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METHODS AND GRAPHICS PROCESSING
UNITS FOR DETERMINING DIFFERENTIAL
DATA FOR RAYS OF A RAY BUNDLE

BACKGROUND

The description herein generally relates to 3-D rendering,
systems, system architectures, and methods. Some of the
examples described herein relate to systems, architectures,
and methods for asynchronous and concurrent hybridized
rendering, such as hybridized ray tracing and rasterization-
based rendering.

Graphics Processing Units (GPUs) often provide highly
parallelized rasterization-based rendering hardware. A ftra-
ditional graphics processing unit (GPU) used a fixed pipe-
line only for rendering polygons with texture maps and
gradually evolved to a more flexible pipeline that allows
programmable vertex and fragment stages. Even though
modern GPUs support more programmability of geometry
and pixel processing, a variety of functions within a GPU are
implemented 1n fixed function hardware. Modern GPUs can
range i complexity, and may be adapted to be suited for
particular uses. When designing a GPU, there 1s often a
trade-ofl between various factors such as performance, size,
power consumption and cost. GPUs are often used 1n real
time rendering tasks, and optimizations for many GPU
applications involve determining shortcuts to achieve a
desired throughput of frames per second, while maintaining
a desired level of subjective video quality. For example, 1n
a video game, realistic modeling of light behavior 1s rarely
an objective; rather, achieving a desired look or rendering
cllect 1s often a principal objective.

Traditionally, ray tracing 1s a technique used for high
quality, non-real time graphics rendering tasks, such as
production ol animated movies, or producing 2-D 1mages
that more faithfully model behavior of light in different
matenals. In ray tracing, control of rendering and pipeline
flexibility to achieve a desired result were often more critical
1ssues than maintaining a desired frame rate. Also, some of
the kinds of processing tasks needed for ray tracing are not
necessarily implementable on hardware that 1s well-suited
for rasterization.

As an example, ray tracing 1s particularly suited for
introducing lighting effects into rendered 1mages. Sources of
light may be defined for a scene which cast light onto objects
in the scene. Some objects may occlude other objects from
light sources resulting in shadows 1n the scene. Rendering
using a ray tracing technique allows the eflects of light
sources to be rendered accurately since ray tracing 1s
adapted to model the behaviour of light in the scene.

Some operations performed 1n graphics processing sys-
tems mnvolve determining differential data. Diflerential data
indicates the rate of change of an attribute for changes in the
horizontal or vertical pixel position (dx or dy). For example,
the distance from a render plane of an object 1n the scene
allects the magnitude of a shift in scene space that corre-
sponds to a shift in space. As a further example, 11 a surface
1s 1inclined with respect to the viewpoint from which a scene
1s being rendered then a one-pixel shift vertically 1n screen-
space may correspond to a different shift in scene-space than
a one-pixel shift horizontally 1n scene-space. The gradient
data (1.e. diflerential data) can be useful for various func-
tions, e.g. selecting an appropriate mip map level of a texture
to be applied to a surface 1n the scene.

SUMMARY

This Summary 1s provided to introduce a selection of
concepts 1 a sumplified form that are further described
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2

below 1n the Detailed Description. This Summary 1s not
intended to identily key features or essential features of the
claimed subject matter, nor 1s 1t intended to be used to limat
the scope of the claimed subject matter.

There 1s provided a computer-implemented method of
processing rays 1n a graphics processing system for render-
ing a scene, the method comprising:

grouping a plurality of rays together into a ray bundle;

performing intersection testing on the rays of the ray

bundle in the scene:

using results of the mtersection testing for the rays of the

ray bundle to determine whether the rays are to be
maintained 1n the ray bundle; and

executing one or more shader programs on the rays in the

ray bundle, wherein the execution of at least one of the
shader programs comprises determining differential
data for a particular ray of the ray bundle using data for
another ray of the ray bundle.

There 1s provided a graphics processing unit configured to
render a scene, the graphics processing unit comprising:

a bundling module configured to group a plurality of rays

together mto a ray bundle;

intersection testing logic configured to perform intersec-

tion testing on the rays of the ray bundle, and to use
results of the mtersection testing for the rays of the ray
bundle to determine whether the rays are to be main-
tained 1n the ray bundle; and

processing logic configured to execute one or more shader

programs on the rays in the ray bundle including
determining differential data for a particular ray of the
ray bundle using data for another ray of the ray bundle.

There 1s provided a computer-implemented method of
processing rays in a graphics processing system, the method
comprising;

grouping a plurality of rays together into a ray bundle;

performing intersection testing on the rays of the bundle;

and
executing a plurality of instances of a shader program, an
instance corresponding to a ray in the bundle;

wherein the shader program 1s operable to utilize data
from a first ray of the bundle in the execution of the
instance for a second ray in the bundle.

The method may further comprise:

emitting a secondary ray from each of two or more

instances of the shader program; and

grouping the secondary rays into another ray bundle.

There 1s also provided a non-transitory computer readable
storage medium having stored thereon a computer readable
description of an integrated circuit that, when processed 1n
an mtegrated circuit manufacturing system, causes the inte-
grated circuit manufacturing system to manufacture a graph-
ics processing unit as described in any of the examples
herein. The graphics processing units described herein may
be embodied 1n hardware. There may also be provided an
integrated circuit manufacturing system comprising: a non-
transitory computer readable storage medium having stored
thereon a computer readable description of an integrated
circuit that describes a graphics processing unit as described
in any ol the examples herein; a layout processing system
configured to process the mtegrated circuit description so as
to generate a circuit layout description of an integrated
circuit embodying the graphics processing unit as described
in any ol the examples herein; and an integrated circuit
generation system configured to manufacture the graphics
processing unit according to the circuit layout description.

