12 United States Patent

Palumbo et al.

USO011811803B2

US 11,811,803 B2
Nov. 7, 2023

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)

(22)

(63)

(30)

Nov. 11, 2019

(51)

(52)

(58)

METHOD OF THREAT DETECTION
Applicant: F-Secure Corporation, Helsinki (FI)

Inventors: Paolo Palumbo, Helsinki (FI); Dmitriy
Komashinskiy, Helsinki (FI)

WITHSECURE CORPORATION,
Helsinki (FT)

Assignee:

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 121 days.

Notice:

Appl. No.: 17/094,414

Filed: Nov. 10, 2020

Prior Publication Data

US 2021/0144165 Al May 13, 2021

Foreign Application Priority Data

(G52) NSRS 1916345

Int. CI.
GO6F 21/00
HO4L 9/40

U.S. CL
CPC ... HO4L 63/1425 (2013.01); HO4L 63/0218
(2013.01); HO4L 63/0254 (2013.01); HO4L
63/145 (2013.01)

(2013.01)
(2022.01)

Field of Classification Search
CPC HO4L 63/1425; HO4L 63/0218; HO4L
63/0254; HO4L 63/145; GO6F 21/566;
GO6F 21/554; GO6F 21/56

See application file for complete search history.

-{ 5201

(56) References Cited

U.S. PATENT DOCUMENTS

9.413,774 B1* 8/2016 L ..o GOGF 21/566
10,706,149 B1* 7/2020 Vincent GOO6F 21/566
11,263,307 B2* 3/2022 Tumblin GO6F 18/295

2007/0056035 Al1* 3/2007 Copley GOG6F 21/562
726/22

2008/0010538 Al1* 1/2008 Satish GOG6F 21/562
714/38.13

2011/0023115 A1* 1/2011 Wnght GO6F 21/552
726/22

2013/0276119 Al* 10/2013 Edwards GOO6F 21/554
726/24

(Continued)

OTHER PUBLICAITONS

Search Report 1ssued by the UK Intellectual Property Oflice for
Application No. GB1916345.0 dated Aug. 6, 2020.

(Continued)

Primary Examiner — Michael M Lee

(74) Attorney, Agent, or Firm — Meunier Carlin &
Curfman LLC

(57) ABSTRACT

There 1s provided a method comprising: detecting a new
process start at a network node of a computer network;
determining that said process requires external code mod-
ules; observing the times at which one or more external code
modules required by the new process are loaded relative to
the process starting time; determining that the usage of an
external code module required by the new process 1s anoma-
lous when the time elapsed between the start of the process
and loading of said external code module lies outside
predetermined expected boundaries; and taking further
action to protect the network node and/or the computer
network based on determining that the usage of the external
code module required by the detected new process 1s anoma-

lous.

13 Claims, 2 Drawing Sheets

US 11,811,803 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS

2014/0380474 Al1* 12/2014 Paithane BO1D 61/06

726/23
2017/0039211 Al1* 2/2017 Pottinger GOG6F 16/152
2017/0220797 Al 8/2017 Liu
2018/0089430 Al* 3/2018 Mayooceeeenn, GOO6F 21/577
2018/0129807 Al* 5/2018 Azarafrooz GO6F 21/552
2018/0234435 Al1* 8/2018 Cohen HO4L 63/1416
2019/0050561 Al 2/2019 L1 et al.
2019/0182272 Al 6/2019 Palumbo et al.

Peng Gao et al.,

OTHER PUBLICATIONS

“SAQL: A Stream-based Query System for Real-
Time Abnormal System Behavior Detection,” Arxiv.Org Cornell

University Library, 2018.

* cited by examiner

U.S. Patent

[

il

X 3
" X
X X
" ¥
X ¥
" X
X ¥
" ¥
X X
" 5
X ¥
" ¥
X !

