US011809844B2

a2 United States Patent (10) Patent No.: US 11,809,844 B2

van Ijzendoorn 45) Date of Patent: Nov. 7, 2023
(54) CREATING AN APP METHOD AND SYSTEM 9,430,229 B1* 82016 Van Zijst GO6F 9/3844
10,915,316 B1* 2/2021 Tume}‘ **************** GO6F 9/3844
(71) Applicant: Mendix Technology B.V., Rotterdam 2006/0225040 A1* 10/2006 Waddington GO6F /3/ 71
(NL) 717/122

(Continued)

(72) Inventor: Arjan van Ijzendoorn, Utrecht (NL)
FOREIGN PATENT DOCUMENTS

(73) Assignee: MENDIX TECHNOLOGY B.V.,

Rotterdam (NL) WO 2019236519 Al 12/2019
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days. Mens, “A State-of-the-Art Survey on Software Merging”, 2002,
[EEE (Year: 2002).*
(21) Appl. No.: 17/348,742 (Continued)
(22) Filed: Jun. 15, 2021 Primary Examiner — Hossain M Morshed
(74) Attorney, Agent, or Firm — LEMPIA
(65) Prior Publication Data SUMMERFIEID KATZ 11.C
US 2021/0389933 Al Dec. 16, 2021 (57) ABSTRACT
(30) Foreign Application Priority Data A computer-implemented method of creating an app
includes providing an app development source artifact,
Jun. 16,J 2020 (EP) 20180268 providing a f1rst Changed artifact and a second Changed
artifact differing from the app development source artifact in
(51) Int. CL first diflerences and in second differences, respectively. The
GOol 8/36 (2018.01) app development source artifact, the first changed artifact,
(52) U.S. CL and the second changed artifact include information objects
CPC GO6I 8/36 (201301) to which a unique 1dentifier 1s assignedj respectively_ The
(58) Field of Classification Search first differences and the second differences are determined.
None The method includes determining 1f the first differences and
See application file for complete search history. the second differences are mergeable taking the respective
umque 1dentifier of the respective information objects into
(56) References Cited account. If the first differences and the second differences

are mergeable, the method includes merging the first difler-

U.S. PATENT DOCUMENTS ences and the second differences with the app development

8.453,112 B1* 5/2013 Brambley GOGF 8/71 source artifact, and developing the app by using the merged
717/113 app development source artifact.
8,516,434 B2* 82013 McPeak GO6F 8/36
717/100 19 Claims, 6 Drawing Sheets
1 30#-1 riﬁz 130#-1 r— 134
Delerming {elerming
[itferences Differences
~-130 ~-138
g _ g
Group Group
Differences | | Differences
Groups! |Groups
2
LUetect
Conflicts

e e e e e e e e e e e L e L L L

Conthicis

I e e i e e e e e e e e

If mergeahle.
merge |

US 11,809,844 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2019/0377558 Al1* 12/2019 Bach ... GO6F 8/71
2021/0389933 Al* 12/2021 wvan Ijzendoorn GO6F 8/36

OTHER PUBLICATIONS

Edwards, “Flexible Conflict Detection and Management In Collab-

orative Applications”, 1997, ACM (Year: 1997).*

European Search Report for European Application No. 20180268.
3-1224 dated Dec. 1, 2020.
Mens, Tom. “A state-oi-the-art survey on software merging.” IEEE

transactions on software engineering 28.5 (2002): 449-162.

* cited by examiner

US 11,809,844 B2

Sheet 1 of 6

Nov. 7, 2023

U.S. Patent

w

gy, gl gy TaFpFgiy Sl Fifplgl’ FyFgiy’ Tl gt Syl pFgFyiyl TFpyiy FpFgielt, ([FgFpg yFlgiel TpFgiply Fyfpligih Pyl TyFgFylfy FpFpFgilh. STyl FpipiyT iFpFgiy 3

gyl Ty gyl Ay Fagip PPl WP TelgFpFly Sy, PN gyt gy Pl g yFFgieF TaFgiely FpFgl, el Pt gy | Fpgiy e, N

Tylfigiipiyl FigiFipligih. gl Fpgl Fylfgiiy TelgFeiy

U.S. Patent Nov. 7,2023 Sheet 2 of 6 US 11,809,844 B2

FG 2

130 134

Determine
Differences

Determine
- Differences

U.S. Patent Nov. 7, 2023 Sheet 3 of 6 US 11,809,844 B2

FiG 3

134

Determine
Differences

130 ~—13Z2 130

—
a2
P

Detect
- Conflicts |

Auto-resolve
- Conflicts |

T mergeable:
| Merge ?

U.S. Patent Nov. 7,2023 Sheet 4 of 6 US 11,809,844 B2

U.S. Patent

Nov. 7, 2023

Sheet 5 of 6

FIG 5

212

—o14

US 11,809,844 B2

U.S. Patent Nov. 7, 2023 Sheet 6 of 6 US 11,809,844 B2

1000

1030 —Software/Firmware

US 11,809,844 B2

1
CREATING AN APP METHOD AND SYSTEM

This application claims the benefit of European Patent
Application No. EP 20180268.3, filed on Jun. 16, 2020,
which 1s hereby incorporated by reference 1n 1ts entirety.

TECHNICAL FIELD

The present disclosure 1s directed, 1n general, to software
management systems (e.g., systems for developing apps)
that may be used to manage, build, test, deploy, and 1terate
such apps (collectively referred to herein as product sys-
tems).

BACKGROUND

Recently, an increasing number ol computer software
products are used both for personal needs and for business
needs 1n the form of applications (throughout the present
patent document, simply referred to as “apps”). Such apps
may be used 1 a mobile context as well as on cloud
computing platforms and “on premise” and may provide a
specific set of functions. The present embodiments generally
relate to the development and the creation of such apps.

Currently, there exist product systems and solutions that
support app development. Such product systems may benefit
from 1mprovements.

SUMMARY AND DESCRIPTION

Variously disclosed embodiments include methods and
computer systems that may be used to facilitate creating an
app.

According to a first aspect of the present embodiments, a
computer-implemented method of creating an app may
include: providing an app development source artifact; and
providing a first changed artifact and a second changed
artifact differing from the app development source artifact in
first differences and 1n second differences, respectively. The
app development source artifact, the first changed artifact,
and the second changed artifact include information objects
to which a unique identifier 1s assigned, respectively. The
computer implemented method also includes determining
the first differences and the second diflerences, respectively;
determining 1f the first differences and the second difler-
ences are mergeable taking the respective umique 1dentifier
of the respective information objects into account; and 11 the
first differences and the second differences are mergeable,
merging the first differences and the second differences with
the app development source artifact, and developing the app
by using the merged app development source artifact.

According to a second aspect of the present embodiments,
a computer system may be arranged and configured to
execute the acts of this computer-implemented method of
creating an app. For example, the described computer sys-
tem may be arranged and configured to execute the follow-
ing acts: providing an app development source artifact;
providing a first changed artifact and a second changed
artifact differing from the app development source artifact in
first diflerences and in second differences, respectively,
where the app development source artifact, the first changed
artifact, and the second changed artifact include information
objects to which a unique 1dentifier 1s assigned, respectively;
determining the first differences and the second diflerences,
respectively; determining 1f the first differences and the
second differences are mergeable taking the respective
unique 1dentifier of the respective information objects 1nto

10

15

20

25

30

35

40

45

50

55

60

65

2

account; and 1f the first differences and the second difler-
ences are mergeable, merging the first differences and the
second differences with the app development source artifact;
and developing the app by using the merged app develop-
ment source artifact.

According to a third aspect of the present embodiments,
a computer-readable medium may be encoded with execut-
able instructions that, when executed, cause the described
computer system to carry out the described method of
creating an app. By way of example, the described com-
puter-readable medium may be non-transitory and may
further be a software component on a storage device.

The foregoing has outlined rather broadly the technical
teatures of the present disclosure so that those skilled in the
art may better understand the detailed description that fol-
lows. Additional features and advantages of the disclosure
will be described hereinafter. Those skilled in the art wall
appreciate that the conception and the specific embodiments
disclosed may be used as a basis for modifying or designing
other structures for carrying out the same purposes of the
present disclosure. Those skilled 1n the art will also realize
that such equivalent constructions do not depart from the
spirit and scope of the disclosure 1n its broadest form.

Various definitions for certain words and phrases are
provided throughout this patent document, and those of
ordinary skill in the art will understand that such definitions
apply 1n many, 1f not most, mnstances to prior as well as
future uses of such defined words and phrases. While some
terms may 1include a wide variety of embodiments, the

appended claims may expressly limit these terms to specific
embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1illustrates a functional block diagram of an
example system that facilitates creating an app 1n a product
system.

FIGS. 2-5 illustrate a flow diagram of example method-
ologies that facilitate creating apps 1 a product system,
respectively.

FIG. 6 1illustrates a block diagram of a data processing
system 1n which an embodiment may be implemented.

DETAILED DESCRIPTION

Various technologies that pertain to systems and methods
for creating an app 1 a product system will now be
described with reference to the drawings, where like refer-
ence numerals represent like elements throughout. The
drawings discussed below, and the various embodiments
used to describe the principles of the present disclosure in
this patent document are by way of illustration only and
should not be construed 1n any way to limit the scope of the
disclosure. Those skilled 1n the art will understand that the
principles of the present disclosure may be implemented in
any suitably arranged apparatus. It 1s to be understood that
functionality that 1s described as being carried out by certain
system elements may be performed by multiple elements.
Similarly, for example, an element may be configured to
perform functionality that 1s described as being carried out
by multiple elements. The numerous imnovative teachings of
the present patent document will be described with reference
to exemplary non-limiting embodiments.

An app generally refers to a software program that, on
execution, performs specific desired tasks. In general, a
number of apps are executed 1n a runtime environment

US 11,809,844 B2

3

containing one or more operating systems (“0OSs”), virtual
machines (e.g., supporting Java™ programming language),
device drivers, etc.

Apps may be created, edited, and represented using
traditional source code. Examples of such traditional source
code mnclude C, C++, Java, Flash, Python, Perl, and other
script-based methods of representing an app. Developing,
creating, and managing such script-based apps or parts of
such script-based apps may be accomplished by manual
coding of suitably trained users.

Developers often use Application Development Frame-
works (“ADFs”) (e.g., which are by themselves applications
or apps) for implementing/developing desired apps. An ADF
provides a set of pre-defined code/data modules that may be
directly/indirectly used in the development of an app. An
ADF may also provide tools such as an Integrated Devel-
opment Environment (“IDE”), code generators, debuggers,
etc., which facilitate a developer 1n coding/implementing the
desired logic of the app 1n a faster/simpler manner.

In general, an ADF simplifies app development by pro-
viding reusable components that may be used by app devel-
opers to define user intertfaces (“Uls”) and app logic by, for
example, selecting components to perform desired tasks and
defining the appearance, behavior, and interactions of the
selected components. Some ADFs are based on a model-
view-controller design pattern that promotes loose coupling,
and easier app development and maintenance.