There may be provided computer program code for per-
forming any of the methods described herein. There may be
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provided non-transitory computer readable storage medium
having stored thereon computer readable instructions that,
when executed at a computer system, cause the computer
system to perform any of the methods described herein.

The above features may be combined as appropriate, as >
would be apparent to a skilled person, and may be combined
with any of the aspects of the examples described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

10

Examples will now be described in detail with reference
to the accompanying drawings 1n which:

FIG. 1 shows a graphics processing system;

FI1G. 2 15 a flow chart for a method of graphics processing;

FI1G. 3 1llustrates a scene to be rendered from a viewpoint; 15

FI1G. 4 illustrates an example of a bundle of rays which do
not split;

FI1G. 5 illustrates an example of a bundle of rays which do
split;

FIG. 6 shows a computer system 1n which a graphics 20
processing system 1s implemented; and

FIG. 7 shows an integrated circuit manufacturing system
for generating an integrated circuit embodying a graphics
processing system.

The accompanying drawings 1llustrate various examples. 25
The skilled person will appreciate that the illustrated ele-
ment boundaries (e.g., boxes, groups of boxes, or other
shapes) 1n the drawings represent one example of the
boundaries. It may be that in some examples, one element
may be designed as multiple elements or that multiple 30
clements may be designed as one element. Common refer-
ence numerals are used throughout the figures, where appro-
priate, to indicate similar features.

DETAILED DESCRIPTION 35

The following description 1s presented by way of example
to enable a person skilled 1n the art to make and use the
invention. The present invention 1s not limited to the
embodiments described herein and various modifications to 40
the disclosed embodiments will be apparent to those skilled
in the art. Embodiments will now be described by way of
example only.

In some rendering systems, virtual DX and DY rays are
formed in order to determine differential data. These virtual 45
rays may be referred to as “tracker” rays or “feeler” rays.
According to OpenRL, differential rays (1.e. the tracker rays)
are computed in the frame shader by running the frame
shader code in triplicate “tracks”. The DX track’s frame
coordinate has vec2(1, 0) added to 1t, and the DY track’s 50
frame coordinate has vec2(0, 1) added to it. In this way when
a ray 1s traced from a scene position corresponding to a
screen position (X,y), two tracker rays are also processed
from scene positions corresponding to screen positions
(x+1,y) and (x,y+1). However, this means that for the next 55
pixel over 1n X, the same math for this pixel’s DX ray will
be performed again, and similarly in Y. The “main” track for
the adjacent pixels will redundantly compute and store this
data.

It has been appreciated herein that differential rays are 60
used to compute the rate of change of smoothly varying
functions of a shader running on one primitive with respect
to the screen. The difference between the differential ray
value and the main ray value 1s the differential value (the
finite differencing method of derivative approximation), 65
when the main ray and the differential rays hit the same
primitive.

4

In examples described herein 1f a tracker ray for a pixel 1s
redundant with the main ray for the adjacent pixel and the
rays have matching intersections with geometry 1n the scene,
then an implementation of ray traced differentials could find
the intersections for a group of pixels” rays and shade them
all at the same time. In other words, rays can be grouped
together 1nto a ray bundle, and if the ray bundle does not
diverge (e.g. due to different intersection testing results) then
the rays of a ray bundle can be used as differential rays for
cach other, without tracing additional tracker rays. This can
climinate the need to store virtual tracker ray data. It can
climinate the computation of virtual intersections and nor-
malization of virtual ray directions as a shader preamble. It
can eliminate the need for the compiler to produce triplicate
code. It can eliminate the need to execute triplicate shader
code. Furthermore, 1t can improve texture throughput in the
rendering system.

Rays are kept together 1in groups (e.g. groups of 4, or
more, or less (e.g. once some rays are lost from the group))
as they are emitted and if they hit the same thing for shading
purposes, then when the shading runs we can leverage data
from one ray’s execution to imply the differential data for
another ray 1n the same group. These groups may be referred
to as ray bundles. If a ray bundle comprises four rays 1t may
be referred to as a “quadray”.

In some examples, all rays may get their start from a
shader and shaders that can emit rays are enqueued for
execution 1n response to ray intersections, compute work-
load dispatches, and pixels 1n a builer. The shaders may for
example be pixel/fragment/frame shaders. Pixels or frag-
ments may be processed 1n tiles of the rendering space so
locality exists between pixels/fragments being processed,
1.e. consecutively processed pixels are likely to be located
close to each other in the rendering space. A pixel/fragment/
frame shader may need to determine differential data, e.g.
for use 1n determining 1ts pixel/fragment footprint or for
selecting a mip map level. For example, GLSL (Open GL
Shading Language) functions like twidth, dFdx, dFdy, use
differential data. A shading cluster 1s able to consult the
neighbouring fragment 1n the ray bundle, either in +x, —X, +y
or -y, to determine the value of a variable needed {for
shading from the neighbouring location. These neighbouring
locations are often adjacent pixels but might be multisample
fragments within the same pixel and may even represent
locations further than one pixel away for reduced resolution
rendering.

