12 United States Patent

Yang et al.

USO11811895B2

US 11,811,895 B2
Nov. 7, 2023

(10) Patent No.:
45) Date of Patent:

(54) AUTOMATIC DATA REPLICA MANAGER IN
DISTRIBUTED CACHING AND DATA
PROCESSING SYSTEMS

(71) Applicant: Samsung Electronics Co., Ltd.,
Suwon-s1 (KR)

(72) Inventors: Zhengyu Yang, San Diego, CA (US);
Jiayin Wang, Dorchester, MA (US);
Thomas David Evans, San Diego, CA
(US)

(73) Assignee: Samsung Electronics Co., Ltd.,

Yongin-si (KR)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 0 days.

(21) Appl. No.: 17/948,111

(22) Filed: Sep. 19, 2022

(65) Prior Publication Data
US 2023/0026778 Al Jan. 26, 2023

Related U.S. Application Data

(60) Continuation of application No. 16/569,176, filed on
Sep. 12, 2019, now Pat. No. 11,451,645, which 1s a

(Continued)

(51) Int. CL
HO4L 41/0668
HO4L 67/568

(2022.01)
(2022.01)

(Continued)

(52) U.S. CL
CPC ... HO4L 67/568 (2022.05); HO4L 41/0668
(2013.01); HO4L 41/5009 (2013.01); HO4L
41/5022 (2013.01); HO4L 41/5025 (2013.01):

HO4L 43/0852 (2013.01); HO4L 43/0888
(2013.01); HO4L 43/16 (2013.01); HO4L
67/1001 (2022.05); HO4L 67/1095 (2013.01)

(58) Field of Classification Search
CPC HO4L 41/0668; HO4L 43/08352; GO6F
2212/214
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5/1997 Cord et al.
6/1998 Blelloch et al.

(Continued)

5,627,990 A
5,768,594 A

FOREIGN PATENT DOCUMENTS

CN 103955436 A 7/2014
CN 102467452 B 8/2014
(Continued)

OTHER PUBLICATTONS

A Stochastic Memoizer for Sequence Data by Wood; International
Conference on Machine Learning, Montreal, Canada, 2009,

(Continued)

Primary Examiner — Kamini B Patel

(74) Attorney, Agent, or Firm — Lewis Roca Rothgerber
Christie LLP

(57) ABSTRACT

A method of data storage includes determining a latency
distance from a primary node to each of two or more replica
nodes, choosing a preferred replica node of the two or more
replica nodes based on the determined latency distances, and
write-caching data into the preferred replica node.

20 Claims, 4 Drawing Sheets

100
1108 MUa 1403 d
1404 Cache Parftion] Rep rc;’Parttm
SN (*a-‘ Local YMs) 7 tior Other lodes | i
sso T T TP I TT LTy
- HDD S
? TEIE TR Y '
’5{}a§ EE\E f"”g ?‘:‘i‘é{}b
120 {4
1503 1a0b
... 20
1393\ - 580 uaﬂhe EHepizca - S5 ‘3313?’39 Hepiz::a
HDD | H HDD
1106~ - 110b

US 11,811,895 B2

Page 2
Related U.S. Application Data 2005/0010629 Al 1/2005 Hess et al.
2005/0086384 Al 4/2005 Ernst
division of application No. 15/408,328, filed on Jan. 2006/0026154 Al 2/2006 Altinel et al.
17, 2017, now Pat. No. 10,455,045, 2006/0112219 Al 5/2006 Chawla et al.
2006/0253674 Al 11/2006 Zohar et al.
(60) Provisional application No. 62/404,167, filed on Oct. 388;///8?32232 i %ggg; %ﬁge ct al.
. .. 1 spurger
4, 20165 pI‘OVISIOIlal appllcathll No. 62/3843078, filed 2009/0006593 Al* 1/2009 Cortes ... HO4T. 12/66
on Sep. 6, 2016. 709/273
2009/0049421 Al 2/2009 Meijer et al.
(51) Int. CL 2009/0276657 Al 11/2009 Wetmore et al.
HO4L 41/5022 (2022.01) 2009/0288084 Al) 11/2009 Astete et al.
HO4T 43/0852 (2022.01) 2010/0131545 Al 5/2010 Srivastava GO6$O;?;§;
HO4L 43/0585 (2022.01) 2010/0281078 Al 11/2010 Wang et al.
HO4L 41/5025 (2022.01) 2011/0035548 Al 2/2011 Kimmel et al.
HO4L 67/1095 (2022.01) 2011/0246491 Al 10/2011 Clash et al.
HO4L 43/16 (2022.01) 20:1?0302371 Al 12?201; %931(0 y
; 2012/0268471 Al 10/2012 vatl et al.
HO4L 4175009 (2022'02“) 2013/0055290 Al 2/2013 Gaikwad et al.
HO4L 67/1001 (2022.01) 2013/0073523 Al 3/2013 Gounares et al.
2013/0074057 Al 3/2013 Gounares et al.
(56) References Cited 2013/0124916 Al1* 5/2013 Shutt GO6F 11/2069
714/E11.089
U.S. PATENT DOCUMENTS 2013/0179630 Al 7/2013 Yano et al.
2013/0232382 Al 9/2013 Jain et al.
6,519,756 Bl 2/2003 Kao et al. 2013/0263142 Al1* 10/2013 Miyamae GO6F 9/46
6,553,394 Bl 4/2003 Perry et al. 718/102
6,609,088 Bl 8/2003 Wuytack et al. 2013/0290249 A1 10/2013 Merriman et al.
7,059,501 B2* 6/2006 Masuda B65D 83/0055 2013/0297902 A1 11/2013 Collins et al.
222/212 2013/0346366 Al 12/2013 Ananthanarayanan et al.
7,076,640 B2 7/2006 Kadambi 2014/0149637 Al 5/2014 Gu et al.
7,194,587 B2 3/2007 McCalpin et al. 2014/0164687 Al 6/2014 Kwon et al.
7,680,969 B1* 3/2010 Danilak GO6F 3/0611 2014/0207955 Al 7/2014 Musial et al.
360/24 2014/0324785 Al 10/2014 Gupta et al.
7,933,087 B1* 4/2011 Tsai ...ccooocvvrerenn, G11B 19/041 2015/0006788 Al 1/2015 Liu et al.
360/48 2015/0074350 Al 3/2015 Chiang et al.
8,140,751 Bl 3/2012 Wang 2015/0127646 Al 5/2015 Shaw
2 190.595 RB? 5/2012 Bruno et al. 2015/0188840 Al 7/2015 Xiao et al.
417870 R? 4/2013 Rae et al. 2015/0234617 A1 82015 Li et al.
8.463.825 Bl 6/2013 Harty et al. 2015/0234719 Al* 82015 Coronado ... GOGF 11/203
8,468,299 B2 6/2013 O’Rourke et al. 714/6.3
8,495,178 Bl 7/2013 Tia et al. 2015/0254322 Al 9/2015 Ma et al.
8,762,664 B2 6/2014 Surtani et al. 2015/0288669 Al 10/2015 Litoru et al.
8,874,848 B2 10/2014 Soundararajan et al. 2015/0333994 A1 11/2015 Gell et al.
8918362 B2 12/2014 Calder et al. 2015/0347451 Al 12/2015 Lee et al.
8,024,978 B2 12/2014 Meng et al. 2016/0011876 Al 1/2016 Mukherjee et al.
8.953.602 B2 2/2015 Yang et al. 2016/0019286 Al 1/2016 Bach et al.
8,959,519 B2 2/2015 Agarwal et al. 2016/0132433 Al 5/2016 Hayashi et al.
8,959,524 B2 2/2015 Hirsch et al. 2016/0170882 Al* 6/2016 Cholcovvvevvvinnnn, GO6F 11/14
9,002,939 B2 4/2015 Laden et al. 711/119
9,053,167 Bl 6/2015 Swiit et al. 2016/0188490 Al 6/2016 Samih
9,081,826 B2 7/2015 Murthy et al. 2016/0188898 Al 6/2016 Karinta et al.
9,116,913 B2 8/2015 Fukatan: et al. 2016/0291942 A1 10/2016 Hutchison
0,182,927 B2 11/2015 Liu et al. 2016/0292053 Al 10/2016 Antony et al.
9,189,410 B2 11/2015 Luo et al. 2017/0091107 Al 3/2017 Peterson et al.
9,201,891 B2 12/2015 Romanski et al. 2017/0134337 Al 5/2017 Araujo
9,213,721 Bl 12/2015 Faibish et al. 2017/0142217 Al 5/2017 Misra et al.
9,256,374 Bl 2/2016 Aron et al. 2017/0242958 Al 8/2017 Brown
9,280,300 B2 3/2016 Liu et al. 2017/0244784 Al 8/2017 Lam et al.
9,304,997 B2 4/2016 Beard et al. 2017/0318091 Al 11/2017 Ke et al.
9,323,402 B2 4/2016 Olson et al. 2017/0371540 Al1* 12/2017 Dingooeeeen. GO6F 3/0664
9,330,108 B2~ 5/2016 Jones et al. 2018/0025052 Al* 1/2018 Nambiar GOG6F 16/2453
9,342,390 B2 5/2016 Chen et al. 707/713
9,348,707 B2 5/2016 Kashyap et al. 2018/0025092 Al 1/2018 Aharonov et al.
0,301,047 B2 6/2016 Biederman et al. 2018/0048712 Al 2/2018 Sarisky et al.
2,372,630 B2 6/2016 Guo et al. 2018/0060237 Al 3/2018 Leslie-Hurd et al
9,513,814 Bl 12/2016 Can et al. , . o posHes G e Al
956' 2j967 R 47017 P 2018/0069944 Al* 3/2018 Yang HO4L. 41/0668
612, 1 1 eterson et al. | . |
0.817.766 Bl 11/2017 Si et al. 2019/0163371 Al 5/2019 Nambiar GO6F 3/065
90.858.191 B2 1/2018 Choi et al. 2020/0028932 Al1* 1/2020 Yang HO4L. 43/0852
10,013,712 B2* 7/2018 Dugaw G06Q) 30/0601
10,048,996 Bl 8/2018 Bell et al. FOREIGN PATENT DOCUMENTS
10,455,045 B2* 10/2019 Yang HO41. 67/568
11,451,645 B2 9/2022 Yang HO4L. 43/0852 JP 5478526 B2 4/2014
2002/0035605 Al 3/2002 McDowell et al. KR 10-2010-0014782 A 2/2010
2003/0109940 Al 6/2003 Guntzer et al. KR 10-2013-0122326 A 11/2013
2004/0148470 Al 7/2004 Schulz KR 10-2015-0037985 A 4/2015
2004/0193952 Al 9/2004 Narayanan et al. KR 10-2015-0093979 A 8/2015

