
design input, wherein the generating comprises generating at
least one of an executable industrial control program, an
industrial visualization application, or industrial device con-
figuration data, the system project data comprises an
instance of an automation object selected from a library of
automation objects, the automation objects representing
respective industrial assets and have respective program-
matic attributes relating to the industrial assets, and the
instance of the automation object comprises, as one or more
of the programmatic attributes, data historian configuration
settings that, in response to deployment to a data historian
system, configure the data historian system to collect data
generated by an industnial asset represented by the instance
of the automation object.

To the accomplishment of the foregoing and related ends,
certain 1llustrative aspects are described herein 1n connection
with the following description and the annexed drawings.
These aspects are indicative of various ways which can be
practiced, all of which are intended to be covered herein.
Other advantages and novel features may become apparent
from the following detailed description when considered 1n
conjunction with the drawings.

BRIEF DESCRIPTION OF TH.

L1

DRAWINGS

FIG. 1 1s a block diagram of an example industrial control
environment.

FIG. 2 1s a block diagram of an example integrated
development environment (IDE) system.

FIG. 3 1s a diagram 1illustrating a generalized architecture
of an industrial IDE system.

FIG. 4 1s a diagram 1illustrating several example automa-
tion object properties that can be leveraged by an industrial
IDE system 1n connection with building, deploying, and
executing a system project.

FIG. 5 1s a diagram 1illustrating example data flows
associated with creation of a system project for an automa-
tion system being designed using and industrial IDE system.

FIG. 6 15 a diagram 1llustrating an example system project
that incorporates automation objects 1to a project model.

FIG. 7 1s a diagram illustrating commissioning of a
system project.

FIG. 8 1s a diagram 1llustrating an example architecture 1n
which cloud-based IDE services are used to develop and
deploy industrial applications to a plant environment.

FIG. 9 1s an illustration of an example automation object
that has been integrated into the project data model of a
system project.

FIG. 10 1s a diagram illustrating testing of an example
system project by an IDE system’s project testing compo-
nent using test scripts bundled with an automation object.

FIG. 11 1s a diagram 1llustrating submission of automation
object edits to an IDE system.

FIG. 12 1s a diagram illustrating modification of imnstances
ol an automation object 1n accordance with edits submaitted
to the master version of the automation object stored 1n a
library.

FIG. 13 1s a diagram 1illustrating downloading of a copy
of a system project from an industrial IDE system to a local
client device.

US 11,835,941 B2

3

FIG. 14 1s a diagram 1llustrating propagation of automa-
tion object edits to a locally stored copy of a system project.

FIG. 15 1s a graphical representation of a two-tier rela-
tionship hierarchy between automation objects.

FIG. 16 1s an example graphical representation of three
encapsulated automation objects.

FIG. 17 1s a tflowchart of an example methodology for
creating and encapsulated a hierarchy of automation objects
within an industrial system project using an industrial IDE
system.

FIG. 18a 1s a flowchart of a first part of an example
methodology for configuring, within an automation system
project, logging of data generated by an automation system
to be monitored and controlled by the system project.

FIG. 185 1s a flowchart of a second part of the example
methodology for configuring, within an automation system
project, logging of data generated by an automation system
to be monitored and controlled by the system project.

FIG. 19 1s a flowchart of an example methodology for
defining industrial device configuration within an automa-
tion system project using automation objects.

FIG. 20 1s an example computing environment.

FIG. 21 1s an example networking environment.

DETAILED DESCRIPTION

The subject disclosure 1s now described with reference to
the drawings, wherein like reference numerals are used to
refer to like elements throughout. In the following descrip-
tion, for purposes of explanation, numerous specific details
are set forth i order to provide a thorough understanding
thereol. It may be evident, however, that the subject disclo-
sure can be practiced without these specific details. In other
istances, well-known structures and devices are shown 1n
block diagram form in order to {facilitate a description
thereof.

As used 1n this application, the terms “component,”
“system,” “platform,” “layer,” “controller,” “terminal,” “sta-
tion,” “node,” “interface” are intended to refer to a com-
puter-related entity or an entity related to, or that is part of,
an operational apparatus with one or more specific function-
alities, wherein such entities can be either hardware, a
combination of hardware and software, software, or soft-
ware 1n execution. For example, a component can be, but 1s
not limited to being, a process running on a processor, a
processor, a hard disk drive, multiple storage drives (of
optical or magnetic storage medium) including athixed (e.g.,
screwed or bolted) or removable aflixed solid-state storage
drives; an object; an executable; a thread of execution; a
computer-executable program, and/or a computer. By way
of 1llustration, both an application running on a server and
the server can be a component. One or more components can
reside within a process and/or thread of execution, and a
component can be localized on one computer and/or dis-
tributed between two or more computers. Also, components
as described herein can execute from various computer
readable storage media having various data structures stored
thereon. The components may communicate via local and/or
remote processes such as 1 accordance with a signal having
one or more data packets (e.g., data from one component
interacting with another component 1n a local system, dis-
tributed system, and/or across a network such as the Internet
with other systems via the signal). As another example, a
component can be an apparatus with specific Tunctionality
provided by mechanical parts operated by electric or elec-
tronic circuitry which 1s operated by a soiftware or a firm-

ware application executed by a processor, wherein the

10

15

20

25

30

35

40

45

50

55

60

65

4

processor can be internal or external to the apparatus and
executes at least a part of the software or firmware appli-
cation. As yet another example, a component can be an
apparatus that provides specific functionality through elec-
tronic components without mechanical parts, the electronic
components can include a processor therein to execute
soltware or firmware that provides at least in part the
functionality of the electronic components. As further yet
another example, interface(s) can include mput/output (1/0)
components as well as associated processor, application, or
Application Programming Interface (API) components.
While the foregoing examples are directed to aspects of a
component, the exemplified aspects or features also apply to
a system, platform, interface, layer, controller, terminal, and
the like.

As used herein, the terms “to infer” and “inference” refer
generally to the process of reasoning about or inferring
states of the system, environment, and/or user from a set of
observations as captured via events and/or data. Inference
can be employed to identily a specific context or action, or
can generate a probability distribution over states, for
example. The inference can be probabilistic—that 1s, the
computation of a probability distribution over states of
interest based on a consideration of data and events. Infer-
ence can also refer to techmques employed for composing
higher-level events from a set of events and/or data. Such
inference results 1n the construction of new events or actions
from a set of observed events and/or stored event data,
whether or not the events are correlated 1n close temporal
proximity, and whether the events and data come from one
or several event and data sources.

In addition, the term “or” 1s intended to mean an inclusive
“or” rather than an exclusive “or.” That 1s, unless specified
otherwise, or clear from the context, the phrase “X employs
A or B” 1s intended to mean any of the natural inclusive
permutations. That 1s, the phrase “X employs A or B” 1s
satisfied by any of the following instances: X employs A; X
employs B; or X employs both A and B. In addition, the
articles “a” and “‘an” as used in this application and the
appended claims should generally be construed to mean
“one or more” unless specified otherwise or clear from the
context to be directed to a singular form.

Furthermore, the term “set” as employed herein excludes
the empty set; e.g., the set with no elements therein. Thus,
a “set” in the subject disclosure includes one or more
elements or entities. As an illustration, a set of controllers
includes one or more controllers; a set of data resources
includes one or more data resources; etc. Likewise, the term
“oroup” as utilized herein refers to a collection of one or
more enfities; e€.g., a group of nodes refers to one or more
nodes.

Various aspects or features will be presented 1n terms of
systems that may include a number of devices, components,
modules, and the like. It 1s to be understood and appreciated
that the various systems may include additional devices,
components, modules, etc. and/or may not include all of the
devices, components, modules etc. discussed 1n connection
with the figures. A combination of these approaches also can
be used.

FIG. 1 1s a block diagram of an example industrial control
environment 100. In thus example, a number of industrial
controllers 118 are deployed throughout an industrial plant
environment to monitor and control respective industrial
systems or processes relating to product manufacture,
machining, motion control, batch processing, material han-
dling, or other such industrial functions. Industrial control-
lers 118 typically execute respective control programs to

US 11,835,941 B2

S

facilitate monitoring and control of industrial devices 120
making up the controlled industrial assets or systems (e.g.,
industrial machines). One or more industrial controllers 118
may also comprise a soft controller executed on a personal
computer or other hardware platform, or on a cloud plat-
form. Some hybrid devices may also combine controller
tfunctionality with other functions (e.g., visualization). The
control programs executed by industrial controllers 118 can
comprise substantially any type of code capable of process-
ing nput signals read from the industrial devices 120 and
controlling output signals generated by the industrial con-
trollers 118, including but not limited to ladder logic,
sequential function charts, function block diagrams, or struc-
tured text.

Industrial devices 120 may include both input devices that
provide data relating to the controlled industrial systems to
the industrial controllers 118, and output devices that
respond to control signals generated by the industrial con-
trollers 118 to control aspects of the industrial systems.
Example input devices can include telemetry devices (e.g.,
temperature sensors, flow meters, level sensors, pressure
sensors, etc.), manual operator control devices (e.g., push
buttons, selector switches, etc.), safety monitoring devices
(e.g., safety mats, safety pull cords, light curtains, etc.), and
other such devices. Output devices may include motor
drives, pneumatic actuators, signaling devices, robot control
inputs, valves, pumps, and the like.

Industrial controllers 118 may communicatively interface
with industrial devices 120 over hardwired or networked
connections. For example, industrial controllers 118 can be
equipped with native hardwired mputs and outputs that
communicate with the industrial devices 120 to eflect con-
trol of the devices. The native controller I/O can include
digital 1/O that transmits and receives discrete voltage
signals to and from the field devices, or analog 1/O that
transmits and receives analog voltage or current signals to
and from the devices. The controller I/O can communicate
with a controller’s processor over a backplane such that the
digital and analog signals can be read 1nto and controlled by
the control programs. Industrial controllers 118 can also
communicate with industrial devices 120 over a network
using, for example, a communication module or an inte-
grated networking port. Exemplary networks can include the
Internet, intranets, Ethernet, DeviceNet, ControlNet, Data
Highway and Data Highway Plus (DH/DH+), Remote 1/0,
Fieldbus, Modbus, Profibus, wireless networks, serial pro-
tocols, and the like. The industrial controllers 118 can also
store persisted data values that can be referenced by their
associated control programs and used for control decisions,
including but not limited to measured or calculated values
representing operational states of a controlled machine or
process (e.g., tank levels, positions, alarms, etc.) or captured
time series data that i1s collected during operation of the
automation system (e.g., status information for multiple
points 1n time, diagnostic occurrences, etc.). Sitmilarly, some
intelligent devices—including but not limited to motor
drives, instruments, or condition monitoring modules—may
store data values that are used for control and/or to visualize
states of operation. Such devices may also capture time-
series data or events on a log for later retrieval and viewing.

Industrial automation systems often include one or more
human-machine interfaces (HMlIs) 114 that allow plant
personnel to view telemetry and status data associated with
the automation systems, and to control some aspects of
system operation. HMIs 114 may communicate with one or
more of the industrial controllers 118 over a plant network
116, and exchange data with the industrial controllers to

10

15

20

25

30

35

40

45

50

55

60

65

6

facilitate visualization of information relating to the con-
trolled industnial processes on one or more pre-developed
operator interface screens. HMIs 114 can also be configured
to allow operators to submit data to specified data tags or
memory addresses of the industrial controllers 118, thereby
providing a means for operators to 1ssue commands to the
controlled systems (e.g., cycle start commands, device
actuation commands, etc.), to modily setpoint values, etc.
HMIs 114 can generate one or more display screens through
which the operator interacts with the industrial controllers
118, and thereby with the controlled processes and/or sys-
tems. Example display screens can visualize present states
of industrial systems or their associated devices using
graphical representations of the processes that display
metered or calculated values, employ color or position
animations based on state, render alarm notifications, or
employ other such techniques for presenting relevant data to
the operator. Data presented in this manner 1s read from
industrial controllers 118 by HMIs 114 and presented on one
or more of the display screens according to display formats
chosen by the HMI developer. HMIs may comprise fixed
location or mobile devices with either user-installed or
pre-installed operating systems, and either user-installed or
pre-installed graphical application software.

Some 1ndustrial environments may also include other
systems or devices relating to specific aspects of the con-
trolled industrial systems. These may 1nclude, for example,
a data historian 110 that aggregates and stores production
information collected from the industrial controllers 118 or
other data sources, device documentation stores containing
clectronic documentation for the various industrial devices
making up the controlled industrial systems, inventory
tracking systems, work order management systems, reposi-
tories for machine or process drawings and documentation,
vendor product documentation storage, vendor knowledge-
bases, 1ternal knowledgebases, work scheduling applica-
tions, or other such systems, some or all of which may reside
on an oflice network 108 of the industrial environment.

Higher-level systems 126 may carry out functions that are
less directly related to control of the industrial automation
systems on the plant floor, and instead are directed to long
term planning, high-level supervisory control, analytics,
reporting, or other such high-level tfunctions. These systems
126 may reside on the oflice network 108 at an external
location relative to the plant facility, or on a cloud platform
with access to the office and/or plant networks. Higher-level
systems 126 may include, but are not limited to, cloud
storage and analysis systems, big data analysis systems,
manufacturing execution systems, data lakes, reporting sys-
tems, etc. In some scenarios, applications running at these
higher levels of the enterprise may be configured to analyze
control system operational data, and the results of this
analysis may be fed back to an operator at the control system
or directly to a controller 118 or device 120 in the control
system.

The various control, monitoring, and analytical devices
that make up an industrial environment must be pro-
grammed or configured using respective configuration appli-
cations specific to each device. For example, industrial
controllers 118 are typically configured and programmed
using a control programming development application such
as a ladder logic editor (e.g., executing on a client device
124). Using such development platforms, a designer can
write control programming (e.g., ladder logic, structured
text, function block diagrams, etc.) for carrying out a desired
industrial sequence or process and download the resulting
program files to the controller 118. Separately, developers

US 11,835,941 B2

7

design visualization screens and associated navigation struc-
tures for HMIs 114 using an HMI development platform
(e.g., executing on client device 122) and download the
resulting visualization files to the HMI 114. Some industrial
devices 120—such as motor drives, telemetry devices,
safety input devices, etc.—may also require configuration
using separate device configuration tools (e.g., executing on
client device 128) that are specific to the device being
configured. Such device configuration tools may be used to
set device parameters or operating modes (e.g., high/low
limaits, output signal formats, scale factors, energy consump-
tion modes, etc.).