Since this locality in fragments exists, when a frame
shader emits a ray, 1t 1s likely that its neighbours will emit
rays also. Graphics processing system may make use of
SIMD execution, and 1n this case these rays are substantially
all emitted together. It 1s also likely that these rays have
similar origins and directions. Therefore, we can bundle
these rays together. The bundling could be an explicit
decision made by the shader, e.g. written by the author of the
shader code. For example, a feature may be provided 1n a
shading or compute language used with ray tracing, such as
a keyword, to denote data elements for which the rate of
change with respect to another quantity such as pixels 1n an
output buller may be tracked or calculated. An API could be
provided to allow visibility of the bundling functionality to
a programmer to allow them to make eflicient use of the
bundling. Alternatively, the bundling may be done by a
hardware or software module (referred to below as a “bun-
dling module™) that 1s able to perform analysis of the rays to
determine which rays to group together into ray bundles, e.g.
based on a likelihood that the rays will split from the ray
bundle. The aim may be to group together rays 1nto a ray




US 11,810,239 B2

S

bundle that will not split from the ray bundle during pro-
cessing. As 1s apparent from the description herein, when the
rays do not split from the ray bundles, the bundling of rays
1s particularly effective in reducing the number of tracker
rays that are generated. In some examples, rays may be
grouped together mto a ray bundle based on emission
concurrency ol adjacent shaders 1n a task. Adjacency may be
based on fragment position. Adjacency could be based on
position 1 a compute shader dispatch bufler. Adjacency
could be due to being part of the same mcoming ray
bundle/group.

Once ray bundles have been assembled for primary rays,
the rays of the ray bundles are traversed together. The
traversal comprises performing intersection testing on the
rays to determine whether the ray intersects with geometry
in the scene. The results of the intersection testing for a ray
may include an indication as to whether the ray intersected
any geometry, and 1f the ray does have an intersection then
the results of the intersection testing also include data
relating to the intersection, such as an identifier of the
clement of geometry (e.g. primitive, mesh, object, etc.) that
1s 1mtersected, a position at which the intersection occurred,
a surface normal of the geometry at the intersection, and/or
an 1ndication of a shader that 1s to be mvoked due to the
intersection. If a ray 1n a ray bundle 1s determined to hit an
incompatible object (one that must be shaded by a different
operation or possibly with different parameters) it 1s lost
from the bundle. In other words, i1 the intersection testing
results of a ray 1n a ray bundle do not match the intersection
testing results of other rays in the ray bundle then the ray
may be split from the ray bundle. Lost rays can become
tracker rays, such that they can continue to carry valid data
in the ray bundle 1n order to supplement the other rays of the
ray bundle with differential data. Each ray in the ray bundle
may have an indication (e.g. a bit) to indicate whether the
ray 1s an “active” ray or a “tracker” ray. When a ray 1s split
from a ray bundle it 1s processed as an active ray separate to
the ray bundle.

When a bundle has a valid intersection (or miss resulting
in a shade), shaders again execute for all active rays 1n the
bundle (and possibly some tracker rays). Those shaders now

have available to them the same parallel tracks as the
original fragment shaders had, 1n order to resolve differential
values (e.g. in GLSL, that 1s calls to dFdx, dFdy, twidth,
sample, etc.).

When secondary rays are emitted, they can be emitted as
ray bundles or not, depending on whether or not there are
enough active rays for the mncoming bundle executing the
same shader.

When some threshold number of rays are lost from a ray
bundle, 1t can become more eflicient to track the rays 1n a
different data structure from the ray bundle.

The ray bundle functionality may be expressed through a
shader programming interface. In some implementations the
tact that the rays are bundled together may be hidden from
the shader author, and the bundling of the rays may be
implemented as a detail of the hardware. More efliciency
may be possible by explicitly controlling the bundling
explicitly with the shader, since the author of the shader code
may be able to indicate which rays are suitable to be bundled
together (e.g. because they are not likely to diverge or split
from the ray bundle for some reason).

In terms of what 1s considered the same surface/material/
object for shading purposes, this may be restricted to the
same mesh 1 some examples, but 1n other examples, the
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6

same mesh, the same triangle, the same object, or just the
same shader program may indicate that rays are to be
maintained 1n a ray bundle.

The bundling of rays allows for optimizations in ray
storage and possibly arithmetic cost (mostly in traversal, but
also shader setup, and possibly elsewhere) by sharing some
data that 1s common between rays. This may extend into
numerical representations of quantities, e.g. if all ray origins
are grouped tightly enough together, the system may be able
to share the exponent of the floating point numbers, or
possibly even some of the mantissa bits.

For example, a single data structure representing 4 rays
could be composed of a single full floating point 3-compo-
nent vector to represent one ray origin, and a normalized
3-component vector to represent one ray direction, and 3
limited precision delta vectors for the additional ray origins
and 3 limited precision delta vectors for the additional ray
directions. This data structure features a maximum distance
between the origins of all rays 1n the bundle as well as a
maximum divergence for all rays.

The implementation could choose to pack rays into such
a data structure 1f 1t was determined that the data lost 1 such
a packing was acceptable.

Alternatively the programmer could indicate that the rays
were mntended as coherent and therefore would be amenable
to packing, by use of an API or shader-based mechanism as
the rays are emitted. Such a mechanism would allow the
implementation to allocate a ray bundle data structure 1n
advance. It would also allow the implementation to truncate
or otherwise disregard un-representable data, which would
enhance the efliciency of such an implementation.

During ray traversal, ray bundles represented as coherent
data structures can be tested as frusta or other bounding
shapes, 1mn order to reject triangles or other intersectable
objects with which there 1s no chance of intersection for any
rays in the bundle.

In some examples, a decision as to when to consider a ray
bundle to have diverged 1s based on shader sameness for the
rays 1n the ray bundle. But this decision could be based on
other factors, such as when multiple rays cannot be accu-
rately represented by the shared bundle format. Alterna-
tively, 1f this logic 1s combined with a traditional path tracer,
the decision could be based on whether the rays take a
different path through a hierarchy of an acceleration struc-
ture used in 1ntersection testing.