US 11,311,895 B2
Page 3

(56) References Cited
FORFEIGN PATENT DOCUMENTS

KR 10-2015-0095978 A 8/2015
KR 10-2015-0104585 A 9/2015
KR 10-2016-0081815 A 7/2016
WO WO 2003/067426 Al 8/2003
WO WO 2013/024952 Al 2/2013

OTHER PUBLICATIONS

Apache Sparks: “core concepts, architecture and internals,” http://
datastrophic.io/core-concepts-architecture-and-internals-of-apache-
spark/, Mar. 3, 2016 on Spark (17 pages).

Bocchino Parallel Programming Must Be Deterministic by Default
U of Illinois 2009. (Year: 2009).

Bu et al., “HalLoop: Efficient Iterative Data Processing on Large
Clusters”, Proc. of the VLDB, vol. 3, No. 1-2, DOI: 10.14778/
1920841.1920881, Sep. 30, 2010, pp. 285-296.

Chiang et al, “An Adaptive 10O Prefetching Approach for Virtualized
Data Centers,” IEEE 2015, 14 pages.

Dean, Jeffrey et al., “MapReduce: Simplified Data Processing on
Large Clusters”, Communications of the ACM, Jan. 2008, vol. 51,

No. 1 (pp. 107-113).
Ding, Chen, et al., “Predicting Whole-Program Locality through

Reuse Distance Analysis,” SIGPLAN Notices, 2003, pp. 245-257.
Etheredge Pure and Deterministic Functions (Year: 2008).
Hellerstein Query Execution Techniques for Caching Expensive
Methods, 1996. (Year: 1996).

Intercepting Functions for Memoization: A Case Study Using
Transcendental Functions by Suresh (Year: 2015).

Kanninnura A Speed-up Technique for an Auto Memoization Pro-
cessor by Reusing Partial Results of Instruction Regions (Year:
2012).

Kathpal Analyzing Compute vs. Storage Tradeofl for Video aware
Storage Efficiency (Year: 2012).

Khanafer The Constrained Ski-Rental Problem and 1ts Application
to Online Cloud Cost Optimization (Year: 2013).

Lecture 18: Dynamic Programming I: Memoization, Fibonacci,
Crazy Eights; MI'T, Dept of Computer Science and Al; Fall 2009;
Available at http://courses.csail .nnitedu/6.006/fal109/lecture notes/
lecturel8.pdt (Year: 2009).

Liu, Deng, et al., “VFRM: Flash Resource Manager in VMware
ESX Server,” IEEE Network Operations and Management Sympo-
sium (NOMS), 2014, 7 pages.

Liu, Y1 et al., “SSD as a Cloud Cache? Carefully Design about It”,
Shenzhen Institutes of Advanced Technology, Chinese Academy of
Sciences, Shenzhen 518055, P.R. China; Department of Computer
Science, University of Minnesota, Twin Cities, USA; Shenzhen
College of Advanced Technology, University of Chinese Academy
of Sciences, Shenzhen 518055, PR. China, Journal of Computers,
vol. 27, No. 1, Apr. 2015 (pp. 26-37).

Luo, Tian et al., “S-CAVE: Effective SSD Caching to Improve
Virtual Machine Storage Performance”, Proceeding, PACT ’13
Proceedings of the 22nd international conference on Parallel archi-

tectures and compilation techniques, pp. 103-112, Edinburg, Scot-
land, UK, Oct. 7, 2013, (10 pages).
Ma Way Memoization to Reduce Fetch Energy in Instruction

Caches MIT, 2001. (Year: 2001).
Mayfield Using Automatic Memoization as a Software Engineering
Tool in Real World AI Systems (Year: 1995).

Meng, Fel, et al., “vCacheShare: Automated Server Flash Cache

Space Management 1n a Virtualization Environment,” USENIX
Annual Technical Conference, 2014, pp. 133-144.

Rajasekaran, Sundaresan, “Multi-Cache: Dynamic, Efficient Parti-
tioning for Multi-Tier Caches in Consolidated VM Environments”,
IEEE International Conference on Cloud Engineering, 2016, Date

Added to IEEE Xplore: Jun. 2, 2016, (10 pages).

Ren, Jen, “I-CASH: Intelligently Coupled Array of SSD and HDD”,
IEEE 17th International Symposium on High Performance Com-
puter Architecture, 2011, Date Added to IEEE Xplore: Apr. 15,
2011, (12 pages).

“Spark Programming Guide,” Apache Spark, Version 2.1.0., Released
on Dec. 2016, https://spark.apache.org/docs/latest/programming-
guide html#rdd-operations.

Spark Trademark Evidence (Year: 2018).

Tai, Jianzhe, et al., “Improving Flash Resource Utilization at
Minimal Management Cost 1n Virtualized Flash-based Storage
Systems,” IEEE Transactions on Cloud Computing, 2015, 15 pages.
Toffola Performance Problems You Can Fix A Dynamic Analysis of
Memoization Opportunities 2015 (Year: 2015).

U.S. Advisory Action dated Oct. 29, 2018, 1ssued 1n U.S. Appl. No.
15/404,100 (8 pages).

U.S. Notice of Allowance dated Dec. 31, 2018, 1ssued 1n U.S. Appl.
No. 15/404,100 (12 pages).

U.S. Oflice Action dated Apr. 11, 2018, 1ssued 1in U.S. Appl. No.
15/404,100 (24 pages).

U.S. Office Action dated Apr. 11, 2018, 1ssued 1n U.S. Appl. No.
15/404,121 (31 pages).

U.S. Oflice Action dated Apr. 19, 2018, 1ssued 1in U.S. Appl. No.
15/423,384 (20 pages).

U.S. Office Action dated Aug. 10, 2018, 1ssued 1n U.S. Appl. No.
15/400,835, 16 pages, citing the references listed above.

U.S. Final Oflice Action dated Feb. 7, 2019, 1ssued in U.S. Appl. No.
15/400,835 (12 pages).

Venugopal, et al., A Taxonomy of Data Grids for Distributed Data
Sharing, Management and Processing, ACM CSUR, vol. 38, No. 1,
DOI: 10.1145/1132952.1132955, Jun. 29, 2006, pp. 1-46.

Wang, et al., “A New Scheme for Cache Optimization Based on
Cluster Computing Framework Spark”, 2015 8th International
Symposium on Computational Intelligence and Design (ISCID).
vol. 1. IEEE, 2015, pp. 114-117.

Xu, Zhou, et al. “A Dynamic Distributed Replica Management
Mechanism Based On Accessing Frequency Detecting,” Operating
Systems Review (ACM), vol. 38, No. 3, 2004, pp. 26-34; DOI:
10.1145/1035834.1035838.

Zaharia, Mate1 et al., “Spark: Cluster Computing with Working
Sets”, Unmiversity of California, Berkeley, HotCloud 10 (2010):
10-10, (pp. 1-7).

Ziarck Partial Memoization of Concurrency and Communication
(Year: 20009).