+ F+ 01 0 + +

PoART R T A A A4

Nov. 7, 2023

A T A A A

|

"]

Sheet 1 of 2

US 11,811,803 B2

/”"E

JF 2 2 e 2 e e e e e o i
Sy 2y’ 2l 'nbr Sl ol ‘b S ey aler i St S Sl

e I I I S S e e M e S S S I S L e S S L L L S e Sl e S S Sl i ysiyting e SN S S N e A S

S. Patent Nov. 7, 2023 Sheet 2 of 2 S 11.811.803 B2

[]

[

[
ko

o o o o

L L B B UL B B D B O D BN O D B D BN B D B DL B DN D D DL B D UL B DL D D D D D BN B DB B DL D BN B BB

5207

US 11,811,803 B2

1
METHOD OF THREAT DETECTION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to, and the benefit of,
United Kingdom Patent Application No. 1916345.0, filed
Nov. 11, 2019, which 1s imncorporated by reference herein in
its entirety.

TECHNICAL FIELD

The present invention relates to a method of threat detec-
tion 1n a computer network security system and to a com-
puter network security system.

BACKGROUND

Computer network security systems such as Managed
Detection and Response (MDR) and Endpoint Detection and
Response (EDR) products and services have become popu-
lar. These systems focus on the detection and monitoring of

a breach as 1t occurs and after it occurs and helps to
determine how best to respond. The growth of MDR/EDR

has been made possible 1n part by the emergence of machine
learning, big data and cloud computing.

EDR or other corresponding systems deploy data collec-
tors on selected network endpoints (which can be any
clement of IT infrastructure). The data collectors observe
activities happening at the endpoint and then send the

collected data to a central, backend system (“EDR back-
end™), often located 1n the cloud. When the EDR backend
receives the data, the data 1s processed (e.g. aggregated and
enriched) before being analysed and scanned by the EDR
provider for signs of security breaches and anomalies.

One problem with these systems 1s that attackers tend to
change their tactics, techniques and procedures constantly
and therefore misuse detections lack in efliciency. A known
trend of the attacks 1s to abuse legitimate software applica-
tions and the trust 1n originators thereof.

Thus there 1s a need to improve the way in which
abnormalities are detected and how complex threats such as
hacking and attackers living-ofi-the-land, exploitation,
insider threats and APTs (Advanced Persistent Threats) are
controlled. There 1s also a need to improve detection of
sophisticated threats especially 1n situations where this hap-
pens 1nside a reputable, trustworthy process/executable
1mage.

SUMMARY

According to a first aspect of the invention there i1s
provided a method of threat detection as specified 1n claim
1.

According to a second aspect of the invention, there 1s
provided a computer apparatus as specified 1 claim 9.

According to a third aspect of the invention, there 1s
provided a computer program product comprising a com-
puter storage medium having computer code stored thereon,
which when executed on a computer system, causes the
system to operate as a computer apparatus according to the
above second aspect of the imvention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1illustrates schematically a network architecture.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 1s a flow diagram 1illustrating a method according
to an embodiment.

DETAILED DESCRIPTION

FIG. 1 illustrates schematically a part of a first computer
network 1 into which a computer system, for example an
EDR system, has been installed. Also any other computer
system that 1s able to implement the embodiments of the
invention can be used instead or in addition to the EDR
system used 1n this example. The first computer network 1s
connected to an EDR backend 2 through the cloud 3. The
EDR backend 2 forms a node on a second computer network
relative to the first computer network. The second computer
network 1s managed by an EDR system provider and may be
separated from the cloud 3 by a gateway or other interface
(not shown) or other network elements appropriate for an
EDR backend 2. The first computer network 1 may also be
separated from the cloud 3 by a gateway 4 or other interface.
Other network structures are also envisaged. Although 1n the
example of FIG. 1, the elements are 1llustrated as separate or
combined entities, 1t 15 possible to implement each element
in any other combinations whether separate and/or com-
bined.

The first computer network 1 1s formed of a plurality of
interconnected network nodes 5a-5/, each representing an
clement 1n the computer network 1 such as a computer,
smartphone, tablet, laptop, or other piece of network enabled
hardware. Each network node 5a-5/ shown 1n the computer
network also represents an EDR endpoint onto which a data
collector (or “sensor”) 6a-6/ has been installed. Data col-
lectors may also be installed on any other element of the
computer network, such as on the gateway or other interface.
A data collector 4a has been installed on the gateway 4 in
FIG. 1. The data collectors, 6a-6/, 4a collect various types
of data at the network nodes 3a-5/ or gateway 4 including,
for example, program or file hashes, files stored at the nodes
Sa-5h, logs of network traflic, process logs, binaries or files
carved from memory (e.g. DLL, EXE, or memory forensics
artefacts), and/or logs from monitoring actions executed by
programs or scripts running on the nodes 5a-5% or gateway
4 (e.g. tcp dumps).