According to another approach, apps may also be created,
edited, and represented using visual model-based represen-
tations. Unlike traditional source code implementations,
such apps may be created, edited, and/or represented by
drawing, moving, connecting, and/or disconnecting visual
depictions of logical elements within a visual modeling
environment. Visual model-based representations ol apps
may use symbols, shapes, lines, colors, shades, animations,
and/or other visual elements to represent logic, data or
memory structures or user interface elements. In order to
program a traditional script-based app, programmers are
typically required to type out detailed scripts according to a
complicated set of programming syntax rules. In contrast,
programming a visual model-based app may, in some cases,
be done by connecting various logical elements (e.g., action
blocks and/or decision blocks) to create a visual flow chart
that defines the operation of the app. Similarly, defining data
structures (e.g., variable types, database objects, or classes)
and/or user 1nterface elements (e.g., dropdown boxes, lists,
text iput boxes) 1 a visual model-based app may be done
by drawing, placing, or connecting visual depictions of
logical elements within a virtual workspace, as opposed to
typing out detailed commands 1n a script. Visual-model
based apps may therefore be more intuitive to program
and/or edit compared to traditional script-based apps.

For brevity, references to a “model,” a “visual model,” or
an “application” or “app” may refer to visual model-based
apps unless specifically indicated. In some cases, such visual
model-based apps may represent complete, stand-alone apps
for execution on a computer system. Visual model-based
apps may also represent discrete modules that are configured
to perform certain tasks or functions, but do not represent
complete apps; instead, such discrete modules may be
inserted mto a larger app or combined with other discrete
modules to perform more complicated tasks. Examples of
such discrete modules may include modules for validating a
ZIP code, for receiving information regarding current
weather from a weather feed, and/or for rendering graphics.

Visual models may be represented i two forms: an
internal representation and one or more associated visual

10

15

20

25

30

35

40

45

50

55

60

65

4

representations. The internal representation may be a file
encoded according to a file format used by a modeling
environment to capture and define the operation of an app
(or part of an app). For example, the internal representation
may define what inputs an app may receive, what outputs an
app may provide, the algorithms and operations by which
the app may arrive at results, what data the app may display,
what data the app may store, etc. The internal representation
may also be used to mstruct an execution environment how
to execute the logic of the app during runtime. Internal
representations may be stored in the form of non-human-
readable code (e.g., binary code). Internal representations
may also be stored according to a binary stored java script
object notation (JSON) format, and/or an XML format. At
run-time, an execution engine may use an internal represen-
tation to compile and/or generate executable machine code
that, when executed by a processor, causes the processor to
implement the functionality of the model.

The 1nternal representation may be associated with one or
more visual representations. Visual representations may
include visual elements that depict how an app’s logic tlows,
but which are not configured to be compiled or executed.
These visual representations may include, for example,
flow-charts or decision trees that show a user how the app
will operate. The visual models may also visually depict data
that 1s to be received from the user, data that 1s to be stored,
and data that 1s to be displayed to the user. These visual
models may also be teractive, which allows a user to
mamipulate the model 1n an intuitive way. For example,
visual representations may be configured to display a certain
level of detail (e.g., number of branches, number of dis-
played parameters, granularity of displayed logic) by
default. However, users may interact with the visual repre-
sentation 1n order to show a desired level of detail; for
example, users may display or hide branches of logic, and/or
display or hide sets of parameters. Details relating to an
clement of the visual model may be hidden from view by
default but may appear 1n a sliding window or pop-up that
appears on-screen when the user clicks on the appropriate
clement. Users may also zoom 1n or out of the model, and/or
pan across different parts of the model, to examine different
parts of the model. Users may also copy or paste branches
of logic from one section of the model 1into another section,
or copy/paste branches of logic from a first model mto a
second model. In some cases, parts of the model may contain
links to other parts of the model, such that if a user clicks on
a link, the user will automatically be led to another part of
the model. A viewing user may interact with a wvisual
representation in at least some of the same ways that the
viewing user might interact with the model 1t 1t were
displayed within a modeling environment. In other words,
the visual representation may be configured to mimic how
the model would appear 11 1t were displayed within a visual
modeling environment. A single internal representation may
correspond to multiple visual representations that use dii-
ferent styles or formatting rules to display app logic. For
example, multiple visual representations corresponding to
the same internal representation may differ from one another
in their use of color, elements that are included or omaitted,
and use of symbols, shapes, lines, colors, and/or shades to
depict logic flow.

With reference to FI1G. 1, a functional block diagram of an
example computer system or data processing system 100
that facilitates creating an app 120 1s illustrated. The pro-
cessing system 100 may include an app development plat-
form 124 including at least one processor 102 that 1is
configured to execute at least one application software

US 11,809,844 B2

S

component 106 from a memory 104 accessed by the pro-
cessor 102. The application software component 106 may be
configured (e.g., programmed) to cause the processor 102 to
carry out various acts and functions described herein. For
example, the described application software component 106
may include and/or correspond to one or more components
of an app development application that 1s configured to
generate and store product data 1n a data store 108 such as
a database. Further, the described application software com-
ponent 106 may include and/or correspond to one or more
components of an app creation or development application.

By way of example, the app development platform 124
may be cloud-based, internet-based, and/or be operated by a
provider providing app development and creation support,
including, for example, supporting low-code and/or visual
model-based app development. The user may be located
close to the app development platform 124 or remote (e.g.,
anywhere else, such as using a mobile device for connecting
to the app development platform 124, such as via the
internet). The mobile device may include an mput device
110 and a display device 112. In some examples, the app
development platform 124 may be installed and run on a
device of the user, such as a computer, laptop, pad, on-
premise computing facility, or the like.

Examples of product systems that may be adapted to
include the app creation and/or development features
described herein may include the low-code software plat-
form of Mendix Inc., of Boston, Mass., USA. This platiorm
provides tools to build, test, deploy, iterate, develop, create
and manage apps and 1s based on visual, model-driven
software development. The systems and methods described
herein may, however, be used in other product systems (e.g.,
PLM, PDM, ALM systems) and/or any other type of system
that generates and stores product data in a database. Also,
examples of databases that may be used as one or more data
stores described herein include database server applications
such as Oracle, Microsolt SQL Server, or any other type of
data store that 1s operative to store data records.

It may be dificult and time-consuming to create apps in
complex app development and/or management environ-
ments. For example, advanced coding or software develop-
ment or management knowledge of users may be required,
or selections of many options need to be made consciously,
both 1involving many manual steps, which 1s a long and not
cilicient process.

To enable the enhanced creation of apps 120, the
described product system or processing system 100 may
include at least one mnput device 110 and at least one display
device 112 (e.g., a display screen). The described processor
102 may be configured to generate a GUI 114 through the
display device 112. Such a GUI may include GUI elements
such as buttons, links, search boxes, lists, text boxes,
images, and scroll bars usable by a user to provide inputs
through the mput device 110 that cause creating an app 120.
By way of example, the GUI may include an app develop-
ment UI 122 provided to a user for developing the app 120.

In an example embodiment, the application software
component 106 and/or the processor 102 may be configured
to be provided with the app development source artifact 130.
Further, the application software component 106 and/or the
processor 102 may be configured to be provided with the
first changed artifact 132 and the second changed artifact
134 differing from the app development source artifact 130
in first differences 136 and in second differences 138,
respectively. The app development source artifact 130, the
first changed artifact 132, and the second changed artifact
134 may include information objects 140 to which a unique

10

15

20

25

30

35

40

45

50

55

60

65

6

identifier may be assigned, respectively. The application
soltware component 106 and/or the processor 102 may be
configured to determine the first differences 136 and the
second differences 138, respectively. Further, the application
soltware component 106 and/or the processor 102 may be
configured to determine 11 the first differences 136 and the
second differences 138 are mergeable taking the respective
unique 1dentifier of the respective information objects 140
into account. If the first differences 136 and the second
differences 138 are mergeable, the application software
component 106 and/or the processor 102 may be configured
to merge the first differences 136 and the second differences
158 with the app development source artifact 130. The
application software component 106 and/or the processor
102 may further be configured to develop the app 120 by
using the merged app development source artifact 130"

The app development source artifact 130, the first
changed artifact 132, and the second changed artifact 134
may, by way of example, be provided by one or a number of
users that make contributions to the development of the app
120. By way of example, app developers may start with a
base version and make branches resulting 1n an app devel-
opment source artifact 130 corresponding to the base version
and 1n one or more first changed artifact 132 and second
changed artifact 134 corresponding to the branches. The app
developers may work independently of each other and then
wish to merge their work with the work of other developers.

The app 120, the app development source artifact 130, the
first changed artifact 132, and the second changed artifact
134 may be stored in the data store 108. In example
embodiments, the app 120 may be stored in a different
repository or data store than the app development source
artifact 130, the first changed artifact 132, and the second
changed artifact 134. Also, the first changed artifact 132, the
second changed artifact 134, and/or the app development
source artifact 130 may be stored in different repositories or
data stores.

The first differences 136 and the second differences 138
may, by way of example, be such that, when comparing the
app development source artifact 130 with the first changed
artifact 132 and the second changed artifact 134, respec-
tively, one or more nformation objects 140 are added,
moved, or deleted, or such that one or more properties of one
or more information objects 140 are changed. Also, the first
differences 136 and the second diflerences 138 may, by way
of example, be such that a pointer to another information
object 140 has been created, changed, or deleted. Further, by
way ol example, the first diflerences 136 and the second
differences 138 may respectively be such that only one
amendment 1s made 1n the first changed artifact 132 and/or
the second changed artifact 134, respectively. This one
amendment may be, for example, one of the explained
differences (e.g., adding, moving, or deleting one 1nforma-
tion object 140, creating, changing or deleting a pointer to
another information object 140, or changing of one property
of one information object 140). In example embodiments,
the first differences 136 and the second differences 138 may
respectively include two or more of such amendments. In
these examples, the first differences 136 and the second
differences 138 may be understood as a list of diflerences,
respectively. When two sides (e.g., two developers) have
made changes (e.g., resulting in a first changed artifact 132
and a second changed artifact 134), there may be contlicts,
some of which may be resolved and/or merged according to
the present approach.