The module which finds intersections for rays (the inter-
section testing logic) sends the rays of a ray bundle to a
shader together. As long as the rays in the ray bundle have
matching intersection testing results, then they can all be
shaded simultaneously on execution units and differentials
can be computed with cross-instance subtraction. Intersec-
tion testing results may be considered to match if the rays all
hit the same mesh or primitive or object and 1n some
embodiments there may be other continuity requirements to
be met in order for intersection testing results to be consid-
ered to match. Intersection testing results do not have to be
exactly the same to be considered to match. In other words,
a complete match 1s not necessary. Intersection testing
results may match 1f they are the same in one or more
particular respects (e.g. the same mesh was 1ntersected, or
some other respect, e.g. the same shader 1s invoked) even 11
they difler 1n other respects. For example, an intersection
with a different primitive of the same mesh may be consid-
ered a matching intersection testing result in some examples.
In other examples, an 1ntersection with a different primitive
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may be considered a non-matching intersection testing
result. The definition of matching intersection testing results
1s an 1mplementation choice.

The hardware may be fully aware of bundles as a data
structure. The rays 1n a ray bundle are somewhat spatially
coherent, so they will probably travel in similar directions
and finish mtersection testing at a more similar time to each
other than a random set of rays would. So waiting for all of
the rays of a ray bundle to be intersection tested before
shading any of the rays 1n the ray bundle will not add a great
deal of latency.

If the rays of a ray bundle do not all hit the same primitive
or hit a totally different part of the primitive, then the bundle
needs to be broken up somehow. The functions being
differentiated are assumed to be continuous and smooth and
so the differentials should still be valid, since theoretically,
a ray an infinitesimal distance from the main ray could have
been used rather than the one the next pixel over, and an
equally valid differential could be computed from 1t. In order
to have valid differentials after intersection divergence, an
alternative method of ray diflerentials will be selectively
used. The ray which was formerly the neighbour in a ray
bundle but which now goes “somewhere else” will be used
as a virtual DX or DY ray (1.e. a “tracker” ray) and
intersections with the plane-extension of the hit-triangle are
computed. In other words, a {irst ray intersects a primitive,
but one or more other rays in the ray bundle do not. The
plane of the primitive 1s extended to see where and how the
other ray(s) intersect with the plane 1n order to determine the
tracker ray(s) for the first ray. The tracker rays may be
marked as such 1n the ray bundle such that the shader knows
to treat them as tracker rays. The other ray(s) which did not
intersect with the primitive are split from the ray bundle and
processed separately to the ray bundle, e.g. in a similar
manner to a prior art system whereby tracker rays are
generated to the rays that have split from the ray bundle. It
may be possible to group rays which have split from
different ray bundles together to form a new ray bundle.

During shading, the tracker rays are used to determine
differential data for active rays 1n the ray bundle, but tracker
rays will not emit further rays. In some cases the tracker rays
may actually be processed the same as active rays by the
shader program, except that tracker rays do not emit further
rays. As described above, a “virtual” bit on each ray in a ray
bundle may be used in order to track whether a ray is true
or virtual, whether 1t the virtual intersection 1s to be com-
puted, and whether to enable its side effects during shading.

The decision as to when to break up a ray bundle may be
tairly complex. Just knowing that the rays of a ray bundle all
hit the same primitive 1s not necessarily enough information
on which to base the decision. A single primitive could
contain complex geometry, for example, a pile of bolts
which are all 1n one primitive. Checking for the surface
normal to be similar 1s one approach. Another approach 1s to
look at the difference between two ray’s intersection <17
values (1.¢. the distance that the ray has traversed at the
intersection point) and checking them against the gradient of
“T”” with respect to screen x or y for the hit triangle of each
of the rays. If either 1s more different than a threshold, then
the rays may be considered to have diverged. Another
approach for knowing when to break a ray bundle 1s looking
at how far apart the hit tnnangles are in the acceleration
structure hierarchy defining the positions of the geometry 1n
the scene. However, the hierarchy can have very “far apart™
nodes which are spatially coincident, so the hierarchy dis-
tance 1s not always a good measure of whether rays have
diverged.
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If the shader asks for the derivative of triangle barycen-
trics, then virtual intersections are computed 1n order to get
these derivatives, since the rays 1n a ray bundle are not
guaranteed to hit the same triangle.

Differentials will be shared left-rnight and top-bottom,
which may result in less accurate results. Any errors caused
by this will often be unnoticeable but sometimes they may
be perceptible. The system may offer a high-quality mode
where all ray bundles are broken at the start and 1n which ray
differentials are calculated 1n a standard way, using tracker
rays. The etliciencies gained by the ray bundling would be
lost, but the quality would not be compromised by ray
bundling.

As described above, the ray bundles could be quadrays
having a 2x2 group of rays. Larger ray bundles may be used
(e.g. 3x3 or 4x4, or even non-square bundles), e.g. 1f 1t 1s
found that coherency amongst the rays 1s the common case.
Larger ray bundles would have the advantage of not having
the left-right and up-down sharing of differential data, 1f the
edge rays of the larger bundles were virtual rays. For
example, a 4x4 ray bundle could be used, in which only the
lower left 3x3 rays of the ray bundle are valid rays and the
upper and right edges are all virtual rays and the 16 instances
could be processed together. This would provide high qual-
ity because no sharing of different data for valid rays would
occur. However, larger ray bundles may take longer to finish
intersection testing (because all rays of the ray bundle finish
intersection testing before shading of any of the rays of the
ray bundle commences), and may be more prone to ray
divergence and splitting of rays from the ray bundle.