The necessity of using separate configuration tools to
program and configure disparate aspects of an industrial
automation system results in a piecemeal design approach
whereby different but related or overlapping aspects of an
automation system are designed, configured, and pro-
grammed separately on different development environ-
ments. For example, a motion control system may require an
industrial controller to be programmed and a control loop to
be tuned using a control logic programming platiorm, a
motor drive to be configured using another configuration
platform, and an associated HMI to be programmed using a
visualization development platform. Related peripheral sys-
tems—such as vision systems, safety systems, etc.—may
also require configuration using separate programming or
development applications.

This segregated development approach can also necessi-
tate considerable testing and debugging efforts to ensure
proper integration of the separately configured system
aspects. In this regard, intended data interfacing or coordi-
nated actions between the different system aspects may
require significant debugging due to a failure to properly
coordinate disparate programming ellorts.

To address at least some of these or other 1ssues, one or
more embodiments described herein provide an integrated
development environment (IDE) for designing, program-
ming, and configuring multiple aspects of an industrial
automation system using a common design environment and
data model. Embodiments of the industrial IDE can be used
to configure and manage automation system devices in a
common way, facilitating integrated, multi-discipline pro-
gramming of control, visualization, and other aspects of the
control system.

In general, the industrial IDE supports features that span
the full automation lifecycle, including design (e.g., device
selection and sizing, controller programming, visualization
development, device configuration, testing, etc.); installa-
tion, configuration and commissioning; operation, Improve-
ment, and administration; and troubleshooting, expanding,
and upgrading.

Embodiments of the industrial IDE can include a library
of modular code and wvisualizations that are specific to
industry verticals and common industrial applications within
those verticals. These code and visualization modules can
simplily development and shorten the development cycle,
while also supporting consistency and reuse across an indus-
trial enterprise.

To support enhance development capabilities, projects
creating using embodiments of the IDE system can be built
on an object-based model rather than, or in addition to, a
tag-based architecture. To this end, the IDE system can
support the use of automation objects that serve as building
blocks for this object-based development structure. To
ensure consistency within and between projects, as well as
to ensure that a given industrial project 1s dynamically
updated to reflect changes to an industrial asset’s attributes

10

15

20

25

30

35

40

45

50

55

60

65

8

(e.g., control code, visualization definitions, testing scripts,
analytic code, etc.), embodiments of the IDE system can use
automation object inheritance features to propagate changes
made to an automation object definition to all instances of
the automation object used throughout a control project.
Additionally, the IDE system allows a user to define hier-
archical linkages between automation objects representing
different industrial assets or enterprise levels, and to encap-
sulate these linked objects into a single object that can be
moved to other aspects of the system project, or replicated
across multiple projects or project sections. In some embodi-
ments, data logging configurations can also be embedded
natively within smart objects. In the case of linked automa-
tion objects, data logging configurations can be propagated
through the defined object hierarchy such that a parent
object controls data logging behaviors of child objects.

FIG. 2 1s a block diagram of an example integrated
development environment (IDE) system 202 according to
one or more embodiments of this disclosure. Aspects of the
systems, apparatuses, or processes explained 1n this disclo-
sure can constitute machine-executable components embod-
ied within machine(s), e.g., embodied 1 one or more
computer-readable mediums (or media) associated with one
or more machines. Such components, when executed by one
or more machines, e.g., computer(s), computing device(s),
automation device(s), virtual machine(s), etc., can cause the
machine(s) to perform the operations described.

IDE system 202 can include a user interface component
204 including an IDE editor 224, a project generation
component 206, a project deployment component 208, a
project testing component 210, a collaboration management
component 212, one or more processors 218, and memory
220. In various embodiments, one or more of the user
interface component 204, project generation component
206, project deployment component 208, project testing
component 210, collaboration management component 212,
the one or more processors 218, and memory 220 can be
clectrically and/or communicatively coupled to one another
to perform one or more of the functions of the IDE system
202. In some embodiments, components 204, 206, 208, 210,
and 212 can comprise soltware instructions stored on
memory 220 and executed by processor(s) 218. IDE system
202 may also mteract with other hardware and/or software
components not depicted i FIG. 2. For example,
processor(s) 218 may interact with one or more external user
interface devices, such as a keyboard, a mouse, a display
monitor, a touchscreen, or other such interface devices.

User interface component 204 can be configured to
receive user mput and to render output to the user 1n any
suitable format (e.g., visual, audio, tactile, etc.). In some
embodiments, user interface component 204 can be config-
ured to communicatively interface with an IDE client that
executes on a client device (e.g., a laptop computer, tablet
computer, smart phone, etc.) that 1s communicatively con-
nected to the IDE system 202 (e.g., via a hardwired or
wireless connection). The user interface component 204 can
then receive user mput data and render output data via the
IDE client. In other embodiments, user interface component
314 can be configured to generate and serve suitable inter-
face screens to a client device (e.g., program development
screens), and exchange data via these interface screens.
Input data that can be received via various embodiments of
user mterface component 204 can 1nclude, but i1s not limited
to, programming code, industrial design specifications or
goals, engineering drawings, AR/VR input, DSL definitions,
video or tmage data, project testing scripts, or other such
input. Output data rendered by various embodiments of user

US 11,835,941 B2

9

interface component 204 can include program code, pro-
gramming feedback (e.g., error and highlighting, coding
suggestions, etc.), programming and visualization develop-
ment screens, project testing results, etc.

Project generation component 206 can be configured to
create a system project comprising one or more project files
based on design mput received via the user mterface com-
ponent 204, as well as industrial knowledge, predefined code
modules and visualizations, and automation objects 222
maintained by the IDE system 202. Project deployment
component 208 can be configured to commission the system
project created by the project generation component 206 to
appropriate industrial devices (e.g., controllers, HMI termi-
nals, motor drives, AR/VR systems, etc.) for execution. To
this end, project deployment component 208 can 1dentify the
appropriate target devices to which respective portions of
the system project should be sent for execution, translate
these respective portions to formats understandable by the
target devices, and deploy the translated project components
to their corresponding devices.

Project testing component 210 can be configured to
execute testing scripts associated with automation objects
222 or other elements of the system project to validate
proper execution of various aspects of the project. Collabo-
ration management component 212 can be configured to
track instances of a system project that have been down-
loaded to local client devices so that these local versions of
the project can be updated as needed 1n response to modi-
fications submitted to the cloud-based IDE system.

The one or more processors 218 can perform one or more
of the functions described herein with reference to the
systems and/or methods disclosed. Memory 220 can be a
computer-readable storage medium storing computer-ex-
ecutable instructions and/or information for performing the
functions described herein with reference to the systems
and/or methods disclosed.

FIG. 3 1s a diagram 1llustrating a generalized architecture
of the industrial IDE system 202 according to one or more
embodiments. Industrial IDE system 202 can implement a
common set of services and workflows spanning not only
design, but also commissioning, operation, and mainte-
nance. In terms of design, the IDE system 202 can support
not only 1industrial controller programming and HMI devel-
opment, but also sizing and selection of system components,
device/system configuration, AR/VR visualizations, and
other features. The IDE system 202 can also include tools
that stmplily and automate commissiomng of the resulting
project and assist with subsequent administration of the
deployed system during runtime.

Embodiments of the IDE system 202 that are imple-
mented on a cloud platform also facilitate collaborative
project development whereby multiple developers 304 con-
tribute design and programming input to a common auto-
mation system project 302. Collaborative tools supported by
the IDE system can manage design contributions from the
multiple contributors and perform version control of the
aggregate system project 302 to ensure project consistency.

Based on design and programming input from one or
more developers 304, IDE system 202 generates a system
project 302 comprising one or more project files. The system
project 302 encodes one or more of control programming;
HMI, AR, and/or VR wvisualizations; device or sub-system
configuration data (e.g., drive parameters, vision system
configurations, telemetry device parameters, salety zone
definitions, etc.); or other such aspects of an industrial
automation system being designed. IDE system 202 can
identily the appropriate target devices 306 on which respec-

10

15

20

25

30

35

40

45

50

55

60

65

10

tive aspects of the system project 302 should be executed
(e.g., industrial controllers, HMI terminals, variable fre-
quency drives, safety devices, etc.), translate the system
project 302 to executable files that can be executed on the
respective target devices, and deploy the executable files to
theirr corresponding target devices 306 for execution,
thereby commissioning the system project 302 to the plant
floor for implementation of the automation project.

To support enhanced development capabilities, some
embodiments of IDE system 202 can be built on an object-
based data model rather than, or 1n addition to, a tag-based
architecture. Automation objects 222 serve as the building
block for this object-based development architecture. FIG. 4
1s a diagram 1llustrating several example automation object
properties that can be leveraged by the IDE system 202 in
connection with building, deploying, and executing a system
project 302. Automation objects 222 can be created and
augmented during design, integrated into larger data models,
and consumed during runtime. These automation objects
222 provide a common data structure across the IDE system
202 and can be stored in an object library (e.g., part of
memory 220) for reuse. The object library can store pre-
defined automation objects 222 representing various classi-
fications of real-world industrial assets 402, including but
not limited to pumps, tanks, values, motors, motor drives
(e.g., variable frequency drives), industrial robots, actuators
(e.g., pneumatic or hydraulic actuators), or other such assets.
Automation objects 222 can represent elements at substan-
tially any level of an industrial enterprise, including indi-
vidual devices, machines made up of many industrial
devices and components (some of which may be associated
with their own automation objects 222), and entire produc-
tion lines or process control systems.

An automation object 222 for a given type of industrial
asset can encode such aspects as 2D or 3D visualizations,
alarms, control coding (e.g., logic or other type of control
programming), analytics, startup procedures, testing proto-
cols and scripts, validation reports, simulations, schematics,
security protocols, and other such properties associated with
the industrial asset 402 represented by the object 222.
Automation objects 222 can also be geotagged with location
information identifying the location of the associated asset.
During runtime of the system project 302, the automation
object 222 corresponding to a given real-world asset 402 can
also record status or operational history data for the asset. In
general, automation objects 222 serve as programmatic
representations of their corresponding industrial assets 402,
and can be incorporated into a system project 302 as
elements of control code, a 2D or 3D wvisualization, a
knowledgebase or maintenance guidance system for the
industrial assets, or other such aspects. Also, as will be
discussed 1n more detail below, automation objects 222 can
support inheritance, such that changes to any of the attri-
butes of an automation object 222 discussed above are
automatically propagated to instances of the automation
object used throughout a system project 302.

FIG. 5 1s a diagram 1illustrating example data flows
associated with creation of a system project 302 for an
automation system being designed using IDE system 202
according to one or more embodiments. A client device 504
(e.g., a laptop computer, tablet computer, desktop computer,
mobile device, wearable AR/VR appliance, etc.) executing
an IDE client application 514 can access the IDE system’s
project development tools and leverage these tools to create
a comprehensive system project 302 for an automation
system being developed. Through interaction with the sys-
tem’s user interface component 204, developers can submit

US 11,835,941 B2

11

design mput 512 to the IDE system 202 1n various supported
formats, including industry-specific control programming
(e.g., control logic, structured text, sequential function
charts, etc.) and HMI screen configuration input. Based on
this design mput 512 and information stored 1n an industry
knowledgebase (predefined code modules 508 and visual-
izations 510, guardrail templates 506, physics-based rules
516, ctc.), user terface component 204 renders design
teedback 518 designed to assist the developer 1n connection
with developing a system project 302 for configuration,
control, and visualization of an industrial automation sys-
tem.

In addition to control programming and visualization
definitions, some embodiments of IDE system 202 can be
configured to receive digital engineering drawings (e.g.,
computer-aided design (CAD) files) as design input 312. In
such embodiments, project generation component 206 can
generate portions of the system project 302—e.g., by auto-
matically generating control and/or visualization code—
based on analysis of existing design drawings. Drawings
that can be submitted as design mput 312 can include, but
are not limited to, P&ID drawings, mechanical drawings,
flow diagrams, or other such documents. For example, a
P&ID drawing can be imported into the IDE system 202,
and project generation component 206 can 1dentily elements
(e.g., tanks, pumps, etc.) and relationships therebetween
conveyed by the drawings. Project generation component
206 can associate or map elements 1dentified 1n the drawings
with appropriate automation objects 222 corresponding to
these eclements (e.g., tanks, pumps, etc.) and add these
automation objects 222 to the system project 302. The
device-specific and asset-specific automation objects 222
include suitable code and wvisualizations to be associated
with the elements 1dentified in the drawings. In general, the
IDE system 202 can examine one or more different types of
drawings (mechanical, electrical, piping, etc.) to determine
relationships between devices, machines, and/or assets (in-
cluding 1dentitying common elements across different draw-
ings) and intelligently associate these elements with appro-
priate automation objects 222, code modules 508, and/or
visualizations 510. The IDE system 202 can leverage phys-
ics-based rules 516 as well as pre-defined code modules 508
and visualizations 3510 as necessary in connection with
generating code or project data for system project 302.

The IDE system 202 can also determine whether pre-
defined visualization content 1s available for any of the
objects discovered 1n the drawings and generate appropriate
HMI screens or AR/VR content for the discovered objects
based on these pre-defined visualizations. To this end, the
IDE system 202 can store industry-specific, asset-specific,
and/or application-specific visualizations 510 that can be
accessed by the project generation component 206 as
needed. These visualizations 510 can be classified according,
to industry or industnal vertical (e.g., automotive, food and
drug, o1l and gas, pharmaceutical, etc.), type of industrial
asset (e.g., a type of machine or industrial device), a type of
industnal application (e.g., batch processing, flow control,
web tension control, sheet metal stamping, water treatment,
etc.), or other such categories. Predefined visualizations 510
can comprise visualizations in a variety of formats, includ-
ing but not limited to HMI screens or windows, mashups
that aggregate data from multiple pre-specified sources, AR
overlays, VR objects representing 3D virtualizations of the
assoclated industrial asset, or other such visualization for-
mats. IDE system 202 can select a suitable visualization for
a given object based on a predefined association between the
object type and the visualization content.