* cited by examiner

U.S. Patent Nov. 7, 2023 Sheet 1 of 4 US 11.811.895 B2

100
40 e 140a 140 o
140a Gache Partition | Replicy Partition
N (4’{}" Local VMs) / {for Odher Nodes 1300
P IE ; l ‘ e SR
SSD}\ 3 ?i ‘]: A ‘} 1.&4 *-
E = ﬂt‘? F D "\ ~ 1305
o e fe AR =
15> SN 5 3 "@Gb
/4
120 |
1502 e
... ‘ 1303
1303\ - 380 Cache ERepizca "1 sspy Cache Repizc&
+ HDD e HDD
iaopHOOL DD F] HDD TN 1300
1105 — 10k

FIG. 1

FiG, 28

U.S. Patent Nov. 7, 2023 Sheet 2 of 4 US 11.811.895 B2

T
R

W
]
Z

. AT
. St
l'f"l""'l. 1'{'1:'1'1
T‘l—“ "u"':.-w

iRy

ok
ey

N

3 ; Xat afon

:

- ' - 4 -
rmmm * h - A fiaE TREE T O EE W e * % i T WEE R RN W M -
*

" . - -
++++++++++++++++++++++

X
Py

T

- -
L " [bl R AL PR Rk AR LM LN WS LS. MR SR PSR SR R SRS R L o T L R I 2 e
L

{3
In o . mm s mn mn An e o

rﬁmmmmmmmm

»
[]
-
-
» L]
§
=L * -
k. -
-
-
- &
- "
. . .
: . |
L [] -
- -
- -
- L]
& &
1] -
- -
- A ‘ﬁu -
. L
+ Y - E -
- -
'-|.. - -
-]
4
2 N w
- - -
- -
A L
L] +
- -
-
ﬂ ‘ K : m@h
lﬁ' +
- .
£ :
iw" ' .
nq:‘u.\ *
-
-
"‘h"lw"ln"ll" I
. -
- -
.I * -
'1h .
4
-
-
L -
-
",
e e L e -
-
4 LY
:-h -
| "K' -
L] -
-
- -
A {‘?‘i .
e - *
ﬂ'ﬁ -
$ob A :
- .
" .
-3 arm ,
P +
EJER W "l":} +
T :
h |
-
- ‘lF' -
L I e :
qu-] +
- -
E-: 'hﬂﬂ * *
- - -
B B * ~
o 1] -
- -
- -
E 3 o ':"-lI '1:'1._ - -
R . N
b . . - -
I’-":_-l.. ﬁ . .
T .'5",.”,, i . .
‘W' . a
Soe? Sk o : :
. 4
T o, LR : :
- 'h.-..l' - W
. B2 : :
R s * *
F = - -
. = ‘h"l"-: W - " n
- 'Ff.. A *
& -
%‘_ - -
- -
. - h
ﬂ"ﬁ-"ﬁ 'h.M § . 4
e * E"\; ol i
- . -
f QI - 4
e A 2 L R Ko
(NN - gy - iy,

-

it

2 LYY 2 {72
2 L5X s L}

&
$

U.S. Patent Nov. 7, 2023

Lt
gl

= & & & F

Fryy .

* F F
& o o o o F k]
I-I-"l- [

o~

-ii-i-ii-i-ii-i-ii-i-ii*ii-i-ii-i-ii-i-ii-i‘iiiiiiiiiiiiiiiiiiiiiiiii

* F &

ok kR

r
ok ko kR

ok ok ok ok ok ok ok ok h ok ok h ok oh ok ok ko h ok ok h ok ok h ke ch o h ok h ok ok ok ok h ko ch ok hh ok h ok h ok h

>

N

g

2

eﬁ:

2

2N
-
R

[]

L
L

*
*

T T T T T o o T T o T T T T T T T T T T T T o T e o

HED
1108 -
H4la

",

L
*

iy
o ok ok o o o o ko ko ko ko F F F FFFF

[
n
'n-.#.'

L

SROHR

P R B N N T
ok ok kS

ok ok kg

o s s s s s s e s s e e s s s

Py
L3
o

4
LN
FJ

L

T &

ok ok kb
"'.FI.F.
Fl

ok ok kR

11

140

.J;r'

‘. |" h | -.- LU BE K BE K BN N N BN BE UE B UL BN BE BN BE BE B BE B R B B]
"}'-"'.F'"i. ,.'} .
L L

DUHANDY S
3;31:33Ht1h er

L B N N B N N B N N B N N I B N I N I B B B B AL B B)

e e

L o o o T T T T

s ok F F &+ F &
ok kR

ok ok kR

R N I N N I N N B N N N N N I N N I N N I N N B N N I N N B N B B RO B IO O IR IOC DO IR BOC AL BE DAL RO BOE BOC RO B BOE |

ok ok kS
o ko kS

L I B B I L I I L I I I L I L DR B L O L DR B DL B B O L B B B L B B O B BN B B B B B O B B B B BN

LI I I I IR R R R R R R R REREER)

- FF o F o F O FFFFFEFF R FF R R FF

Sheet 3 of 4

Fis, 44

- L
u"'.v

~iG, 40

iiiiiiiiiiiiiiiiiiii

US 11,811,895 B2

%@ﬁa
g

LI I IR IR R R R EEREEREEREEREEREEREEREEEEREEEREREEEREREENRENEENRINREERINR!]

-3
5o
c

L]

A "
-

- . .
-

C L B I N B I N I I IO N B B I IO O I IOC BOE IOL IOC O IR BOE DAL AL IOC BOE AL BOL RO R BOC BOE BOE BOE)

L

o ok F F F F F ko
ok ok o F o F F ko F o F F F FFFFFF

Boch b b ok ok ok ook ok ok ok ok ok ok choh ok chhhhh ok ko hhhh ok d

\.a.ﬁ._._“ .-E ‘E G:;)

'Ill

o

04 i

L IR IR R R IR EEEREEEEEREEREEEE R E
b]

& o
o ok o ko ko ko F F F F F F FFFF

e KD

33401 1408

) W

T T T B B T I EEEEEREREERE TN | LA B B N RE B UL B B UL B B UL B B B B B B B I B B

\.\.ﬂ.\.‘\.\.\.‘\.‘f‘\.\.\.\.\.\.\.\.ﬂ.‘u e e T,

Lo

L L W U T ™

& ok
ok ok o o ko o FF F FFF

-‘*iiiiiiiiiiiiiiiiiiiiiii
ok h oh ok oh ko ohhoh hhd ko d ok h hh h o h ok h h ok h ok h o h ok h ko h o h ok ok ko oh ok oh ko ok hdhhdhh o h ko h ook

& ok o ko
o F o F F F F F F F F F F

d ch ok h ok h o h o hh o d ko h A h o h e

ok ko ch ko h h o hh ok hd o hhhh o hhh

"nn, _

.

(ihe

.l".l".i"}_ '

-"'.i".l".k"

U.S. Patent Nov. 7, 2023 Sheet 4 of 4 US 11.811.895 B2

t: %4ﬁif§i

My Pl W
o X% . " “ A:! $ »
A AR LR gj ~ : : :
h i" - - - -

K o % : : .’l : : 0 X

X X X X
ﬂ".. A +.|, . L]

A ok h ok ok ok ok % % % LA A ok ok ok ok ok ok ok ok ok oh ok ok ok oh ok ok kN %+ %R F ook kot F ok o+ F Atk FET TP A A F ot A

LD AAD ‘i
E 3‘5}\5" P ;"?i%ii“\} .3 dg‘a

| I
 F ok
L

[}
= F o ko
[

-,
[

"'t!ﬂ:'ﬂ-t%**ﬂﬁ'ﬂ!ﬂﬂﬂﬂ‘iﬂﬁﬁﬂdﬁﬁﬂ‘#*t*tﬁ**ﬁ%ﬁﬂﬂﬂﬂﬁ

Yk g G NI YN P S W L b WAL - Pl el el -, g i v S P e i g T TR, Yl R St gl gl Mg b

ML

T e o o 0 M W, i W i

HED

T e e o o s e o, i, o i o T

b o &k k k k F b FFPFPELA TP
+ & & & ko kA AP RS d
b ok o bk ko ko kA AP
+ & o ko ko F bk kdd A A S+

4 4 4 + ¥+ L L LT A CINE B BAE B BAC BAE RO B BEE BAE BAC BAE RO B BEE RO BAC BAE RO BNC BEE N SR SN BN BEC BEC BN BNE BEE BN BN BEL BN BNL BEL BN BN) 4 h ok h h ok h d L FAAA A G d d o d d A d d d h o d d o d d o d L FAALAS G h e h e

- -
= & F F
[
* F

LI B]
iii‘ﬁiiil‘lﬂquiiiiiiiiiiiiiiiiii!l!l!l!ll‘*ﬂ.ﬂ-qqiiliiiiiiiiiiiii‘!‘““"Iqqqiiiiiiii