It 1s envisaged that any type of data which can assist 1n
detecting and monitoring a security breach may be collected
by the data collectors 6a-6/, 4a during their lifecycle and
that the types of data which are observed and collected may
be set according to rules defined by the EDR system
provider upon 1nstallation of the EDR system or 1n response
to mstructions from the EDR backend 2. For example, the
data collectors 6a-6/2, 4a may collect data about the behav-
iour of programs running on an EDR endpoint and can
observe when new programs are started. Where suitable
resources are available, the collected data may be stored
permanently or temporarily by the data collectors 6a-6/7, 4a
at their respective nodes or at a suitable storage location on
the first computer network 1 (not shown).

The data collectors 6a-6/2, 4a may also perform some
simple, preliminary processing steps on the collected data
but this 1s limited by the computing and network resources
available at each network node 5a-5/ or gateway 4.

The data collectors 6a-6/2, 4a are set up such that they may
send information such as the data they have collected or send
and receive mstructions to/from the EDR backend 2 through
the cloud 3. This allows the EDR system provider to
remotely manage the EDR system without having to main-
tain a constant human presence at the organisation which
administers the first computer network 1.

US 11,811,803 B2

3

The modules 6a-6/, 4a may be further configured to use
the collected data and information received from the net-
work for generating and adapting models related to the
respective network nodes 5q-542. For example, in case a
known security threat 1s detected, the modules 6a-6/, 4a
may be configured to generate and send a security alert to the
network nodes 1n the local computer network and to activate
security measures for responding to the detected security
threat. Further, 1n case an anomaly that 1s estimated very
likely to be a new threat is 1dentified, the module 6a-6/, 4a
may be configured to verily and contain the threat, generate
a new threat model on the basis of the collected data and
received information and share the generated new threat
model 1n the computer network.

FIG. 2 1s a flow diagram 1illustrating a method according,
to an embodiment. The method steps described 1n this
example can be processed by a security server backend, by
one or more network nodes (endpoints) of a computer
network or by the combination thereof.

The method starts 1n S201 where computer processes of
a network node, such as an endpoint node of a computer
network, are being monitored.

In S202, 11 a new process start 1s detected at the network
node, then S203 1s entered. Otherwise, S201 1s remained and
monitoring of the computer processes 1s continued.

In S203, 1t 1s determined whether the detected new
process requires external code modules. In an embodiment,
usage of the external code modules can be determined by
using differential analysis. For example, by processing the
file contents of the executable image associated with the
process, a list of external code modules that could be used
by this process can be retrieved. This may mean, but 1s not
limited to, processing import tables (Import Table, Delayed
Import Table, .dynsym/.dynstr sections, etc.), processing the
code and extracting various artefacts (e.g. strings, resource
tables, etc.).

In an embodiment, information about the new code mod-
ules being loaded and unloaded may be collected through
dynamic analysis methods such as F-Secure’s xDR sensor,
Sandviper, debuggers, emulators or dynamic instrumenta-
tion.

In an embodiment, on every new code module load or
unload the following may take place: if the code module 1s
not 1n the list of expected code module load list, it 1s marked
as a delayed (1mplicit) load event and the suspiciousness
level of the original event 1s increased; 1f the loaded module
1s knowingly clean and prevalent and 1t 1s used for a specific,
not mainstream purpose, the level of suspiciousness of the
original event 1s increased again; the event 1s marked for
turther investigation.

In case i S203 1t 1s determined that the new process
requires external code modules, then S204 1s entered, where
the times at which one or more of the external code modules
required by the new process are loaded relative to the start
time of the new process are observed.

In S205, 1n case the time elapsed between the start of the
new process and loading of the external code module lies
outside predetermined expected boundaries, then S206 1is
entered where 1t 1s determined that the usage of the external
code module required by the new process 1s anomalous. If
the time elapsed between the start of the new process and
loading of the external code module does not exceed pre-
determined expected boundaries, then S208 1s entered where
it 1s determined that the usage of the external code module
required by the new process 1s not anomalous.

In S207, further action 1s taken to protect the network
node and/or the computer network based on determining that

10

15

20

25

30

35

40

45

50

55

60

65

4

the usage of an external code module required by the
detected new process 1s anomalous.