10

15

20

25

30

35

40

45

50

55

60

65

12

In another example, markings applied to an engineering
drawing by a user can be understood by some embodiments
of the project generation component 206 to convey a speciiic
design intention or parameter. For example, a marking in red
pen can be understood to 1ndicate a safety zone, two circles
connected by a dashed line can be nterpreted as a gearing
relationship, and a bold line may indicate a camming rela-
tionship. In this way, a designer can sketch out design goals
on an existing drawing in a manner that can be understood
and leveraged by the IDE system 202 to generate code and
visualizations. In another example, the project generation
component 206 can learn permissives and interlocks (e.g.,
valves and their associated states) that serve as necessary
preconditions for starting a machine based on analysis of the
user’'s CAD drawings. Project generation component 206
can generate any suitable code (ladder logic, function
blocks, etc.), device configurations, and visualizations based
on analysis of these drawings and markings for incorpora-
tion 1nto system project 302. In some embodiments, user
interface component 204 can include design tools for devel-
oping engineering drawings within the IDE platform 1tsellf,
and the project generation component 206 can generate this
code as a background process as the user i1s creating the
drawings for a new project. In some embodiments, project
generation component 206 can also translate state machine
drawings to a corresponding programming sequence, yield-
ing at least skeletal code that can be enhanced by the
developer with additional programming details as needed.

Also, or 1in addition, some embodiments of IDE system
202 can support goal-based automated programming. For
example, the user iterface component 204 can allow the
user to specily production goals for an automation system
being designed (e.g., specilying that a bottling plant being
designed must be capable of producing at least 5000 bottles
per second during normal operation) and any other relevant
design constraints applied to the design project (e.g., budget
limitations, available floor space, available control cabinet
space, etc.). Based on this information, the project genera-
tion component 206 will generate portions of the system
project 302 to satisfy the specified design goals and con-
straints. Portions of the system project 302 that can be
generated in this manner can include, but are not limaited to,
device and equipment selections (e.g., definitions of how
many pumps, controllers, stations, conveyors, drives, or
other assets will be needed to satisiy the specified goal),
associated device configurations (e.g., tuming parameters,
network settings, drive parameters, etc.), control coding, or
HMI screens suitable for visualizing the automation system
being designed.

Some embodiments of the project generation component
206 can also generate at least some of the project code for
system project 302 based on knowledge of parts that have
been ordered for the project being developed. This can
involve accessing the customer’s account information main-
tained by an equipment vendor to 1dentify devices that have
been purchased for the project. Based on this information the
project generation component 206 can add appropriate auto-
mation objects 222 and associated code modules 508 cor-
responding to the purchased assets, thereby providing a
starting point for project development.

Some embodiments of project generation component 206
can also monitor customer-specific design approaches for
commonly programmed functions (e.g., pumping applica-
tions, batch processes, palletizing operations, etc.) and gen-
erate recommendations for design modules (e.g., code mod-
ules 508, visualizations 510, etc.) that the user may wish to
incorporate mnto a current design project based on an infer-

US 11,835,941 B2

13

ence ol the designer’s goals and learned approaches to
achieving the goal. To this end, some embodiments of
project generation component 206 can be configured to
monitor design input 312 over time and, based on this
monitoring, learn correlations between certain design
actions (e.g., addition of certain code modules or snippets to
design projects, selection of certain visualizations, etc.) and
types of mndustrial assets, industrial sequences, or industrial
processes being designed. Project generation component
206 can record these learned correlations and generate
recommendations during subsequent project development
sessions based on these correlations. For example, 1f project
generation component 206 determines, based on analysis of
design mput 512, that a designer 1s currently developing a
control project involving a type of industrial equipment that
has been programmed and/or visualized in the past 1n a
repeated, predictable manner, the project generation com-
ponent 206 can instruct user interface component 204 to
render recommended development steps or code modules
508 the designer may wish to incorporate 1nto the system
project 302 based on how this equipment was configured
and/or programmed in the past.

In some embodiments, IDE system 202 can also store and
implement guardrail templates 506 that define design guard-
rails intended to ensure the project’s compliance with inter-
nal or external design standards. Based on design parameters
defined by one or more selected guardrail templates 506,
user interface component 204 can provide, as a subset of
design feedback 518, dynamic recommendations or other
types of feedback designed to guide the developer 1mn a
manner that ensures compliance of the system project 302
with internal or external requirements or standards (e.g.,
certifications such as TUV certification, in-house design
standards, industry-specific or vertical-specific design stan-
dards, etc.). This feedback 518 can take the form of text-
based recommendations (e.g., recommendations to rewrite
an mdicated portion of control code to comply with a defined
programming standard), syntax highlighting, error high-
lighting, auto-completion of code snippets, or other such
formats. In this way, IDE system 202 can customize design
teedback 518—including programming recommendations,
recommendations of predefined code modules 508 or visu-
alizations 510, error and syntax highlighting, etc.—in accor-
dance with the type of industrial system being developed
and any applicable 1n-house design standards.

Guardrail templates 506 can also be designed to maintain
compliance with global best practices applicable to control
programming or other aspects of project development. For
example, user interface component 204 may generate and
render an alert 1if a developer’s control programing 1s
deemed to be too complex as defined by criteria specified by
one or more guardrail templates 506. Since different verti-
cals (e.g., automotive, pharmaceutical, o1l and gas, food and
drug, marine, etc.) must adhere to diflerent standards and
certifications, the IDE system 202 can maintain a library of
guardrail templates 506 for different internal and external
standards and certifications, including customized user-spe-
cific guardrail templates 506. These guardrail templates 506
can be classified according to industrial vertical, type of
industrial application, plant facility (in the case of custom
in-house guardrail templates 506) or other such categories.
During development, project generation component 206 can
select and apply a subset of guardrail templates 506 deter-
mined to be relevant to the project currently being devel-
oped, based on a determination of such aspects as the
industrial vertical to which the project relates, the type of
industrial application being programmed (e.g., flow control,

10

15

20

25

30

35

40

45

50

55

60

65

14

web tension control, a certain batch process, etc.), or other
such aspects. Project generation component 206 can lever-
age guardrail templates 506 to implement rules-based pro-
gramming, whereby programming feedback (a subset of
design feedback 518) such as dynamic intelligent autocor-
rection, type-aheads, or coding suggestions are rendered
based on encoded industry expertise and best practices (e.g.,
identifying inetliciencies 1 code being developed and rec-
ommending appropriate corrections).

Users can also run their own internal guardrail templates
506 against code provided by outside vendors (e.g., OEMs)
to ensure that this code complies with 1n-house program-
ming standards. In such scenarios, vendor-provided code
can be submitted to the IDE system 202, and project
generation component 206 can analyze this code 1n view of
in-house coding standards specified by one or more custom
guardrail templates 506. Based on results of this analysis,
user 1terface component 204 can indicate portions of the
vendor-provided code (e.g., using highlights, overlaid text,
ctc.) that do not conform to the programming standards set
torth by the guardrail templates 506, and display suggestions
for moditying the code 1n order to bring the code into
compliance. As an alternative or 1n addition to recommend-
ing these modifications, some embodiments of project gen-
eration component 206 can be configured to automatically
modily the code in accordance with the recommendations to
bring the code into conformance.

In making coding suggestions as part of design feedback
518, project generation component 206 can invoke selected
code modules 508 stored 1n a code module database or
selected automation objects 222 stored i an automation
object library 502 (e.g., on memory 220). Code modules 508
comprise standardized coding segments for controlling com-
mon industrial tasks or applications (e.g., palletizing, flow
control, web tension control, pick-and-place applications,
conveyor control, etc.). Similarly, automation objects 222
representing respective industrial assets may have associ-
ated therewith standardize control code for monitoring and
controlling their respective assets. In some embodiments,
code modules 508 and/or automation objects 222 can be
categorized according to one or more of an industrial
vertical (e.g., automotive, food and drug, o1l and gas,
textiles, marine, pharmaceutical, etc.), an industrial appli-
cation, or a type ol machine or device to which the code
module 508 or automation object 222 1s applicable.

In some embodiments, project generation component 206
can infer a programmer’s current programming task or
design goal based on programmatic input being provided by
the programmer (as a subset of design input 312), and
determine, based on this task or goal, whether one of the
pre-defined code modules 508 or automation objects 222
may be appropriately added to the control program being
developed to achieve the inferred task or goal. For example,
project generation component 206 may infer, based on
analysis of design mput 512, that the programmer 1s cur-
rently developing control code for transierring material from
a first tank to another tank, and in response, recommend
inclusion of a predefined code module 508 comprising
standardized or frequently utilized code for controlling the
valves, pumps, or other assets necessary to achieve the
material transfer. Similarly, the project generation compo-
nent 206 may recommend inclusion of an automation object
222 representing one of the tanks, or one of the other
industrial assets involved in transterring the material (e.g., a
valve, a pump, etc.), where the recommended automation
object 222 includes associated control code for controlling
its associated asset as well as a visualization object that can

US 11,835,941 B2

15

be used to visualize the asset on an HMI application or
another visualization application.

Customized guardrail templates 506 can also be defined to
capture nuances of a customer site that should be taken 1nto
consideration 1n the project design. For example, a guardrail
template 506 could record the fact that the automation
system being designed will be installed 1n a region where
power outages are common, and will factor this consider-
ation when generating design feedback 518; e.g., by recom-
mending implementation of backup uninterruptable power
supplies and suggesting how these should be incorporated,
as well as recommending associated programming or control
strategies that take these outages into account.

IDE system 202 can also use guardrail templates 506 to
guide user selection of equipment or devices for a given
design goal; e.g., based on the industrial vertical, type of
control application (e.g., sheet metal stamping, die casting,
palletization, conveyor control, web tension control, batch
processing, etc.), budgetary constraints for the project,
physical constraints at the installation site (e.g., available
tfloor, wall or cabinet space; dimensions of the installation
space; etc.), equipment already existing at the site, etc. Some
or all of these parameters and constraints can be provided as
design mput 512, and user interface component 204 can
render the equipment recommendations as a subset of design
teedback 518. In conjunction with this equipment recom-
mendation, the project generation component 206 can also
recommend inclusion of corresponding automation objects
222 representing the recommended equipment for inclusion
in the system project 302.

In some embodiments, project generation component 206
can also determine whether some or all existing equipment
can be repurposed for the new control system being
designed. For example, 11 a new bottling line 1s to be added
to a production area, there may be an opportunity to leverage
existing equipment since some bottling lines already exist.
The decision as to which devices and equipment can be
reused will aflect the design of the new control system.
Accordingly, some of the design mput 512 provided to the
IDE system 202 can include specifics of the customer’s
existing systems within or near the installation site. In some
embodiments, project generation component 206 can apply
artificial intelligence (Al) or traditional analytic approaches
to this information to determine whether existing equipment
specified 1n design 1 put 512 can be repurposed or lever-
aged. Based on results of this analysis, project generation
component 206 can generate, as design feedback 518, a list
of any new equipment that may need to be purchased based
on these decisions.

In some embodiments, IDE system 202 can offer design
recommendations based on an understanding of the physical
environment within which the automation system being
designed will be installed. To this end, information regarding
the physical environment can be submitted to the IDE
system 202 (as part of design mput 512) in the form of 2D
or 3D 1mages or video of the plant environment. This
environmental information can also be obtained from an
existing digital twin of the plant, or by analysis of scanned
environmental data obtained by a wearable AR appliance 1n
some embodiments. Project generation component 206 can
analyze this 1mage, video, or digital twin data to i1dentily
physical elements within the installation area (e.g., walls,
girders, safety fences, existing machines and devices, etc.)
and physical relationships between these elements. This can
include ascertaining distances between machines, lengths of
piping runs, locations and distances of wiring harnesses or
cable trays, etc. Based on results of this analysis, project

10

15

20

25

30

35

40

45

50

55

60

65

16

generation component 206 can add context to schematics
generated as part of system project 302, generate recom-
mendations regarding optimal locations for devices or
machines (e.g., recommending a minimum separation
between power and data cables), or make other refinements
to the system project 302. At least some of this design data
can be generated based on physics-based rules 516, which
can be referenced by project generation component 206 to
determine such physical design specifications as minimum
sate distances from hazardous equipment (which may also
factor into determining suitable locations for 1nstallation of
satety devices relative to this equipment, given expected
human or vehicle reaction times defined by the physics-
based rules 316), material selections capable of withstanding
expected loads, piping configurations and tuning for a speci-
fied flow control application, wiring gauges suitable for an
expected electrical load, minimum distances between signal
wiring and electromagnetic field (EMF) sources to ensure
negligible electrical interference on data signals, or other
such design features that are dependent on physical rules.
In an example use case, relative locations of machines and
devices specified by physical environment information sub-
mitted to the IDE system 202 can be used by the project
generation component 206 to generate design data for an
industrial safety system. For example, project generation
component 206 can analyze distance measurements between
safety equipment and hazardous machines and, based on
these measurements, determine suitable placements and
configurations of safety devices and associated safety con-
trollers that ensure the machine will shut down within a
suih in the

icient safety reaction time to prevent injury (e.g.,
cvent that a person runs through a light curtain).

In some embodiments, project generation component 206
can also analyze photographic or video data of an existing
machine to determine nline mechanical properties such as
gearing or camming and factor this information into one or
more guardrail templates 506 or design recommendations.

As noted above, the system project 302 generated by IDE
system 202 for a given automaton system being designed
can be built upon an object-based architecture that uses
automation objects 222 as building blocks. FIG. 6 1s a
diagram 1llustrating an example system project 302 that
incorporates automation objects 222 into the project model.
In this example, various automation objects 222 represent-
ing analogous i1ndustrial devices, systems, or assets of an
automation system (e.g., processes, tanks, valves, pumps,
etc.) have been incorporated into system project 302 as
clements of a larger project data model 602. The project data
model 602 also defines hierarchical relationships between
these automation objects 222. According to an example
relationship, a process automation object representing a
batch process may be defined as a parent object to a number
of child objects representing devices and equipment that
carry out the process, such as tanks, pumps, and valves. Each
automation object 222 has associated therewith object prop-
erties or attributes specific to 1ts corresponding industrial
asset (e.g., those discussed above in connection with FIG. 4),
including executable control programming for controlling
the asset (or for coordinating the actions of the asset with
other industrial assets) and visualizations that can be used to
render relevant information about the asset during runtime.

At least some of the attributes of each automation object
222 are default properties defined by the IDE system 202
based on encoded industry expertise pertaining to the asset
represented by the objects. These default properties can
include, for example, industry-standard or recommended
control code for monitoring and controlling the asset repre-

US 11,835,941 B2

17

sented by the automation object 222, a 2D or 3D graphical
object that can be used to visualize operational or statistical
data for the asset, alarm conditions associated with the asset,
analytic or reporting scripts designed to yield actionable
insights into the asset’s behavior, or other such properties.
Other properties can be modified or added by the developer
as needed (via design input 512) to customize the automa-
tion object 222 for the particular asset and/or industrial
application for which the system projects 302 1s being
developed. This can include, for example, associating cus-
tomized control code, HMI screens, AR presentations, or
help files associated with selected automation objects 222.
In this way, automation objects 222 can be created and
augmented as needed during design for consumption or
execution by target control devices during runtime.