140

L L L L L R HQf'llllllIl‘

"

LI L N N N NN LI ML L L N L L L L L L e L L L L L L T LA L L L P P

e
fi"
-
4
N: Ay
j"‘""‘
*‘w,.r’:}

A A F A F ok F

v e w6 ow

bk kg R T
L I B B B B BN BN B N N BN OB B B CBE NN CNE NN N N

-
- -
+ L
L +
+ +
+ +
+ 4
+ +
+ -
- 4
- -
- -
- +
- -
- -
+ -
- -
- -
+ &
- -
- -
+ +
- -
- -

LI I I N N R R R R R R E R EEEREEEREERENEBRESETE 00NN

i X AR
Hog -~ ~ 1IN
, i + b3

T T FEALS

4 h d hhhh AT YR LLAAAA b hhdhd LEEEE B BE B DL BE B B BN BN B L B B L B B B B BN

O Makespan

TR BB L B B e B I B B B B B B B B L B B B B I B R B B B B B B B I B B L B B B B BB B I B L B B L B B S B B B B B B B T B L B B B B B B I B B e L B T B T B B B B B I B B B B I T B L I L B R B B B B B B B B L B B)

L L]
[L] 1-. :
h. +
:1. I Ilr ﬂ-q- ! ‘W # N i'.. :
- ¥, : :
o -1 gy . . . % h] L] N
A W 1 o ‘q._.,ﬁ ot |
LT S o p by ¥ - _ ': ; K :
., {- o . i ' 1
:\ " : g e VARG GRS .'F". N ¢ SRR - .
Ao b B | SIEF M g |
s " iy ' ! F: !
e ‘u" P * L v R Kl :
s, } {:c. 4 . '
L]
. ' .
™ _ 3) :
- - Y
a I*- L E BE B B BE B | [Y LI B I Tr IO BE BOE BOr B BOE BOE BOE BOE IO BOE B B I I B L SC C C B B BAE BOE BOE O BAE BOE RO RO BNE BAE TNE BNE BAE B BEE BN BN BN B B N T R N | EIE B I I TE I B BOE JOC BOE BOE BOC BOE BOE IO B BE BE BE BE J LU E C I IO BAE BAE BOE BN BAE BOE A BAE BNE BOE BAE BOE BOE RO BOE A RO BOE B B B W W NC N | EE I I I B I L B IE IE B
L

EY

NN VRN

Ve
3

605

L L A L

L N

. *-m-. ' YO X i
PO N T Ophmized houbion

a
=

-4

* - r R
-

1.—
13
A Fr
e
+
R T R Y

r
w

Ly
PR %
.:.
¥
_i-‘l"..li'I
L |
L |
L
A A4 W I4H
n
. N
WF oF W A oF A oF M A F o o F oF oF S of S " S F Ml A F A o A o o B A X X W L L A A W S AF F A oF F F oF I md o 8 S B F ol F ol F M oF M F oF o o

. . ", ¥

o : T :

v x W

3 D A 1

US 11,811,895 B2

1

AUTOMATIC DATA REPLICA MANAGER IN
DISTRIBUTED CACHING AND DATA
PROCESSING SYSTEMS

CROSS-REFERENCE TO RELATED
APPLICATION(S)

This application 1s a continuation of U.S. patent applica-

tion Ser. No. 16/569,176, filed on Sep. 12, 2019, now U.S.
Pat. No. 11,451,645, which 1s a divisional of U.S. patent
application Ser. No. 15/408,328, now U.S. Pat. No. 10,435,
043, filed Jan. 17, 2017, which claims priority to, and the
benefit of, U.S. Provisional Application 62/404,167, filed on
Oct. 4, 2016 and U.S. Provisional Application No. 62/384,
078, filed on Sep. 6, 2016, 1n the U.S. Patent and Trademark
Ofhlice, the entire contents of each of which are incorporated
herein by reference.

FIELD

One or more aspects of embodiments according to the
present invention generally relate to datacenter operation
including data storage and data recovery.

BACKGROUND

In the field of memory storage, datacenters that store large
amounts of memory seek to accomplish high capacity, high
performance, low power usage, and low cost.

Replication 1s the process of synchromizing data across
multiple storage nodes of a datacenter cluster, which pro-
vides redundancy, and which increases data availability
from the loss of a single storage node. Replication allows the
system to recover from hardware failure and service inter-
ruptions, and even to increase read capacity. Thus, in an era
of big data and cloud computing, storing multiple replicas
(e.g., replicated data sets) 1s a common strategy for reliabil-
ity and availability of datasets stored over remote cloud
storage.

Additionally, certain databases, such as bank, stock mar-
ket, and military databases, require that the data stored
therein 1s replicable and 1s reliably stored.

SUMMARY

Aspects of embodiments of the present disclosure are
directed toward datacenter operation, including data storage
and data recovery.

According to an embodiment of the present invention,
there 1s provided a method of data storage, the method
including determining a latency distance from a primary
node to each of two or more replica nodes, choosing a
preferred replica node of the two or more replica nodes
based on the determined latency distances, and write-cach-
ing data into the preferred replica node.

The two or more replica nodes may each have a smaller
latency distance to the primary node than all other available
nodes of a datacenter cluster including the primary node and
the two or more replica nodes.

Each node of a datacenter cluster as a primary node may
have a ranking of preferred replica nodes that are ranked
based on network delays associated with paths between the
primary node and respective ones of the replica nodes, and
cach node of the datacenter cluster may include a solid-state
drive tier as a cache tier including a cache partition for
storing data of local virtual machines and a replica partition

10

15

20

25

30

35

40

45

50

55

60

65

2

for storing replica data from other nodes, and a hard disk
drive tier as a back end storage tier.

Each node may include a physical host for running
multiple virtual machines, each of the virtual machines
sharing the solid-state drive tier and the hard disk drive tier
in a respective node of the datacenter cluster, the method
turther including periodically updating the rankings of the
preferred replica nodes to account for changes 1n network
delays.

The rankings of the preferred replica nodes may be further
based on workload characteristics including access 1ire-
quency of data associated with the nodes and service level
agreements (SLAs) associated with the nodes.

According to another embodiment of the present inven-
tion, there 1s provided a method for enabling fault tolerance
ol a datacenter cluster caching system, the method including
detecting a failure of the datacenter cluster, and performing
load balancing among nodes of the datacenter cluster in
accordance with the detected failure by moving data among
storage tiers ol the nodes, wherein the load balancing 1s
performed without pausing a subsystem corresponding to
the detected failure, and without copying an entirety of a
dataset of a node of the datacenter cluster corresponding to
the detected failure.

The method may further include migrating replica data
from a first replica node 1n the datacenter cluster to a second
replica node 1n a datacenter cluster by writing new incoming
data on the second replica node, and maintaining unchanged
cached data on the first replica node.

The method may further include evicting victim data from
a solid-state drive of a primary node, recerving the new
incoming data at the primary node, writing the new incom-
ing data to a hard disk drive of the primary node, and
removing the victim data from a solid-state drive of the first
replica node.

The detected failure may include a virtual machine crash
on a primary node of the datacenter cluster, and the method
may further include wrting dirty data from a solid-state
drive of the primary node to a hard disk drive of the primary
node, maintaining the dirty data in a solid-state drive of a
replica node, flagging the dirty data in the solid-state drive
of the replica node as nondirty, restarting the crashed virtual
machine on the primary node, and forwarding incoming 1/0
requests to the solid-state drive of the primary node and to
the solid-state drive of the replica node.

The detected failure may include a cache device failure on
a primary node of the datacenter cluster such that informa-
tion cannot be written to the primary node, and the method
may further include wrting dirty data from a solid-state
drive of a replica node of the datacenter cluster to a hard disk
drive of the primary node, maintaining the dirty data in the
solid-state drive of the replica node, flagging the dirty data
as nondirty, broadcasting the information to associated
nodes of the datacenter cluster, and writing back dirty data
from respective solid-state drives of the associated nodes of
the datacenter cluster to respective hard disk drives of the
associated nodes.

The method may further include flagging data in the
solid-state drives of the associated nodes with a nondirty
flag, replacing the solid-state drive on the primary node,
continuing to write imncoming I/O requests to the solid-state
drive of the primary node and the solid-state drive of the
replica node, and writing new replica data from the associ-
ated nodes to the solid-state drive of the primary node.

The detected failure may include a cache device failure on
a first replica node of the datacenter cluster, and the method
may further include disconnecting a primary node of the

US 11,811,895 B2

3

datacenter cluster, writing back dirty data from a solid-state
drive of the primary node to a hard disk drive of the primary
node, finding a remote second replica node of the datacenter
cluster, storing the dirty data in a solid-state drive of the
second replica node, flagging the dirty data in the solid-state
drive of the second replica node as nondirty, and continuing
to write incoming 1/0 requests to the solid-state drive of the
primary node and the solid-state drive of the second replica
node.