In an embodiment, the detection of anomalous external
module load 1s thus based on the process’s timeline analysis.
Based on detecting that the time difference between the
observed times (start time of new process vs. external code
module load time) exceeds a predetermined limait, a threat
can be i1dentified. Delayed external code module loads may
also be detected without prior knowledge of the external
code modules required by the process. For this purpose,
relevant information related to past observations can be
used. The realization that a similar code module 1s used by
a similar process can be used in the determination. The
similarity between processes may be defined by looking at
a variety of attributes. For this purpose, 1t may be defined
whether the file names of the executable 1mages for these
processes are suiliciently similar or if the portions of the
content of the executable 1mages are strong enough match
(e.g. using SSDEEP, IMPHASH, SHA256 and similar). The
similarity between code modules may also be defined by any
criteria valid for executables of the process. Further, the
times at which additional code modules were loaded relative
to the beginning of the process execution are determined.
This data can be retrieved using a dynamic analysis method,
for example.

In an embodiment, the detection of delayed external code
modules may be arranged by applying various machine
learning anomaly detection approaches where the model
may represent: time delay distributions for the process and
module or similar processes and modules (time scales are to
be normalized 1n case different dynamic frameworks/data
collection approaches are applied), module usage distribu-
tions for the process or similar processes and/or process use
distributions for the module or similar modules.

In an embodiment, the new process comprises the execu-
tion ol one or more of: a code module, a dynamic load
library, a shared object.

In an embodiment, the method further comprises deter-
mining whether the related executable image for the new
process 1s known clean by determining whether the execut-
able 1image satisfies one or more predetermined whitelisting
criteria. In an embodiment, for those processes whose asso-
ciated executable 1image 1s known clean, 1.e. the executable
image satisfies one or more explicit whitelisting criteria (e.g.
a file bearing a valid Authenticode signature from a vetted,
trustworthy manufacturer or a file being a part of a major
operating system), 1t 1s determined whether the usage of
external code modules for this process 1s anomalous or not.
This determination may be implemented 1n a variety of
different ways as described above.

In an embodiment, the method fturther comprises process-
ing the file contents of the related executable image for
retrieving a list of expected external code modules that could
be used by the new process. Processing the file contents may
comprise one or more of: processing the import tables,
processing code, extracting various artefacts.

In an embodiment, the method further comprises collect-
ing information about new code modules being loaded or
unloaded and 1n relation to every new code module load or
unload the method turther comprises increasing the level of
suspiciousness ol the new process 11 the new code module
load/unload 1s not 1 the list of expected external code
modules.

In an embodiment, the step of determining whether the
usage ol an external code module required by the new
process 1s anomalous 1s further based on determining that
the external code module required by the new process

US 11,811,803 B2

S

belongs to a group of known processes having sufliciently
similar properties on the basis of comparing file names of the
executable 1mages for the processes and/or comparing por-
tions of the content of the executable 1images for the pro-
CEesSes. 5

In an embodiment, the step of taking further action to
secure the computer network and/or any related network
node comprises one or more of the list of: preventing one or
more of the network nodes from being switched ofl, switch-
ing on a lirewall at one or more of the network nodes, 10
warning a user of one or more of the network nodes that
s1gns of a security breach have been detected, and/or sending
a software update to one or more of the network nodes.

In an embodiment, the further actions taken based on
determining that the usage of an external code module 15
required by the new process 1s anomalous, may include
taking 1mmediate action by changing the settings of the
network node(s) in order to ensure an attacker 1s stopped and
any traces of their activity 1s not destroyed. Changing the
settings may 1include, for example, one or more nodes 20
(which may be computers or other devices) being prevented
from being switched off 1n order to preserve mformation 1n
RAM, a firewall may be switched on at one or more nodes
to cut off the attacker immediately, users of the one or more
nodes may be warned that a breach has been detected and 25
that their workstation 1s under investigation, and/or a system
update or soitware patch may be sent from the EDR backend
2 to the nodes 1n response to detecting a sign of a breach. It
1s envisaged that one or more of these actions may be
iitiated automatically by the above-described algorithms. 30
For example, using the above described methods, data may
be collected and sent from the nodes in the computer
network 1 to the EDR backend 2. The analysis algorithm has
determined that a threat was detected. As soon as the
algorithm makes the determination that a sign of a threat was 35
detected, 1t may generate and 1ssue a command to the related
network nodes without human intervention to automatically
initiate one or more of the above-described actions at the
nodes. By doing this, a possible breach can be stopped
and/or the damage minimised automatically at very high 40
speeds and without human intervention.