The mentioned information objects 140 have a respective
unique 1dentifier so that the information objects 140 may be

US 11,809,844 B2

7

found and retrieved in the respective artifact (e.g., the app
development source artifact 130, the first changed artifact
132 and the second changed artifact 134). The respective
unique 1dentifier may allow for finding and retrieving the
respective information object 140 even if the respective
information object 140 has been amended or moved. In
some examples, the respective unique identifier may be
unchanging, unchangeable, immutable, non-volatile, or any
combination thereol. By way of example, the respective
unique 1dentifier may be unchanging, unchangeable, 1mmu-
table, non-volatile, or any combination thereol during a
number of acts or all acts of the presently suggested method.
In further examples, the respective unique 1dentifier may be
unchanging, unchangeable, immutable, non-volatile, or any
combination thereol as soon as the respective unique 1den-
tifier has been assigned to a respective information object
140. The characteristics of the umique 1dentifier imply that
the umque identifier does not relate to a line number in
which an information object 140 may (e.g., temporarily or
currently) be located 1n an artifact (e.g., document) since the
line number 1n which an information object 140 1s located
may quickly change (e.g., simply by adding other informa-
tion objects 140 above this information object 140). Hence,
the mentioned line number 1s not a unique 1dentifier nor 1s
the line number unchanging, unchangeable, immutable, or
non-volatile.

By way of example, the information objects 140 con-
cerned by the first differences 136 may be 1dentified so that
the corresponding unique identifiers of these information
objects 140 are also 1dentified. Also, the mnformation objects
140 concerned by the second differences 138 may be 1den-
tified so that the corresponding unique identifiers of these
information objects 140 are also identified. In some
examples, the 1dentified unique identifiers are compared to
the unique 1dentifiers of the information objects 140 of the
app development source artifact 130. Hence, the first dii-
terences 136 and the second differences 138 may be 1den-
tified on the level of single information objects 140. The
respective unique 1dentifier may therefore facilitate and
provide a reliable determination of the first differences 136
between the first changed artifact 132 and the app develop-
ment source artifact 130, as well as a reliable determination
of the second differences 138 between the second changed
artifact 134 and the app development source artifact 130.

Further, the respective unique identifier of the respective
information object 140 may be taken into account (e.g., be
used) for determining 1f the first differences 136 and the
second differences 138 are mergeable. By way of example,
there may be some sorts of diflerences and/or changes to
some sorts of information objects 140 that may be classified
as mergeable or as not mergeable. In some examples, the
first differences 136 and the second differences 138 may be
completely independent of each other so that the first
differences 136 and the second differences 138 may be
mergeable. This classification may, for example, be done by
a user beforechand applying a certain logic or certain criteria.
In some examples, available machine learning algorithms or
artificial neural networks may be used for this classification
based on classifications done during a previous app devel-
opment and/or merge actions of comparable artifact docu-
ments.

The act of determining if the respective diflerences are
mergeable may hence include a check whether the differ-
ences and/or changes to the information objects 140 at hand
are classified as mergeable or as not mergeable. If the first
differences 136 and the second differences 138 are merge-
able, the corresponding merge may be carried out. The

10

15

20

25

30

35

40

45

50

55

60

65

8

corresponding merge may, for example, be made such that
the first differences 136 and the second differences 138 are
taken over by the app development source artifact 130. This
may result 1n a merged app development source artifact 130
that does not differ from the first changed artifact 132 and
the second changed artifact 134, at least concerning the
considered first differences 136 and second diflerences 138.

The app 120 may be developed using the merged app
development source artifact 130' (e.g., the original app
development source artifact 130 including the first difler-
ences 136 and second differences 138 merged with the
original app development source artifact 130).

In some examples, the application software component
106 and/or the processor 102 may further be configured to
determine contlicts between the first differences 136 and the
second differences 138. Further, the application software
component 106 and/or the processor may be configured to
classﬂ"y the respective diflerences as non-contlicting 1f there
1s no contlict involving the respective diflerence; further, the
application solftware component 106 and/or the processor
may be configured to classily the respective diflerences as
conflicting 1f there 1s at least one conflict mvolving the
respective diflerence. The application software component
106 and/or the processor 102 may further be configured to
classily the respective non-contlicting difference as merge-
able and the respective conflicting diflerence as not merge-
able.

This approach may prove to be eflicient and fast 1t there
are only few first differences 136 and second differences 138
(e.g., only one first difference 136 and only one second
difference 138) to be merged with the app development
source artifact 130.

In example embodiments, the application software com-
ponent 106 and/or the processor 102 may further be con-
figured to determine resolvable contlicts among the deter-
mined contlicts between the first differences 136 and the
second differences 138. The application software component
106 and/or the processor 102 may further be configured to
classily the respective diflerence with a resolvable contlict
as mergeable. Alternatively or additionally, the diflerences
with a resolvable conflict may be classified as already
merged or completed. Optionally, the application software
component 106 and/or the processor 102 may further be
configured to resolve the resolvable conflicts.

The resolvable contlicts may, by way of example, relate to
the above-mentioned classification of some sorts of difler-
ences and/or changes to some sorts of information objects
140 as mergeable. In some examples, the first diflerences
136 and the second diflerences 138 are not completely
independent of each other, but the first differences 136 and
the second diflerences 138 may nonetheless be mergeable.
Such a scenario may occur, for example, 1 the first differ-
ences 136 and the second differences 138 concern the same
information object 140, but there are only changes or
differences that may be considered not critical or important.
By way of example, the corresponding information object
140 corresponds to a button 1n a graphical user interface of
the app 120 to be created, the first differences 136 concern
the size of this button, and the second differences 138
concern the color of this button. In this example, the first
differences 136 and the second differences 138 may be
considered contlicting since the first differences 136 and the
second differences 138 concern the same information object
140; however, the first differences 136 and the second
differences 138 may both be taken over by the app devel-
opment source artifact 130 and hence be classified as
mergeable. In another example, both the first differences 136

US 11,809,844 B2

9

and the second differences 138 concern the color of this
button. In this example, the property “color of button” may
be classified as not critical, so that, for example, the first
differences 136 are taken over by the app development
source artifact 130, whereas the second differences 138 are
rejected and, by way of example, a corresponding informa-
tion 1s displayed to a user developing and creating the app
120 (e.g., via the app development UI 122).

In example embodiments, the application software com-
ponent 106 and/or the processor 102 may further be con-
figured to assign interconnected differences among the first
differences to first groups of diflerences, respectively, and
interconnected differences among the second differences to
second groups of differences, respectively. Further, the
application software component 106 and/or the processor
102 may be configured to determine group contlicts between
the first groups and the second groups. The application
software component 106 and/or the processor 102 may be
configured to classity the diflerences of groups not involved
in a group conilict as mergeable. Optionally, the application
soltware component 106 and/or the processor 102 may be
configured to classity the diflerences of groups mvolved 1n
at least one group conflict as not mergeable.

As mentioned above, in some examples, the first differ-
ences 136 and the second differences 138 may be understood
as a corresponding list of differences, respectively. Among
the first differences 136 and among the second differences
138, respectively, there may be differences that depend on
each other and, hence, are considered to be interconnected
differences. In some way, an interconnection of differences
may be differences that are closely related to each other. In
some examples, mterconnected differences may be differ-
ences that are mutually joined or related. For example, there
may be two or more diflerences concerning one single
information object 140, so that the joint relation of these two
or more differences concern this single information object
140 with the same unique identifier. These two or more
differences may then be considered to be interconnected
differences.

For example, 1 multiple properties of an information
object 140 have been changed, the multiple properties of the
information object 140 are considered together because
generally properties of information objects 140 are consid-
ered to be dependent and changes to the properties are to be
applied all or nothing. One exception to this consideration
may be that one mformation obJ ect 140 has independent
properties. Further, the grouping of differences may also
take 1nto account if any pointers were mtroduced or removed
by the differences. In example embodiments, the 1ntercon-
nected differences assigned to the respective groups are
those diflerences that may safely be merged with the app
development source artifact 130. Such “safe” differences
may, for example, avoid changes to the app development
source artifact 130 that are not desired by the app developer
or user. By way of example, “safe diflerences” do not break
or destroy the logic that the user has conceived and devel-
oped in the app development source artifact 130 for the
development and creation of the app 120.

In example embodiments, the transitive closure of a
dependency relationship of first diflerences 136 and second
differences 138, respectively, 1s taken into account to 1den-

tily interconnected diflerences. This provides, for example,
that three sets A, B, and C of first differences 136 are

considered to be interconnected differences and thus
assigned to one first group 11 set A 1s interconnected with set
B, and set B 1s interconnected with set C. By way of

example, three sets A, B, and C of first differences 136 have

10

15

20

25

30

35

40

45

50

55

60

65

10

a dependency relationship and, for the purposes of 1denti-
tying interconnected diflferences, the transitive closure of the
dependency relationship 1s taken into account.

In some examples, the following differences may be
considered to be interconnected differences: moving an
information object 140 1n the structure or hierarchy of the
app development source artifact 130 from one place to
another place (e.g., deleting the information object 140 at the
one place and creating the information object 140 at the
other place; moving a button in the graphical user interface
of the app 120 from one part of the app GUI to another part
of the app GUI; adding a pointer to a new imnformation object
140 and creating the new information object 140; deleting a
pointer to an information object 140 that 1s deleted).

In some examples, there may only be one first group
and/or one second group.

Once mterconnected differences have been assigned to
respective first groups and to respective second groups,
group contlicts between the first groups and the second
groups may be determined. In example embodiments, pairs
of one of the first groups and one of the second groups are
considered for determining whether there 1s a group contlict
between these two groups or not.

In some examples, one of the first groups and one of the
second groups may be considered independent such that
there 1s no group contlict 1f the corresponding first group and
the responding second group relate to different information
objects 140. In such examples, the first group and the second
group may only be 1n a group contlict 1f the first group and
the second group at least partly relate to the same informa-
tion object 140. As mentioned above, the first differences
136 and the second differences 138 may, by way of example,
include at least one of the following changes: changing (e.g.,
the properties of), deleting, and moving an information
object 140. Further, these diflerences may include adding a
new pointer to an information object 140 1n the first changed
artifact 132 and parallelly deleting the same information
object 140 1n the second changed artifact 134 (or vice versa).
There may be further possible first differences 136 and
second differences 138, some of which, however, may not
give rise to group contlicts (e.g., since the turther possible
first differences 136 and second differences 138 relate to
different information objects 140 or to creating a new
information object 140 1n the first changed artifact 132 or 1n
the second changed artifact 134).

In example embodiments, one of the first groups and one
of the second groups are considered not to have a group
conflict 11 the corresponding differences may safely be
merged with the app development source artifact 130. Such
“sate” diflerences may, for example, avoid changes to the
app development source artifact 130 that are not desired by
the app developer or user. By way of example, “safe
differences” do not break or destroy the logic that the user
has concerved and developed 1n the app development source
artifact 130 for the development and creation of the app 120.

In example embodiments, the transitive closure of the
contlict relationship 1s taken into account to identiy group
contlicts of the first groups and the second groups. This
provides, for example, that at least three groups A, B, and C,
where A and C are two groups of the first groups and B 1s
one group ol the second groups, are considered to have a
group contlict 1I group A has a group contlict with group B,
and group B has a group contlict with group C. By way of
example, the three groups A, B, and C have a conflict
relationship and for the purposes of identifying a group
contlict, the transitive closure of the contlict relationship 1s
taken 1nto account.