Finding a remote second replica node of the datacenter
cluster may include using a dynamic evaluation process.

The detected failure may include a communication failure
between a primary node of the datacenter cluster and a first
replica node of the datacenter cluster, and the method may
turther include writing back dirty data from a solid-state
drive of the primary node to a hard disk drive of the primary
node, finding a second replica node to replace the first
replica node, writing I/0 requests to a solid-state drive of the
primary node and a solid-state drive of the second replica
node, and broadcasting to all nodes of the datacenter cluster
a request to release all old replica data corresponding to the
first replica node.

Finding the second replica node may include using a
dynamic evaluation process.

According to another embodiment of the present mnven-
tion, there 1s provided a method of using replicated data to

cnable parallel prefetching from multiple nodes of a data-
center cluster, the method including splitting a dataset into
two parts, and loading each of the two parts of the dataset
from a corresponding node.

The corresponding nodes for each of the two parts of the
dataset may include a primary node of the datacenter cluster,
and a replica node of the datacenter cluster.

C may be a total size of the dataset, a.C may be a size of
the one of the two parts from a solid-state drive of the
primary node, A, may be an access speed of the solid-state
drive of the primary node, and A, may be an access speed of
a solid-state drive of the replica node, and the method may
turther 1include triggering parallel prefetching when C/A, 1s
greater than or equal to a maximum of aC/A, and (1-a)C)/
As.
A, and A, may each account for corresponding network
delays.

The method may further include achieving a network
makespan of

/11 -I-A,z

when

A
- zll-l-iz.

¥

BRIEF DESCRIPTION OF THE DRAWINGS

FI1G. 1 1s a block diagram depicting a topological structure
ol a datacenter cluster, according to an embodiment of the

present mvention;

FIG. 2A depicts a method of selecting and assigning
replica nodes of a datacenter cluster using a ring structure,
according to an embodiment of the present invention;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 2B depicts a method of selecting and assigning
replica nodes of a datacenter cluster using a network struc-
ture, according to an embodiment of the present invention;

FIG. 3 1s a block diagram depicting an online migration
cache policy, according to an embodiment of the present
invention;

FIGS. 4A-4D are block diagrams depicting data recovery
for different scenarios, according to one or more embodi-
ments of the present mvention;

FIG. 5 1s a block diagram depicting an example of using
replicate data to enable parallel prefetching from multiple
nodes, according to an embodiment of the present invention;
and

FIG. 6 1s a graphical depiction of mathematical equations
for finding an optimized solution of stream division, accord-
ing to an embodiment of the present invention.

DETAILED DESCRIPTION

Features of the inventive concept and methods of accom-
plishing the same may be understood more readily by
reference to the following detailed description of embodi-
ments and the accompanying drawings. Hereinafter,
example embodiments will be described 1n more detail with
reference to the accompanying drawings, in which like
reference numbers refer to like elements throughout. The
present invention, however, may be embodied 1n various
different forms, and should not be construed as being limited
to only the illustrated embodiments herein. Rather, these
embodiments are provided as examples so that this disclo-
sure will be thorough and complete, and will fully convey
the aspects and features of the present invention to those
skilled 1n the art. Accordingly, processes, elements, and
techniques that are not necessary to those having ordinary
skill 1n the art for a complete understanding of the aspects
and features of the present invention may not be described.
Unless otherwise noted, like reference numerals denote like
clements throughout the attached drawings and the written
description, and thus, descriptions thereof will not be
repeated. In the drawings, the relative sizes of elements,
layers, and regions may be exaggerated for clarty.

It will be understood that, although the terms “first,”
“second,” ““third,” etc., may be used herein to describe
various elements, components, regions, layers and/or sec-
tions, these elements, components, regions, layers and/or
sections should not be limited by these terms. These terms
are used to distinguish one element, component, region,
layer or section from another element, component, region,
layer or section. Thus, a first element, component, region,
layer or section described below could be termed a second
clement, component, region, layer or section, without
departing from the spirit and scope of the present invention.

Spatially relative terms, such as “beneath,” “below,”
“lower,” “under,” “above,” “upper,” and the like, may be
used herein for ease of explanation to describe one element
or feature’s relationship to another element(s) or feature(s)
as 1llustrated in the figures. It will be understood that the
spatially relative terms are intended to encompass different
orientations of the device in use or 1n operation, 1n addition
to the onentation depicted 1n the figures. For example, 11 the

device 1n the figures 1s turned over, elements described as
“below” or “beneath” or “under” other elements or features
would then be onented “above” the other elements or
teatures. Thus, the example terms “below” and “under” can
encompass both an orientation of above and below. The
device may be otherwise oriented (e.g., rotated 90 degrees or

- 4 4 2L

US 11,811,895 B2

S

at other orientations) and the spatially relative descriptors
used herein should be interpreted accordingly.

It will be understood that when an element, layer, region,
or component 1s referred to as being “on,” “connected to,”
or “coupled to” another element, layer, region, or compo-
nent, 1t can be directly on, connected to, or coupled to the
other element, layer, region, or component, or one or more
intervening elements, layers, regions, or components may be
present. In addition, 1t will also be understood that when an
clement or layer is referred to as being “between” two
clements or layers, 1t can be the only element or layer
between the two elements or layers, or one or more inter-
vening elements or layers may also be present.

The terminology used herein 1s for the purpose of describ-
ing particular embodiments only and 1s not intended to be
limiting of the present invention. As used herein, the sin-
gular forms “a” and *“an” are intended to 1nclude the plural
forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms “comprises,”
“comprising,” “includes,” and “including,” when used 1n
this specification, specily the presence of the stated features,
integers, steps, operations, elements, and/or components, but
do not preclude the presence or addition of one or more other
features, 1integers, steps, operations, elements, components,
and/or groups thereof. As used herein, the term “and/or”
includes any and all combinations of one or more of the
associated listed items. Expressions such as ““at least one of,”
when preceding a list of elements, modily the entire list of
clements and do not modily the individual elements of the
list.

As used herein, the term “substantially,” “about,” and
similar terms are used as terms ol approximation and not as
terms of degree, and are intended to account for the inherent
deviations 1n measured or calculated values that would be
recognized by those of ordinary skill in the art. Further, the
use of “may” when describing embodiments of the present
invention refers to “one or more embodiments of the present
invention.” As used herein, the terms “use,” “using,” and
“used” may be considered synonymous with the terms
“utilize,” “utilizing,” and “utilized,” respectively. Also, the
term “exemplary” 1s intended to refer to an example or
illustration.

When a certain embodiment may be implemented differ-
ently, a specific process order may be performed differently
from the described order. For example, two consecutively
described processes may be performed substantially at the
same time or performed 1n an order opposite to the described
order.

The electronic or electric devices and/or any other rel-
evant devices or components according to embodiments of
the present invention described herein may be implemented
utilizing any suitable hardware, firmware (e.g. an applica-
tion-specific integrated circuit), software, or a combination
of software, firmware, and hardware. For example, the
various components of these devices may be formed on one
integrated circuit (IC) chip or on separate IC chips. Further,
the various components of these devices may be imple-
mented on a flexible printed circuit film, a tape carrier
package (TCP), a printed circuit board (PCB), or formed on
one substrate. Further, the various components of these
devices may be a process or thread, running on one or more
processors, 1n one or more computing devices, executing,
computer program instructions and interacting with other
system components for performing the various functionali-
ties described herein. The computer program instructions are
stored 1n a memory which may be implemented 1n a com-
puting device using a standard memory device, such as, for

22 22

b B 4 4

10

15

20

25

30

35

40

45

50

55

60

65

6

example, a random access memory (RAM). The computer
program 1nstructions may also be stored in other non-
transitory computer readable media such as, for example, a
CD-ROM, flash drive, or the like. Also, a person of skill 1n
the art should recognize that the tunctionality of various
computing devices may be combined or integrated into a
single computing device, or the functionality of a particular
computing device may be distributed across one or more
other computing devices without departing from the spirit
and scope of the exemplary embodiments of the present
invention.

Unless otherwise defined, all terms (including technical
and scientific terms) used herein have the same meaning as
commonly understood by one of ordinary skill in the art to
which the present invention belongs. It will be further
understood that terms, such as those defined 1n commonly
used dictionaries, should be interpreted as having a meaning
that 1s consistent with theirr meaning 1n the context of the
relevant art and/or the present specification, and should not
be interpreted 1n an 1dealized or overly formal sense, unless
expressly so defined herein.

FIG. 1 1s a block diagram depicting a topological structure
of a datacenter cluster, according to an embodiment of the
present invention.

Retferring to FIG. 1, a datacenter cluster 100 includes

multiple nodes 110 arranged 1n a cluster. Each node 110 may
be a physical host (e.g., a server) runming multiple virtual
machines (VMs) 120. The VMs 120 may be run on either a
type-1 hypervisor or a type-2 hypervisor. For example, the
host used to run the VMs 120 1n the present embodiment 1s
a type-1 implementation (e.g., the present embodiment may
use ESX1 hosts for each node 110).