Generally, the proposed approach mtroduces a number of
improvements to conventional threat detection schemes.
Such improvements comprise, for example, being able to
detect sophisticated threats that load code dynamically at a 45
later stage of execution and especially 1n situations where
this happens inside a reputable, trustworthy process or
executable 1image.

Another improvement according to an embodiment 1s that
anomalous and potentially malicious activity can be detected 50
based on the timing of dynamic code loads. This 1s beneficial
especially 1n situations where the entities under monitoring
are trusted and other data i1s lacking or too expensive to
compute. Thus, the mvention provides a highly eflective
threat detection scheme while at the same time enabling 55
reducing the amount of data required 1n threat detection and
consequently saving resources of the computer system and
saving costs.

Further, since the proposed threat detection scheme 1s able
to detect anomalies 1n how external modules are being used, 60
it 15 extremely helpful for example 1n cases such as recently
seen supply chain attacks and in cases where shellcode or
external payloads are used by the attackers.

Any suitable computer network system, servers, endpoint
nodes/devices and computer apparatus, as described herein 65
cach may perform or contribute to the threat detection
method according to the embodiments of the invention. The

6

processors ol such systems are configured to execute com-
puter program instructions based on the methods and pro-
cesses described herein, such instructions being contained 1n
a non-transitory computer-readable medium, such as
memory. The computer program instructions may be read
into memory from another computer-readable medium or
from another device via a commumnication interface. The
instructions contained 1in memory cause the processor of a
computer apparatus to perform processes or methods as
described herein. Alternatively, or 1n addition to, hardwired
circuitry may be used in place of or 1n combination with the
computer program instructions to implement processes and
methods consistent with the present invention. Examples of
hardware circuitry may include, but are not limited to,
semiconductor chips, integrated circuits, field program-
mable gate arrays, application-specific integrated circuits,
clectronically programmable integrated circuits and the like.
Thus, the present invention 1s not limited to any speciiic
combination of hardware circuitry and/or software.

The non-transitory computer readable medium may
include computer program 1nstructions stored thereon,
which when executed on one or more processors of a server,
server system, or other computing system, performs the
processes or method steps of threat detection and taking
further action to protect the network node and/or the com-
puter network based on determining that the usage of the
external code module required by the new process 1s anoma-
lous as described herein with reference to FIGS. 1-2.

Although the invention has been described i1n terms of
preferred embodiments as set forth above, 1t should be
understood that these embodiments are 1llustrative only and
that the claims are not limited to those embodiments. Those
skilled in the art will be able to make modifications and
alternatives 1n view of the disclosure which are contem-
plated as falling within the scope of the appended claims.
Each feature disclosed or illustrated in the present specifi-
cation may be incorporated in the invention, whether alone
Or 1n any appropriate combination, with any other feature
disclosed or illustrated herein.

The mvention claimed 1s:

1. A method of threat detection, the method comprising;:

detecting a new process that starts at a network node of a
computer network;

determining that said new process requires external code
modules by processing file contents of an executable
image associated with said new process to retrieve a list
of expected external code modules for the new process,
wherein the list includes all external code modules that
are used by the new process;

observing the times at which one or more of the external
code modules 1n the list of expected external code
modules for the new process are loaded relative to a
start of the new process;

determiming whether one or more external code modules
that are not 1n the list of expected code modules for the
new process are loaded;

determiming that usage of an external code module 1s
anomalous when the time elapsed between the start of
the new process and loading of said external code
module lies outside predetermined expected boundaries
or said external code module was determined to be not
in the list of expected code modules for the new
process; and

taking further action to protect the network node and/or
the computer network based on the determining that the
usage of the external code module 1s anomalous.

US 11,811,803 B2

7

2. The method according to claim 1, wherein the new
process comprises execution ol one or more olf: a code
module, a dynamic load library, a shared object.

3. The method according to claim 1, further comprising,
determining whether a related executable 1mage for the new
process 1s known clean, wherein the determining whether
the related executable image for the new process 1s known
clean comprises determining whether the executable 1mage
satisfies one or more predetermined whitelisting criteria.