FIG. 1 illustrates a graphics processing unit 102 compris-
ing a bundling module 104, intersection testing logic 106,
processing logic 108, an image bufler 110 and a local
memory. The local memory includes a primitive memory
114, a ray memory 116 and a shader memory 118. The
different types of memory in the memory 112 may be
implemented as separate memories or as distinct sections
within a single memory. The primitive memory 114 stores
data relating to primitives to be rendered in a scene; the ray
memory 116 stores data relating to rays to be processed for
rendering the scene; and the shader memory 118 stores
shader programs to be executed by the processing logic 108
for rendering the scene. The bundling module 104, intersec-
tion testing logic and processing logic 108 may be imple-
mented 1n hardware, software or a combination thereof.
Hardware implementations allow acceleration of fixed func-
tions, e.g. using fixed-function circuitry to perform common
tasks. In particular, the bundling module 104 and the inter-
section testing logic may be implemented wholly or partially
in hardware to accelerate their functionality. The different
components of the graphics processing unit 102 can com-
municate with each other via a bus within the graphics
processing unit 102. The intersection testing logic 106 1s
configured to test rays for intersection with geometry 1n a
scene to be rendered. The processing logic 108 comprises
one or more execution cores and 1s configured to process
graphics data for rendering an 1image. The 1image builer 110
1s configured to store rendered pixel values.

An example of the operation of the graphics processing
unit 102 1s described with reference to the flow chart in FIG.
2.

Graphics data representing objects 1n a scene 1s received
at the graphics processing unit 102. The graphics data may
comprise primitives which represent surfaces of objects to
be rendered. Primitives are often triangles, but can take other
forms, e.g. other two-dimensional shapes, or points or lines.
A primitive may be defined by a set of vertices, e.g. three
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vertices define a triangular primitive. The graphics data may
include vertex data (e.g. position data and attribute data,
such as texture data) for the vertices of the primitives 1n the
scene and indications for the primitives to indicate which of
the vertices form the primitives. The graphics data might
also define attributes of light sources of the scene being
rendered (e.g. position, direction, colour, etc.).

The graphics processing unit 102 operates to identify
visible surfaces for pixels of an image being rendered. A ray
tracing approach may be used wherein rays are traced to
determine the appearance of pixels 1in the scene. Rays are
traced from an origin and the intersection testing logic 108
determines intersections of the rays with geometry in the
scene. FIG. 3 shows an example of a scene 302 which
includes two surfaces 304, and 304,. This 1s a very simple
example, and 1n other examples there would likely be many
more surfaces and objects within the scene. FIG. 3 shows
two light sources 306, and 306, which 1lluminate objects in
the scene. The viewpoint from which the scene 1s viewed 1s
shown at 308 and the view plane of the frame to be rendered
1s represented at 310.

In step S202 the bundling module 104 groups rays
together into a ray bundle. For example, four adjacent rays
may be bundled together. FIG. 4 shows an example of a
surface 402 from which rays are to be emitted. Rays may be
emitted as the result of a shader execution. Four rays 406,
to 406, are shown 1n FIG. 4 being emitted from a respective
four adjacent locations 404, to 404, on the surface 402. The
four rays 406, to 406, may be grouped together into a ray
bundle (a quadray).

In step S204 the intersection testing logic 106 performs
intersection testing on the rays 406 of the ray bundle to
determine whether the rays intersect with geometry in the
scene. The intersection testing may be performed separately
for each ray 406 in the ray bundle. In the example shown 1n
FIG. 4 all of the rays 406 of the ray bundle intersect with the
same mesh 408.

In step S206 the results of the intersection testing for the
rays 406 of the ray bundle are used to determine whether the
rays 406 are to be maintained in the ray bundle. The
determination of step S206 may be performed by the inter-
section testing logic 106, the bundling module 104, the
processing logic 108 or some other logic in the graphics
processing unit 102 (not shown i FIG. 1). In the example
shown 1n FIG. 4 the rays 406 are maintained 1n the same ray
bundle because they all intersect with the same mesh 408.
All of the rays 406 are marked as valid 1n the ray bundle.

In step S208 the processing logic 108 executes one or
more shader programs on the rays 406. The execution of the
shader programs 1ncludes determining differential data for a
particular ray of the ray bundle using data for another ray of
the ray bundle. For example, the ray 406, may use the ray
406, as a DY ray (in this case —y) and may use the ray 406,
as a DX ray (in this case +x); the ray 406, may use the ray
406, as a DY ray (in this case —y) and may use the ray 406,
as a DX ray (in this case —x); the ray 406, may use the ray
406, as a DY ray (in this case +y) and may use the ray 406,
as a DX ray (in this case +x); and the ray 406, may use the
ray 406, as a DY ray (in this case +y) and may use the ray
406, as a DX ray (in this case —x). No additional tracker rays
are processed for determining the differential data for the
rays 406 of the ray bundle. The shader execution may result
in the emission of further rays (e.g. secondary rays). The
rays resulting from the shading of the rays 406 1n the ray
bundle may (or may not) be bundled together 1n another ray
bundle, depending on a decision made, e.g. by the bundling

module 104.
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FIG. § shows an example of a surface 502 from which
rays are to be emitted. Rays may be emitted as the result of
a shader execution. Four rays 506, to 506, are shown in FIG.
5 being emitted from a respective four adjacent locations
504, to 504, on the surface 502. The tour rays 506, to 506,
may be grouped together into a ray bundle (a quadray) in

step 5202.

In step S204, intersection testing 1s performed for each of
the rays 506. In this example, three of the rays (506,, 506,
and 506,) have matching intersection testing results: they
each intersect with mesh 508. However, ray 506, intersects
with a different mesh 510. Therefore in this example, the
intersection testing results of ray 506, do not match the
intersection testing results of the other three rays. Therelore,
in step S206 the ray 506, 1s not maintained in the ray bundle.
The remaining three rays 506,, 506, and 506, may be
maintained 1n the ray bundle. The data tor the ray 506, 1s still
processed 1n the ray bundle and used as a tracker ray 512. It
1s marked as a tracker ray in the ray bundle data structure.
The tracker ray 512 1s determined to intersect with a plane

extended version of the intersection of one or more of the
rays 506,, 506, and 506,

In step S208 the processing logic 108 processes the
remaining rays (306,, 506, and 506,) 1n the ray bundle as
usual, using the ray 512 as a tracker ray. The true ray 506,
1s processed separately to the ray bundle by the processing
logic 108.