Once development and testing on a system project 302
has been completed, commissioning tools supported by the
IDE system 202 can simplify the process ol commissioning
the project 1n the field. When the system project 302 for a
given automation system has been completed, the system
project 302 can be deployed to one or more target control
devices for execution. FIG. 7 1s a diagram illustrating
commissioning of a system project 302. Project deployment
component 208 can compile or otherwise translate a com-
pleted system project 302 1into one or more executable files
or configuration files that can be stored and executed on
respective target industrial devices of the automation system
(e.g., industrial controllers 118, HMI terminals 114 or other
types of visualization systems, motor drives 710, telemetry
devices, vision systems, salety relays, etc.).

Conventional control program development platforms
require the developer to specily the type of industrial
controller (e.g., the controller’s model number) on which the
control program will run prior to development, thereby
binding the control programming to a specified controller.
Controller-specific guardrails are then enforced during pro-
gram development which limit how the program 1s devel-
oped given the capabilities of the selected controller. By
contrast, some embodiments of the IDE system 202 can
abstract project development from the specific controller
type, allowing the designer to develop the system project
302 as a logical representation of the automation system 1n
a manner that 1s agnostic to where and how the various
control aspects of system project 302 will run. Once project
development 1s complete and system project 302 1s ready for
commissioning, the user can specily (via user interface
component 204) target devices on which respective aspects
of the system project 302 are to be executed. In response, an
allocation engine of the project deployment component 208
will translate aspects of the system project 302 to respective
executable files formatted for storage and execution on their
respective target devices.

For example, system project 302 may include—among
other project aspects—control code, visualization screen
definitions, and motor drive parameter definitions. Upon
completion of project development, a user can idenftily
which target devices— including an industrial controller
118, an HMI terminal 114, and a motor drive 710—are to
execute or receive these respective aspects of the system
project 302. Project deployment component 208 can then
translate the controller code defined by the system project
302 to a control program file 702 formatted for execution on
the specified industrial controller 118 and send this control
program {ile 702 to the controller 118 (e.g., via plant
network 116). Similarly, project deployment component 208
can translate the visualization definitions and motor drive
parameter definitions to a visualization application 704 and

10

15

20

25

30

35

40

45

50

55

60

65

18

a device configuration file 708, respectively, and deploy
these files to their respective target devices for execution
and/or device configuration.

In general, project deployment component 208 performs
any conversions necessary to allow aspects of system project
302 to execute on the specified devices. Any inherent
relationships, handshakes, or data sharing defined i1n the
system project 302 are maintained regardless of how the
various elements of the system project 302 are distributed.
In this way, embodiments of the IDE system 202 can
decouple the project from how and where the project is to be
run. This also allows the same system project 302 to be
commissioned at different plant facilities having difierent
sets of control equipment. That 1s, some embodiments of the
IDE system 202 can allocate project code to different target
devices as a function of the particular devices found on-site.
IDE system 202 can also allow some portions of the project
file to be commissioned as an emulator or on a cloud-based
controller.

As an alternative to having the user specily the target
control devices to which the system project 302 is to be
deployed, some embodiments of IDE system 202 can
actively connect to the plant network 116 and discover
avallable devices, ascertain the control hardware architec-
ture present on the plant floor, infer appropriate target
devices for respective executable aspects of system project
302, and deploy the system project 302 to these selected
target devices. As part of this commissioning process, IDE
system 202 can also connect to remote knowledgebases
(e.g., web-based or cloud-based knowledgebases) to deter-
mine which discovered devices are out of date or require
firmware upgrade to properly execute the system project
302. In this way, the IDE system 202 can serve as a link
between device vendors and a customer’s plant ecosystem
via a trusted connection 1n the cloud.

Copies of system project 302 can be propagated to
multiple plant facilities having varying equipment configu-
rations using smart propagation, whereby the project
deployment component 208 intelligently associates project
components with the correct industrial asset or control
device even if the equipment on-site does not pertectly
match the defined target (e.g., i1 different pump types are
found at different sites). For target devices that do not
perfectly match the expected asset, project deployment
component 208 can calculate the estimated impact of run-
ning the system project 302 on non-optimal target equip-
ment and generate warnings or recommendations for maiti-
gating expected deviations from optimal project execution.

As noted above, some embodiments of IDE system 202
can be embodied on a cloud platform. FIG. 8 1s a diagram
illustrating an example architecture in which cloud-based
IDE services 802 are used to develop and deploy industrial
applications to a plant environment. In this example, the
industrial environment includes one or more industrial con-
trollers 118, HMI terminals 114, motor drives 710, servers
801 running higher level applications (e.g., ERP, MES, etc.),
and other such industrial assets. These industrial assets are
connected to a plant network 116 (e.g., a common industrial
protocol network, an Ethernet/IP network, etc.) that facili-
tates data exchange between industrial devices on the plant
floor. Plant network 116 may be a wired or a wireless
network. In the illustrated example, the high-level servers
810 reside on a separate oflice network 108 that 1s connected
to the plant network 116 (e.g., through a router 808 or other
network infrastructure device).

In this example, IDE system 202 resides on a cloud
plattorm 806 and executes as a set of cloud-based IDE

US 11,835,941 B2

19

service 802 that are accessible to authorized remote client
devices 504. Cloud platform 806 can be any infrastructure
that allows shared computing services (such as IDE services
802) to be accessed and utilized by cloud-capable devices.
Cloud platform 806 can be a public cloud accessible via the
Internet by devices 504 having Internet connectivity and
appropriate authorizations to utilize the IDE services 802. In
some scenarios, cloud platform 806 can be provided by a
cloud provider as a platform-as-a-service (PaaS), and the
IDE services 802 can reside and execute on the cloud
platform 806 as a cloud-based service. In some such con-
figurations, access to the cloud platform 806 and associated
IDE services 802 can be provided to customers as a sub-
scription service by an owner of the IDE services 802.
Alternatively, cloud platiorm 806 can be a private cloud
operated mternally by the industrial enterprise (the owner of
the plant facility). An example private cloud platform can
comprise a set of servers hosting the IDE services 802 and
residing on a corporate network protected by a firewall.

Cloud-based implementations of IDE system 202 can
tacilitate collaborative development by multiple remote
developers who are authorized to access the IDE services
802. When a system project 302 1s ready for deployment, the
project 302 can be commuissioned to the plant facility via a
secure connection between the oflice network 108 or the
plant network 116 and the cloud platform 806. As discussed
above, the industrnial IDE services 802 can translate system
project 302 to one or more appropriate executable files—
control program files 702, visualization applications 704,
device configuration files 708, system configuration files
812—and deploy these files to the appropriate devices 1n the
plant facility to facilitate implementation of the automation
project.

As noted above, a system project 302 generated by
embodiments of the industrial IDE system 202 can incor-
porate a number of automation objects 222. FIG. 9 1s an
illustration of an example automation object 222 that has
been integrated into the project data model 602 of a system
project 302. As discussed above 1n connection with FIGS. 4
and 6, a system project 302 can incorporate instances of
automation objects 222 that serve as programmatic repre-
sentations of industrial assets, processes, or other industrial
entities. Assets that can be represented by a given automa-
tion object 222 can include device-level assets (e.g., motor
drives, valves, pumps, etc.) as well as machine-level assets
(stamping presses, tanks, tooling stations, etc.). An automa-
tion object 222 can represent an oll-the-shelf industrial
device or machine offered by device or equipment vendors,
Oor may comprise custom automation objects 222 represent-
ing custom-built machines provided by an OEM or another
type of machine builder.

The project data model 602 can define hierarchical rela-
tionships between multiple automation objects 222 that are
integrated as part of the system project 302. These hierar-
chical relationships can represent the physical and/or func-
tional relationships between the represented assets. Accord-
ing to an example relationship, a process automation object
222 representing a batch process may be defined as a parent
object to a number of child automation objects 222 repre-
senting devices and equipment that carry out the process,
such as tanks, pumps, and valves. In another example, an
automation object 222 representing a machine or production
line can be defined as a parent object, under which are
defined a number of child automation objects 222 represent-
ing the workstations or sub-machines within the machine or
production line. These child automation objects 222 can
themselves have a number of child automation objects 222

10

15

20

25

30

35

40

45

50

55

60

65

20

representing the device-level assets that make up these
workstations or sub-machines.

Each industrial object 222 can serve similar functions to
those of data tags that serve as containers for mnput data
received from, and output data sent to, its corresponding
industrial asset (e.g., digital and analog data values received
from the asset for processing by the system project 302, as
well as digital and analog values generated by the system
project 302 and sent to the asset). In addition, each industrial
object 222 comprises a number of programmatic attributes
relating to the industrial asset being represented, examples
of which are discussed above in connection with FIG. 4.
These attributes can include, for example, control logic that
can be executed as part of the system project 302 to monitor
and control the represented assets. This associated control
logic can be pre-developed to exchange input and output
data with 1ts associated industrial asset via defined input and
output tags corresponding to the asset’s physical inputs and
outputs (that is, the asset’s digital and analog 1I/O). During
execution of the control project 302, the object’s control
logic can process mputs received from the asset and generate
outputs directed to the asset based on results of this pro-
cessing.

Additionally, the control logic associated with respective
different automation objects 222 defined by the project data
model 602 as having a hierarchical relationship with one
another can interact or cooperate based on these defined
relationships. For example, based on a defined hierarchical
relationship between a first automation object 222 repre-
senting a tank (defined as a parent object) and a second
automation object 222 representing a valve associated with
the tank (defined as a child of the first object), the system
project 302 can link the two sets of control logic associated
with the first and second automation objects 222, respec-
tively, so that the control logic associated with the two
automation objects 222 performs coordinated monitoring
and control of the machine. Linking the two sets of control
logic 1n this manner can comprise, for example, linking data
tags of the child object 222 with corresponding data tags of
the parent object 222 1n accordance with the hierarchical
relationship defined by the model 602.

Industrial object 222 can also include associated HMI
objects that can be used by a visualization system (e.g., an
HMI application, a 2D or 3D augmented reality or virtual
reality system, etc.) to render an amimated graphical repre-
sentation of the asset. These HMI objects can include one or
more HMI interface screens designed to render information
about the asset (e.g., a reporting screen that renders statis-
tical or operational data for the asset, a screen that renders
an animated graphical representation of the asset, etc.),
individual graphical objects representing the asset that can
be imported into an industrial visualization application, or
other such objects.

The automation object 222 can also include analytic
scripts designed to analyze data generated by the asset to
produce 1nsights into the asset’s performance or health.
Example analytics that can be performed by an automation
object’s analytic scripts can include, but are not limited to,
assessments of the asset’s current health and predicted future
health (e.g., determinations of the asset’s predicted time to
failure), determinations of when the asset requires mainte-
nance, or other such metrics. As with the automation
object’s control logic, the analytics scripts can be designed
to iterface with known data items generated by the indus-
trial asset (e.g., data tags that are specific to the asset) so that
the data associated with these data items can be processed by
the scripts.

US 11,835,941 B2

21

The automation object 222 can also define alarm infor-
mation associated with the industrial asset. This alarm
information can include definitions of the conditions that
trigger the alarm (e.g., when a specified data item represent-
ing an operational metric of the asset falls outside a defined
range ol normal behavior, when a state of a specified digital
tag satisfies an alarm condition, etc.) as well as an alarm
message to be rendered 1n response to the alarm trigger. This
alarm information can be referenced by a visualization
system (e.g., an HMI application, an augmented reality or
virtual realty system, etc.), which can render alarm messages
for the industrial asset based on the alarm definitions defined
by the automation object 222.

Some embodiments of automation object 222 can also
define test properties as part of a global testing framework
supported by the IDE system 202. These test properties can
include object-specific test scripts designed to test and debug
the automation object 222 and associated aspects of system
project 302 that reference the object 222. The object’s test
properties can also include object-specific test scenario
definitions that define one or more test scenarios that may
beneficially be run against the automation object 222 and
associated project elements that reference the object 222.
The test scenario definitions can be pre-designed based on
industrial expertise regarding the industrial asset or process
represented by the automation object 222. The test proper-
ties associated with automation objects 222 can mitigate the
need to write test scripts to test and debug the system project
302.

FIG. 10 1s a diagram illustrating testing of an example
system project 302 by the IDE system’s project testing
component 210 using test scripts 1002 bundled with an
automation object 222. Automation objects 222 can be
provided with pre-bundled test scripts 1002 and/or defini-
tions of test scenarios 1004 that are specific to the type of
industrial asset represented by the automation object 222.
During or after development of system project 302 as
described above, the IDE system’s project testing compo-
nent 210 can execute test scripts 1002 associated with one or
more selected automation objects 222 as approprnate to
verily proper responses ol the system project 302, thereby
validating the project. To this end, test scripts 1002 can
define simulated test inputs 1012 to be provided to the
automation object 222 and/or associated project code 1n
which the object 222 1s used, as well as expected responses
of the automation object 222 and 1ts associated project code
to the simulated mputs 1012.

According to an example testing procedure, project test-
ing component 210 can execute one or more test scripts 1002
associated with respective one or more automation objects
222 against system project 302. Execution of the test scripts
1002 can 1involve, for example, feeding simulated test inputs
1012 to control code or other elements of system project 302
according to a sequence defined by the test scripts 1002,
setting values of digital or analog program variables defined
by the system project 302 according to a defined sequence,
initiating control routines of the system project 302 accord-
ing to a defined sequence, testing animation objects or other
visualization elements defined by the system project 302,
verilying data linkages between control routines, verifying
relationships between program elements and drawing ele-
ments, confirming that device configuration settings or
parameter values are appropriate for a given industrial
application being carried out by the system project 302, or
otherwise 1nteracting with system project 302 according to
testing procedures defined by the test scripts 1002. During,
testing, the project testing component 210 can monitor test

10

15

20

25

30

35

40

45

50

55

60

65

22

results 1006 or responses of the system project 302 to the
test interactions defined by the test scripts 1002 and deter-
mine whether these test results 1006 match expected results
defined by the test scripts 1002. In this way, proper operation
of the system project 302 can be verified prior to deployment
without the need to develop custom test scripts to debug the
system project code.

In some test scenarios, test scripts 1002 can define testing,
sequences that are applied to the system project 302 as a
whole 1n a holistic manner rather than to a specific control
program or routine. For example, the project testing com-
ponent 210 can execute test scripts 1002 that verily linkages
or relationships across design platforms—e.g., control code,
visualization applications, electrical drawings, panel layout
definitions, wiring schedules, piping diagrams, etc.—that
may otherwise not be tested.