US 11,809,844 B2

11

Once the group conflicts have been determined, the
groups may be classified. The differences of groups that are
not mvolved in the group conflict may be classified as
mergeable, whereas the differences of groups that are
involved in the group conflict may be classified as not
mergeable.

The described grouping of changes or differences that are
logically connected or interdependent may further be 1llus-
trated for better understanding with the following analogy
when writing a new book. According to the grouping, newly
created object structures (e.g., with new unique 1dentifiers)
may recursively be accepted and classified as mergeable
(e.g., new chapters including sections of the book). Two
users may create the new chapters, and both new chapters
may be accepted and classified as mergeable. However, two
new prefaces of the book drafted by two users may not be
accepted since there may only be one preface in the book.
The grouping may help to 1dentity this conflict and to avoid
an unwanted merge of the two prefaces. Transferring this
illustration to the app development, the preface of the book
may correspond to the home page of an app 120 to be
developed; again, there may be only one app home page so
that two new home pages created by two users may not be
merged, but rather be classified as not mergeable. If the
differences concern two separate app pages, corresponding
to two new book chapters, being linked to the home page
(e.g., directly or indirectly), the separate app pages may be
merged and classified as mergeable. In another example, the
grouping may help to delete a whole structure (e.g., a book
chapter or an app page) since this may rule out keeping
sections within the chapter (or subordinate pages depending
on the deleted page) so that the complete chapter (or the
complete page) with all sections (or subordinate pages) 1s
deleted.

In some of these examples, the application software
component 106 and/or the processor 102 may further be
configured to determine resolvable group contlicts among
the determined group conflicts between the first groups and
the second groups. Further, the application software com-
ponent 106 and/or the processor 102 may be configured to
classity the differences of groups with resolvable group
contlicts as mergeable. Optionally, the application software
component 106 and/or the processor 102 may be configured
to resolve the resolvable group conflicts.

In some examples, a resolvable group conflict may
involve first differences 136 and second differences 138 that
both relate to changes to a list of information objects 140,
where the information objects 140 are listed according to a
grven order. According to a first example, a first information
object 1s mserted 1 a first position of the ordered list
according to the first diflerences 136, and a second infor-
mation object 1s inserted i1n the second position of the
ordered list according to the second differences 138. These
differences may regularly be considered to be 1n a group
contlict; however, these differences may also be considered
to be 1n a resolvable group contlict. For example, the initial
l1st of information objects 140 may be amended such that the
first information object 1s mserted in the first position of the
ordered list and the second information object 1s nserted 1n
the second position of the ordered list. According to a second
example, the ordered list 1s reordered according to the first
differences 136, whereas some of the listed information
objects 140 are deleted according to the second differences
138. These diflerences may regularly be considered to be 1n
a group conilict; however, these diflerences may also be
considered to be 1n a resolvable group conflict. For example,
the mnitial list of information objects 140 may be reordered

10

15

20

25

30

35

40

45

50

55

60

65

12

according to the first differences 136, and some of the listed
information objects 140 are deleted according to the second
differences 138. In some examples, group conflicts are
determined to be resolvable if (1) a first information object
1s 1nserted 1n a first position of an ordered list according to
the first differences 136 and a second information object 1s
inserted 1n a second position of the ordered list according to
the second diflerences 138, or (2) an ordered list 1s reordered
according to the first differences 136, whereas some of the
listed information objects 140 are deleted according to the
second differences 138, or any combination thereof.

Once the resolvable group contlicts have been resolved,
the differences of groups with resolvable group contlicts
may be classified as mergeable. Alternatively, or addition-
ally, the differences of groups with resolvable group con-
flicts may be classified as already merged or completed.

In example embodiments, the application software com-
ponent 106 and/or the processor 102 may further be con-
figured to assign at least three contlicting groups among the
first groups and the second groups to a respective hyper-
group, where the at least three groups are at least partly 1n
conilict with each other. Further, the application software
component 106 and/or the processor 102 may be configured
to determine resolvable group conflicts among the deter-
mined group conftlicts of the groups of the hypergroup. It all
group contlicts of the respective hypergroup are resolvable
group conflicts, the application software component 106
and/or the processor 102 may be configured to classify the
differences of the respective hypergroup as mergeable and
optionally, to resolve the group conflicts of the respective
hypergroup. If at least one of the group conflicts of the
respective hypergroup 1s a not resolvable group conflict, the
application solftware component 106 and/or the processor
102 may optionally be configured to classily the differences
of the respective hypergroup as not mergeable. Alterna-
tively, or additionally, if all group conflicts of the respective
hypergroup are resolvable group conftlicts, the differences
the resolvable hypergroup may be classified as already
merged or completed.

By way of example, the at least three contlicting groups
may be such that each group 1s in contlict with all other
groups. In some examples, the at least three conflicting
groups may only be partly in conflict, for example, such that
in a set of three conflicting groups, the first group 1s 1n
conflict with the second group (e.g., with respect to a {first
information object) and the second group 1s in contlict with
the third group (e.g., with respect to a second 1information
object), but there may not be a conilict between the {first
group and the third group. In this scenario, not each group
1s 1 conflict with all other groups, but rather, the three
conilicting groups may only be partly 1n contlict with each
other or all the other groups.

In example embodiments, the transitive closure of a
contlict relationship 1s taken into account to identity group
contlicts of the first groups and the second groups. By way
of example, the hypergroup may include a number of groups
among the first groups and the second groups that are 1n
contlict with each other taking into account the transitive
closure of a conflict relationship of the first groups and the
second groups. As already explained above, this may, for
example, involve at least three groups A, B, and C, where A
and C are two groups of the first groups and B 1s one group
of the second groups. The three groups A, B, and C may be
considered to have a group contlict 1f group A has a group
contlict with group B, and group B has a group contlict with
group C. Accordingly, the three groups A, B, and C may
form such a hypergroup. By way of example, the three

US 11,809,844 B2

13

groups A, B, and C have a conflict relationship, and for the
purposes of identifying a hypergroup, the transitive closure
of the conflict relationship 1s taken into account.

The determination of resolvable group conflicts among,
the determined group contlicts of the respective hypergroup
may, for example, be done as explained above 1n the context
of the determination of resolvable group contlicts among the
determined group contlicts between the first groups and the
second groups. If all group contlicts of the respective
hypergroup are resolvable group contlicts, the resolution of
the group contlicts of the respective hypergroup may, for
example, be done as explained above 1n the context of the
resolution of resolution group conflicts.

In some examples, the application soitware component
106 and/or the processor 102 may be further configured to
classity a first diflerence among the first differences 136 and
a second difference among the second differences 138 as
mergeable if the first difference and the second difference
concern at least one mergeable property of at least one {first
information object 140, at least two independent properties
of at least one second information object 140, and/or two
different information objects 140.

By way of example, the respective mergeable property of
the respective first information object 140 may be a property
of minor importance, such as the color of a button or window
in the graphical user interface of the app 120.

In some examples, the at least two independent properties
of the corresponding information object 140 may concern
the location and the color of a button or window 1n the
graphical user interface of the app 120. Most properties of
information objects 140, however, are not independent so
that accepting or rejecting the corresponding first difference
136 requires accepting or rejecting the corresponding second
difference 138, respectively. An example of such a depen-
dent property may be moving a button or window 1n the
graphical user interface of the app 120 from point A(X,y) to
B(x',y"), where accepting the horizontal move x—x' requires
accepting the vertical move y—y' to avoid an unintentional
misplacement of the corresponding button or window.

In many examples, two different information objects 140
may be considered to be independent so that the first
difference concerning the one information object 140 and
the second difference concerming the other information
object 140 may be classified as mergeable.

By way of example, the information objects may at least
partly be organized in a graph structure, where for the
determination if differences among the first differences 136
and the second diflerences 138 are mergeable, the graph
structure of the information objects 140 and the respective
unique 1dentifier of the information objects 140 of the graph
structure are taken into account, respectively.

The graph structure may be, 1n context of graph theory, as
a structure amounting to a set of objects in which some pairs
of the objects are 1n some sense “related”. Generally, the
graph structure may include the information objects 140
corresponding to the vertices or nodes of the graph, where
the information objects 140 may be related to each other and
hence be linked to each other via edges or lines. So, 1n some
examples, the respective vertex or node may correspond to
a respective information object 140 with a respective unique
identifier. The graph structure may 1nclude loops (e.g., edges
or lines that join a vertex to itsell). Such loops may be
realized by pointers linking an information object 140 to
another information object 140. The graph structure may
include or be characterized by a tree (e.g., an undirected
graph 1n which any two vertices are connected by exactly
one path).

10

15

20

25

30

35

40

45

50

55

60

65

14

By way of example, the respective umique identifier of the
information objects 140 of the graph structure may be used
to determine 1f the corresponding first differences 136 and
second differences 138 are mergeable (e.g., by identifying
correlations and dependencies 1n graph structure). In some
examples, considering the graph structure may facilitate
recognizing related and/or interdependent differences such
as deleting and 1information object 140 and correspondingly
deleting a pointer directed to the deleted information object
140.

In some examples, the information objects 140 are at least
partly organized in a tree structure. The application software
component 106 and/or the processor 102 may be configured
to classily differences among the first differences 136 and
the second differences 138 as mergeable 1f the respective
differences concern two diflerent information objects 140
arranged 1n different branches of the tree structure.

By way of example, the application software component
106 and/or the processor 102 may further be configured to
classily differences among the first differences 136 and the
second differences 138 as mergeable 11 the respective dif-
ferences concern a list of a first type of information objects
140, where the list of the first type and/or the order of the
information objects of the list of the first type 1s defined as
mergeable.

By way of example, the list of the first type may be an
enumeration of information objects 140 without a preferred
order, ranking, or maximum or minimum number of listed
information objects 140. Further, the information objects
140 of the list of the first type may only be used in the
background of the app 120 so that these information objects
140 are not displayed 1n the graphical user interface or pages
of the app 120. In this case, the order or number of the listed
information objects 140 may also not matter. An example of
such a list may be the list of entities 1n a domain model that
1s used for model-based app development that 1s explained
in more detail below.

By way of example, the respective differences may
include an addition, a deletion or a move of an information
object 140 to/from/in the list, respectively.

It should also be appreciated that in some of these
examples, the respective differences include an addition of
an mformation object 140, where the addition of the infor-
mation object 140 1s made at a given position relative to a
position of at least one other mnformation object 140 of the
list of the first type, or where the addition of an information
object 140 1s made at the end of the list of the first type 1f
the at least one other information object 140 has been
removed from the list of the first type.