Examples described herein are intended to leverage the
concepts of OpenGL and 1n some examples specifically the
specification for OpenGL ES 3.1. The annexes 1 to 11 show
example code 1llustrating how an interface may be used, and
how an API may be implemented for footprint tracking/
differentials.

In some embodiments, some rays may carry associated
differential data while other rays need not. For example rays
that contribute to the rendering of primary visibility from a
camera or rays used to render specular reflections can utilize
the differential data to perform anti-aliasing calculations
while rays intended to probe whether a light source 1s
occluded from a surface point may not require diflerential
data. Therefore some i1mplementations can make use of
different data structures to represent diflerent categories of
rays, and some of those data structures may forego storage
for differential information.

In embodiments where ray intersections trigger the execu-
tion of shaders, the shading semantic may include a key
word, qualifier, alternative data type or similar programmer-
specifiable mechanism to indicate that a variable or ray
attribute may benefit from differential data. When such a
programming semantic 1s present, the implementation can
select between data stored in another track of a ray bundle
or data stored as additional data payload of a single ray.

When the implementation 1s operating on a single ray,
many operations must be duplicated or triplicated to perform
the same operations on one or more differential tracks.
Alternatively, when the implementation 1s operating on a
bundle of rays, potentially including tracker rays, a separate
shader 1nstance performs the additional operations 1n paral-
lel, so 1t 1s unnecessary to execute any additional code within
the primary instance.

Functions can be provided to explicitly set derivative
values belonging to diflerent tracks. These functions are
useiul to set the starting conditions for differential values
when diflerentials are tracked with the payload of a single
ray. These functions may be unnecessary and may be
ignored when 1nmitializing ray bundles.
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FIG. 6 shows a computer system in which the graphics
processing units described herein may be implemented. The
computer system comprises a CPU 602, a GPU 604, a

memory 606 and other devices 608, such as a display 610,
speakers 612 and a camera 614. The GPU 604 may corre-

spond with the GPU 102 described above. The memory 606
may correspond with the memory 104 described above. The
components of the computer system can communicate with
cach other via a communications bus 616.

The graphics processing unit 102 1s shown as comprising
a number of functional blocks. This 1s schematic only and 1s
not intended to define a strict division between diflerent
logic elements of such entities. Each functional block may
be provided 1n any suitable manner. It 1s to be understood
that intermediate values described herein as being formed by
a graphics processing unit need not be physically generated
by the graphics processing unit at any point and may merely
represent logical values which conveniently describe the
processing performed by the graphics processing umit
between its mput and output.

The graphics processing units described herein may be
embodied 1 hardware on an integrated circuit. The graphics
processing units described herein may be configured to
perform any of the methods described herein. Generally, any
of the {functions, methods, techniques or components
described above can be implemented in software, firmware,
hardware (e.g., fixed logic circuitry), or any combination
thereotf. The terms “module,” “functionality,” “component™,
“element”, “unit”, “block™ and “logic” may be used herein
to generally represent software, firmware, hardware, or any
combination thereof. In the case of a software implementa-
tion, the module, functionality, component, element, unit,
block or logic represents program code that performs the
specified tasks when executed on a processor. The algo-
rithms and methods described herein could be performed by
one or more processors executing code that causes the
processor(s) to perform the algorithms/methods. Examples
ol a computer-readable storage medium include a random-
access memory (RAM), read-only memory (ROM), an opti-
cal disc, flash memory, hard disk memory, and other
memory devices that may use magnetic, optical, and other
techniques to store 1nstructions or other data and that can be
accessed by a machine.

The terms computer program code and computer readable
istructions as used herein refer to any kind of executable
code for processors, including code expressed in a machine
language, an interpreted language or a scripting language.
Executable code includes binary code, machine code, byte-
code, code defining an mtegrated circuit (such as a hardware
description language or netlist), and code expressed 1n a
programming language code such as C, Java or OpenCL.
Executable code may be, for example, any kind of software,
firmware, script, module or library which, when suitably
executed, processed, mterpreted, compiled, executed at a
virtual machine or other software environment, cause a
processor of the computer system at which the executable
code 1s supported to perform the tasks specified by the code.

A processor, computer, or computer system may be any
kind of device, machine or dedicated circuit, or collection or
portion thereof, with processing capability such that 1t can
execute mstructions. A processor may be any kind of general
purpose or dedicated processor, such as a CPU, GPU,
System-on-chip, state machine, media processor, an appli-
cation-specific integrated circuit (ASIC), a programmable
logic array, a field-programmable gate array (FPGA), or the
like. A computer or computer system may comprise one or
more processors.
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It 1s also 1ntended to encompass software which defines a
configuration of hardware as described herein, such as HDL
(hardware description language) software, as 1s used for
designing integrated circuits, or for configuring program-
mable chips, to carry out desired functions. That 1s, there
may be provided a computer readable storage medium
having encoded thereon computer readable program code in
the form of an mtegrated circuit definition dataset that when
processed 1n an integrated circuit manufacturing system
configures the system to manufacture a graphics processing
unit configured to perform any of the methods described
herein, or to manufacture a graphics processing unit com-
prising any apparatus described herein. An integrated circuit
definition dataset may be, for example, an integrated circuit
description.