If the test results 1006 indicate an improper operation of
one or more aspects of system project 302, project testing
component 210 may generate and render one or more design
recommendations 1008 indicating possible modifications to
the system project 302 that would correct operation of the
project. These design recommendations 1008 may include,
for example, control code modifications or replacements,
recommended corrections of data tag addresses, recom-
mended corrections to HMI graphical object references,
recommended corrections to mechanical or electrical draw-
ings for consistency with the control code (e.g., to add a
missing output device to an electrical drawing correspond-
ing to an output device referenced by the control program-
ming), recommended modifications to an industrial device’s
configuration parameters, or other such corrections.

The testing properties of some automation objects 222
may define multiple test scenarios 1004 that should be run
on the object 222 and 1ts corresponding control code and
project elements to ensure comprehensive testing of the
object 222 and related code. These scenarios 1004 are based
on pre-learned industrial expertise relating to the industrial
asset or process represented by the automation objects and
its related project elements. In some implementations, each
defined test scenario 1004 may have 1ts own associated test
script 1002, or may define a particular way to apply the test
script 1002 (e.g., which routines of the system project’s
control code to validate, which other project elements
should be cross-referenced for validation purposes, etc.).
During testing of the system project 302, project testing
component 210 can execute the one or more test scripts 1002
in accordance with each defined test scenario 1004 1n
sequence 1n order to comprehensively validate proper opera-
tion of the system project 302 across all platforms (control
programming, visualization configuration, drawings, device
configurations, etc.).

In some embodiments, project testing component 210 can
also be configured to generate a validation checklist based
on analysis of the system project 302, and output this
validation checklist via the user interface component 204.
This validation checklist can provide instructions regarding
on-site tests and checks that should be performed 1n con-
nection with commissioning the automation system for
which system project 302 1s being developed. These may
comprise tests that should be performed on the automation
system hardware and electrical connections that cannot be
performed via testing ol the system project 302 alone.
Example validation checklist may include lists of I/O points
whose connectivity should be verified, mstructions to visu-
ally inspect panel-mounted equipment, sequences of manual
operator panel interactions that should be performed to
verily proper machine operation, or other such information.

US 11,835,941 B2

23

Returning to FIG. 9, an automation object 222 can also
include, as an attribute, a historian configuration that defines
data generated by the corresponding industrial asset that 1s
to be archived i a data historian. This historian configura-
tion can be referenced by a data historian system or appli-
cation that executes a portion of the system project 302 to
tacilitate configuring the data historian system to collect and
archive the data items defined by the configuration. As with
other attributes of the automation object 222, the historian
confliguration attribute can specily a subset of the available
data generated by the corresponding industrial asset that 1s
known to be relevant to assessments of the asset’s perior-

mance or health, based on relevant industry expertise
encoded 1nto the object 222.

Some embodiments of the automation object 222 can also
define security features or protocols associated with the
associated industrial asset. These security features can
include, but are not limited to, definitions of user roles that
are permitted to perform certain actions relative to the
industnal asset, encryption protocols that are to be applied
to data generated by the asset, network security protocols to
be enforced for the asset, or other such security features. The
security information defined by these embodiments of the
automation object 222 can be used by the system project 302
to regulate access to specified functions of the industrial
asset (e.g., as a function of user role), to configure network
devices to support the specified network security protocols,
or to configure other security-related devices.

Embodiments of the IDE system 202 can support a
development architecture whereby changes made to an
automation object 222 stored in the automation object
library 502 are propagated to instances of that automation
object 222 that are used 1n a system project 302. FIG. 11 1s
a diagram 1llustrating submission of automation object edits
1102 to the IDE system 202. As noted above, automation
objects 222 are maintained 1n an automation object library
502 (which may be part of memory 220). Via interaction
with user interface component 204 and the associated IDE
editor 224, developers can add selected automation objects
222 from the library 502 to a system project 302 as instances
ol these automation objects 222. In the example depicted 1n
FIG. 11, object 2224 1s an instance of an automation object
222 that has been selected and added to the system project
302 by the developer. In some scenarios, the project gen-
eration component 206 may also automatically select and
add automation objects 222 to the project 302 based on
inferences about the automation system for which the proj-
ect 302 1s being developed (e.g., based on design goals or
engineering drawings submitted to the system 202).

The IDE editor 224 can allow a user to modily attributes
of selected automation objects 222 that are stored in the
library 502. To this end, user interface component 204 can
generate and deliver user interfaces to a client device 504
(e.g., via an IDE client 514) that allow the user to browse the
available automation objects 222 and submit edits 1102 to
selected objects 222. Any of the attributes described above
in connection with FIG. 9 can be modified 1n this manner for
any of the defined automation objects 222. For example, a
designer may wish to modity the control code associated
with a particular industrial asset (e.g., a pump, a tank, a
stamping press, etc.) having a defined automation object 222
stored 1n the library 502. Accordingly, the user can submit
edits 1102 directed to the associated automation object 222
that update the control code. Such edits can be used to
update the operating sequence or control behavior for the
associated industrial asset.

10

15

20

25

30

35

40

45

50

55

60

65

24

Similarly, the user may submit edits 1102 to update the
visualization properties of a selected automation object 222;
¢.g., to replace or edit a graphical representation of the
corresponding asset. Edits 1102 can also be submitted to add
alarms to, or remove alarms from, the alarm definition list
associated with an object 222, or to edit existing alarm
definitions. The security features, test scripts, and analytic
code associated with an automation object 222 can also be
modified by submitting appropriate edits 1102.

These edits 1102 are directed to the automation object
definitions maintained in the automation object library 502.
Upon receipt of object edits 1102 directed to a selected
automation object 222 (submitted via user interface com-
ponent 204), the project generation component 206 updates
the target automation object 222 i1n accordance with the
received edits 1102 to yield an updated automation object
222. This updated automation object 222 replaces the pre-
vious version ol the automation object 222 1n the library
502.

I1 instances of the automation object 222 that was subject
to the edits 1102 had been added to an existing system
project 302 before the edits 1102 were received, project
generation component 206 can also update all instances of
the automation object 222 found within the project 302. FIG.
12 1s a diagram 1illustrating modification of instances of an
automation object 222a 1n accordance with edits 1102
submitted to the master version of the automation object 222
stored 1n the library 502. When an automation object 222 1n
library 502 has been modified as described above, the
project generation component 206 i1dentifies all mnstances of
the automation object 222a used throughout any system
project 302 that uses the object 222, and propagates the
modifications to these instances. This can include updating
the control code, visualizations, analytics code, security
features, or other attributes to reflect the modifications
defined by the edits 1102. In this way, all instances of an
automation object 222q automatically inherit modifications
made to the master version of the automation object 222
stored 1n the library 502.

FIG. 12 depicts an example scenario 1n which the system
project 302 1s stored on the IDE system 202 itself (e.g., on
cloud-based storage it the IDE system 202 1s implemented
as a cloud service, as depicted 1n FIG. 8). However, in some
embodiments, the IDE system 202 can also propagate auto-
mation object edits to system projects that have been
deployed to local client devices for local editing. FIG. 13 1s
a diagram 1llustrating downloading of a copy of system
project 302 from IDE system 202 to a local client device
504. In this example, client device 504 executes an IDE
client 514 that allows the client device 504 to access the IDE
system’s project development tools and environment. The
IDE client 514 can be served to the client device 504 by the
IDE system 202, or may be a client application installed on
client device 504 and configured to interface with the IDE
system 202. A user can interact with the IDE client 514 to
copy a version 302, of system project 302 from the cloud-
based IDE system 202 to the client device’s local storage for
local viewing and development. The master copy of the
system project 302 1s maintained on the IDE system 202
alter the local version 302, has been copied.

Once copied to the client device 504, a developer can
view and edit the local version 302, using project develop-
ment tools supported by the IDE chent 514. At least some of
these development tools can be similar to those supported by
the IDE system 202 described above (see, e.g., FIG. 3). For
example, some embodiments of IDE client 514 can support

the use of design guardrails to ensure that local edits made

] [T]

US 11,835,941 B2

25

to the local version 302, of the project—e.g., control pro-
gram changes, HMI modifications, changes to device con-
figuration parameters, modifications to automation objects,
ctc.—comply with internal or external design standards. As
in previous examples, various embodiments of IDE client
514 can allow the user to submit edits to the local version
302, of the project as one or more of control programming
(e.g., ladder logic, DLS programming, sequential function
charts, structured text, function block diagrams, etc.), design
changes to visualization applications such as HMIs (e.g.,
addition, removal, or relocation of graphical objects), indus-
trial device configuration parameter values, or other such
design 1nput.

In an example scenario, a developer may choose to
modily an existing system project 302 1n order to adapt the
project 302 for deployment on an automation system having
characteristics that deviate from a typical installation, and
which necessitate modifications to the system project 302.
For example, the system project 302 may be designed to
program and configure a type of standardized automation
system built to carry out a particular industrial function, and
which 1s installed at multiple locations or facilities of an
industrial enterprise. A new installation of this automation
system may deviate from standard installations of the system
in a number of ways, including but not limited to replace-
ment of one or more devices of the automation system with
devices provided by an alternative vendor, addition or
omission of a workstation, installation modifications to
accommodate physical constraints of the installation loca-
tion, special control requirements that deviate from standard
requirements (e.g., diflerences in product design, control
modifications to accommodate differences in materials or
parts used to manufacture the product), or other such devia-
tions. In order to accommodate these changes, the developer
may download a local version 302, of the system project 302
and 1mplement the necessary modifications on the local
version 302,.

FIG. 14 1s a diagram illustrating propagation of automa-
tion object edits to a locally stored copy of a system project
302. In this example scenario, a user at client device 5045
has downloaded a local version 302, of a system project 302
as described above 1n connection with FIG. 13. The auto-

mation object library 502 contaiming the master versions of

automation objects 222 remains stored on the cloud platiorm
in association with the IDE system 202. As such any
authorized developer can access the automation library 502
to not only add selected automation objects 222 to a system
project 302, but also to modily selected automation objects
222 as part of development of a project, or to reflect
modifications to the corresponding industrial assets repre-
sented by the objects 222. In the example illustrated in FIG.
14, a developer at client devices 504a submits a set of edits
1102 directed to a selected automation object 222 stored on
the library 502 (e.g., to update the object’s control code,
visualization representation, ftesting scripts, etc.). In
response to receipt of these edits 1102, the project generation
component 206 (not shown in FIG. 14) updates the master
version of the selected automation object 222 stored in the
library 502 1n accordance with the edits 1102.

Moreover, when the edits have been implemented on the
selected automation object 222, the project generation com-
ponent 206 also identifies all locally stored and remotely
stored versions ol any system projects 302 that have incor-
porated mstances of the selected automation object 222. This
includes 1dentiiying any system projects 302 stored on cloud
storage 1n association with the IDE system 202, as well as
any versions 302, of the system project 302 that had been

5

10

15

20

25

30

35

40

45

50

55

60

65

26

downloaded to local client devices (e.g., client device 5045)
for local development. In this regard, a collaboration man-
agement component 210 may track all instances of a system
project 302 that have been downloaded to local client
devices so that these local versions of the project 302 can be
updated as needed 1n response to modifications submitted to
the cloud-based IDE system 202.

In response to submission of the object edits 1102 and
corresponding modification of the master version of the
automation object 222 to which the edits 1102 are directed,
the project generation component 206 also distributes auto-
mation object updates 1402 to all IDE clients 5145 on which
are stored local versions 302, of a system project 302 that
uses the automation object 222. The updates 1402 reflect the
automation object edits 1102 that were submitted by the
developer using client device 504a and, when executed by
the local IDE client 5146, update all instances of the
automation object 222 in accordance with the edits 1102. In
this way, updates to an automation object 222 on the object
library 502 are automatically broadcast to all instances of the
object 222 that are currently used in system projects 302.

In some embodiments, a local developer at client device
504 may be afforded the option to allow the updates 1402
to be incorporated 1nto their local version 302, of the system
project 302, or to deny implementation of the updates 1402.
Accordingly, before updating the local versions of the auto-
mation object 222, the user interface component 204 may
render information about the object edits 1102 on the user’s
client device 504b, and can also render a prompt for
approval from the developer to implement the edits locally.
The information about the edits 1102 can comprise, for
example, an 1dentity of the automation object 222 that i1s
allected by the edits and a summary of each modification to
the object 222 that will be implemented by the edit (e.g.,
indications of which object attributes will be modified, and
how these attributes will be changed). Based on a review of
these edits, the local developer may select to implement the
updates 1402 on their local version 302, or, alternatively, to
deny the edits and prevent updates 1402 from being imple-
mented on their local version 302, of the project 302.

As noted above, a project data model 602 can define
hierarchical relationships between multiple automation
objects 222 that are included 1n a system project 302 (see,
e.g., FIG. 6). FIG. 15 1s a graphical representation of a
simple two-tier relationship hierarchy between automation
objects 222. The representation depicted in FIG. 15 can be
generated by the user interface components 204 and ren-
dered within the development interface of the IDE system
202. At least some of the hierarchical relationships between
automation objects 222 can be defined by the user during
project development. For example, a portion of the design
mput 512 submitted by the user can specily automation
objects 222 to be 1included in the system project 302 as well
as linkages between the automation objects 222 that define
functional or hierarchical relationships between the objects
222. In the example depicted i FIG. 15, a first automation
object 222a representing a tank (Tank 100) has been linked
to two other automation objects 2225 and 222¢ representing
the tanks 1nlet and outlet solenoid valves, respectively. The
valve automation objects 2225 and 222c¢ act as child objects
to the parent tank object 222a, reflecting the functional
relationships of the analogous physical assets.

Each automation object 222 has a number of associated
inputs and outputs, represented as labeled nodes 1502 on the
objects” graphical representations. The inputs and outputs
available for an object 222 depends on the type of industrial
asset, device, process, or entity represented by the object

US 11,835,941 B2

27

222. Users can define relationships between the objects 222
as data linkages between selected inputs and outputs of the
objects 222. For example, an output of the inlet valve object
222b representing the corresponding valve’s closed status
can be linked to an input on the tank automation object 222a
for reading the closed status of the inlet valve. This link
causes the inlet valve’s closed status to be provided to, and
processed by, the tank object 222a. The inlet valve object’s
222b open status output can similarly be linked to an
appropriate mput on the tank object 222q. Similar data
linkages can be defined between the tank object 222q and the
outlet valve object 222¢. Linkages between objects’ inputs
and outputs can be represented by connecting lines 1504
between the nodes 1502 representing the linked inputs and
outputs.