In example embodiments, the addition of the information
object 140 1s either made at a given position relative to a
position of another information object 140 of the list of the
first type or, 1f this other information object 140 of the list
of the first type has been removed from the list of the first
type, at the end of the list of the first type. Such examples
may provide for mergeable, ordered lists, where the order of
the information objects 140 in the list does not matter to a
user. Corresponding additions may still be merged automati-
cally. For example, the list of information objects 140 may
correspond to a list of widgets on a page of the app 120 to
be created, where this list of widgets 1s ordered. If two users
make changes to this list of widgets that are far enough apart
from each other, 1t may still be fine to combine the changes
while respecting the positions of the insertions.

Even 11 one of the two users reorders the list and the
changes are too close, an automatic merge of the differences
may still be done. In such cases, a “review contlict” may be

US 11,809,844 B2

15

left behind, reminding the user to check the final order of the
list. Such a review conflict may, by way of example, be
displayed via the app development Ul 122 to a user during
or after the merge of the corresponding first ditferences 136
and second differences 138 with the app development source
artifact 130. The display in the app development UI 122 may
include the corresponding first diflerences 136, second dii-
ferences 138, and the merged version of the app develop-
ment source artifact 130'. Additionally, the display 1n the app
development Ul 122 may include one or more buttons for
the user to select/confirm the merge of eirther the first
differences 136 and/or the second differences 138 or reject-

ing both the first differences 136 and the second differences
138.

In example embodiments, the application software com-
ponent 106 and/or the processor 102 may further be con-
figured to classily diflerences among the first differences
136 and the second diflerences 138 as not mergeable 11 the
respective differences concern the order of a list of a second
type of information objects 140, where the order of the list
of the second type 1s defined as fixed.

Corresponding differences concerning the order of the list
of the second type may, by way of example, be an addition,
removal, or a reordering of the information objects 140
to/from/of the list of the second type. By way of example,
inserting two different information objects 140 1n the same
position of the list of the second type would concern the
order of the list of the second type and hence imply that the
corresponding differences are classified as not mergeable.
Exemplary lists of the second type may include lists of
information objects 140 to be displayed to and selected by
a user 1n the app 120 to be developed (e.g., 1n app pages).
Lists of the second type may further be lists with a strict
order and optionally a given number of listed information
objects 140 to be respected.

In some examples, the order of the listed information
objects 140 of the corresponding list of the second type may
be defined and thus fixed by a user. The order may also be
defined, by way of example, by certain rules to be respected
by the list (e.g., an alphabetical order of the listed informa-
tion objects 140 of the corresponding list of the second
type).

In example embodiments, the application software com-
ponent 106 and/or the processor 102 may further be con-
figured to classily diflerences among the first differences
136 and the second diflerences 138 as not mergeable 11 the
respective diflerences concern a list of a third type of
information objects 140 and result in changed properties of
the list of the third type. The changed properties of the list
of the third type do not comply with given acceptable
properties of the list of the third type.

Corresponding differences concerning the order of the list
of the third type may, by way of example, be an addition,
removal, or a reordering of the information objects 140
to/from/of the list of the third type. In some examples, the
acceptable properties of the listed information objects 140 of
the corresponding list of the third type may be defined and
thus fixed by a user. The acceptable properties may also be
defined, by way of example, by certain rules to be respected
by the list. By way of example, a corresponding list of the
third type may have a defined length (e.g., less than four
information objects 140). Then, 11 two diflerent users wish
to add one information object 140, respectively, to a list of
the third type consisting of two information objects 140, the
resulting merged list of the third type would consist of four
information objects 140 that do not comply with the accept-

10

15

20

25

30

35

40

45

50

55

60

65

16

able properties. The corresponding first differences 136 and
second differences 138 would hence be classified as not
mergeable.

In some of these examples, the acceptable properties of
the list of the third type include a fixed order or a fixed
number of the information objects 140 of the list of the third
type.

In further examples, the acceptable properties may
include the type or properties of listed information objects
140, such as integers, strings, locations, names, etc.

In example embodiments, the app development source
artifact 130, the first changed artifact 132, and/or the second
changed artifact 134 includes at least a part of a model that
1s used for model-based app development, where the model
or the part of the model 1s taken into account for the
determination 1 the first differences 136 and the second
differences 138 are mergeable.

For model-based app development, a model that may
describe or characterize the app 120 to be created and/or
functionalities of the app 120 to be created may be used. By
way of example, this model may include the above-men-
tioned information objects 140, where these information
objects 140 may have certain properties. This model may
include, for example, pages of the app, where the pages may
serve to display information, such as the information objects
140 or information derived from the information objects
140, to an app user. In further examples, this model may
include worktlows (e.g., routines for processing data related
to information objects 140 or for interacting with the app
user). In some examples, the workilows create relations or
pointers (e.g., optionally also edges, lines, or loops 1n terms
of the above-mentioned graph structure) between informa-
tion objects 140 that are part of the model. This model may,
by way of example, include a metamodel that may describe
the properties of elements, where objects are instances of
clements and where these objects may be included 1n the
above-mentioned information objects 140.

Below 1s an example metamodel describing the properties
ol an element:

modelunit Enumeration : Document {
public values: list EnumerationValue

public element EnumerationValue {
public name: String
caption: Text = Text()
image: Image by-name optional

h

An enumeration 1s a document that includes a number of
EnumerationValues, and each value has a name, a caption
described by a Text object, and refers to an 1mage by name.

There are four kinds of properties:

1. Primitive value property: the property value i1s of a
primitive type such as integer or string. See ‘name’ in the
example above.

2. Primitive list property: the property value 1s a list of
values of primitive type. For example, a list of widths of
columns.

3. Object value property: the property value 1s a contained
object. See ‘caption’ 1n the example above. A Text object
represents a translatable text and contains other objects that
list the translations.

4. Object list property: the property contains a list of
contained objects. See ‘values’ 1n the example above.

Model-based app development and taking the model nto
account for merging changes or diflerences may offer vari-

US 11,809,844 B2

17

ous advantages. This model or domain model may be stored
in the app development source artifact 130 (e.g., 1n part,
completely, with or without additional information). This
model may, for example, include a domain model that may,
for example, be understood as an abstracted relational data-
base (e.g., based upon standard UML notation and object-
oriented principles). In other words, the domain model may
be a wvisual representation of the data that the app 120
includes or consists of. Such a visual approach to application
development 1s particularly advantageous since the visual
approach allows for building apps 120 with agility and for
quickly building and growing an app 120 over time. The
domain model may, by way of example, include or consist
of three main elements: entities that represent objects;
attributes that assign properties and values to the entities;
and associations that allow entities to communicate with one
another. The associations may, by way of example, be
equivalent with the above-mentioned pointers.

The structure of the model or the domain model may
determine what the database for storing the information
objects 140, the model, and/or the domain model will look
like. Each entity may become a database table, and each
attribute may become a column 1n the database. Every object
stored 1n the database (e.g., a training course) may become
a row 1n the corresponding database table. This may imply
that 1 something 1s not 1n the domain model, 1t cannot be
added to the database.

By way of example, a database table for an entity “Train-
ing Course” with these attributes

Training
Course

Title
Duration
Price

may look like this when a number of training events for this
training course may be scheduled:

Price

ID Title Duration

Herein, ID 1s not an attribute, but may be the unique
identifier mentioned above. The unique 1dentifier may make
sure that every object (e.g., information object 140) always
has a umique 1dentifier (ID) so that the system knows which
object 1t 1s.

Changes to the model and/or the domain model may be
made as often as desired, and the database will synchronize
when the app 120 1s published again. For example, when the
name of an enfity or attribute or generally an information
object 140 1s changed, the app 120 will still work, thanks to
the corresponding unique identifier.

As mentioned above, the model may include a visual
representation of the data that the app 120 includes or
consists of. This provides, for example, that the model may
include all information characterizing the functionalities of
the app 120 to be created. Hence, the model may be
considered as one of the most important work results and
core intellectual property of the user(s) developing the app.
Therefore, 1t 1s very important to protect the model and to
make sure not to “break’ the model when merging the first
differences 136 and the second differences 138 with the app
development source artifact 130. For example, changing

10

15

20

25

30

35

40

45

50

55

60

65

18

essential characteristics of the model triggered by a potential
merge ol conflicting changes should be avoided.

To this end, the model or the part of the model included
in the app development source artifact 130 are taken into
account when determining 1f the first differences 136 and the
second difference 138 are mergeable.

By way of example, if the first differences 136 and the
second differences 138 are classified as not mergeable, the
application software component 106 and/or the processor
102 may further be conﬁgured to display the first diflerences
136 and the second differences 138 to a user through an app
development Ul 122 for selecting the first differences 136
and/or the second difference 138 to be introduced to the app
development source artifact 130, or for rejecting the first

differences 136 and the second difference 138. The appli-

cation software component 106 and/or the processor 102
may further be configured to capture the selection intent of
the user in response to user interactions with the app
development UI 122 and to merge the first diflerences 136
and/or the second diflerences 138 with the app development
source artifact 130 or to leave to the app development source
artifact 130 unchanged corresponding to the captured selec-
tion intent of the user.

In some examples, the app development Ul 122 may be
accessible to the user through a browser or a client. In some
example embodiments, the functionalities of app develop-
ment UI 122 are available in one unified app interaction Ul
that 1s communicatively coupled to the app management
platform 124 and provided to the user for interaction.

The provided app development Ul 122 may, by way of
example, interact with an ADF, IDE, or visual model-based
representations that are mentioned above and may be used to
develop the app 120. The app development UI 122 may be
displayed to the user using the display device 112. The user
may provide app development intent of the user via input of
the user to the app development Ul 122 using the input
device 110.

By way of example, a visual representation of a model
characterizing the app 120 may be displayed to a user via the
app development Ul 122. Such an example may occur 1n the
context of the above-mentioned low-code app development
that may involve visual model-based app development. In
example embodiments, the creation or generation of the app
120 using the app development UI 122 and/or the app
management platform 124 may already be completed when
a model and/or visual representation characterizing the app
120 (e.g., the functionalities and/or interfaces of the app) has
been achieved based on the interaction with the app devel-
opment Ul 122 by the user.

In example embodiments, the application software com-
ponent 106 and/or the processor 102 may further be con-
figured to classity the first differences 136 and the second
differences 138 as mergeable if the first differences 136 and
the second differences 138 are i1dentical.

In some examples, 1f the first diflerences 136 and the
second differences 138 are mergeable, the application soft-
ware component 106 and/or the processor 102 may further
be configured to display the first differences 136, the second
differences 138, and at least the corresponding part of the
merged app development source artifact 130' to a user
through the app development Ul 122. By way of example,
this display to a user may occur if resolvable contlicts related
to corresponding first diflerences 136 and second differences
138 (e.g., the above-mentioned group conflicts) have been
resolved. This display to the user may further occur, for
example, 1 a “review contlict” as described above has been

US 11,809,844 B2

19

identified during the merge of corresponding first differences
136 and second differences 138.