4. The method according to claim 1, wherein the process-
ing the file contents of the executable image comprises one
or more of: processing import tables, processing code,
extracting various artefacts.

5. The method according to claim 1, wherein the deter-

miming whether the usage of an external code module 1s
anomalous 1s further based on determining that the external
code module belongs to a group of known processes having
suiliciently similar properties on the basis of comparing file
names ol executable 1images for new processes and/or com-
paring portions of the file contents of the executable 1images
for the new processes.

6. The method according to claim 1, wherein the taking
turther action to protect the computer network and/or net-
work node comprises one or more of:

preventing one or more ol network nodes from being

switched off;
switching on a firewall at the one or more of network
nodes;

warning a user of the one or more of network nodes that

signs ol a security breach have been detected; and/or
sending a software update to the one or more of network
nodes.

7. A computer apparatus comprising:

a memory comprising computer-executable instructions;

and

one or more processors configured to execute the com-

puter-executable instructions and cause the computer
apparatus to perform a method of threat detection that
causes the computer apparatus to:

detect a new process that starts at a network node of a

computer network;

determine that said new process requires external code

modules by processing the file contents of an execut-
able 1mage associated with said new process to retrieve
a list of expected external code modules for the new
process, wherein the list includes all external code
modules that are used by the new process;

observe the times at which one or more of the external

code modules 1 the list of expected external code
modules for the new process are loaded relative to a
start of the new process;

determine whether one or more external code modules

that are not in the list of expected code modules are
loaded for the new process;

determine that usage of an external code module required

by the new process 1s anomalous when the time elapsed
between the start of the new process and loading of said
external code module lies outside predetermined
expected boundaries or said external code module was
determined to be not 1 the list of expected code
modules for the new process; and

take further action to protect the network node and/or the

computer network based on the determining that the
usage of the external code module 1s anomalous.

10

15

20

25

30

35

40

45

50

55

60

8

8. The computer apparatus according to claim 7, wherein
the new process comprises execution ol one or more of: a
code module, a dynamic load library, a shared object.

9. The computer apparatus according to claim 7, the one
or more processors being further configured to determine
whether a related executable image for the new process 1s
known clean, wherein the determining whether the related
executable 1mage for the new process 1s known clean
comprises determining whether the executable 1mage satis-
fies one or more predetermined whitelisting criteria.

10. The computer apparatus according to claim 7, wherein
the processing of the file contents of the executable 1image
comprises one or more of: processing import tables, pro-
cessing code, extracting various artefacts.

11. The computer apparatus according to claim 7, the one
or more processors being further configured to determine
whether the usage of an external code module 1s anomalous
based on determining that the external code module belongs
to a group ol known processes having sufliciently similar
properties on the basis of comparing file names ol execut-
able 1mages for new processes and/or comparing portions of
the file contents of the executable images for the new
Processes.

12. The computer apparatus according to claim 7, wherein
the taking further action to protect the computer network
and/or network node comprises one or more of:

preventing one or more ol network nodes from being

switched off;
switching on a firewall at the one or more of network
nodes;

warning a user of the one or more of network nodes that

signs of a security breach have been detected; and/or
sending a software update to the one or more of network
nodes.

13. A non-transitory computer readable medium compris-
ing nstructions which, when run on a computer apparatus or
server, causes the computer apparatus to perform a method
of threat detection, the non-transitory computer readable
medium comprising nstructions to:

detect a new process start at a network node of a computer

network;
determine that said process requires external code mod-
ules by processing the file contents of an executable
image associated with said new process to retrieve a list
of expected external code modules for the new process,
wherein the list includes all external code modules that
are used by the new process;
observe the times at which one or more external code
modules 1n the list of expected external code modules
for the new process are loaded relative to a start of the
New process;

determine whether one or more external code modules
that are not 1n the list of expected code modules for the
new process are loaded;

determine that the usage of an external code module

required by the new process 1s anomalous when the
time elapsed between the start of the process and
loading of said external code module lies outside
predetermined expected boundaries or said external
code module was determined to be not 1n the list of
expected code modules for the new process; and

take further action to protect the network node and/or the

computer network based on determining that the usage
of the external code module 1s anomalous.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