By selectively linking inputs and outputs of automation
objects 222 1n thus manner, hierarchical parent-child rela-
tionships can be defined for any number of automation
objects 222 1n a system project 302, and these relationships
can be recorded 1n the project data model 602 as 1llustrated
in FI1G. 6. Although FIG. 15 depicts only a two-tier hierarchy
comprising only three automation objects 222, any number
of automation objects 222 representing various industrial
assets, devices, processes, production lines, plants, or other
industrial entities can be linked to form object hierarchies
having more than two levels. These defined hierarchies can
reflect functional or hierarchical relationships between the
corresponding industrial entities and assets. For example, an
object 222 representing a plant may have a number of child
objects 222 representing production lines, which themselves
may have child objects 222 representing machines and
industrial devices that make up the respective lines

If the system project 302 1s viewed during runtime such
that live data from the running automation systems are used
to animate the project view, the user interface component
204 can render the objects 222, the associated linkages, and
the data tlows between the objects 222. In the example
depicted 1n FIG. 15, a numerical value 1s rendered next to
cach object node 1502, where the value represents the value
currently being generated or consumed by that node 1502.

Creating hierarchical relationships between automation
objects 222 1n this manner 1s a mode of project development
supported by the IDE system 202 that serves to define
functional aspects of the resulting system project 302. For
example, as noted above, linking two or more automation
objects 222 that each have associated control logic for
monitoring and controlling their corresponding industrial
assets can cause the control logic associated with the respec-
tive objects 222 to be linked, such that data values generated
by the logic of one automation object 222 1s consumed by
the logic of another linked automation object 222 1n accor-
dance with the user-defined links. The resulting aggregated
control logic can be used to monitor and control the aggre-
gated system represented by the linked automation objects
(c.g., the system of tanks and valves depicted 1n FIG. 15).

The parent-child relationships between automation
objects 222 can also determine inheritance of object con-
figurations between those objects 222. For example, as noted
above, some automation objects 222 can include historian
configuration attributes that define data logging features for
associated industrial assets. At least some of these data
logging attributes can be set by the user during design of the
system project 302; e.g., by submitting data logging con-
figuration parameters for the automation objects 222 as part
of design mput 512 (see FI1G. 5). Data logging configuration
parameters—as well as other attributes of the automation
object 222——can be set by mvoking an object edit window

10

15

20

25

30

35

40

45

50

55

60

65

28

that allows the user to view and edit the object’s modifiable
attributes. This window can be invoked by selecting an
object properties button 1506 associated with each object
representation. In other scenarios, data logging attributes
associated with a given automation object 222 may be
pre-defined as part of the object’s default configuration
based on pre-encoded knowledge of common data collection
requirements for the industrial asset represented by the

object 222.

During runtime, the data logging configuration param-
cters associated with an automation object 222 can be
referenced by a data historian system or application that
executes a portion of the system project 302. In some
embodiments, the project deployment component 208 can
translate the historian or data logging configuration associ-
ated with each automation object instance to a suitable data
historian configuration file, and can then send this configu-
ration file to the approprniate data collection systems to
facilitate configuring those systems 1n accordance with the
object-based historian configuration parameters. The
object’s data logging configuration instructs the data histo-
rian system as to which data items associated with the
object’s corresponding industrial asset are to be collected
and archived, and can also specily other data logging
attributes, including but not limited to a frequency at which
the data items are to be collected, a location to which the
logged data 1s to be stored, an organization or schema for the
logged data, etc. The object’s historian configuration can
also specity conditions under which specified data items are
to be collected; e.g., on a periodic time-series basis or in
response to a defined trigger condition. In this way, the data
historian attributes that are embedded natively within the
automation objects 222 can facilitate configuration of data
historians used to collect and archive data generated by the
controlled 1industrial system.

If an automation object 222 having data historian attri-
butes are linked to other automation objects as part of an
object hierarchy, as discussed above, data logging properties
associated with the object 222 can be propagated up or down
the hierarchy to other linked automation objects 222. The
manner in which data logging configuration information 1s
propagated across an object hierarchy can depend on the
defined parent-child relationships between the objects 222.
For example, 1n the example depicted in FIG. 15, 1n which
a tank object 222a serves as a parent having two child
objects 2226 and 222a representing the tank’s inlet and
outlet valves, the data historian configuration associated
with the tank object 222a can not only define data logging

attributes for the tank itself, but can also control how and
when data 1s logged for the two valves represented by the
chuld objects 2226 and 222c¢.

In general, a parent automation object 222 representing a
particular asset (e.g., a tank, a stamping press, etc.) may be
pre-encoded with asset-specific knowledge of which child
assets (e.g., valves, motor drives, etc.) are typically associ-
ated with the parent asset, as well knowledge of data that 1s
available from these child assets. Based on this knowledge
as well as the data logging attributes defined for the parent
object 222 (either user-defined or pre-defined), the parent
object 222 can 1dentify conditions under which data gener-
ated by the child assets should be collected and archived, as
well as a frequency at which the child asset’s data should be
collected, a location at which the data should be archived, or
other such data logging features. Based on this information,
the parent object 222 can configure the child object’s data

US 11,835,941 B2

29

logging attributes accordingly, vielding an aggregate data
logging configuration for the automation system being
monitored and controlled.

In some embodiments, user-defined data historian attri-
butes for a selected automation object 222 can be submitted
to the master version of the automation object 222 main-
tained 1n the automation object library 502 as an automation
object edit 1102 (see FIG. 11). In some scenarios, the system
202 can propagate the historian configuration edit to other
instances of the modified automation object 222 as described
above 1n connection with FIG. 12. Alternatively, the user
may specily that the edit 1s only to be applied to subse-
quently created instances of the automation object 222, such
that existing instances of the automation object maintain
their existing configurations, while instances created after
submission of the edit will reflect the new data logging
configuration.

Some embodiments of the IDE system 202 can allow
users to encapsulate a hierarchy of multiple automation
objects 222 1nto a single encapsulated object that can be
moved or copied throughout the system project 302. FIG. 16
1s an example graphical representation of three encapsulated
automation objects 1602a-1602¢. Encapsulated object
16024 1s an encapsulated version of the object hierarchy
depicted in FIG. 15 for Tank 100, while encapsulated objects
16025 and 1602¢ represent object hierarchies for two other
tanks (Tank 200 and Tank 500). An encapsulated object 1602
serves as a reusable unit representation of an object hierar-
chy having any number of hierarchical levels. Each encap-
sulated object 1602 can have associated inputs and outputs
(not shown 1n FIG. 16) that allow the encapsulated object to
be linked to other automation objects 222 or encapsulated
object 1602. The mnputs and outputs associated with a given
encapsulated object 1602 can depend on the individual
automation objects 222 within the hierarchy represented by
the encapsulated object 1602, as well as the defined rela-
tionships between those objects 222.

Once created, an encapsulated object 1602 can be moved
or replicated throughout a system project 302, or between
projects, as needed. When an encapsulated object 1602 1s
copied, the entirety of the automation object hierarchy
represented by the encapsulated object 1602 1s replicated at
the location of the new istance of the encapsulated object
1602. The new instance of the encapsulated object 1602
includes instances of all automation objects 222 included 1n
the original encapsulated object 1602, the object attributes
associated with those objects 222, and the data linkages
between objects 222 defined in the original encapsulated
object 1602. If the system project 302 1s being viewed
during runtime of the automation system being monitored
and controlled, the user can select and expand an encapsu-
lated object 1602 to view the hierarchy of linked automation
objects 222 represented by the encapsulated object 1602, as
well as the data tlows between those objects 222. In the
example depicted 1n FIGS. 15 and 16, expanding the encap-
sulated object 1602a depicted 1n FIG. 16 causes the system
202 to display the automation object hierarchy illustrated 1n
FIG. 15, together with the real-time data flows between the
linked objects 222. The hierarchical representation can then
be selectively collapsed back to the encapsulated represen-
tation as desired.

By allowing multi-level sets of linked automation objects
222 to be encapsulated into a reusable encapsulated objects
1602 as described above, the system 202 allows selected
object hierarchies to be scaled across a system project 302,
or between projects 302, as needed. This encapsulation
approach 1s not limited to encapsulation of object hierar-

10

15

20

25

30

35

40

45

50

55

60

65

30

chies. Rather, in some embodiments, an encapsulated object
1602 can represent any combination of automation objects,
control code routines (e.g., code modules 508 or custom
routines), or other programmatic elements supported by the
IDE system 202.

As noted above 1n connection with FIGS. 7 and 8, a
system project 302 can include, as part of the project
definition, device configuration information that can be
translated by the project deployment component 208 into
device configuration files 708, which can then be deployed
to their corresponding industrial devices to facilitate con-
figuring those devices 1n accordance with the system project
definitions. Some embodiments of the IDE system 202 can
allow this device configuration information to be defined as
attributes of automation objects 222 corresponding to the
industrial devices to be configured. Device configuration
information for a given automation object 222 can be
submitted to the system 202 as part of the automation object
edits 1102 (see FIG. 11) directed to that object 222. In an
example scenario, device parameters for an automation
object 222 can be edited by invoking an object editing
window that 1s accessible via an editing button 1506 on the
object 222. The particular device parameters rendered on
this editing window and made available for editing depend
on the type of industrial device represented by the automa-
tion object. Once the user has set the device configuration
parameters as desired, the edited device configuration then
become an embedded attribute of the automation object 222,
which remains bound to the object 222. When the system
project 302 1s deployed by the project deployment compo-
nent 208 (see FIGS. 7 and 8), any device configuration
information embedded 1n an automation object 222 included
in the project 302 1s translated to a corresponding device
configuration file 708 for the industrial device represented
by the object 222, and the resulting device configuration file
780 1s deployed to the device

Industrial devices that can be configured in this manner
can include, but are not limited to, motor drives, industrial
controllers, telemetry devices, industrial robots, HMI termi-
nals or other types of visualization devices, safety relays,
data historians, network infrastructure devices (e.g., routers,
hubs, switches, etc.), or other industrial devices. Substan-
tially any type of device configuration parameter can be
associated with an automation object 222 for deployment to
an associated industrial device, including but not limited to
network or communication settings (e.g., network
addresses), operating mode settings, high or low operating
limits, operating parameters (e.g., parameters of a variable
frequency drive or another type of industrial device), scale
factors, security settings, power settings, safety settings, or
other such device configuration settings.

FIGS. 17-19 1illustrate various methodologies in accor-
dance with one or more embodiments of the subject appli-
cation. While, for purposes of simplicity of explanation, the
methodologies shown herein are shown and described as a
series of acts, 1t 1s to be understood and appreciated that the
subject innovation 1s not limited by the order of acts, as some
acts may, in accordance therewith, occur 1n a different order
and/or concurrently with other acts from that shown and
described herein. For example, those skilled 1n the art will
understand and appreciate that a methodology could alter-
natively be represented as a series of interrelated states or
events, such as 1n a state diagram. Moreover, not all 1llus-
trated acts may be required to implement a methodology in
accordance with the innovation. Furthermore, interaction
diagram(s) may represent methodologies, or methods, 1n
accordance with the subject disclosure when disparate enti-

US 11,835,941 B2

31

ties enact disparate portions of the methodologies. Further
yet, two or more of the disclosed example methods can be
implemented 1n combination with each other, to accomplish
one or more features or advantages described herein.

FIG. 17 illustrates an example methodology 1700 for
creating and encapsulated a hierarchy of automation objects
within an mdustrial system project using an industrial IDE
system. Initially, at 1702, design mput 1s received wvia
interaction with an idustrial IDE system. The design input
can be submitted in the form of one or more of industrial
controller programming (e.g., ladder logic, sequential func-
tion charts, scripted control code such as an industrial DSL,
etc.), HMI screen development input, industrial device or
equipment selections, engineering drawing input, etc. In
some embodiments, the design input can also 1include com-
pleted engineering drawings (e.g., P&ID drawings, electri-
cal drawings, mechanical drawings, etc.), which can be
parsed and analyzed by the industrial IDE to identity com-
ponents of the industrial automation system being designed
(e.g., industrial devices, machines, equipment, conduit, pip-
ing, etc.) as well as functional and physical relationships
between these components.

The design mput also comprises selection of automation
objects from a library of automation objects for inclusion 1n
the system project. The automation objects are building
blocks for the industrial automation system project and
represent various types of real-world industrial assets or
processes, including but not limited to pumps, tanks, values,
motors, motor drives (e.g., varniable frequency drives),
industrial robots, actuators (e.g., pneumatic or hydraulic
actuators), or other such assets. The automation objects are
associated with various attributes or properties as a function
of their represented asset or process (e.g., control code,
visualization objects or interfaces, test scripts, security fea-
tures or protocols, etc.).

At 1704, turther design input i1s received that defines
hierarchical relationships between selected automation
objects that were added to the project at step 1702, yielding
a hierarchy of automation objects. In some embodiments,
the hierarchical relationships can be defined via interactions
with graphical representations of the automation objects
rendered 1n the development workspace of the IDE system.
For example, inputs and outputs associated with the auto-
mation objects can be selectively linked to one another to
specily that selected output data from a first automation
object 1s to be consumed by a selected data input of a second
automation object. These links can define parent-child rela-
tionships between selected automation objects, yielding an
object hierarchy that reflects physical and/or functional
relationships between the physical industrial assets repre-
sented by the objects. The hierarchical relationships can link
functionalities or attributes of the automation objects; e.g.,
by merging control code association with the linked objects
to yield control programming capable of monitoring and
controlling an automation system comprising the repre-
sented 1ndustrial assets.

At 1706, a determination 1s made as to whether an
instruction to encapsulate the hierarchy of automation
objects defined at step 1704 1s recerved. If such an instruc-
tion 1s received (YES at step 1706), the methodology
proceeds to step 1708, where a single encapsulated object
representing the hierarchy of automation objects 1s created.
The encapsulated object comprises data inputs and outputs
that can be linked to other automation objects or encapsu-
lated objects. The encapsulated object’s inputs and outputs
depend on the individual automation objects that are repre-
sented by the encapsulated object and the defined relation-

10

15

20

25

30

35

40

45

50

55

60

65

32

ships therebetween. This encapsulated object 1s scalable
across the system project, such that the encapsulated object
can be moved or copied across the project or across multiple
projects. When the encapsulated object 1s copied, the new
instance of the encapsulated object includes the functionality
of the automation object hierarchy defined for the original
encapsulated object, as well as any user-defined attributes of
the automation objects that make up the hierarchy.