The described examples may provide an efhicient way for
users to create apps 120 by enabling the described enhanced
creation of apps 120. Thus, the described examples may
reduce the total cost of ownership of the development and
management of apps 120 and of such apps 1n general, by
alleviating or at least minimizing the need for users or
administrators to have advanced coding knowledge or to
manually make conscious selections of many options. Such
cilicient app creation may be leveraged in any industry (e.g.,
Aerospace & Detense, Automotive & Transportation, Con-
sumer Products & Retail, Electronics & Semiconductor,
Energy & Utilities, Industrial Machinery & Heavy Equip-
ment, Marine, or Medical Devices & Pharmaceuticals).
Such app creation may also be applicable to a consumer
facing the need to quickly create own apps.

For example, the above examples are equally applicable
to the computer system 100 (e.g., the app management
platform 124) arranged and configured to execute the acts of
the computer-implemented method of creating an app 120
and to the corresponding computer-readable medium
explained 1n the present patent document, respectlvely

Throughout this patent document, the first differences 136
and the second differences 138 may respectively be under-
stood such that only one amendment 1s made in the first
changed artifact 132 and the second changed artifact 134
compared to the app development source artifact 130,
respectively. This one amendment may be, for example, one
of the differences explained above (e.g., adding, moving, or
deleting one information object 140, creating, changing, or
deleting a pointer to another information object 140, and/or
changing one property of one information object 140). In
example embodiments, the first differences 136 and the
second differences 138 may respectively include two or
more of such amendments.

The differences may, by way of example, be such that,
when comparing the app development source artifact 130
with the first changed artifact 132 and the second changed
artifact 134, respectively, one or more information objects
140 are added, moved, or deleted, a pointer to another
information object 140 1s created, changed, or deleted, or
such that one or more properties of one or more information
objects 140 are changed. Further, by way of example, the
first differences 136 and the second diflerences 138 may
respectively be such that only one amendment 1s made in the
first changed artifact 132 and the second changed artifact
134, respectively. This one amendment may be, for example,
one of the explained differences (e.g., additionally, move or
deletion of one information object 140 or change of one
property of one information object 140).

Further, an analogous method may be applied when
dealing with one or more additional changed artifacts. The
corresponding additional differences along with the unique
identifiers of corresponding information objects 140 may
also be taken into account when determinming differences,
when determining whether the determined are mergeable,
and when merging the differences with the app development
source artifact 130 11 the diflerences are mergeable. Also, the
explained methodology relating to group conflicts may be
applied to such cases.

FIG. 2 illustrates a flow diagram of an example method-
ology that facilitates creatmg apps 120 1n a product system
100. First, the first differences 136 may be determined
between the app development source artifact 130 and the
first changed artifact 132, and the second differences 138
may be determined between the app development source

5

10

15

20

25

30

35

40

45

50

55

60

65

20

artifact 130 and the second changed artifact 134. Then, 1t
may be determined 11 the first differences 136 and the second
differences 138 are mergeable taking into account the
respective unique identifier of the respective information
objects 140. If the first differences 136 and the second
differences 138 are mergeable, the first differences 136 and
the second differences 138 may be merged with the app
development source artifact 130.

FIG. 3 illustrates a flow diagram of another example
methodology that facilitates creatmg apps 120 1n a product
system 100. First, the first differences 136 may be deter-
mined between the app development source artifact 130 and
the first changed artifact 132, and the second diil

erences 138
may be determined between the app development source
artifact 130 and the second changed artifact 134. Then, the
first differences 136 may be grouped by assigning intercon-
nected differences among the first differences 136 to first
groups of differences. Accordingly, the second differences
138 may be grouped by assigning interconnected diflerences
among the second diflerences 138 two second groups of
differences. For these two acts as well as for other acts, the
respective unique identifier of the respective information
objects 140 may be taken into account. Contlicts between
first and second groups may then be detected by determining
group contlicts between the first groups and the second
groups. By way of example, the differences of groups not
involved 1n a group contlicts may be classified as mergeable
and optionally, the diflerences of groups involved 1n at least
one group conflict as not mergeable. Some of the conflicts
may then be auto-resolved by determining resolvable group
conflicts among the determined group conflicts between the
first groups and the second groups and by resolving the
resolvable group conflicts. By way of example, the differ-
ences of groups with resolvable group conflicts may be
classified as mergeable. Finally, 1f the first diflerences 136
and the second differences 138 are mergeable, the first
differences 136 and

the second differences 138 may be
merged with the app development source artifact 130. This
merge may include the differences of groups with resolvable
group conilicts that have been resolved and classified as
mergeable. Alternatively, or additionally, the differences of
groups with resolvable group conflicts may be classified as
already merged or completed.

FIG. 4 1llustrates a flow diagram of yet another example
methodology that facilitates creating apps 120 1n a product
system 100. The data store 108 may include at least a draft
version of the app to be created 120, the app development
source artifact 130, the first changed artifact 132, and the
second changed artifact 134. The app development source
artifact 130, the first changed artifact 132, and the second
changed artifact 134 may each include information objects
140 to which a unique 1dentifier may be assigned, where the
first changed artifact 132 may differ from the app develop-
ment source artifact 130 in first differences 136 and the
second changed artifact 134 may differ from the app devel-
opment source artifact 130 and second differences 138.

The first differences 136 and the second diflerences 138
may be determined. Further, 1t may be determined whether
the first differences 136 and the second diflerences 138 may
be mergeable taking into account the respective unique
identifier of the respective mformation objects 140. If the
first differences 136 and the second differences 138 are
mergeable, the first differences 136 and the second differ-
ences 138 may be merged with the app development source
artifact 130. The thus obtained merged app development
source artifact 130' may then include an amended informa-
tion object 140"

US 11,809,844 B2

21

Eventually, an amended app 120' may be developed by
using the merged app development source artifact 130
including the amended information object 140"

It 1s important to note that while the disclosure includes a
description 1n the context of a fully functional system and/or
a series of acts, those skilled in the art will appreciate that
at least portions of the mechanism of the present disclosure
and/or described acts are capable of being distributed in the
form of computer-executable instructions contained within
non-transitory machine-usable, computer-usable, or com-
puter-readable medium 1n any of a variety of forms. Those
skilled 1n the art will also appreciate that the present dis-
closure applies equally regardless of the particular type of
instruction or data bearing medium or storage medium
utilized to actually carry out the distribution. Examples of
non-transitory machine usable/readable or computer usable/
readable mediums include: ROMs, EPROMs, magnetic
tape, tloppy disks, hard disk drives, SSDs, flash memory,
CDs, DVDs, and Blu-ray disks. The computer-executable
instructions may include a routine, a sub-routine, programs,
applications, modules, libraries, a thread of execution, and/
or the like. Still further, results of acts of the methodologies
may be stored 1n a computer-readable medium, displayed on
a display device, and/or the like.

Referring now to FIG. 5, a methodology 500 that facili-
tates creating apps 1s illustrated. The method may start at
502, and the methodology may include several acts carried
out through operation of at least one processor.

These acts may include: an act 504 of providing an app
development source artifact; an act 506 of providing a first
changed artifact and a second changed artifact differing from
the app development source artifact in first differences and
in second differences, respectively, where the app develop-
ment source artifact, the first changed artifact, and the
second changed artifact include information objects to
which a unique identifier 1s assigned, respectively; an act
508 of determining the first differences and the second
differences, respectively; an act 5310 of determiming 11 the
first differences and the second diflerences are mergeable
taking the respective unique identifier of the respective
information objects into account; and 1f the first differences
and the second diflerences are mergeable, an act 512 of
merging the first differences and the second diflerences with
the app development source artifact, and an act 514 of
developing the app by using the merged app development
source artifact. At 516 the methodology may end.

The methodology 500 may include other acts and features
discussed previously with respect to the computer-imple-
mented method of creating an app.

For example the methodology may further include the
acts of assigning interconnected differences among the first
differences to first groups of diflerences, respectively, and
interconnected differences among the second differences to
second groups of differences, respectively. The method may
turther include determining group contlicts between the first
groups and the second groups, and classitying the difler-
ences ol groups not involved 1n a group contlict as merge-
able and the differences of groups involved 1n at least one
group contlict as not mergeable.

Further, the methodology may further include the acts of
determining resolvable group conflicts among the deter-
mined group conilicts between the first groups and the
second groups, resolving the resolvable group conflicts, and
classitying the diflerences of groups with resolvable group
conilicts as mergeable.

Example embodiments of the methodology may also
include the acts of assigning at least three contlicting groups

5

10

15

20

25

30

35

40

45

50

55

60

65

22

among the first groups and the second groups to a respective
hypergroup. The at least three groups are at least partly in
conflict with each other. Resolvable group conflicts are
determined among the determined group contlicts of the
respective hypergroup. If all group conflicts of the respective
hypergroup are re-solvable group conflicts, the group con-
flicts of the respective hypergroup are resolved, and the
differences of the respective hypergroup are classified as
mergeable.

Further examples of the methodology may further include
the act of clasmfymg differences among the first differences
and the second differences as mergeable 1f the respective
differences concern a list of a first type of information
objects. The list of the first type and/or the order of the
information objects of the list of the first type 1s defined as
mergeable.

Further examples of the methodology may further include
the act of classifying differences among the first differences
and the second differences as not mergeable 11 the respective
differences concern the order of a list of a second type of
information objects. The order of the list of the second type
1s defined as fixed.

Further, the methodology may further include the acts of
classitying differences among the first differences and the
second differences as not mergeable 11 the respective difler-
ences concern a list of a third type of information objects and
result 1n changed properties of the list of the third type. The
changed properties of the list of the third type do not comply
with given acceptable properties of the list of the third type.

Example embodiments of the methodology may also
include, 1t the first difl

erences and the second diflerences are
classified as not mergeable, the acts of displaying the first
differences and the second differences to a user through an
app development Ul for selecting the first differences and/or
the second diflerence to be introduced to the app develop-
ment source artifact or for rejecting the first diflerences and
the second difference. The selection intent of the user may
be captured in response to user interactions with the app
development Ul, and the first differences and/or the second
differences may be merged with the app development source
artifact or leaving to the app development source artifact
unchanged corresponding to the captured selection intent of
the user.

As discussed previously, acts associated with these meth-
odologies (other than any described manual acts such as an
act of manually making a selection through the mnput device)
may be carried out by one or more processors. Such pro-
cessor(s) may be included 1n one or more data processing
systems, for example, that execute soltware components
operative to cause these acts to be carried out by the one or
more processors. In an example embodiment, such software
components may include computer-executable instructions
corresponding to a routine, a sub-routine, programs, appli-
cations, modules, libraries, a thread of execution, and/or the
like. Further, software components may be written 1n and/or
produced by software environments/languages/frame-works
such as Java, JavaScript, Python, C, C #, C++, or any other
soltware tool capable of producing components and graphi-
cal user iterfaces configured to carry out the acts and
teatures described herein.