Inside each node 110, there may be two tiers 130 of data
storage devices/memory devices 140. The two storage tiers
130 may include a solid-state drive (SSD) tier 130qa, and a
hard disk drive (HDD) tier 13054. It should be noted that,
although SSDs and HDDs are used to describe the various
embodiments below, other embodiments may use different
cache/tier devices and/or memory devices.

Each storage tier 130 includes one or more memory
devices 140. For example, the SSD tier 130a may include

one or more SSDs 140qa, and the HDD tier 13056 may include
one or more HDDs 1405. RAID mode disks (e.g., disks
operating as a redundant array of independent disks) can
also be adopted 1n each of the storage tiers 130. VMs 120
share the SSD tier 130aq and the HDD tier 13056 1n each
respective node 110. The SSD tier 130a may be used as a
cache tier, and the HDD tier 13056 may be used as a backend
storage tier.

Inside the SSD tier 130q there are two partitions 150. The
two partitions 150 include a cache partition 150a, which 1s
for storing data for the local VMs 120, and a replica partition
15056, which 1s for storing replica data from other nodes 110.
In the present embodiment, only the SSD tier 130a 1s used
to store replica data from other nodes 110. This may be
suitable because the access speed of a remote SSD 1404,
even when network delay 1s accounted for, may be faster
than the access speed of a local HDD 14056 (e.g., due to high
speed fiber channels associated with the SSDs 140q, and due
to slower speed associated with the more durable HDDs
1405).

According to different embodiments of the present inven-
tion, different approaches may be used to design the struc-
ture of the topology of the datacenter cluster 100. The type
of approach that 1s used may be chosen by determining how
to select replica nodes 110, how many replicas nodes 110 are

US 11,811,895 B2

7

suitable for the constraints of the system, and how to assign
replica data to the replica nodes 110.

FIG. 2A depicts a method of selecting and assigning
replica nodes of a datacenter cluster using a ring structure,
according to an embodiment of the present invention.

Referring to FIG. 2A, a first approach 1s a directed ring
structure 200q, which can be either a user-defined structure
or a system-defined structure. The ring structure 200a may
be thought of as a linear structure. A system-defined ring
structure 200a may be based on geographic “distance”
parameters (e.g., a latency distance based on an eflective
distance corresponding to a total network delay). The logical
ring structure 200aq shown defines an order of preference
between a primary node 110q and replica nodes 1105.
Caching may be performed by using a local SSD 140a with
a copy replicated to another replica node 1104 1n the ring
structure 200a. Each node 110 has two neighbors (e.g., a
replica node 11056 on each side of each primary node 110a),
and replicated data may be stored on one or both of the
neighboring replica nodes 1105. The primary node 110a
searches for the replica nodes 11056 of the ring structure 200q
in order of geographic distance/latency distance until a
replica node 1105 1s found that can be used 1n the event that
the primary node 110q 1s unsuccessiul during the process of
building the ring cluster 200a. Once the primary node 110a
finds a suitable replica node 1105, the primary node 110a
may begin write-caching independently of what the remain-
ing replica nodes 1105 are doing.

FIG. 2B depicts a method of selecting and assigning
replica nodes of a datacenter cluster using a network struc-
ture, according to an embodiment of the present invention.

Referring to FIG. 2B, a second approach 1s directed to a
network structure 2006. The ring structure 200a shown in
FIG. 2A 1s eflectively a linear approach, because the primary
node 110aq has only one or two directions to find replica
nodes 1105 (e.g., a previous replica node 1106 or a next
replica node 11056). The network structure 2005 shown in
FIG. 2B, however, provides additional flexibility by allow-
ing for access by the primary node 110a to a larger number
of different replica nodes 1105. The additional access may
be achieved by letting the different nodes 110 maintain a list
ol preferred replica nodes 11056. Further, 1t should be noted
that the cluster structure in a network structure 20056 1s not
limited to the ring-like orientation shown. For example, the
network structure 2006 can be either symmetric or asym-
metric.

In structuring the network structure 2005, a distance
matrix may be used to rank each path between nodes 110
(see Table 1, below). Accordingly, each node 110 acting as
a primary node 110a may attempt to use multiple different
replica nodes 1105 based on an order corresponding to the
distance matrix.

The distance matrix for each node 110, may be thought of
as mcluding scores or rankings that are calculated based on
multiple parameters (e.g., based on network delays between
respective nodes 110). These scores/rankings eflectively
reflect an abstract meaning of the aforementioned geo-
graphical distance/latency distance. The distance matrix
may be periodically updated through runtime measurement.

A distance matrix of an example of the present embodi-
ment may be seen in Table 1 below. For example, a first node
as a primary node 110a may first seek to use a second node
as a replica node 1105, followed by a fourth node, and then
a third node. However, the second node, when acting as a
primary node 110q, may first seek to use the fourth node as
a replica node 1105, followed by the third node, and then the
first node. Furthermore, the third node, when acting as a

10

15

20

25

30

35

40

45

50

55

60

65

8

primary node 110a, may initially seek the fourth node, then
the second node, and then the first node as a replica node
1105, while the order for the fourth node, when acting as a
primary node 110a, may be from the first node to the third
node to the second node.

TABLE 1
To
From 1 2 3 4
1 — 1 3 2
2 3 — 2 1
3 3 2 — 1
4 1 3 2 —

Different processes may be used for assigning a preferred
order of the replica nodes 1106 for each node 110 as a
primary node 110a. For example, if only one replica node
1105 1s suthicient for each primary node 110aq, then each
node 110 may select 1ts “closest” node as its replica node
1105. As another example, if a large number of nodes 110
choose a same single node 110 (or choose a small subset of
nodes 110) as the preferred replica node(s) 1105, a maxi-
mum number of replica nodes per primary node may be set.

Accordingly, the network structure 20056 may be set such
that each primary node 110a has only one replica node 1105,
and such that all nodes 110 have the same hardware
resources (e.g., a homogeneous cluster). However, the net-
work structure 2006 may also work in a heterogamous
environment.

According to another embodiment, a multiple service-
level agreement (SLLA) network approach may be used. The
multiple-SLA network approach further protects data con-
sistency and atomicity, and improves the previous network
structure approach discussed with reference to FIG. 2B. A
SLLA may be a part of a standardized service contract where
a service 1s formally defined. Each node 110 may have more
than one replica node 11054, and the replica nodes 1106 may
be determined or assigned based on workload characteristics
and the SLA (e.g., based on how much a corresponding
client or customer pays, as preferential treatment may be
purchased, and based on a corresponding workload tempera-
ture). Table 2 shows a decision table for different cases,
which may be used to set up the cluster multiple-SLA
network approach, according to an example of an embodi-
ment of the present invention.

TABLE 2
1race
Case SLA Temper- Destination # of
Degree ature SSDp SSDp; SSDp, HDDp Replica
1 v v v 1
2 v v 1
3 v v v v (V) 1(2)
4 v v v (V) 1(2)

A SLA degree may be related by assigning a level of
importance of each node 110. The present embodiment can
handle multiple SLA levels by using multiple replica
approaches. The present example has only two degrees (e.g.,
important and not important). In other embodiments, more
fine-grained degrees of SLAs may be set. Moreover, an
online-changing SLLA can also be adopted into embodiments
of the present invention.

US 11,811,895 B2

9

Additionally, *“data temperature” may be used as an
indicator for classifying data into two (or more) categories
based on the access frequency of the data (e.g., “hot data™
has a frequent access pattern, and “cold data™ 1s occasionally
queried).

A write back policy may be used such that eviction from
one SSD 140a to another SSD 140a when the SSD 140q 1s

tull allows for the data to be simply removed. To avoid
aflecting write-backs from a SSD 140q to a HDD 14054, and
to avoid aflecting fetching operations from a HDD 1405 to
a SSD 140q, a lower priority may be established for replicas
writing to the HDD. Many techniques may be adopted to
improve performance of a write-to-HDD queue.

A main procedure of a cache policy may be based on the
multiple-SLA network approach. As discussed above, the
present embodiment may support more than one replica
node 1105 for each primary node 110aq, and the present
embodiment may be expanded to any number of replica
nodes 11056 to support more finely grained SLAs. Accord-
ingly, the present embodiment 1s able to switch between two
different cache modes, namely a runtime mode and an online
migration mode.

The datacenter cluster 100 may periodically check for the
existence of a “migration trigger” condition. If it 1s deter-
mined that the “migration trigger” condition exists, one of
the two replica nodes 1005 1s selected as an “overheat node,”
and a next available replica node 1105 1s sought. After that,
a migration mode cache policy may be imtiated. If 1t 1s
determined that an old replica node 1106 no longer has any
“out-of-date” replica data, then the migration mode cache
policy may be turned ofl, while the runtime mode cache
policy 1s run 1n all other cases.