FIG. 18a illustrates a first part of an example methodol-
ogy 1800a for configuring, within an automation system
project, data logging attributes for an automation system to
be monitored and controlled by the system project. Initially,
at 1802, design mput 1s received via interaction with an
industrial IDE system (similar to step 1702 of methodology
1700). At 1804, further design mput 1s received that defines
hierarchical relationships between selected automation
objects added to the project at step 1802, yielding a hierar-
chy of automation objects (similar to step 1704 of method-
ology 1700).

At 1806, further design input 1s received that sets, as
attributes of a first of the automation objects that represents
an 1ndustrial asset, data logging configuration settings for
the industrial asset. These data logging configuration set-
tings can include, but are not limited to, identities of which
data 1items associated with the object’s corresponding imndus-
trial asset are to be collected and archived, a frequency at
which the data items are to be collected, a storage location
for the logged data, an organization or schema for the logged
data, etc. At 1808, the data logging configuration settings
received at step 1806 are associated with the first automation
object, such that the data logging configuration becomes an
embedded attribute of the object.

At 1810, a determination 1s made, based on the object
hierarchy defined at step 1804, as to whether the first
automation object has a parent-child relationship with a
second automation object 1n the hierarchy. If such a rela-
tionship 1s defined (YES at step 1810), the methodology
proceeds to step 1812, where a data logging configuration of
the second automation object 1s set based on the relationship
between the defined first and second automation objects and
the data logging configuration of the first automation object.
In an example scenario, based on the object relationships
and the first object’s data logging configuration, the first
object may 1dentily conditions under which data generated
by the second object’s corresponding asset should be col-
lected and archived, as well as a frequency at which this data
should be collected, a location at which the data should be
archived, or other such data logging features. Based on this
information, the first object can configure the second
object’s data logging attributes accordingly, yielding an
agoregate data logging configuration for the automation
system being monitored and controlled.

The methodology then proceeds to the second part 18005
illustrated 1n FIG. 185. At 1814, a determination 1s made as
to whether an instruction to deploy the system project 1s
received. If such an instruction i1s received (YES at step
1814), the methodology proceeds to step 1816, where the
system project 1s compiled into one or more executable files
that can be deployed and executed on industrial devices of
the automation system. The executable files include a his-
torian configuration file that configures one or more data
historians 1n accordance with the data logging configurations
defined in the first and second automation objects.

FIG. 19 illustrates an example methodology 1900 for
defining industrial device configuration within an automa-
tion system project using automation objects. Initially, at
1902, design mput 1s recerved for an industrial automation

US 11,835,941 B2

33

system project via mteraction with an industrial IDE system
(similar to step 1702 of methodology 1700). At 1904, turther
design 1nput 1s received that defines hierarchical relation-
ships between selected automation objects to yield a hier-
archy of automation objects (similar to step 1704 of meth-
odology 1700).

At 1906, further design mnput i1s received that sets, as
attributes of an automation object representing an industrial
device, device configuration parameters for the industrial
device. Example device configuration parameters that can be
set 1n this manner can include, but are not limited to,
network or commumication settings (e.g., network
addresses), operating mode settings, high or low operating
limits, operating parameters (e.g., parameters ol a variable
frequency drive or another type of industrial device), scale
factors, security settings, power settings, or other such
device configuration settings. In some embodiments, the
device configuration parameters can be set by interacting
with a graphical representation of the automation object to
invoke a device configuration window, which allows a user
to enter values of the configuration parameters. The device
parameters rendered on this configuration window and made
available for editing depends on the type of industrial device
represented by the automation object. At 1908, the device
configuration parameters received at step 1906 are associ-
ated with the automation object, such that the parameter
become embedded attributes of the object.

At 1910, a determination 1s made as to whether an
instruction to deploy the system project 1s received. If such
an 1nstruction 1s received (YES at step 1910), the method-
ology proceeds to step 1912, where the system project 1s
compiled into one or more executable files that can be
deployed and executed on industrial devices of an automa-
tion system. The executable files imnclude a device configu-
ration {ile that configures the industrial device corresponding,
to the automation object in accordance with the device
configuration parameters defined 1n the automation object.

Embodiments, systems, and components described
herein, as well as control systems and automation environ-
ments 1 which various aspects set forth in the subject
specification can be carried out, can include computer or
network components such as servers, clients, programmable
logic controllers (PLCs), automation controllers, communi-
cations modules, mobile computers, on-board computers for
mobile vehicles, wireless components, control components
and so forth which are capable of interacting across a
network. Computers and servers include one or more pro-
cessors—electronic integrated circuits that perform logic
operations employing electric signals—configured to
execute 1mstructions stored 1n media such as random access
memory (RAM), read only memory (ROM), a hard drives,
as well as removable memory devices, which can include
memory sticks, memory cards, flash drives, external hard
drives, and so on.

Similarly, the term PLC or automation controller as used
herein can include functionality that can be shared across
multiple components, systems, and/or networks. As an
example, one or more PLCs or automation controllers can
communicate and cooperate with various network devices
across the network. This can include substantially any type
of control, communications module, computer, Input/Output
(I/0) device, sensor, actuator, and human machine interface
(HMI) that communicate via the network, which includes
control, automation, and/or public networks. The PLC or
automation controller can also communicate to and control
various other devices such as standard or safety-rated 1/O
modules including analog, digital, programmed/intelligent

10

15

20

25

30

35

40

45

50

55

60

65

34

I/O modules, other programmable controllers, communica-
tions modules, sensors, actuators, output devices, and the
like.

The network can include public networks such as the
internet, intranets, and automation networks such as control
and information protocol (CIP) networks including Device-
Net, ControlNet, safety networks, and Ethernet/IP. Other
networks include Ethernet, DH/DH+, Remote /O, Fieldbus,
Modbus, Profibus, CAN, wireless networks, serial protocols,
and so forth. In addition, the network devices can include
various possibilities (hardware and/or software compo-
nents). These include components such as switches with
virtual local area network (VLAN) capability, LAN:sS,
WANSs, proxies, gateways, routers, firewalls, virtual private
network (VPN) devices, servers, clients, computers, con-
figuration tools, monitoring tools, and/or other devices.

In order to provide a context for the various aspects of the
disclosed subject matter, FIGS. 20 and 21 as well as the
following discussion are intended to provide a brief, general
description of a suitable environment 1n which the various
aspects of the disclosed subject matter may be implemented.
While the embodiments have been described above 1n the
general context of computer-executable 1nstructions that can
run on one or more computers, those skilled 1n the art waill
recognize that the embodiments can be also implemented in
combination with other program modules and/or as a com-
bination of hardware and software.

Generally, program modules include routines, programs,
components, data structures, etc., that perform particular
tasks or implement particular abstract data types. Moreover,
those skilled in the art will appreciate that the imventive
methods can be practiced with other computer system con-
figurations, including single-processor or multiprocessor
computer systems, minicomputers, mainirame computers,
Internet of Things (IoT) devices, distributed computing
systems, as well as personal computers, hand-held comput-
ing devices, microprocessor-based or programmable con-
sumer electronics, and the like, each of which can be
operatively coupled to one or more associated devices.

The illustrated embodiments herein can be also practiced
in distributed computing environments where certain tasks
are performed by remote processing devices that are linked
through a communications network. In a distributed com-
puting environment, program modules can be located in
both local and remote memory storage devices.

Computing devices typically include a variety of media,
which can include computer-readable storage media,
machine-readable storage media, and/or communications
media, which two terms are used herein differently from one
another as follows. Computer-readable storage media or
machine-readable storage media can be any available stor-
age media that can be accessed by the computer and includes
both volatile and nonvolatile media, removable and non-
removable media. By way of example, and not limitation,
computer-readable storage media or machine-readable stor-
age media can be implemented in connection with any
method or technology for storage of information such as
computer-readable or machine-readable instructions, pro-
gram modules, structured data or unstructured data.

Computer-readable storage media can include, but are not
limited to, random access memory (RAM), read only
memory (ROM), electrically erasable programmable read
only memory (EEPROM), flash memory or other memory
technology, compact disk read only memory (CD-ROM),
digital versatile disk (DVD), Blu-ray disc (BD) or other
optical disk storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices,

US 11,835,941 B2

35

solid state drives or other solid state storage devices, or other
tangible and/or non-transitory media which can be used to
store desired information. In this regard, the terms “tan-
gible” or “non-transitory” herein as applied to storage,
memory or computer-readable media, are to be understood
to exclude only propagating transitory signals per se as
modifiers and do not relinquish rights to all standard storage,
memory or computer-readable media that are not only
propagating transitory signals per se.

Computer-readable storage media can be accessed by one
or more local or remote computing devices, €.g., via access
requests, queries or other data retrieval protocols, for a
variety ol operations with respect to the imnformation stored
by the medium.

Communications media typically embody computer-read-
able 1nstructions, data structures, program modules or other
structured or unstructured data 1n a data signal such as a
modulated data signal, e.g., a carrier wave or other transport
mechanism, and includes any information delivery or trans-
port media. The term “modulated data signal” or signals
refers to a signal that has one or more of 1ts characteristics
set or changed 1n such a manner as to encode information 1n
one or more signals. By way of example, and not limitation,
communication media include wired media, such as a wired
network or direct-wired connection, and wireless media
such as acoustic, RF, infrared and other wireless media.

With reference again to FIG. 20, the example environment
2000 for implementing various embodiments of the aspects
described herein includes a computer 2002, the computer
2002 including a processing unit 2004, a system memory
2006 and a system bus 2008. The system bus 2008 couples
system components including, but not limited to, the system
memory 2006 to the processing unit 2004. The processing,
unit 2004 can be any of various commercially available
processors. Dual microprocessors and other multi-processor
architectures can also be employed as the processing unit
2004.

The system bus 2008 can be any of several types of bus
structure that can further interconnect to a memory bus (with
or without a memory controller), a peripheral bus, and a
local bus using any of a variety of commercially available
bus architectures. The system memory 2006 includes ROM
2010 and RAM 2012. A basic input/output system (BIOS)
can be stored in a non-volatile memory such as ROM,
crasable programmable read only memory (EPROM),
EEPROM, which BIOS contains the basic routines that help
to transier information between elements within the com-
puter 2002, such as during startup. The RAM 2012 can also
include a high-speed RAM such as static RAM for caching
data.

The computer 2002 further includes an internal hard disk
drive (HDD) 2014 (e.g., EIDE, SATA), one or more external
storage devices 2016 (e.g., a magnetic tloppy disk drive
(FDD) 2016, a memory stick or flash drive reader, a memory

card reader, etc.) and an optical disk drive 2020 (e.g., which
can read or write from a CD-ROM disc, a DVD, a BD, etc.).

While the internal HDD 2014 1s illustrated as located within
the computer 2002, the mternal HDD 2014 can also be
configured for external use 1n a suitable chassis (not shown).
Additionally, while not shown 1n environment 2000, a solid
state drive (SSD) could be used 1n addition to, or 1n place of,
an HDD 2014. The HDD 2014, external storage device(s)
2016 and optical disk drive 2020 can be connected to the
system bus 2008 by an HDD interface 2024, an external
storage interface 2026 and an optical drive interface 2028,
respectively. The interface 2024 for external drive imple-
mentations can include at least one or both of Universal

10

15

20

25

30

35

40

45

50

55

60

65

36

Serial Bus (USB) and Institute of Electrical and FElectronics
Engineers (IEEE) 1394 interface technologies. Other exter-
nal drive connection technologies are within contemplation
ol the embodiments described herein.

The drives and their associated computer-readable storage
media provide nonvolatile storage of data, data structures,
computer-executable 1nstructions, and so forth. For the
computer 2002, the drives and storage media accommodate
the storage of any data in a suitable digital format. Although
the description of computer-readable storage media above
refers to respective types of storage devices, 1t should be
appreciated by those skilled 1n the art that other types of
storage media which are readable by a computer, whether
presently existing or developed 1n the future, could also be
used 1n the example operating environment, and further, that
any such storage media can contain computer-executable
istructions for performing the methods described herein.

A number of program modules can be stored in the drives
and RAM 2012, including an operating system 2030, one or
more application programs 2032, other program modules
2034 and program data 2036. All or portions of the operating
system, applications, modules, and/or data can also be
cached 1n the RAM 2012. The systems and methods
described herein can be implemented utilizing various com-
mercially available operating systems or combinations of
operating systems.

Computer 2002 can optionally comprise emulation tech-
nologies. For example, a hypervisor (not shown) or other
intermediary can emulate a hardware environment for oper-
ating system 2030, and the emulated hardware can option-
ally be different from the hardware 1llustrated in FIG. 20. In
such an embodiment, operating system 2030 can comprise
one virtual machine (VM) of multiple VMs hosted at com-
puter 2002. Furthermore, operating system 2030 can provide
runtime environments, such as the Java runtime environ-
ment or the .NET framework, for application programs
2032. Runtime environments are consistent execution envi-
ronments that allow application programs 2032 to run on
any operating system that includes the runtime environment.
Similarly, operating system 2030 can support containers,
and application programs 2032 can be in the form of
containers, which are lightweight, standalone, executable
packages of software that include, e.g., code, runtime,
system tools, system libraries and settings for an application.

Further, computer 2002 can be enable with a security
module, such as a trusted processing module (TPM). For
instance with a TPM, boot components hash next in time
boot components, and wait for a match of results to secured
values, before loading a next boot component. This process
can take place at any layer 1n the code execution stack of
computer 2002, e¢.g., applied at the application execution
level or at the operating system (OS) kernel level, thereby
enabling security at any level of code execution.

A user can enter commands and information into the
computer 2002 through one or more wired/wireless 1nput
devices, e.g., a keyboard 2038, a touch screen 2040, and a
pointing device, such as a mouse 2042. Other input devices
(not shown) can include a microphone, an infrared (IR)
remote control, a radio frequency (RF) remote control, or
other remote control, a joystick, a virtual reality controller
and/or virtual reality headset, a game pad, a stylus pen, an
image input device, e.g., camera(s), a gesture sensor mput
device, a vision movement sensor input device, an emotion
or facial detection device, a biometric mput device, e.g.,
fingerprint or 1r1s scanner, or the like. These and other mnput
devices are often connected to the processing unit 2004
through an mmput device interface 2044 that can be coupled

US 11,835,941 B2

37

to the system bus 2008, but can be connected by other
interfaces, such as a parallel port, an IEEE 1394 serial port,
a game port, a USB port, an IR interface, a BLUETOOTH®
interface, etc.