FIG. 6 illustrates a block diagram of one embodiment of
a data processing system 1000 (e.g., a computer system) 1n
which an embodiment may be implemented, for example, as
a portion of a product system, and/or other system opera-
tively configured by software or otherwise to perform the
processes as described herein. The data processing system
1000 may include, for example, the app management plat-

US 11,809,844 B2

23

form 124 and/or the computer system or data processing
system 100 mentioned above. The data processing system
depicted includes at least one processor 1002 (e.g., a CPU)
that may be connected to one or more bridges/controllers/
buses 1004 (e.g., a north bridge, a south bridge). One of the
buses 1004, for example, may include one or more I/O buses
such as a PCI Express bus. Also connected to various buses
in the depicted example may include a main memory 1006
(RAM) and a graphics controller 1008. The graphics con-
troller 1008 may be connected to one or more display
devices 1010. In some embodiments, one or more control-
lers (e.g., graphics, south bridge) may be integrated with the
CPU (on the same chip or die). Examples of CPU architec-
tures mclude TA-32, x86-64, and ARM processor architec-
tures.

Other peripherals connected to one or more buses may
include communication controllers 1012 (e.g., Ethernet con-
trollers, WiF1 controllers, cellular controllers) operative to
connect to a local area network (LAN), Wide Area Network
(WAN), a cellular network, and/or other wired or wireless
networks 1014 or communication equipment.

Further components connected to various busses may
include one or more I/O controllers 1016 such as USB
controllers, Bluetooth controllers, and/or dedicated audio
controllers (e.g., connected to speakers and/or micro-
phones). Various peripherals may be connected to the I/O
controller(s) (e.g., via various ports and connections) includ-
ing input devices 1018 (e.g., keyboard, mouse, pointer,
touch screen, touch pad, drawing tablet, trackball, buttons,
keypad, game controller, gamepad, camera, microphone,
scanners, motion sensing devices that capture motion ges-
tures), output devices 1020 (e.g., printers, speakers) or any
other type of device that 1s operative to provide mputs to or
receive outputs from the data processing system. Many
devices referred to as mput devices or output devices may
both provide 1mputs and recerve outputs ol communications
with the data processing system. For example, the processor
1002 may be mtegrated into a housing (e.g., such as a tablet)
that includes a touch screen that serves as both an input and
display device. Further, some input devices (e.g., such as a
laptop) may include a plurality of different types of input
devices (e.g., touch screen, touch pad, keyboard). Other
peripheral hardware 1022 connected to the I/O controllers
1016 may include any type of device, machine, or compo-
nent that 1s configured to communicate with a data process-
ing system.

Additional components connected to various busses may
include one or more storage controllers 1024 (e.g., SATA).
A storage controller may be connected to a storage device
1026 such as one or more storage drives and/or any asso-
ciated removable media, which may be any suitable non-
transitory machine usable or machine-readable storage
medium. Examples include nonvolatile devices, volatile
devices, read only devices, writable devices, ROMs,
EPROMSs, magnetic tape storage, floppy disk drives, hard
disk drives, solid-state drives (SSDs), flash memory, optical
disk drives (CDs, DVDs, Blu-ray), and other known optical,
clectrical, or magnetic storage devices drives and/or com-
puter media. Also, in some examples, a storage device such
as an SSD may be connected directly to an 1I/O bus 1004
such as a PCI Express bus.

A data processing system 1n accordance with an embodi-
ment of the present disclosure may include an operating
system 1028, software/firmware 1030, and data stores 1032
(e.g., that may be stored on a storage device 1026 and/or the
memory 1006). Such an operating system may employ a
command line 1terface (CLI) shell and/or a graphical user

10

15

20

25

30

35

40

45

50

55

60

65

24

interface (GUI) shell. The GUI shell permits multiple dis-
play windows to be presented 1n the graphical user interface
simultaneously, with each display window providing an
interface to a different application or to a different instance
of the same application. A cursor or pointer in the graphical
user interface may be mampulated by a user through a
pointing device such as a mouse or touch screen. The
position of the cursor/pointer may be changed, and/or an
event, such as clicking a mouse button or touching a touch
screen, may be generated to actuate a desired response.
Examples of operating systems that may be used in a data
processing system may include Microsoft Windows, Linux,
UNIX, 108, and Android operating systems. Also, examples
of data stores include data files, data tables, relational
database (e.g., Oracle, Microsoft SQL Server), database
servers, or any other structure and/or device that 1s capable
of storing data that 1s retrievable by a processor.

The commumnication controllers 1012 may be connected to
the network 1014 (not a part of data processing system
1000), which may be any public or private data processing
system network or combination of networks, as known to
those of skill i the art, including the Internet. Data pro-
cessing system 1000 may communicate over the network
1014 with one or more other data processing systems such
as a server 1034 (e.g., also not part of the data processing
system 1000). However, an alternative data processing sys-
tem may correspond to a plurality of data processing sys-
tems implemented as part of a distributed system in which
processors associated with several data processing systems
may be 1n communication by way of one or more network
connections and may collectively perform tasks described as
being performed by a single data processing system. Thus,
when referring to a data processing system, such a system
may be implemented across a number of data processing
systems organized in a distributed system 1n communication
with each other via a network.

Further, the term “controller” may be any device, system,
or part thereof that controls at least one operation, whether
such a device 1s implemented 1n hardware, firmware, soft-
ware or some combination of at least two of the same. The
functionality associated with any particular controller may
be centralized or distributed, whether locally or remotely.

In addition, data processing systems may be implemented
as virtual machines 1 a virtual machine architecture or
cloud environment. For example, the processor 1002 and
associated components may correspond to a virtual machine
executing 1n a virtual machine environment of one or more
servers. Examples of virtual machine architectures include
VMware ESC1, Microsoit Hyper-V, Xen, and KVM.

Those of ordinary skill 1n the art will appreciate that the
hardware depicted for the data processing system may vary
for particular implementations. For example, the data pro-
cessing system 1000 in this example may correspond to a
computer, workstation, server, PC, notebook computer, tab-
let, mobile phone, and/or any other type of apparatus/system
that 1s operative to process data and carry out functionality
and features described herein associated with the operation
ol a data processing system, computer, processor, and/or a
controller discussed herein. The depicted example 1s pro-
vided for the purpose of explanation only and 1s not meant
to imply architectural limitations with respect to the present
disclosure.

Also, the processor described herein may be located 1n a
server that 1s remote from the display and input devices
described herein. In such an example, the described display
device and mput device may be included 1n a client device
that communicates with the server (and/or a virtual machine

US 11,809,844 B2

25

executing on the server) through a wired or wireless network
(e.g., which may include the Internet). In some embodi-
ments, such a client device, for example, may execute a
remote desktop application or may correspond to a portal
device that carries out a remote desktop protocol with the
server 1 order to send 1nputs from an input device to the
server and receive visual information from the server to
display through a display device. Examples of such remote
desktop protocols include Teradici’s PColP, Microsolit’s
RDP, and the RFB protocol. In such examples, the processor
described herein may correspond to a virtual processor of a
virtual machine executing in a physical processor of the
SErver.

As used herein, the terms “component” and “system’™ are
intended to encompass hardware, software, or a combination
of hardware and software. Thus, for example, a system or
component may be a process, a process executing on a
processor, or a processor. Additionally, a component or
system may be localized on a single device or distributed
across several devices.

Also, as used herein a processor corresponds to any
clectronic device that 1s configured via hardware circuits,
software, and/or firmware to process data. For example,
processors described herein may correspond to one or more
(or a combination) of a microprocessor, CPU, FPGA, ASIC,
or any other integrated circuit (IC) or other type of circuit
that 1s capable of processing data 1n a data processing system
that may have the form of a controller board, computer,
server, mobile phone, and/or any other type of electronic
device.

Those skilled 1n the art will recognize that, for simplicity
and clarnty, the full structure and operation of all data
processing systems suitable for use with the present disclo-
sure 1s not being depicted or described herein. Instead, only
so much of a data processing system as 1s unique to the
present disclosure or necessary for an understanding of the
present disclosure 1s depicted and described. The remainder
of the construction and operation of data processing system
1000 may conform to any of the various current implemen-
tations and practices known 1n the art.

The words or phrases used herein should be construed
broadly, unless expressly limited in some examples. For
example, the terms “include” and “comprise,” as well as
derivatives thereof, provide inclusion without limitation.
The singular forms “a”, “an” and “the” are intended to
include the plural forms as well, unless the context clearly
indicates otherwise. Further, the term “and/or” as used
herein refers to and encompasses any and all possible
combinations of one or more of the associated listed items.
The term “or” 1s inclusive, providing and/or, unless the
context clearly indicates otherwise. The phrases “associated
with” and “associated therewith,” as well as derivatives
thereol, may be to include, be included within, interconnect
with, contain, be contained within, connect to or with,
couple to or with, be communicable with, cooperate with,
interleave, juxtapose, be proximate to, be bound to or with,
have, have a property of, or the like.

Also, although the terms “first”, “second”, “third” and so
forth may be used herein to describe various eclements,
functions, or acts, these elements, functions, or acts should
not be limited by these terms. Rather these numeral adjec-
tives are used to distinguish different elements, functions, or
acts from each other. For example, a first element, function,
or act may be termed a second element, function, or act, and,
similarly, a second element, function, or act may be termed
a first element, function, or act, without departing from the
scope of the present disclosure.

10

15

20

25

30

35

40

45

50

55

60

65

26

In addition, phrases such as “processor 1s configured to”
carry out one or more functions or processes, may be that the
processor 1s operatively configured to or operably config-
ured to carry out the functions or processes via solftware,
firmware, and/or wired circuits. For example, a processor
that 1s configured to carry out a function/process may
correspond to a processor that 1s executing the software/
firmware, which 1s programmed to cause the processor to
carry out the function/process and/or may correspond to a
processor that has the software/firmware 1n a memory or
storage device that 1s available to be executed by the
processor to carry out the function/process. A processor that
1s “configured to” carry out one or more functions or
processes may also correspond to a processor circuit par-
ticularly fabricated or “wired” to carry out the functions or
processes (e.g., an ASIC or FPGA design). Further, the
phrase “at least one” before an element (e.g., a processor)
that 1s configured to carry out more than one function may
correspond to one or more elements (e.g., processors) that
cach carry out the functions and may also correspond to two
or more of the elements (e.g., processors) that respectively
carry out diflerent ones of the one or more different func-
tions.

In addition, the term “adjacent to” may provide that an
clement 1s relatively near to but not 1n contact with a further
element, or that the element i1s in contact with the further
portion, unless the context clearly indicates otherwise.

Although an exemplary embodiment of the present dis-
closure has been described 1n detail, those skilled 1n the art
will understand that various changes, substitutions, varia-
tions, and improvements disclosed herein may be made
without departing from the spirit and scope of the disclosure
in 1ts broadest form.

None of the description 1n the present patent document
should be read as implying that any particular element, step,
act, or function 1s an essential element, which must be
included 1n the claim scope; the scope of patented subject
matter 1s defined only by the allowed claims.