In case #s 3 and 4 of Table 2, above, it may be assumed
that crashes/failures of VMs 120 mainly aflect cached data
on the SSDs 140qa, and do not affect data on the HDD 1405.
In the cache policy of the present embodiment, there are
only three cases where the cached data 1s written to the HDD
1406 (e.g., during eviction write back, during migration
time, and when the queued replica 1s written to HDD 1405).

A runtime mode cache policy may be thought of as a
normal mode, or a default mode, of the datacenter cluster
100. The present embodiment may first search a new 1I/O
request 1n a local SSD VM partition (e.g., in the SSD 1404
of the primary node 110q). If 1t 1s determined that a cache hit
1s returned, the data may be fetched from the SSD 140q of
the primary node 110a for a read 1/O operation, or the new
data may be updated to existing cached copies in the SSD
140a of the primary node 110a and to one or more replica
nodes 1105.

When 1t 1s determined that there i1s a cache miss, victim
data may 1nitially be selected to be evicted from the primary
node 110a and from the replica nodes 1105. Then, only
updated (dirty) data may be written 1into the HDD 14056 of
the primary node 110q. Different replacement algorithms
may be used for implementation of the victim data selection
process. The selected victim data may then be written back
to the HDD 14056 of the primary node 110q 1f the victim data
1s determined to be dirty. That 1s, the victim data may be
updated 1n the SSD 140q while not being updated in the
HDD 1405. Thereatfter, all copies of the victim data may be
deleted from both local SSDs 140a and remote SSDs 140aq.
Then the new data may be inserted into both the primary
node 110a and the replica node(s) 1105.

In detail, 11 the victim data corresponds to a read 1I/O

operation, then the victim data may simply be fetched from
the HDD 14056 to the SSDs 140a of the primary node 110a

and the replica nodes 1105. Additionally, the fetched cached

10

15

20

25

30

35

40

45

50

55

60

65

10

data may be returned to a user builer in the memory. It the
victim data corresponds to a write 1/O operation, the victim
data may simply be written to the SSDs 140q of the primary
node 110a, and also to all corresponding replica nodes 1105,
while being flagged as being “dirty” data, because the data
1s updated new data.

FIG. 3 1s a block diagram depicting an online migration
cache policy, according to an embodiment of the present
invention.

Referring to FIG. 3, when migrating replica data from one
replica node 1105 to another replica node 1105, a fusion
cache technique 300 may be used. The fusion cache tech-
nique 300 1s a cost-eflicient, lazy migration scheme. Accord-
ingly, new incoming data 360 may be written only on a new
replica node (e.g., a second replica node) 110562 (5301), and

unchanged cached data/victim data 370 may be kept on an
old replica node (e.g., a first replica node) 11061 (5302).

Accordingly, the present embodiment 1s able to mirror the
primary node 110a by using a fusion cache 380 consisting of
two nodes (e.g., the new replica node 110562 and the old
replica node 11051). By not pausing the system while
performing the copying of all existing replica data pieces
from the old replica node 11051 to the new replica node
11052 (regardless of whether these data pieces are needed),
the proposed fusion cache can save system bandwidth.

FIG. 3 shows that only one replica node (e.g., the old
replica node 11051) 1s to be “migrated out” with the new
replica node 11052 receiving the data 370 that 1s migrated
out, although the present embodiment may be applied to a
system/datacenter cluster 100 1n which more replica nodes
1105 exist, including use of a HDD 14056 1n a replica node
1105. The primary node 110a may migrate 1ts existing data
piece/victim data 370 to a new replica node 110562. When
new data 360 comes to the primary node 110a (5303), victim
data 370 may first be evicted from the SSD 140q of the
primary node 110a (S304), and the new data 360 may be
written to the HDD 14056 of the primary node 110a (S305).
Meanwhile, the new data 360 may also be written to the new
replica node 110562 (S301), and the old replica node 110561
may be mstructed to simply remove the victim data 370 from
its SSD 140a (S306). The tusion cache 380 1s a unibody of
the new replica node 110561, and the old replica node 110562
1s a mirror of the primary node 110a, where the new replica
node 11061 eventually replaces the old replica node 11052,

By using the online migration mode cache policy 300,
data 1s able to be migrated from the old replica node 110562
to the new replica node 11051, while a remaining replica
node 11056 may remain as a replica node 1105 that 1s used by
the primary node 110a (along with the new replica node
11051). For a two-SSD-replica node prototype, both replica
nodes 11051 and 11062 can be the migration sources.

FIGS. 4A-4D are block diagrams depicting data recovery
for different scenarios, according to one or more embodi-
ments of the present invention.

Embodiments of the present invention may use a write
back caching policy to maximize I/O performance, as writ-
ing through to the HDD 1406 would otherwise slow down
the fetching I/O operations 1n the queue. However, storage
in the SSD 140a may be relatively unsatfe, even though SSD
storage preserves stored data after losing power. Such a lack
ol safety may not acceptable in some situations (e.g., bank
databases, stock market databases, and military databases).
Accordingly, data may be replicated in remote SSDs 140q to
prepare for recoveries for different failures. The possible
types of failures may be categorized into the four scenarios
discussed with respect to FIGS. 4A-4D, respectively.

US 11,811,895 B2

11

Referring to FIG. 4A, a first recovery scenario may be
referred to as a “VM crash on the primary node” scenario
400a. In the present scenario 400aq, the VMDK may simply
be closed out. Then, the “dirty” data may be written back
from the SSD 140a of the primary node 110a to the HDD
1406 of the primary node 110a (S1401). The dirty data may
be kept 1n the SSD 1404 of the replica node 1105 while being,
flagged as “nondirty” (S1402). The crashed VM may then be
restarted on the primary node 110q, and incoming I/O
requests may continue to be forwarded to both the SSD 1404
of the primary node 110a and the SSD 140q of the replica

node 1105 (S1403).

Referring to FIG. 4B, a second recovery scenario may be
referred to as a “primary node cache storage device failure”
scenario 4005, which will result 1n an inability to continue
write caching. In the present scenario 40056, the “dirty” data
1s first written back from the SSD 140q of the replica node
1105 to the HDD 1405 of the primary node 110a (52401),
and the data 1s kept 1n the SSD 140q of the replica node 1108
while being flagged as “nondirty.” This “unavailable” infor-
mation 1s then broadcast to the datacenter cluster 100 to let
those nodes 110 having replicas in this failed primary node
110a (e.g., associated nodes 110¢) to write back “dirty” data
from their own SSD 140a to HDD 14056 while keeping the
data 1n their own SSD 140aq with a “nondirty” flag (52402).
The SSD 140a on primary node 110 1s then found and

replaced (S2403). After that, incoming I/O requests continue
to be written on both of the SSD 140q of the primary node
110a and the SSD 140q of the replica node 1106 (52404),
while the associated nodes 110¢ write new replicas to the
SSD 140a of the primary node 110a (S2405).

Referring to FIG. 4C, a third recovery scenario 400c¢
corresponds to when an old replica node 11051 detects a
cache device/SSD 140q failure (S3401). In the present
example, the primary node 110a 1s disconnected, and any
future connection attempts from the primary node 110a are
rejected by an error response. First, the “dirty” data 1s
written back from the SSD 140q of the primary node 1104

to the HDD 14056 of the primary node 110a (53402). That
data 1s also stored, while being tlagged as “nondirty” flag

data, 1n the SSD 140a of a remote new replica node 11052,
which may be found using a dynamic evaluation process
(S3403). Thereafter, incoming I/O requests continue to be
written on both the SSD 140q of the primary node 110aq and
the SSD 140a of the new replica node 11062 (S3404).
Referring to FIG. 4D, a fourth recovery scenario 400d
corresponds to a communication failure between a primary
node 110aq and an old replica node 11051. When the primary
node 110q detects a non-recoverable communication failure
between the primary host of the primary node 110a and the
replica host of the replica node 11051 (54401), 1t may not be
possible to continue write caching. To recover from such
fallure, a daemon of the datacenter cluster 100 may write
back “dirty” data from the SSD 140q of the primary node
110a to the HDD 14056 of the primary node 110a to ensure
all cached data 1s updated to the back end HDD 1405
(S4402). Then the daemon may start a dynamic evaluation
process to find a new replica host, and to find a new replica
node 11062 to replace the unreachable old replica node
11051 (54403). The daemon then continues to use the SSDs
140a of both the primary node 110a and the new replica
node 11062 to cache 1/Os following the “fusion cache”
design in migration policy (54404). Finally, the daemon may
broadcast to the network to release all old replicas on the
unreachable the SSD 140q of the replica node 11051.

10

15

20

25

30

35

40

45

50

55

60

65

12

FIG. 5§ 1s a block diagram depicting an example of using
replicate data to enable parallel prefetching from multiple
nodes, according to an embodiment of the present invention.