An 1ntegrated circuit definition dataset may be 1n the form
of computer code, for example as a netlist, code for config-
uring a programmable chip, as a hardware description lan-
guage defining an itegrated circuit at any level, including as
register transier level (RTL) code, as high-level circuit
representations such as Verilog or VHDL, and as low-level
circuit representations such as OASIS® and GDSII. Higher
level representations which logically define an integrated
circuit (such as RTL) may be processed at a computer
system configured for generating a manufacturing definition
of an integrated circuit in the context of a software envi-
ronment comprising definitions of circuit elements and rules
for combining those elements i1n order to generate the
manufacturing definition of an integrated circuit so defined
by the representation. As 1s typically the case with software
executing at a computer system so as to define a machine,
one or more intermediate user steps (e.g. providing com-
mands, variables etc.) may be required i order for a
computer system configured for generating a manufacturing
definition of an integrated circuit to execute code defining an
integrated circuit so as to generate the manufacturing defi-
nition of that integrated circuit.

An example of processing an integrated circuit definition
dataset at an integrated circuit manufacturing system so as to
configure the system to manufacture a graphics processing
umt will now be described with respect to FIG. 7.

FIG. 7 shows an example of an imtegrated circuit (IC)
manufacturing system 702 which comprises a layout pro-
cessing system 704 and an integrated circuit generation
system 706. The IC manufacturing system 702 1s configured
to receive an IC definition dataset (e.g. defining a graphics
processing unit as described 1n any of the examples herein),
process the IC definition dataset, and generate an IC accord-
ing to the IC definition dataset (e.g. which embodies a
graphics processing unit as described 1n any of the examples
herein). The processing of the IC defimition dataset config-
ures the IC manufacturing system 702 to manufacture an
integrated circuit embodying a graphics processing unit as
described 1n any of the examples herein.

The layout processing system 704 1s configured to receive
and process the IC definition dataset to determine a circuit
layout. Methods of determining a circuit layout from an IC
definition dataset are known 1n the art, and for example may
involve synthesising RTL code to determine a gate level
representation of a circuit to be generated, e.g. 1n terms of
logical components (e.g. NAND, NOR, AND, OR, MUX
and FLIP-FLOP components). A circuit layout can be deter-
mined from the gate level representation of the circuit by
determining positional mmformation for the logical compo-
nents. This may be done automatically or with user involve-
ment 1n order to optimise the circuit layout. When the layout
processing system 704 has determined the circuit layout 1t
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may output a circuit layout definition to the IC generation
system 706. A circuit layout definition may be, for example,
a circuit layout description.

The IC generation system 706 generates an IC according,
to the circuit layout definition, as 1s known 1n the art. For
example, the IC generation system 706 may implement a
semiconductor device fabrication process to generate the IC,
which may involve a multiple-step sequence of photo litho-
graphic and chemical processing steps during which elec-
tronic circuits are gradually created on a water made of
semiconducting material. The circuit layout definition may
be 1n the form of a mask which can be used 1n a lithographic
process for generating an IC according to the circuit defi-
nition. Alternatively, the circuit layout definition provided to
the IC generation system 706 may be in the form of
computer-readable code which the IC generation system 706
can use to form a suitable mask for use 1n generating an IC.

The different processes performed by the IC manufactur-

ing system 702 may be implemented all 1n one location, e.g.
by one party. Alternatively, the IC manufacturing system
702 may be a distributed system such that some of the
processes may be performed at different locations, and may
be performed by different parties. For example, some of the
stages of: (1) synthesising RTL code representing the IC
definition dataset to form a gate level representation of a
circuit to be generated, (1) generating a circuit layout based
on the gate level representation, (111) forming a mask 1n
accordance with the circuit layout, and (1v) fabricating an
integrated circuit using the mask, may be performed in
different locations and/or by different parties.
In other examples, processing of the integrated circuit
definition dataset at an integrated circuit manufacturing
system may configure the system to manufacture a graphics
processing unit without the IC defimition dataset being
processed so as to determine a circuit layout. For instance,
an integrated circuit definition dataset may define the con-
figuration of a reconfigurable processor, such as an FPGA,
and the processing of that dataset may configure an IC
manufacturing system to generate a reconfigurable proces-
sor having that defined configuration (e.g. by loading con-
figuration data to the FPGA).

In some embodiments, an 1tegrated circuit manufactur-
ing definition dataset, when processed m an integrated
circuit manufacturing system, may cause an integrated cir-
cuit manufacturing system to generate a device as described
herein. For example, the configuration of an integrated
circuit manufacturing system in the manner described above
with respect to FIG. 7 by an integrated circuit manufacturing,
definition dataset may cause a device as described herein to
be manufactured.

In some examples, an mtegrated circuit definition dataset
could include software which runs on hardware defined at
the dataset or in combination with hardware defined at the
dataset. In the example shown 1n FIG. 7, the IC generation
system may further be configured by an integrated circuit
definition dataset to, on manufacturing an integrated circuit,
load firmware onto that integrated circuit 1n accordance with
program code defined at the integrated circuit definition
dataset or otherwise provide program code with the inte-
grated circuit for use with the integrated circuait.

The applicant hereby discloses in isolation each indi-
vidual feature described herein and any combination of two
or more such features, to the extent that such features or
combinations are capable of being carried out based on the
present specification as a whole 1n the light of the common
general knowledge of a person skilled 1n the art, irrespective
of whether such features or combinations of features solve
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any problems disclosed herein. In view of the foregoing
description 1t will be evident to a person skilled 1n the art that
various modifications may be made within the scope of the
invention.