The elements and features recited 1n the appended claims
may be combined 1n different ways to produce new claims
that likewise fall within the scope of the present invention.
Thus, whereas the dependent claims appended below
depend from only a single independent or dependent claim,
it 1s to be understood that these dependent claims may,
alternatively, be made to depend in the alternative from any
preceding or following claim, whether independent or
dependent. Such new combinations are to be understood as
forming a part of the present specification.

While the present invention has been described above by
reference to various embodiments, 1t should be understood
that many changes and modifications can be made to the
described embodiments. It 1s therefore intended that the
foregoing description be regarded as illustrative rather than
limiting, and that 1t be understood that all equivalents and/or
combinations of embodiments are intended to be included 1n
this description.

The mnvention claimed 1s:

1. A computer-implemented method of creating an app,
the computer-implemented method comprising:

providing an app development source artifact;

providing a first changed artifact and a second changed

artifact differing from the app development source
artifact in first differences and in second differences,
respectively, wherein the app development source arti-
fact, the first changed artifact, and the second changed
artifact include information objects to which a unique
identifier 1s assigned, respectively;

US 11,809,844 B2

27

determining the first differences and the second differ-
ences, respectively;
determining whether the first diflerences and the second
differences are mergeable taking the respective unique
identifier of the respective information objects into
account,
when the first differences and the second differences are
mergeable:
merging the first differences and the second differences
with the app development source artifact; and
developing the app using the merged app development
source artifact,
wherein the app development source artifact, the first
changed artifact, the second changed artifact, or any
combination thereof includes at least a part of a model
that 1s used for model-based app development,
wherein the model characterizes the app to be created,
functionalities of the app to be created, or the app to be
created and the functionalities of the app to be created,
wherein the model includes entities that represent the
information objects, attributes that assign properties
and values to the entities, associations that allow enti-
ties to communicate with one another, or any combi-
nation thereof,
wherein the model includes worktlows for processing data
related to the information objects or pages of the app.
the pages being configured to display the information
objects or information derived from the information
objects to a user of the app, and
wherein the model or the part of the model 1s taken 1nto
account for the determmmg of whether the first differ-
ences and the second differences are mergeable.
2. The computer-implemented method of claim 1, further
comprising;
assigning interconnected differences among the first dif-
ferences to first groups of differences, respectively, and
assigning interconnected diflerences among the second
differences to second groups of differences, respec-
tively;
determining group conflicts between the first groups and
the second groups; and
classityving differences of groups not involved 1n a group
contlict of the group conflicts as mergeable and ditler-
ences of groups 1involved 1n at least one group conflict
of the group contlicts as not mergeable.
3. The computer-implemented method of claim 2, further
comprising;
determining resolvable group contlicts among the deter-
mined group conflicts between the first groups and the
second groups; and
classitying the differences of groups with resolvable
group contlicts as mergeable.
4. The computer-implemented method of claim 2, further
comprising:
assigning at least three contlicting groups among the first
groups and the second groups to a respective hyper-
group, wherein the at least three groups are at least
partly in conflict with each other;
determining resolvable group contlicts among the deter-
mined group contlicts of the respective hypergroup;
if all group conflicts of the respective hypergroup are
resolvable group conflicts, classitying the differences
of the respective hypergroup as mergeable.
5. The computer-implemented method of claim 1, further
comprising;
classitying a first difference among the first differences
and a second difference among the second differences

10

15

20

25

30

35

40

45

50

55

60

65

28

as mergeable when the first difference and the second
difference concern at least one mergeable property of at
least one first information object, at least two 1ndepen-
dent properties of at least one second information

object, two different information objects, or any com-

bination thereof.

6. The computer-implemented method of claim 1,
wherein the information objects are at least partly organized
in a graph structure, and

wherein for the determining of whether the first difler-

ences and the second differences are mergeable, the
graph structure of the information objects and the
respective unique identifier of the mformation objects
of the graph structure are taken into account, respec-
tively.

7. The computer-implemented method of claim 1, further
comprising;

classitying differences among the first differences and the

second differences as mergeable when the respective
differences concern a list of a first type of information
objects,

wherein the list of the first type of information objects, an

order of the information objects of the list of the first
type of information objects, or the list of the first type
ol information objects and the order of the information
objects of the list of the first type of information objects
are defined as mergeable.

8. The computer-implemented method of claim 7,
wherein the respective diflerences include an addition of an
information object, and

wherein the addition of the information object 1s made at

a given position relative to a position of at least one
other information object of the list of the first type of
information objects, or the addition of the information
object 1s made at the end of the list of the first type of
information objects when the at least one other infor-
mation object has been removed from the list of the first
type of information objects.

9. The computer-implemented method of claim 1, turther
comprising:

classifying differences among the first differences and the

second differences as not mergeable when the respec-
tive differences concern an order of a list of a second
type of information objects,

wherein the order of the list of the second type of

information objects 1s fixed.

10. The computer-implemented method of claim 1, fur-
ther comprising:

classitying differences among the first differences and the

second differences as not mergeable when the respec-
tive differences concern a list of a third type of infor-
mation objects and result in changed properties of the
list of the third type of information objects,

wherein the changed properties of the list of the third type

of information objects do not comply with given
acceptable properties of the list of the third type of
information objects.

11. The computer-implemented method of claim 10,
wherein the acceptable properties of the list of the third type
of information objects 1nclude a fixed order or a fixed
number of the information objects of the list of the third
type.

12. The computer-implemented method of claim 1, fur-
ther comprising:

when the first differences and the second differences are

classified as not mergeable:

ry

US 11,809,844 B2

29

displaying the first differences and the second differences
to a user through an app development user interface
(UI) for selecting the first differences, the second
differences, or the first differences and the second
differences to be introduced to the app development
source artifact or for rejecting the first diflerences and
the second differences;
capturing a selection intent of the user 1n response to user
interactions with the app development UI; and
merging the first diflerences, the second diflerences, or the
first differences and the second differences with the app
development source artifact or leaving the app devel-
opment source artifact unchanged corresponding to the
captured selection intent of the user.
13. A computer system comprising:
a processor configured to create an app, the creation of the
app comprising;:
provision ol an app development source artifact;
provision of a first changed artifact and a second
changed artifact di'Tering from the app development
source artifact in first differences and in second
differences, respectively, wherein the app develop-
ment source artifact, the first changed artifact, and
the second changed artifact include information
objects to which a umque identifier 1s assigned,
respectively;
determination of the first differences and the second
differences, respectively;
determination of whether the first differences and the
second differences are mergeable taking the respec-
tive unique i1dentifier of the respective imformation
objects 1nto account;
when the first differences and the second differences are
mergeable:
merge of the first differences and the second difler-
ences with the app development source artifact;
and
development of the app using the merged app devel-
opment source artifact,
wherein the app development source artifact, the first
changed artifact, the second changed artifact, or any
combination thereof includes at least a part of a model
that 1s used for model-based app development,
wherein the model characterizes the app to be created,
functionalities of the app to be created, or the app to be
created and the functionalities of the app to be created,
wherein the model includes entities that represent the
information objects, attributes that assign properties
and values to the entities, associations that allow enti-
ties to communicate with one another, or any combi-
nation thereof,
wherein the model includes worktlows for processing data
related to the information objects or pages of the app,
the pages being configured to display the information
objects or information derived from the information
objects to a user of the app, and
wherein the model or the part of the model 1s taken 1nto
account for the determination of whether the first
differences and the second differences are mergeable.
14. In a non-transitory computer-readable storage
medium that stores instructions executable by a computer
system to create an app, the instructions comprising:
providing an app development source artifact;
providing a first changed artifact and a second changed
artifact differing from the app development source
artifact in first differences and in second differences,
respectively, wherein the app development source arti-

10

15

20

25

30

35

40

45

50

55

30

fact, the first changed artifact, and the second changed
artifact include information objects to which a unique
identifier 1s assigned, respectively;

determiming the first differences and the second difler-
ences, respectively;

determining whether the first differences and the second
differences are mergeable taking the respective unique
identifier of the respective information objects into
account;

when the first differences and the second diflerences are
mergeable:
merging the first differences and the second differences

with the app development source artifact; and
developing the app using the merged app development
source artifact,

wherein the app development source artifact, the first
changed artifact, the second changed artifact, or any
combination thereof includes at least a part of a model
that 1s used for model-based app development,

wherein the model characterizes the app to be created,

functionalities of the app to be created, or the app to be
created and the functionalities of the app to be created,

wherein the model includes entities that represent the
information objects, attributes that assign properties
and values to the entities, associations that allow enti-
ties to communicate with one another, or any combi-
nation thereof,

wherein the model includes worktlows for processing data
related to the information objects or pages of the app,
the pages being configured to display the information
objects or information derived from the information
objects to a user of the app, and

wherein the model or the part of the model 1s taken into
account for the determining of whether the first difler-
ences and the second differences are mergeable.

15. The non-transitory computer-readable storage

medium of claim 14, wherein the instructions further com-
prise:

L] [

assigning 1nterconnected differences among the first dif-
ferences to first groups of differences, respectively, and
assigning interconnected differences among the second
differences to second groups of differences, respec-
tively;

determining group contlicts between the first groups and
the second groups; and

classitying differences of groups not involved 1 a group
contlict of the group conflicts as mergeable and difler-
ences of groups ivolved in at least one group contlict
of the group contlicts as not mergeable.

16. 'The non-transitory computer-readable storage

medium of claim 15, wherein the instructions further com-
prise:

determiming resolvable group conflicts among the deter-
mined group contlicts between the first groups and the
second groups; and

classifying the differences of groups with resolvable
group conflicts as mergeable.

17. The non-transitory computer-readable storage

60 medium of claim 15, wherein the instructions further com-

65

prise:

assigning at least three conflicting groups among the first
groups and the second groups to a respective hyper-
group, wherein the at least three groups are at least
partly 1n contlict with each other;

determining resolvable group contlicts among the deter-
mined group contlicts of the respective hypergroup;

US 11,809,844 B2
31

if all group contlicts of the respective hypergroup are
resolvable group contlicts, classifying the differences
of the respective hypergroup as mergeable.

18. The non-transitory computer-readable storage
medium of claim 14, wherein the instructions further com- 5
prise:

classitying a first difference among the first differences
and a second difference among the second differences
as mergeable when the first difference and the second
difference concern at least one mergeable property of at 10
least one first information object, at least two 1ndepen-
dent properties ol at least one second information
object, two diflerent information objects, or any com-
bination thereof.

19. The non-transitory computer-readable storage 15
medium of claim 14, wherein the information objects are at
least partly organized in a graph structure, and

wherein for the determining of whether the first differ-

ences and the second differences are mergeable, the
graph structure of the information objects and the 20
respective unique 1dentifier of the information objects

of the graph structure are taken into account, respec-
tively.

	Front Page
	Drawings
	Specification
	Claims