Referring to FIG. 5, replicated data can also be used to
enable parallel prefetching 500 from multiple nodes 110,
such as for read operations. In the present example, the data
(e.g., data of a dataset) 590 1s split into two parts 390aq and
590b, and each part of the data 590 1s loaded from 1ts
corresponding primary node 110a and replica node 1105.

For example, for a two-node case, it may be useful to
reduce the total I/O time (e.g., the makespan of each I/O
request). The makespan of parallel prefetching 500 1s less
than simply reading an entire piece of data from the primary
node 110q. In the present example, a total size of the data
590 1s “C,” the access speed of the SSD 140a of the primary
node 110qa 1s “A;” (e.g., in GB/sec), and the access speed of
the SSD 140q of the replica node 1105, while accounting for
network delays, 1s “A,” (e.g., in GB/sec). Assuming data of
the SSD 140a of the primary node 110q having a size of
“aC” 1s loaded, the problem may be solved by determining
a maximum between aC/Ah; and (1-a)C/a.,, where a 1s
between O and 1, and where A, zA,>0, and where C/A, zthe
maximum, between aC/A, and (1-a)C/A.,.

Determining the maximum between a.C/A; and (1-a)C/A,
shows an objective function for reducing, or minimizing, an
overall makespan of an I/0 request. This makespan may be
determined by the maximum value of the IO operating time
ol each node involved m the parallel prefetching (e.g., the
primary node and the replica node). Furthermore, by ensur-
ing that A,zA.>0, the local I/O speed (e.g., the speed
associated with the primary node) 1s greater than the remote
I/O speed (e.g., the speed associated with the replica node).
The speeds associated with the respective nodes may
account for, or may include, network delay. Alternatively, a
constraint may simply be that A,>0, and that A,>0, (e.g., 1f
the remote I/O speed associated with the replica node 1s
higher than the I/O speed associated with the primary node,
although an optimization result may remain the same. Addi-
tionally, by having C/A,za maximum of aC/A, and (1-a)
C/A,, parallel prefetching may only be triggered when
resulting 1n a reduction of the makespan.

FIG. 6 1s a graphical depiction of mathematical equations
for finding an optimized solution of stream division, accord-
ing to an embodiment of the present invention.

Referring to FIG. 6, the abovementioned functions, con-
strains, and equations may be graphically represented, where
lines 601 and 602 represent an objective function curve, and
where line 605 represents C/A,. As shown in FIG. 6, a
minimum point occurs at a cross point of the line 601 and the
line 602. Accordingly, the minimum point may be deter-
mined by setting aC/A; equal to (1-a)C/h,. Thereafter, a
minimal makespan may be determined as C/(A,+A,) (.€.,
line 603) when a 1s equal to A,/(A,+A,) (1.e., line 604).

Accordingly, a parallel prefetching policy may be deter-
mined. In some embodiments of the present invention, a
parallel fetching daemon may be used to trigger the parallel
prefetching. The parallel fetching daemon may periodically
check whether the access speed of the SSD of the replica
node (including network delay) 1s approximately equal to
the access speed of the local SSD of the primary node by
comparing theiwr difference with a preset threshold. The
parallel fetching daemon may also check whether a current
utilization ratio of throughput of the SSD of the replica node
1s less than a given operating threshold, and may approve/
trigger parallel pretetching if all of these conditions are
satisfied.

US 11,811,895 B2

13

Furthermore, the parallel fetching daemon may calculate
a branching ratio of data to be loaded from each node of a
datacenter cluster, and may then assign the branching ratio
to each node before beginning to read from the nodes.
Accordingly, embodiments of the present invention may be
turther extended to a parallel fetching case imnvolving more
than two source nodes. Lastly, embodiments of the present
invention may also work for parallel write operations with
additional synchromization schemes.

Accordingly, the solutions provided by embodiments of
the invention described above provide for a data replica
manager designed for distributed caching, and data process-
ing systems using SSD-HDD tier storage systems. The
embodiments i1mprove the ability of fault tolerance by
storing caches 1n replica nodes to etiectively recover from
disasters while enhancing performance 1n the SSD space.
Furthermore, the embodiments provide at least three
approaches for selecting replica nodes and building a replica
cluster architecture to support multiple SLAs, based on
importance degree, workload temperature, and an abstract
distance matrix, which considers network delay and storage
access latency.

Embodiments of the present invention can also automati-
cally perform load-balancing among nodes, and can conduct
seamlessly online migration operation, as opposed to paus-
ing the subsystem and copying the entire dataset from one
node to the other. The described embodiments therefore
improve fault tolerance ability for cluster caching systems,
and enable successiul recovery from four different failure
scenar1os. Embodiments of the present invention also allow
for parallel pretetching from both primary node and replica
node(s) with an optimized prefetching solution for each I/O
path.

What 1s claimed 1s:

1. A method of data storage, the method comprising:

determining a first latency distance from a first node to a

second node:

determining a second latency distance from the first node

to a third node that i1s greater than the first latency
distance;

writing {irst data associated with the first node from a

fourth node to the second node; and

writing second data from the first node to the second node.

2. The method of claim 1, wherein the first latency
distance and the second latency distance are less than a third
latency distance from the first node to the fourth node.

3. The method of claim 1, wherein the second node 1is
assigned a first ranking indicating a degree to which the
second node 1s suitable for receiving data associated with the
first node, and

wherein the third node 1s assigned a second ranking

indicating a degree to which the third node 1s suitable
for rece1ving data associated with the first node, the first
and second rankings respectively being based on net-
work delays associated with paths between the first
node and the second node and between the first node
and the third node.

4. The method of claim 3, wherein at least one of the first
node, the second node, or the third node comprises a
physical host for running virtual machines.

5. The method of claim 4, wherein one or more virtual
machines share a solid-state drive tier and a hard disk drive
tier 1n the first node, the second node, the third node, or the
fourth node.

6. The method of claim 3, wherein the first ranking or the
second ranking 1s further based on workload characteristics
comprising access frequency of data associated with the

10

15

20

25

30

35

40

45

50

55

60

65

14

second node or the third node and on service level agree-
ments (SLAs) associated with the second node or the third
node.

7. The method of claim 3, further comprising periodically
updating the first ranking or the second ranking to account
for changes 1n network delays.

8. The method of claim 1, wherein:

the first node comprises a primary node; and

the second node, the third node, and the fourth node

comprise replica nodes.

9. The method of claim 1, wherein the first data comprises
replica data, and

wherein the second data 1s different than the first data.

10. The method of claim 1, further comprising maintain-
ing the first data on the fourth node.

11. The method of claim 1, wherein at least one of the first
node, the second node, or the third node comprises:

a solid-state drive tier as a cache tier comprising a cache

partition for storing data of local virtual machines; and

a replica partition for storing replica data from other

nodes.
12. The method of claim 11, wherein the at least one of the
first node, the second node, or the third node comprises a
hard disk drive tier as a back-end storage tier.
13. A method of using replicated data, the method com-
prising;:
determiming that a difference between an access speed
corresponding to a first node and an access speed
corresponding to a second node exceeds a threshold; or

determining a utilization ratio of throughput correspond-
ing to the second node 1s less than an operating thresh-
old; and

reading a first part of a dataset from the first node, and

reading a second part of the data set from the second
node.

14. The method of claim 13, wherein:

the first node comprises a primary node of a datacenter

cluster, such that the first node 1s configured to store the
first part of the dataset at a cache partition of the first
node; and

the second node comprises a replica node of the datacen-

ter cluster, such that the second node 1s configured to
store the second part of the dataset at a replica partition
of the second node.

15. The method of claim 13, further comprising splitting
the dataset into the first part and the second part.

16. A method of prefetching data, the method comprising:

splitting a dataset mto a first part and a second part;

determining that a first ratio of a total size of the dataset
to a first access speed associated with a first node
comprising the dataset 1s greater than or equal to a
greater ol a second ratio of a first size of the first part
to the first access speed and a third ratio of a second size
of the second part to a second access speed associated
with a second node:; and

loading the first part and the second part respectively from

the first node and the second node.
17. The method of claim 16, wherein the first access speed
accounts for a first network delay associated with the first
node, and wherein the second access speed accounts for a
second network delay associated with the second node.
18. The method of claim 16, further comprising:
determining a ratio of the first access speed to a sum of the
first access speed and the second access speed; and

achieving a network makespan equal to a ratio of the total
size of the dataset to the sum of the first access speed
and the second access speed.

US 11,811,895 B2

15

19. The method of claim 16, further comprising;

determining a difference between the second access speed
and the second access speed exceeds a threshold, or
determining a utilization ratio of throughput corre-
sponding to the second node 1s less than an operating
threshold; and

triggering parallel prefetching.

20. The method of claim 19, wherein the first node

comprises a primary node, and wherein the second node

comprises a replica node.

¥ o # ¥ ¥

10

16

	Front Page
	Drawings
	Specification
	Claims