What 1s claimed 1s:

1. A computer-implemented method of processing rays in
a graphics processing system, the method comprising:

grouping a plurality of rays together into a ray bundle;

performing intersection testing on the rays of the ray
bundle; and
executing a plurality of instances of a shader program, an
instance corresponding to a ray of the ray bundle;

wherein the shader program 1s operable to utilize data
determined by the execution of an instance of the
shader program corresponding to a first ray of the ray
bundle 1n the execution of an instance of the shader
program for a further ray of the ray bundle.

2. The method of claim 1, further comprising:

emitting a secondary ray from each of two or more

instances of the shader program; and

grouping the secondary rays into another ray bundle.

3. The method of claam 2, wherein said two or more
instances of the shader program correspond to rays of the ray
bundle.

4. The method of claim 1, wherein said executing a
plurality of instances of a shader program 1s performed in
response to results of said performing intersection testing on
the rays of the ray bundle.

5. The method of claim 1, further comprising receiving an
indication via an API to indicate that said plurality of rays
are 1ntended to be coherent, wherein said plurality of rays
are grouped together 1nto the ray bundle on the basis of the
rece1ved 1ndication.

6. The method of claim 1, further comprising constructing
a data structure representing the plurality of rays which are
grouped together 1nto the ray bundle, wherein full precision
ray data 1s stored in the data structure, and wherein differ-
ence data 1s stored 1n the data structure for one or more of
the rays of the ray bundle representing differences 1n the ray
data compared to the full precision ray data stored in the data
structure.

7. The method of claim 6, wherein said full precision ray
data 1s stored 1n the data structure for one of the rays of the
ray bundle, and wherein said difference data 1s stored in the
data structure for the other rays of the ray bundle.

8. The method of claim 1, further comprising using results
of the intersection testing for the rays of the ray bundle to
determine whether the rays are to be maintained in the ray
bundle, wherein rays are maintained 1n the ray bundle if they
have matching intersection testing results, wherein rays are
considered to have matching intersection testing results 1i:

the rays intersect with the same primitive;

the rays intersect with the same mesh;

the rays intersect with the same object;

the intersections mvoke the same one or more shader

programs to be executed;

the difference between surface normals at the intersection

points 1s below an angular threshold; or

the difference between the ray depths in the intersection

points 1s below a depth threshold.

9. The method of claim 1, wherein the execution of an
instance of the shader program for said further ray of the ray
bundle comprises determining differential data for said
turther ray of the ray bundle using data for said first ray of
the ray bundle.

10. The method of claim 9, wherein the differential data
1s 1indicative of a gradient for the further ray.
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11. The method of claim 9, wherein the execution of the
instance of the shader program for said further ray comprises
using the determined diflerential data for the further ray to:
(1) determine a fragment footprint for the further ray, and/or
(1) select a mip map level for the further ray.

12. The method of claim 1, wherein the instances of the
shader program are executed in parallel for different rays of
the ray bundle.

13. The method of claim 1, further comprising splitting a
ray irom the ray bundle 1f the ray does not have matching
intersection testing results with other rays in the ray bundle.

14. The method of claim 1, further comprising, 1f a ray of
the ray bundle does not have matching intersection testing,
results with other rays in the ray bundle, marking the ray as
a tracker ray in the ray bundle, wherein tracker rays are used
to determine differential data for other rays in the bundle.

15. The method of claim 1, wherein the rays to be grouped
together are emitted due to the execution of a shader
program, wherein a decision as to which rays to group
together 1nto a ray bundle 1s defined 1n the shader program
causing the rays to be emitted.

16. The method of claim 1, wherein a ray bundle com-
Prises:

four rays corresponding to a 2x2 block of fragments; or

sixteen rays corresponding to a 4x4 block of fragments,

wherein only a 3x3 block of the rays are valid rays and
the remaining rays are tracker rays.

17. A graphics processing unit configured to process rays,
the graphics processing unit comprising:

a bundling module configured to group a plurality of rays

together into a ray bundle;

intersection testing logic configured to perform intersec-

tion testing on the rays of the ray bundle; and
processing logic configured to execute a plurality of
instances of a shader program, an 1nstance correspond-
ing to a ray of the ray bundle, wherein the shader
program 1s operable to utilize data determined by the
execution of an instance of the shader program corre-
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sponding to a first ray of the ray bundle 1n the execution
of an istance of the shader program for a further ray
of the ray bundle.

18. The graphics processing unit of claim 17, further
comprising ray memory for storing ray data for the rays of
the ray bundle, wherein the ray memory 1s configured to
store data for the rays of a ray bundle 1n a data structure,
wherein the data structure for the ray bundle comprises:

tull precision ray data for one of the rays of the ray
bundle; and

difference data for the other rays of the ray bundle
representing differences in the ray data compared to the
full precision ray data stored in the data structure.

19. The graphics processing unit of claim 17, wherein the
tull precision ray data comprises: (1) a floating point 3-com-
ponent vector to represent a ray origin, and (11) a floating
point 3-component vector to represent a ray direction; and

wherein the difference data comprises, for each of said

one or more of the rays of the ray bundle: (1) three
limited precision delta vectors for a ray origin, and (11)
three limited precision delta vectors for a ray direction.

20. A non-transitory computer readable storage medium

having stored thereon a computer readable description of an
integrated circuit that, when processed 1n an integrated
circuit manufacturing system, causes the integrated circuit
manufacturing system to manufacture a graphics processing
umt which 1s configured to process rays, the graphics
processing unit comprising:
a bundling module configured to group a plurality of rays
together mto a ray bundle;
intersection testing logic configured to perform intersec-
tion testing on the rays of the ray bundle; and
processing logic configured to execute a plurality of
instances of a shader program, an instance correspond-
ing to a ray of the ray bundle, wherein the shader
program 1s operable to utilize data determined by the
execution of an instance corresponding to a first ray of
the ray bundle i the execution of an instance of the
shader program for a further ray of the ray bundle.
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