A monitor 2044 or other type of display device can be also
connected to the system bus 2008 via an interface, such as
a video adapter 2046. In addition to the monitor 2044, a
computer typically includes other peripheral output devices
(not shown), such as speakers, printers, etc.

The computer 2002 can operate in a networked environ-
ment using logical connections via wired and/or wireless
communications to one or more remote computers, such as
a remote computer(s) 2048. The remote computer(s) 2048
can be a workstation, a server computer, a router, a personal
computer, portable computer, microprocessor-based enter-
tainment appliance, a peer device or other common network
node, and typically includes many or all of the elements
described relative to the computer 2002, although, for pur-
poses of brevity, only a memory/storage device 2050 1s
illustrated. The logical connections depicted include wired/
wireless connectivity to a local area network (LAN) 2052
and/or larger networks, e.g., a wide area network (WAN)
2054. Such LAN and WAN networking environments are
commonplace 1n oflices and companies, and facilitate enter-
prise-wide computer networks, such as intranets, all of
which can connect to a global communications network,
¢.g., the Internet.

When used 1n a LAN networking environment, the com-
puter 2002 can be connected to the local network 2052
through a wired and/or wireless communication network
interface or adapter 2056. The adapter 2056 can facilitate
wired or wireless communication to the LAN 2052, which
can also include a wireless access point (AP) disposed
thereon for communicating with the adapter 2056 1n a
wireless mode.

When used 1n a WAN networking environment, the com-
puter 2002 can include a modem 2058 or can be connected
to a communications server on the WAN 2034 via other
means for establishing communications over the WAN
2054, such as by way of the Internet. The modem 2058,
which can be internal or external and a wired or wireless
device, can be connected to the system bus 2008 via the
input device interface 2042. In a networked environment,
program modules depicted relative to the computer 2002 or
portions thereof, can be stored in the remote memory/
storage device 2050. It will be appreciated that the network
connections shown are example and other means of estab-

lishing a communications link between the computers can be
used.

When used 1n either a LAN or WAN networking envi-
ronment, the computer 2002 can access cloud storage sys-
tems or other network-based storage systems 1n addition to,
or 1n place of, external storage devices 2016 as described
above. Generally, a connection between the computer 2002
and a cloud storage system can be established over a LAN
2052 or WAN 2054 e.g., by the adapter 2056 or modem
2058, respectively. Upon connecting the computer 2002 to
an associated cloud storage system, the external storage
interface 2026 can, with the aid of the adapter 2056 and/or
modem 2058, manage storage provided by the cloud storage
system as 1t would other types of external storage. For
instance, the external storage interface 2026 can be config-
ured to provide access to cloud storage sources as 1f those
sources were physically connected to the computer 2002.

The computer 2002 can be operable to communicate with
any wireless devices or entities operatively disposed 1n
wireless communication, e.g., a printer, scanner, desktop

10

15

20

25

30

35

40

45

50

55

60

65

38

and/or portable computer, portable data assistant, commu-
nications satellite, any piece of equipment or location asso-
ciated with a wirelessly detectable tag (e.g., a kiosk, news

stand, store shelf, etc.), and telephone. This can include
Wireless Fidelity (Wi-F1) and BLUETOOTH® wireless

technologies. Thus, the communication can be a predefined
structure as with a conventional network or stmply an ad hoc
communication between at least two devices.

FIG. 21 1s a schematic block diagram of a sample com-
puting environment 2100 with which the disclosed subject
matter can interact. The sample computing environment

2100 includes one or more client(s) 2102. The client(s) 2102

can be hardware and/or software (e.g., threads, processes,
computing devices). The sample computing environment
2100 also 1includes one or more server(s) 2104. The server(s)
2104 can also be hardware and/or software (e.g., threads,
processes, computing devices). The servers 2104 can house
threads to perform transformations by employing one or
more embodiments as described herein, for example. One
possible communication between a client 2102 and servers
2104 can be 1n the form of a data packet adapted to be
transmitted between two or more computer processes. The
sample computing environment 2100 includes a communi-
cation framework 2106 that can be employed to facilitate
communications between the client(s) 2102 and the server(s)
2104. The client(s) 2102 are operably connected to one or
more client data store(s) 2108 that can be employed to store
information local to the client(s) 2102. Similarly, the
server(s) 2104 are operably connected to one or more server
data store(s) 2110 that can be employed to store information
local to the servers 2104.

What has been described above includes examples of the
subject innovation. It 1s, of course, not possible to describe
every conceivable combination of components or method-
ologies for purposes of describing the disclosed subject
matter, but one of ordinary skill 1n the art may recognize that
many further combinations and permutations of the subject
innovation are possible. Accordingly, the disclosed subject
matter 1s intended to embrace all such alterations, modifi-
cations, and variations that fall within the spirit and scope of
the appended claims.

In particular and 1n regard to the various functions per-
formed by the above described components, devices, cir-
cuits, systems and the like, the terms (including a reference
to a “means”) used to describe such components are
intended to correspond, unless otherwise indicated, to any
component which performs the specified function of the
described component (e.g., a functional equivalent), even
though not structurally equivalent to the disclosed structure,
which performs the function i1n the herein illustrated exem-
plary aspects of the disclosed subject matter. In this regard,
it will also be recognized that the disclosed subject matter
includes a system as well as a computer-readable medium
having computer-executable instructions for performing the
acts and/or events of the various methods of the disclosed
subject matter.

In addition, while a particular feature of the disclosed
subject matter may have been disclosed with respect to only
one of several implementations, such feature may be com-
bined with one or more other features of the other imple-
mentations as may be desired and advantageous for any
grven or particular application. Furthermore, to the extent
that the terms “includes,” and “including” and variants
thereol are used in either the detailed description or the
claims, these terms are intended to be inclusive 1n a manner
similar to the term “comprising.”

US 11,835,941 B2

39

In this application, the word “exemplary” 1s used to mean
serving as an example, instance, or illustration. Any aspect
or design described herein as “exemplary” 1s not necessarily
to be construed as preferred or advantageous over other
aspects or designs. Rather, use of the word exemplary is
intended to present concepts in a concrete fashion.

Various aspects or features described herein may be
implemented as a method, apparatus, or article of manufac-
ture using standard programming and/or engineering tech-
niques. The term “article of manufacture” as used herein 1s
intended to encompass a computer program accessible from
any computer-readable device, carrier, or media. For
example, computer readable media can include but are not
limited to magnetic storage devices (e.g., hard disk, floppy
disk, magnetic strips . . .), optical disks [e.g., compact disk
(CD), digital versatile disk (DVD) . . .], smart cards, and
flash memory devices (e.g., card, stick, key drive . . .).

What 1s claimed 1s:

1. A system for developing industrial applications, com-
prising:

a memory that stores executable components and a library
ol automation objects representing respective industrial
assets, the automation objects having respective pro-
grammatic attributes associated with the industnial
assets; and

a processor, operatively coupled to the memory, that
executes the executable components, the executable
components comprising:

a user interface component configured to render inte-
grated development environment (IDE) interfaces
and to recerve, via interaction with the IDE inter-
faces, design mput that defines aspects of an indus-
trial automation project, wheremn a portion of the
design iput selects an automation object, from the
library of automation objects, for inclusion 1n the
industrial automation project as an instance of the
automation object; and

a project generation component configured to generate
system project data based on the design nput,

wherein

the mstance of the automation object comprises, as the
programmatic attributes, at least control program-
ming that, in response to execution on an industrial
controller, facilitates control of an industrial asset
represented by the automation object, and data log-
ging configuration parameters that, in response to
deployment to a data collection system, configure the
data collection system to collect data generated by
the industrial asset,

the data logging configuration parameters comprise at
least 1dentities of data 1items generated by the indus-
trial asset that are to be collected by the data collec-
tion system and a frequency at which the data items
are to be collected by the data collection system, and

the system project data comprises at least an executable
industrial control program that includes the control
programming and the data logging configuration
parameters.

2. The system of claim 1, wherein the data logging
configuration parameters further comprise at least one of a
storage location at which the data collection system 1s to
store the data 1tems, an organization of the data items, or a
condition that 1s to trigger collection of the data items.

3. The system of claim 1, wherein at least one of the data
logging configuration parameters are editable via interaction
with a graphical representation of the instance of the auto-
mation object.

10

15

20

25

30

35

40

45

50

55

60

65

40

4. The system of claim 1, wherein
the automation object 1s a first automation object, and

the system project data defines a hierarchical relationship
between the instance of the first automation object and
an 1nstance of a second automation object.

5. The system of claim 4, wherein the project generation
component 1s further configured to set one or more data
logging configuration parameters of the instance of the
second automation object based on the hierarchical relation-
ship and the data logging configuration parameters of the
instance of the first automation object.

6. The system of claam 4, wherein the system project
generation component 1s configured to define the hierarchi-
cal relationship based on a subset of the design input that
specifles one or more linkages between inputs and outputs of
the 1nstance of the first automation object and the 1nstance of
the second automation object to yield an object hierarchy.

7. The system of claim 6, wherein

the project generation component 1s further configured to,
in response to receipt of an instruction to encapsulate
the object hierarchy, create a single encapsulated object
representing the object hierarchy, and

the encapsulated object i1s scalable across the system
project.

8. The system of claim 1, wherein the instance of the
automation object further comprises, as the programmatic
attributes, at least device configuration parameter settings
that define values of device configuration parameters for the
industrial asset represented by the instance of the automation
object.

9. The system of claim 8, wherein the project generation
component 1s configured to generate, based on the device
configuration parameter settings associated with the instance
of the automation object, device configuration data that, 1n
response to deployment to the industrial asset, configures the
industrial asset 1n accordance with the device configuration
parameter settings.

10. The system of claim 8, wherein the device configu-
ration parameter settings comprise at least one of a network
address, a communication setting, an operating mode set-
ting, a high or low operating limit, an operating parameter,
a scale factor, a security settings, a power setting, or a safety
setting.

11. The system of claim 1, wherein the automation objects
represent, as the industrial assets, at least one of an industrial
process, a controller, a control program, a tag within the
control program, a machine, a motor, a motor drive, a
telemetry device, a tank, a valve, a pump, an industrial safety
device, an industrial robot, or an actuator.

12. A method for developing industrial applications, com-
prising;:

receiving, by a system comprising a processor via inter-
action with integrated development environment (IDE)
interfaces rendered on a client device, design mput that
defines aspects of an industrial control and monitoring
project, wherein the receiving comprises receiving at
least a selection of an automation object, from a library
of automation objects, for inclusion 1n the industrial
control and monitoring project as an instance of the
automation object, the automation objects representing
respective industrial assets and having respective pro-
grammatic attributes relating to the industrial assets;
and

US 11,835,941 B2

41

generating, by the system, system project data based on

the design 1nput,
wherein
the instance of the automation object comprises, as the
programmatic attributes, at least control programming
that, 1n response to execution on an industrial control-
ler, facilitates control of an 1industrial asset represented
by the automation object, and data logging configura-
tion parameters that, 1 response to deployment to a
data historian system, configure the data historian sys-
tem to collect data generated by the industrial asset,

the data logging configuration parameters comprise at
least identities of data items generated by the industrial
asset that are to be collected by the data historian
system and a frequency at which the data items are to
be collected by the data historian system, and

the system project data comprises at least the data logging

configuration parameters and an executable control
program that includes the control programming.

13. The method of claim 12, wherein the data logging
configuration parameters further comprise at least one of a
storage location at which the data historian system 1s to store
the data items, an organization of the data items, or a
condition that 1s to trigger collection of the data items.

14. The method of claim 12, wherein the receiving of the
design mput further comprises receiving values of the data
logging configuration parameters via interaction with a
graphical representation of the instance of the automation
object.

15. The method of claim 12, wherein
the automation object 1s a first automation object,
the recerving of the design mput further comprises receiv-

ing a definition of a hierarchical relationship between

the instance of the first automation object and an
instance of a second automation object, and

the method further comprises, 1n response to the receiving

of the defimition of the hierarchical relationship, defin-
ing an object hierarchy comprising the instance of the
first automation object, the instance of the second
automation object, and the definition of the lhierarchical
relationship.

16. The method of claim 15, further comprising setting,
by the system, one or more data logging configuration
parameters of the instance of the second automation object
based on the hierarchical relationship and the data logging
configuration parameters of the instance of the first automa-
tion object.

17. The method of claim 135, further comprising, 1n
response to receiving an mstruction to encapsulate the object
hierarchy, creating, by the system, a single encapsulated
object representing the object hierarchy, wherein the encap-
sulated object 1s scalable across the industrial control and
monitoring project.

10

15

20

25

30

35

40

45

50

42

18. The method of claim 12, wherein

the receiving the design input comprises receiving device
configuration parameter values directed to the nstance
of the automation object,

the device configuration parameter values are values of

device configuration parameters for the industrial asset
represented by the instance of the automation object,
and

the method further comprises, 1n response to the receiving

of the device configuration parameter values, setting,
by the system, the device configuration parameter
values as one or more of the programmatic attributes of
the mnstance of the automation object.

19. A non-transitory computer-readable medium having
stored thereon instructions that, 1n response to execution,
cause a system comprising a processor to perform opera-
tions, the operations comprising:

recerving, from a client device via interaction with inte-

grated development environment (IDE) interfaces,
design iput that defines control design aspects of an
industrial automation project, wherein the receiving
comprises receiving at least a selection of an automa-
tion object, from a library of automation objects, to be
included in the industrial automation project as an
istance of the automation object, and the automation
objects represent respective idustrial assets and hav-
ing respective programmatic attributes relating to the
industrial assets; and

generating system project data based on the design mput,

wherein
the instance of the automation object comprises, as the
programmatic attributes, at least control programming
that, 1n response to execution on an industrial control
device, facilitates control of an industrial asset repre-
sented by the automation object, and data historian
conflguration settings that, in response to deployment
to a data historian system, configure the data historian
system to collect data generated by the industrial asset,

the data historian configuration parameters comprise at
least identities of data items generated by the industrial
asset that are to be collected by the data historian
system and a frequency at which the data items are to
be collected by the data historian system, and

the system project data comprises at least the data histo-

rian configuration parameters and an executable control
program that includes the control programming.

20. The non-transitory computer-readable medium of
claim 19, wherein the data historian configuration param-
cters further comprise at least one of a storage location at
which the data historian system 1s to store the data items, an
organization of the data items, or a condition that 1s to trigger
collection of the data items.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

